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Constructing supersingular elliptic curves with a given
endomorphism ring

Ilya Chevyrev and Steven D. Galbraith

Abstract

Let O be a maximal order in the quaternion algebra Bp over Q ramified at p and ∞. The paper
is about the computational problem: construct a supersingular elliptic curve E over Fp such that
End(E) ∼= O. We present an algorithm that solves this problem by taking gcds of the reductions
modulo p of Hilbert class polynomials.

New theoretical results are required to determine the complexity of our algorithm. Our
main result is that, under certain conditions on a rank three sublattice OT of O, the order O
is effectively characterized by the three successive minima and two other short vectors of OT.
The desired conditions turn out to hold whenever the j-invariant j(E), of the elliptic curve with
End(E) ∼= O, lies in Fp. We can then prove that our algorithm terminates with running time
O(p1+ε) under the aforementioned conditions.

As a further application we present an algorithm to simultaneously match all maximal order
types with their associated j-invariants. Our algorithm has running time O(p2.5+ε) operations
and is more efficient than Cerviño’s algorithm for the same problem.

1. Introduction

Let p be a prime and E a supersingular elliptic curve over Fp2 . Then End(E) is a maximal
order in the quaternion algebra Bp ramified exactly at p and ∞ (all notation and definitions
are explained in § 2). A special case of interest is when E is defined over Fp, in which case
End(E) contains an element π such that π2 = −p (the Frobenius). Supersingular elliptic curves
have a number of algorithmic applications [5, 20].

Ibukiyama [11] has given an explicit description of all maximal orders in Bp that contain√
−p. For example, let p ≡ 1 (mod 4) and let O be such a maximal order in Bp. Then

there is a prime q ≡ 3 (mod 8) such that (−q/p) = −1, and a Q-algebra isomorphism φ :
Bp → Q + Qi + Qj + Qk where i2 = −p, j2 = −q and k = ij = −ji, such that φ(O) ∼=
Z + Z(1 + j)/2 + Z(i+ k)/2 + Z(rj + k)/q where r is any integer such that q | (r2 + p).

Consider the Z-module OT = {2x − Tr(x) |x ∈ O} of rank 3 (we discuss this object in
greater detail in § 3). Note that y ∈ OT implies Tr(y) = 0 and so OT is a subset of the pure
quaternions. Fix a Z-module basis {ω1, ω2, ω3} for OT and consider the ternary quadratic form
Q(x, y, z) = Nr(xω1 + yω2 + zω3) giving a norm on OT. Kaneko [13] has shown, in the special
case where

√
−p ∈ O, that there is an element x ∈ OT of norm at most 4

√
p/
√

3.
LetO′ be another maximal order in the same quaternion algebra Bp and let Q′ be the ternary

form associated with O′. A natural question is whether Q determines O. In other words, if Q′

is equivalent to Q in the sense of quadratic forms then is O′ isomorphic to O? We will show
that this is the case. Indeed, our main result (Theorem 2.2) is much stronger: it states that
if the forms Q and Q′ are such that Q′ represents the successive minima of Q (which is not
the same as saying that the forms have the same successive minima), plus some other mild
conditions, then O ∼= O′, and hence Q and Q′ are equivalent. Schiemann [16] has shown that
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two ternary quadratic forms are determined up to equivalence by their theta series. Our result
may be viewed as a strong form of Schiemann’s theorem in the case where both forms arise
from maximal orders in the same quaternion algebra.

Our work is motivated by several computational questions about supersingular elliptic
curves. One problem is, given a maximal order O in Bp, to compute an elliptic curve E
over Fp2 such that End(E) ∼= O. A second problem is to compute a list of all isomorphism
classes of supersingular elliptic curves E over Fp2 (or over Fp in a restricted case) together with
a description of End(E). To solve both problems we use Hilbert class polynomials. The main
idea is that if O ∼= End(E) and if OT has an element of small norm d then E has a ‘complex
multiplication’ of degree d and so j(E) is a root of the Hilbert class polynomial H−d(x). The
first problem does not seem to have been considered in the literature previously. Cerviño [4]
has given an algorithm to solve the second problem that seems to run in O(p3+ε) operations
(or O(p2.5+ε) in the restricted case over Fp); our approach leads to a superior running time of
O(p2.5+ε) operations (or O(p1.5+ε) in the restricted case).

2. Background and main results

Let Bp be the quaternion algebra over Q ramified exactly at p and at ∞. A general reference
for many of the facts in this section is Vignéras [21]. We recall that Bp is a four-dimensional
division Q-algebra containing Q with an anti-involution x 7→ x. Define the reduced trace
Tr(x) = x+ x. Then Bp is equipped with the symmetric positive-definite bilinear form Tr(xy)
and the associated positive-definite quadratic form Nr(x) = xx. Every element x ∈ Bp satisfies
its characteristic equation x2 − Tr(x)x+ Nr(x) = 0. We define B0

p to be the subring of Bp of
elements of zero trace.

We let O and O′ be orders of Bp. We recall that an order of Bp is a subring of Bp that
contains Z and has four linearly independent generators as a Z-module. We recall furthermore
that for all x ∈ O, we have Tr(x),Nr(x) ∈ Z. Finally, we say that O and O′ are of the same
type if there exists non-zero c ∈ Bp such that cOc−1 = O′, in which case we write O ∼ O′.

An order O of Bp is called maximal if it is not properly contained in any other order.
Deuring showed that, associated to a maximal order O, there exists either one supersingular
j-invariant j(O) ∈ Fp, or a conjugate pair j(O), j(O) ∈ Fp2 , such that End(E(j(O))) =

End(E(j(O))) = O, where E(j) is the unique (up to isomorphism) elliptic curve with
j-invariant j. We let the total number of maximal order types be tp, the type number of Bp.

If #O∗ > 2 then j(O) ∈ {0, 1728} and the problems considered in the paper are all
straightforward. More precisely, j(O) = 0 if and only if there are units of (multiplicative)
order 3 and 6, and j(O) = 1728 if and only if there is a unit of order 4. Hence, unless
otherwise stated, we assume that #O∗ = 2.

Let V be any vector space over Q with a positive-definite quadratic form Nr. For arbitrary
vectors v1, v2, . . . , vn ∈ V , we denote by

Λ = 〈v1, v2, . . . , vn〉 := {a1v1 + a2v2 + . . .+ anvn | a1, a2, . . . , an ∈ Z}

the standard lattice generated by these vectors.
We say that a non-zero lattice element x ∈ Λ is primitive if there do not exist y ∈ Λ and

a ∈ Z such that ay = x and a 6= ±1. If x = a1v1 + . . .+ anvn, then x is primitive if and only
if gcd(a1, . . . , an) = 1. We also say that an integer k is represented by Λ if there exists x ∈ Λ
such that Nr(x) = k, in which case we also say that x represents k. Furthermore, we say that
x optimally represents k if x is primitive.

If k 6= 0, we say that k is represented by Λ with multiplicity θΛ(k), where

θΛ(k) = 1
2#{(a1, . . . , an) ∈ Zn |Nr(a1v1 + . . .+ anvn) = k},
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and likewise k is represented optimally by Λ with optimal multiplicity θ′Λ(k), where

θ′Λ(k) = 1
2#{(a1, . . . , an) ∈ Zn |Nr(a1v1 + . . .+ anvn) = k, gcd(a1, . . . , an) = 1}.

The factor 1
2 = 1/#O∗ is to avoid counting both x and −x, since Nr(x) = Nr(−x) = k is

effectively the same representation.
Turning to the case V = Bp with the quadratic form Nr, for a lattice Λ = 〈v1, v2, v3, v4〉 ⊂ Bp

we define its discriminant as D(Λ) = D(v1, v2, v3, v4) = |det(Tr(vivj))| (see [21, § I.4]). It is
a standard fact that D(O) = p2 for a maximal order O ⊂ Bp (see, for example, Vignéras
[21, Corollary III.5.3]). Note that D(O) = |det(Tr(vivj))|.

We will often think of Bp simply as an inner product space and forget its algebraic structure.
For example, we can find a Q-basis {1, τ, ρ, τρ} for Bp such that τ2 = −p, ρ2 = −q and
τρ = −ρτ , where q is a prime such that q ≡ 3 (mod 8) and (−p/q) = 1 (see, for example,
Ibukiyama [11, Lemma 1.1]). Then in particular, Nr(a + bτ + cρ + dτρ) = a2 + b2Nr(τ) +
c2Nr(ρ) + d2Nr(τρ) for a, b, c, d ∈ Q. As such, we will embed Bp into R4 by the mapping

φ : a+ bτ + cρ+ dτρ 7−→ ae1 + b
√

Nr(τ)e2 + c
√

Nr(ρ)e3 + d
√

Nr(τρ)e4,

where ei are the usual orthonormal vectors in R4. We observe that φ is indeed an isometry
(the quadratic form on R4 being understood as the square of the standard Euclidean
norm). We note that this is not the only standard way to represent Bp (see, for example,
Pizer [15, Proposition 5.1] for a different, but related representation). In particular, the above
representation of Bp is not the one used in the two examples of § 6.

For an n-dimensional lattice L in Rm, let det(L), the determinant of L, be the square of the
volume of L, that is, if B is a basis matrix for L then det(L) := det(BBT ) = Vol(L)2. Notice
that this is different to the more common definition of det(L) =

√
det(BBT ) = Vol(L). We

say that the n successive minima of L are D1, D2, . . . , Dn ∈ R such that Di is minimal such
that there exist i linearly independent vectors v1, v2, . . . , vi ∈ L with ‖vj‖2 6 Di for all j 6 i,
where ‖ · ‖ is the standard Euclidean norm in Rm. Again we remark that our definition is the
square of the more common definition where ‖vj‖ 6 Di is taken instead of ‖vj‖2 6 Di.

Under this notation, standard lattice bounds show that there is a minimal constant γn (called
the nth Hermite constant) such that

det(L) 6
n∏

i=1

Di 6 γnn det(L). (2.1)

Again, this is the square of the usual equation
∏

i ‖vj‖ 6 γ
n/2
n Vol(L). It is known that γ2

2 = 4
3

and γ3
3 = 2 (see Siegel [17, §§XI.5 and XI.6]).

Now for any lattice Λ ⊂ Bp, the determinant, volume and successive minima of Λ are defined
to be those of φ(Λ) ⊂ R4, where φ : Bp 7→ R4 is the embedding described above. We note that
for a 4-dimensional lattice Λ ⊂ Bp, we have

D(Λ) = 16 det(φ(Λ)) (2.2)

since Tr(xy) = 2φ(x)φ(y)T.
One goal of this paper is to give sufficient conditions under which the elements of small

norm of a maximal order O of Bp characterize its type. The first theorem is that the successive
minima of the lattice OT determine the type of the order.

Theorem 2.1. Let O and O′ be two maximal orders of Bp. Let OT and O′T have the
same successive minima D1 6 D2 6 D3. Assume moreover that D1D2 < 16p/3 and that p is
sufficiently large. Then O and O′ are of the same type.
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Our main result is a stronger statement as it does not require both orders to give lattices
with the same successive minima. It is this result we need later for our algorithmic application.

Theorem 2.2. Let p > 286 and O, O′ be two maximal orders of Bp. Let D1, D2 and D3

be the successive minima of OT and let x, y ∈ OT be such that Nr(x) = D1 and Nr(y) = D2.
Suppose that D1, D2, Nr(x + y), Nr(x − y) and D3 are all represented optimally in O′T and
that θ′OT (D3) 6 θ′O′T (D3). Assume moreover that

D1D2 <
16
3 p. (2.3)

Then O and O′ are of the same type.

We prove Theorem 2.1 in § 4 and Theorem 2.2 in the Appendix. Lemma 2.3 gives a set of
cases when the condition D1D2 < 16p/3 holds.

Lemma 2.3. Let O be a maximal order in Bp and D1 and D2 the first two successive minima
of OT. If O contains an element π such that π2 = −p (or equivalently, if j(O) ∈ Fp), then
D1D2 < 16p/3.

Proof. When j(O) ∈ Fp, Kaneko proves (see [13, pages 851–852]) that there exists a
2-dimensional sublattice Λ of OT with determinant det(Λ) = 4p. Let d1 and d2 be the first
two successive minima of Λ. Using the second Hermite constant γ 2

2 = 4
3 in (2.1), we obtain

that 4p 6 d1d2 < 16p/3 (the second inequality is strict since d1d2 is an integer and the case
p = 3 is trivial). Finally, since Di 6 di for i = 1, 2, it follows that D1D2 < 16p/3.

Elkies showed that D1 6 2p2/3 for any maximal order in Bp. Yang [22] has shown that
Elkies’ result is the best possible.

3. The lattice OT and its properties

Definition 3.1. For an order O ⊂ Bp, we define OT = {2x− Tr(x) |x ∈ O}.

We remark that OT is a sublattice of O ∩ B0
p , and this inclusion is strict. The set OT is

called the ‘Gross lattice’ by some authors (see Yang [22] and Kane [12]).
If we have O = 〈1, u1, u2, u3〉 for u1, u2, u3 ∈ Bp and let vi = 2ui − Tr(ui), it follows

immediately that OT = 〈v1, v2, v3〉. As already noted, the discriminant of a maximal order
O ∈ Bp is p2. The following basic result on the determinant of OT follows directly from these
two remarks and is a special case of Kohel [14, Corollary 71] with α = 1.

Lemma 3.1. Let O be a maximal order of Bp. Then det(OT ) = 4p2.

The following easy lemma allows us to characterize the conjugacy classes of Bp. For any
x, y ∈ Bp, we write x ∼ y if there exists non-zero c ∈ Bp such that cxc−1 = y. Likewise for
lattices Λ,Λ′ ⊂ Bp we write Λ ∼ Λ′ if there exists non-zero c ∈ Bp such that cΛc−1 = Λ′.

Lemma 3.2. Let x, y ∈ Bp. Then x ∼ y if and only if Tr(x) = Tr(y) and Nr(x) = Nr(y).

If OT = 〈v1, v2, v3〉 as above, it is not difficult to see that O = {x ∈ 1/2〈1,OT 〉 |Nr(x) ∈ Z}.
From this observation we obtain the following lemma, which characterizes O in terms of OT.

Lemma 3.3. Two orders O,O′ ⊂ Bp are of the same type if and only if OT ∼ O′T.
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Proof. It is clear that if cOc−1 = O′, then cOT c−1 = O′T. Conversely, assume that cOT c−1 =
O′T. By conjugating O by c, we see it suffices only to prove that if OT = O′T, then O and O′
are of the same type. But from the above observation, if OT = O′T, then 〈1,OT 〉 = 〈1,O′T 〉
and so in fact we obtain O = O′.

We now make some remarks about lattices generated by pairs of elements x, y ∈ OT. Let
x, y ∈ OT be such that 〈x, y〉 is a rank 2 lattice. Define the two-dimensional subspace

〈x, y〉⊥ = {v ∈ Bp |Tr(vx) = Tr(vy) = 0}. (3.1)

As x, y have zero trace, we see that Q ⊂ 〈x, y〉⊥, and so we can suppose 〈x, y〉⊥ has Q-basis
{1, w} with Tr(w) = 0.

Lemma 3.4. Let x, y ∈ OT. It then holds that w = 2xy − Tr(xy) ∈ OT ∩ 〈x, y〉⊥, where
〈x, y〉⊥ is defined in equation (3.1).

Proof. Clearly w has trace zero. We observe that Tr(xyx) = Tr(xyy) = 0 since both x and
y have zero trace. So we have xy ∈ 〈x, y〉⊥, and since Q ⊂ 〈x, y〉⊥, it follows that indeed
2xy − Tr(xy) ∈ 〈x, y〉⊥.

Let D1 = Nr(x), D2 = Nr(y) and L = 〈x, y〉. Writing T = Tr(xy) = xy + yx = −(xy + yx)
we have that the lattice L has determinant D1D2 − (T/2)2 = (4D1D2 − T 2)/4. Write w =
2xy − T = xy − yx. Then, by Lemma 3.4, w ∈ OT ∩ 〈x, y〉⊥. An immediate calculation gives
Nr(w) = 4D1D2−T 2. Hence, the determinant of 〈x, y, w〉 and 〈1, x, y, w〉 is (4D1D2−T 2)2/4.
The discriminant of the order 〈1, x, y, w〉 is thus 4(4D1D2 − T 2)2, and since 〈1, x, y, w〉 ⊆ O,
we have p2 | (4D1D2 − T 2)2 and so

p | (4D1D2 − T 2). (3.2)

(This argument appears in Kaneko [13].)
For an integer D < 0 (D ≡ 0 or 1 (mod 4)), we consider the imaginary quadratic order
OD := Z[ 1

2 (D +
√
D)] of discriminant D. An embedding i : OD 7→ O is called optimal if

(Q ⊗ i(OD)) ∩ O = i(OD). By a straightforward argument (see, for example, the beginning
of § 3 of Elkies et al. [7]), we see that there is a bijection between primitive elements of OT

and optimal embeddings in the following sense: for every optimal representation of |D| in OT

by a primitive element x ∈ OT, there is a unique optimal embedding i : OD 7→ O such that
i(
√
D) = x, and vice versa. Hence, whenever we talk of an optimal representation or primitive

element, we will always associate to it the corresponding optimal embedding.

4. Proof of Theorem 2.1

We remark first that when p is small, all maximal orders of Bp can be found feasibly through
an exhaustive search, and so this case is easily handled for both Theorems 2.1 and 2.2. It
will furthermore turn out that we require bounds like p > 168 or p > 286 for some technical
lemmas. Hence, we introduce some notation to be used for the rest of the paper.

Notation 4.1. Let p > 286 be a prime and O and O′ two maximal orders in Bp. Let OT and
O′T be as in Definition 3.1. Let D1, D2, D3 (respectively, D′1, D

′
2, D

′
3) be the successive minima

of OT (respectively, O′T ). Denote by x, y, z ∈ OT (respectively, x′, y′, z′ ∈ O′T ) elements
such that D1 = Nr(x), D2 = Nr(y), D3 = Nr(z) (respectively, D′1 = Nr(x′), D′2 = Nr(y′),
D′3 = Nr(z′)).
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Before describing the general strategy of the proof, we remove a small number of trivial
cases when D1 is small. We recall that the number of different types of maximal orders of
Bp containing an optimal embedding of the imaginary quadratic order OD is bounded above
by hD, the class number of OD (we refer to Theorem 5.1 of § 5 for a more detailed result).
However it is known that hD = 1 for all discriminants −15 < D < 0. We thus obtain the
following result, relevant to both theorems.

Lemma 4.1. Let −15 < D < 0. If O and O′ are maximal orders of Bp that both optimally
represent |D|, then O and O′ are of the same type.

Unless otherwise stated, we will always impose the conditions

D1D2 <
16
3 p, 15 6 D1, and 286 < p. (4.1)

We further remark that in the setting of Theorems 2.1 and 2.2, where O′T optimally represents
the successive minima of OT, it trivially holds that

D′1 6 D1 and D′2 6 D2. (4.2)

We now describe the general strategy of the proof of Theorem 2.1. The goal is to show that
O and O′ are of the same type, which will follow from showing that OT and O′T are conjugate.
The first step is to take appropriate sublattices 〈x, y〉 in OT and 〈x′, y′〉 in O′T and then to
show that 〈x, y〉 and 〈x′, y′〉 are isometric. The final stage of the proof is to extend to the full
lattices OT and O′T.

4.1. Proving that 〈x, y〉 and 〈x′, y′〉 are isometric

Let x, y ∈ OT and x′, y′ ∈ O′T be as in Notation 4.1, and recall that D1 = D′1 and D2 = D′2
in the case of Theorem 2.1. To show that 〈x, y〉 and 〈x′, y′〉 are isometric it suffices to show
that Tr(xy) = Tr(x′y′). This follows from equation (3.2).

Lemma 4.2. Let notation be as above and suppose p > 128. Then Tr(xy) = Tr(x′y′).

Proof. We know that 0 < D1D2 < 16p/3 and 0 6 T 2 6 4Nr(x)Nr(y) 6 4D1D2, and similarly
for D′1, D

′
2, T

′. Hence, 0 6 4D1D2 − T 2 6 4D1D2 < 64p/3 < 22p and |T | <
√

64p/3 < 4.7
√
p.

We also know that 4D1D2 − T 2 ≡ 4D1D2 − T ′2 ≡ 0 (mod p). Further, there are at most two
solutions modulo p to T 2 ≡ 4D1D2 (mod p), and so all possible values for T ′ = Tr(x′y′) are
of the form T ′ = ±T + kp for some integer k. Now, 0 6 4D1D2 − T ′2 6 4D1D2 < 22p, and

4D1D2 − T ′2 = (4D1D2 − T 2)∓ 2Tkp− k2p2.

For p > 128 and |k| > 1 we remark that |∓ 2Tkp− k2p2| > p(p− 2|T |) > p(p− 9.4
√
p) > 22p.

Thus k = 0 and so T ′ = ±T . Changing the sign of y′, if necessary, gives the result.

We deduce that 〈x, y〉 and 〈x′, y′〉, are isometric. Hence, as shown in Lemma 4.3 below, we
can conjugate so that x′ = x and y′ = y.

Lemma 4.3. Let O,O′ ⊂ Bp be two orders. For any elements x, y ∈ OT and x′, y′ ∈ OT

such that x ∼ x′, y ∼ y′ and x+ y ∼ x′ + y′ it holds that 〈x, y〉 ∼ 〈x′, y′〉, that is, there exists
non-zero c ∈ Bp such that c〈x, y〉c−1 = 〈x′, y′〉.
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Proof. As Tr(OT ) = Tr(O′T ) = 0, for all r ∈ OT and r′ ∈ O′T, it holds that r ∼ r′ if and
only if Nr(r) = Nr(r′) by Lemma 3.2. It follows that

Nr(x′) + Nr(y′) + Tr(x′y′) = Nr(x′ + y′) = Nr(x+ y) = Nr(x) + Nr(y) + Tr(xy),

and we obtain Tr(xy) = Tr(x′y′).
We recall that for any u, v ∈ Bp, we have

uv + vu = Tr(u)v + Tr(v)u+ Tr(uv)− Tr(u)Tr(v).

From this, it follows that 〈1, x, y, xy〉 and 〈1, x′, y′, x′y′〉 are both rings (just check that the
product of any two generators is in the lattice), and hence they are both orders. Furthermore,
since x = −x, y = −y and Tr(xy) = Tr(x′y′), we obtain that these orders are isomorphic under
the natural mapping ψ : a+bx+cy+dxy 7→ a+bx′+cy′+dx′y′. Since all isomorphisms of orders
come from conjugation, we know that there exists non-zero c ∈ Bp such that c〈1, x, y, xy〉c−1 =
〈1, x′, y′, x′y′〉. The lemma follows.

4.2. Completing the proof

We now have OT = 〈x, y, z〉 and O′T = 〈x, y, z′〉 with Nr(z) = Nr(z′) = D3. It remains to
prove that OT and O′T are equal. We have the following result for any ternary lattice.

Lemma 4.4. Let L be a lattice of dimension 3 endowed with a norm ‖ ·‖. Let x, y, z ∈ L and
assume that D1 := ‖x‖2, D2 := ‖y‖2 and D3 := ‖z‖2 are the successive minima of L. Then
L = 〈x, y, z〉 and (recalling that det(L) = Vol(L)2)

det(L) 6 D1D2D3 6 2 det(L).

Proof. As mentioned in § 2, the third Hermite constant γ3 is given by γ3
3 = 2. The desired

inequality follows immediately from (2.1).
To deduce that L = 〈x, y, z〉, we observe that the volume of a sublattice L′ ⊆ L is always

a multiple of the volume of L. Furthermore Vol(L) = Vol(L′) if and only if L = L′. Hence if
〈x, y, z〉 6= L, then Vol(〈x, y, z〉) > 2Vol(L), and so again by (2.1), we have

D1D2D3 > det(〈x, y, z〉) > 4 det(L),

which contradicts D1D2D3 6 2 det(L). We conclude that L = 〈x, y, z〉 as claimed.

Lemma 4.4 allows us to conclude that OT = 〈x, y, z〉 and O′T = 〈x′, y′, z′〉, and, in
conjunction with Lemma 3.1, that

4p2 6 D1D2D3, D′1D
′
2D
′
3 6 8p2. (4.3)

Lemma 4.5. Let notation be as in Notation 4.1. Suppose that OT = 〈x, y, z〉 and O′T =
〈x, y, z′〉 with Nr(z) = Nr(z′) = D3. Then z = ±z′ (and so OT = O′T ) provided that

D1D2 <
16
3 p, (4.4)

15 6D1, and (4.5)

168< p. (4.6)

Proof. Recall from equation (3.1) the two-dimensional subspace

〈x, y〉⊥ := {v ∈ Bp |Tr(vx) = Tr(vy) = 0}. (4.7)
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As x, y have zero trace, we see that Q ⊂ 〈x, y〉⊥, and so 〈x, y〉⊥ has Q-basis {1, v} with
Tr(v) = 0. Let u ∈ 〈x, y〉⊥ be the projection of z onto 〈x, y〉⊥ (that is, u = Tr(zv)v/(2Nr(v))).
Similarly, let u′ be the projection of z′ onto 〈x, y〉⊥. We remark that u, u′ ∈ B0

p .
Now, (recalling that the determinant is the square of the volume of a lattice)

det(〈x, y〉)Nr(u) = det(OT ) = det(O′T ) = det(〈x, y〉)Nr(u′). (4.8)

Since u, u′ ∈ 〈v〉, it follows that u′ = ±u, so, replacing z′ by −z′ if necessary, we may assume
u′ = u. Write z = (αx+ βy) + u for some α, β ∈ Q.

Let s = 2xy−Tr(xy), which by Lemma 3.4 lies in OT ∩ 〈x, y〉⊥ and in O′T ∩ 〈x, y〉⊥. Hence
there exist a, b, c, a′, b′, c′ ∈ Z such that s = ax+ by + cz and s = a′x+ b′y + c′z′.

Since s ∈ 〈x, y〉⊥ ∩ OT, and u is the projection of z and z′ onto 〈x, y〉⊥, it holds that
s = cu = c′u, which implies c = c′. Furthermore, we have that

Nr(ax+ by) = Nr(s− cz) = Nr(s) + c2Nr(z)− cTr(sz) and (4.9)

Nr(a′x+ b′y) = Nr(s− cz′) = Nr(s) + c2Nr(z′)− cTr(sz′). (4.10)

Since the projections of z and z′ onto 〈x, y〉⊥ are equal, we obtain Tr(sz) = Tr(sz′). We also
recall that Nr(z) = D3 = Nr(z′). Together with (4.9) and (4.10), this implies that

Nr(ax+ by) = Nr(a′x+ b′y). (4.11)

We now show that Nr(ax + by) cannot be too large and then apply [13, Theorem 2′] to
conclude that ax + by = ±(a′x + b′y). Recall that u = −αx− βy + z, for some α, β ∈ Q. We
claim that the closest element to αx+βy in the lattice 〈x, y〉 is 0. Indeed, let k ∈ 〈x, y〉 be the
closest lattice element to αx+ βy. Then Nr(αx+ βy − k) 6 Nr(αx+ βy). On the other hand

Nr(−z − k) = Nr(u) + Nr(αx+ βy − k) > Nr(z) = Nr(u) + Nr(αx+ βy),

where the inequality holds since −z − k is outside 〈x, y〉 and z represents the third successive
minimum of OT. Thus Nr(αx+ βy − k) = Nr(αx+ βy), and hence 0 is the closest element to
αx+ βy in the lattice 〈x, y〉 as claimed.

It is well known that the covering radius ρ(Λ) of a lattice Λ is always bounded by ρ(Λ) 6
σ(Λ)/2, where σ(Λ) is the length of the diagonal of the orthogonal parallelepiped of Λ (see, for
example, Micciancio and Goldwasser [9, Theorem 7.9, page 138]). As a result, we have that

Nr(αx+ βy) 6 ρ(〈x, y〉)2 6 1
4σ(〈x, y〉)2 6 1

4 (D1 +D2).

Since s = cu, it holds that a = cα and b = cβ, and so

Nr(ax+ by) = c2Nr(αx+ βy) 6
c2

4
(D1 +D2). (4.12)

We now bound c. By (4.3), we have that

1
2D1D2D3 6 4p2 = det(〈x, y, z〉) 6 D1D2Nr(u).

It follows that D3 6 2Nr(u). Furthermore, we observe that

c2Nr(u) = Nr(s) = Nr(xy − 1
2Tr(xy)) 6 Nr(xy) = D1D2.

Hence

D3 6
2

c2
D1D2. (4.13)
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On the other hand, by (4.3) and (4.4), we obtain

9

64
D1D2 <

3

4
p <

4p2

D1D2
6 D3.

Combined with (4.13), this gives c2 < 128
9 < 15. As c ∈ Z, this implies that c2 6 9. Therefore,

from (4.12), we obtain

Nr(ax+ by) 6
9

4
(D1 +D2) <

9

4

(
15 +

16p/3

15

)
< p,

where the last two inequalities follow from (4.4), (4.5) and (4.6). However, since Nr(a′x+b′y) =
Nr(ax + by) from (4.11), we obtain by [13, Theorem 2′] that ax + by = ±(a′x + b′y), and so
z = ±z′ as desired.

Finally, Lemma 3.3 completes the proof of Theorem 2.1.

5. Algorithm to associate elliptic curves to maximal orders

In this section we consider the following problem: given a maximal order O ⊂ Bp, compute
an elliptic curve E/Fp2 such that End(E) ∼= O. Our approach is to determine j(E) using
Hilbert class polynomials. We give a general method, but we are only able to prove that this
method terminates under the condition (2.3) (for example, when

√
−p ∈ O, or equivalently,

j(E) ∈ Fp).
Let HD(X) ∈ Fp[X] be the reduction modulo p of the Hilbert class polynomial of

discriminant D < 0 (see Cox [6, § 13]). We recall that HD(X) ∈ Z[X] is the polynomial
whose roots are the j-invariants of the elliptic curves over C possessing the quadratic order
OD = Z[ 1

2 (D +
√
D)] as their endomorphism ring.

As mentioned in the introduction, if
√
−p ∈ O then O can be written in a canonical form

given by Ibukiyama [11]. For example, when p ≡ 1 (mod 4) then there exists a prime q ≡ 3
(mod 8) and an integer r such that q | (r2 + p) and such that O is isomorphic to an order with
Z-basis {1, (1+j)/2, i(1+j)/2, (r+i)j/q} in the quaternion algebra defined by i2 = −p, j2 = −q
and ij = −ji. In the case p ≡ 3 (mod 4) there are two such families of orders. Note that
j(E) ∈ Fp is a root of either H−p(X) or H−4p(X), and is also a root of either H−q(X) or
H−4q(X). When q is small this already gives an efficient way to determine j(E), however we
cannot assume that q is always small in Ibukiyama’s result.

The idea of the algorithm is to use lattice algorithms (basis reduction or enumeration) to
find several small norms d1, d2, . . . , dn of primitive elements in OT, and to note that (X−j(E))
is a factor of gcd(H−d1(X), H−d2(X), . . . ,H−dn(X)). To see this note that if ψ ∈ OT has norm
d then ψ2 = −d. By the remark before Lemma 3.3, either (1 + ψ)/2 or ψ/2 lies in O. Hence
O contains Z[(d+

√
−d)/2] and so j(O) is a root of H−d(X). Theorem 2.2 shows that if (2.3)

holds, then the algorithm is guaranteed to terminate within a bounded time. By Lemma 2.3,
condition (2.3) holds in particular when j(O) ∈ Fp.

The above sketch is made precise in Theorem 5.1 and Algorithm 1 below. We explain the
termination and correctness of Algorithm 1 in the subsequent discussion, and analyze the
running time of each specific sub-algorithm in § 5.1. Some examples of the use of the method
are given in § 6.

We remark that if p is small, then we may identify j(O) through exhaustive search. Thus we
make the implicit assumption that p is sufficiently large (concretely p > 286) so we may use
Theorem 2.2. Furthermore, we recall that the case when O has units other than ±1 is trivial
(see the beginning of § 2). In the following theorem, the cases d = 3 and d = 4 would have
corresponded to non-trivial units of O when j(O) = 1728 and j(O) = 0 respectively.
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Theorem 5.1. Assume that O has no units other than ±1. Then d > 4 is represented
optimally by OT with optimal multiplicity m if and only if j(O) appears as a root of H−d(X) ∈
Fp[X] with multiplicity εm, where ε = 1 or 2 according to whether p is inert or ramified in
Q(
√
−d), that is, p does not divide or does divide the discriminant ∆Q(

√
−d) respectively.

Proof. This can be viewed as a special case of Lemma 3.2 of Elkies et al. [7], where the
maximal order has no non-trivial units, and so the equivalence class of any optimal embedding
i is simply i itself. We may assume p is inert or ramified because if p splits then the roots of
H−d(X) correspond to ordinary elliptic curves.

We will use Theorem 5.1 to distinguish orders that have different optimal multiplicities for
some integer dn. We use derivatives to achieve this; recall that if a polynomial p(X) over a
field F has x0 ∈ F as a root with multiplicity m > 1, then it holds that p′(X) has x0 as a root
with multiplicity m− 1.

Algorithm 1
Input: Prime p and a Z-basis of a maximal order O ⊂ Bp.
Output: Minimal polynomial of j-invariant(s) j(O) ∈ Fp2 such that End(E(j(O))) = O.
Procedure:

(1) If O has a unit other than ±1, output the polynomial corresponding to j(O) = 0 or
j(O) = 1728 accordingly (see discussion before Theorem 5.1) and terminate. Otherwise
construct a Z-basis of the sublattice OT, run lattice reduction/enumeration on the basis,
and set n = 1, k = 0, c = 0 and G(X) = 0.

(2) Compute yn ∈ OT such that yn is primitive (so yn 6= 0) and yn 6= ±yi for all 1 6 i < n,
and such that Nr(yn) is minimal over all such possible yn.

(3) Set dn = Nr(yn). If p divides ∆Q(
√
−dn), set ε = 2, otherwise set ε = 1. If dn = dn−1

set k = k + ε, otherwise set k = ε − 1. If ε = 2 and k = 1, set G(X) = gcd(G(X),

H−dn(X), H ′−dn
(X)) ∈ Fp[X]. Otherwise set G(X) = gcd(G(X), H

(k)
−dn

(X)) ∈ Fp[X],

where H
(k)
−dn

(X) is the kth derivative of H−dn
(X), and H

(0)
−dn

(X) = H−dn
(X).

(4) If G(X) is either linear, or quadratic and irreducible over Fp, output G(X) and terminate.
If c = 1, or if n = 2, 15 6 d1 and d1d2 < 16p/3, proceed to Step (5). Otherwise set
n = n+ 1 and return to Step (2).

(5) If n = 2, set c = 1, n = 3 and y3 = y1 ± y2, where +/− is chosen to minimize Nr(y3).
If n = 3, set n = 4 and y4 = y1 ± y2, such that y4 6= y3. If n = 4, set n = 5 and find y5

outside the sublattice 〈y1, y2〉 such that Nr(y5) is minimal. Return to Step (3).

If the condition (2.3) holds (for example, if j(O) ∈ Fp) then the algorithm terminates.
Furthermore, in this case we only need to consider n 6 5 (this is the reason for Step (5), which
otherwise seems completely unmotivated).

We hope that the algorithm terminates in all cases, but we do not have a proof of this
(see discussion in the following paragraph). We note that since d1 in Step (2) is simply the
first successive minimum of OT, it must satisfy d1 < p (otherwise we contradict (4.3)). Hence by
Kaneko [13, Theorem 2′] (namely, that if there are two different embeddings of Z[(d+

√
d)/2]

into O then d2 > p2) and Theorem 5.1 above, H−d1(X) is square-free, and hence so is G(X)
after the first iteration of Step (3). Along with Theorem 5.1, this implies that if it terminates,
Algorithm 1 does compute the correct minimal polynomial of j(O). The reason for taking the
derivative in Step (3) is to take into account the case of multiple roots of H−dn

(X), that is,
when θOT (dn) > 2, or when p divides the discriminant of Q(

√
−dn).

Let us temporarily stop the algorithm for some n > 0 just after Step (3), and for simplicity, let
us assume that dn−1 6= dn. Consider the polynomial G(X). One of its roots (or two in the case
of a conjugate pair) will be the desired j-invariant j(O). If j(O′) is another root of G(X), what
can we say about the associated maximal order O′? It must be the case that θ′OT (k) 6 θ′O′T (k)
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for all integers k 6 dn−1, in which case we say that O′T optimally dominates OT up to dn−1. If
the algorithm never terminates, it is clear then that there must exist a maximal order O′ such
that θ′OT (k) 6 θ′O′T (k) for all k > 0, that is, O′T optimally dominates OT up to b for all b > 0,
in which case we simply say that O′T optimally dominates OT. So the question of whether
Algorithm 1 terminates, and if so, under what running time, is equivalent to the question of
whether there exists another maximal order O′ ⊂ Bp, of a different type to O, such that O′T
optimally dominates OT, and if not, what is a bound b > 0 such that O′T does not optimally
dominate OT up to b for all other maximal orders O′ ⊂ Bp. We suspect that such an order O′
does not exist and we propose the following two conjectures.

Conjecture 5.1. There do not exist two maximal orders O,O′ ⊂ Bp of different types
such that O′T optimally dominates OT.

Conjecture 5.2. There exists a bound b = O(p) such that for all maximal orders O,O′ ⊂
Bp of different types, O′T does not optimally dominate OT up to b.

5.1. Analysis of running time

We discuss each step of Algorithm 1 individually. We now assume that (2.3) holds and so we
know the algorithm terminates.

Steps (1) and (2). The units of O are easily found and so the first part of Step (1)
poses no problem. We observe that OT = 〈v1, v2, v3〉 is a three-dimensional sublattice of
O = 〈1, u1, u2, u3〉, where {v1, v2, v3} can be given explicitly in terms of {u1, u2, u3} as in the
discussion preceding Lemma 3.1. Hence constructing OT in Step (1) and searching for short
elements yn of OT in Step (2) can be done using standard lattice techniques in polynomial
time.

Step (3). Several algorithms exist to compute H−dn
(X), see, for example, Belding, Bröker,

Enge and Lauter [2] or Sutherland [18]. Under the generalized Riemann hypothesis, H−dn(X)
can be calculated in Õ(dn) time. It is known that deg(H−dn(X)) = h−dn , the class number of
the imaginary quadratic order Z[ 1

2 (dn +
√
−dn)].

To compute the gcd of G(X) and H−dn
(X) in Step (3) when deg(G(x)) > 1 we use a quasi-

linear method (see, for example, Aho et al. [1, § 8.9] or [8, § 11.1]). Hence, this stage can be
done in Õ(h−dn

) operations in Fp. By [2, Lemma 1], we have h−dn
= O(

√
dn log dn), and so

the gcd computation can be done in O(d0.5+ε
n ) field operations.

As a result, we see that the limiting step of Algorithm 1 is the calculation of H−dn(X),
which is bounded by O(d1+ε

n ). By (A.2), D1, D2, D3,Nr(x+ y) and Nr(x− y) are all O(p). It
follows that the running time of Algorithm 1 under condition (2.3) is O(p1+ε) field operations.
We note that under (2.3), we have by (A.3) that D3 > 3p/4, so we do not expect to have a
faster running time if D3 is required.

More generally, if we no longer assume (2.3), then the O(p) bound on the norms is
Conjecture 5.2. To analyze the running time of Algorithm 1 in the general case under
Conjecture 5.2, we must bound the number of elements of OT with norm less than b, that
is, the largest possible value for n in the algorithm (under condition (2.3) we knew this was
n 6 5). Let Br be the ball of radius r in Rm centered at the origin. A special case of a result
due to Henk [10] is that for any lattice L of Rm with successive minima D1, D2, . . . , Dm, it
holds that

#(L ∩Br) < 2m−1
m∏
i=1

⌊
2r√
Di

+ 1

⌋
.

Equation (4.3) implies D3 > D2 > 2
√
p, so taking r =

√
b and b = O(p) gives #{x ∈

OT |Nr(x) < b} = O(p0.5). This means n 6 O(p0.5) and, since di < b = O(p) for every 1 6 i 6
n in Step (3), we obtain a running time of O(p1.5+ε) field operations under Conjecture 5.2.
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We remark that by itself Conjecture 5.1 is equivalent to the fact that Algorithm 1 halts for
every maximal orderO, but it does not allow us to make any statements about its running time.
We hence stress that even termination is conjectural without assuming (2.3) or Conjecture 5.1.

Lemma 2.3 tells us that D1D2 < 16p/3 will always hold when j(O) ∈ Fp. As remarked
before, by finding an element π ∈ O such that π2 = −p, we can tell if we are in the case when
j(O) ∈ Fp. Hence, provided that it is computationally easier to determine the existence of
such an element than to run the algorithm until n = 5, we could determine before running the
algorithm if indeed j(O) ∈ Fp. Unfortunately, the number of supersingular j-invariants in Fp2

is approximately p/12, and of these, only H(−4p) = O(
√
p log p) lie in Fp, where H(−4p) is the

Hurwitz class number (see, for example, Cox [6, Theorem 14.18]). This shows that for a random
maximal order O ⊂ Bp, we definitely do not expect that j(O) ∈ Fp. On the other hand, if the
order O is input using the format in Ibukiyama [11] then we know

√
−p ∈ O and so j(O) ∈ Fp.

5.2. Algorithm to match all supersingular j-invariants with all maximal orders

In [4], Cerviño proposed an algorithm that, given a prime p, associates to every supersingular
j-invariant of Fp2 the corresponding maximal order type of Bp. This is different to Algorithm 1
in that it deals with all j-invariants at once. Cerviño states that his algorithm has running
time Õ(p2.5) operations but no explanation for this is given in the paper and, as far as we can
tell, the algorithm he presents is actually at best Õ(p4) field operations. To recall, Cerviño
computes, on one side, a list of all O(p) maximal orders and, for each such order O, the set
Γ(O) = {(Tr(α),Nr(α)) |α ∈ O,Nr(α) = O(p)}. On the other side he computes a list of
all O(p) supersingular elliptic curves and, for each, the set ∆(E) = {(Tr(φ),deg(φ)) |φ ∈
End(E),deg(φ) = O(p)}. Computing Γ(O) appears to require running over the O(p2)
elements in the Z-module of rank 4, hence requiring O(p2) work, at best. Cerviño suggests
computing ∆(E) using Vélu’s formulae (and this seems to require O(p3+ε) field operations),
but one can probably improve this to O(p2+ε) operations using evaluated modular polynomials
Φd(j(E), y) ∈ Fp[x], computed using Sutherland’s algorithm [19]. Hence, it seems possible to
improve Cerviño’s algorithm so that it requires O(p3+ε) field operations.

We propose an alternative algorithm to solve this problem. The main idea of our method
is to replace isogeny computations, for a very large set of isogenies, by gcds of Hilbert class
polynomials. This leads to a complexity of O(p2.5+ε) field operations.

If we consider the sub-problem of matching supersingular curves over Fp with their maximal
orders, it seems that Cerviño’s algorithm can be adapted to handle this case with complexity
O(p2.5+ε) field operations. Our method for this case has the improved complexity O(p1.5+ε).
Note that, as would be expected, the complexities in both cases are just the complexity from
§ 5.1 multiplied by the number of choices for O.

Cerviño’s proof that the algorithm halts within a bounded running time uses a result of
Schiemann (Theorems 4.4 and 4.5 of [16]) that two ternary forms with equal theta series are
equivalent. In our case, this translates to: if OT and O′T represent the same integers with
the same multiplicity, then it follows that OT ∼ O′T, and hence by Lemma 3.3, we have that
O and O′ are of the same type. Furthermore, Schiemann gives a bound b in terms of the
successive minima D1, D2 and D3 of OT, such that if OT and O′T represent all integers k 6 b
with the same multiplicity, then indeed O and O′ are of the same type. For our purposes we
may take b = 3D3, which gives b 6 6p using (A.2), although much better bounds are given in
Schiemann’s general result.

It is not difficult to see that OT and O′T represent the same integers with the same
multiplicity if and only if they optimally represent the same integers with the same optimal
multiplicity. This is because every representation x ∈ OT of k ∈ Z can be decomposed uniquely
as x = cy, where y ∈ OT is optimal and c is a positive integer. More specifically, we have the
following lemma.
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Lemma 5.2. For any bound b > 0, it holds that θOT (k) = θO′T (k) for all k 6 b if and only
if θ′OT (k) = θ′O′T (k) for all k 6 b.

We now present our alternative to Cerviño’s algorithm in the general case of all supersingular
curves over Fp2 .

Algorithm 2
Input: Prime p.
Output: The list of pairs (O1,K1(X)), . . . , (Otp ,Ktp(X)), where tp is the type number of Bp,
and for all 1 6 i 6 tp, Oi are representatives of the distinct maximal order types of Bp, and
Ki(X) is the minimal polynomial of the supersingular j-invariant(s) j(Oi).
Procedure:

(1) For all 1 6 i 6 tp, compute a Z-basis of Oi and OT
i , run lattice reduction/enumeration

on the bases to compute the successive minima Di
1, Di

2 and Di
3 of OT

i , and set ci = 0.
(2) For every 1 6 i 6 tp run Algorithm 1 on Oi up until it either halts normally or until we

reach n such that dn > 6p. If Algorithm 1 halted normally, let Ki(X) be its output, store
the pair (Oi,Ki(X)), and set ci = 1. Otherwise let Gi(X) be the current polynomial
after Step (3) of Algorithm 1, and store the pair (Oi, Gi(X)).

(3) For all 1 6 i, j 6 tp such that ci = 0 and cj = 1, remove from Gi(X) all common
factors with Kj(X). If Gi(X) is now either linear, or quadratic and irreducible over Fp,
let Ki(X) = Gi(X) and store the pair (Oi,Ki(X)) and set ci = 1.

(4) Repeat Step (3) until ci = 1 for all 1 6 i 6 tp. Output the list of pairs

(O1,K1(X)), . . . , (Otp ,Ktp(X)).

The correctness of Algorithm 2 is guaranteed by the correctness of Algorithm 1. Furthermore
Algorithm 2 is always guaranteed to halt, which may seem surprising given that we do not
know if the same is true for Algorithm 1 in the general case. To see that Algorithm 2 does
always halt, we define a transitive order � on the set of maximal order types as follows:
Oi � Ok if and only if Ok optimally dominates Oi up to 6p (meaning that θ′OT

i
(m) 6 θ′OT

k
(m)

for all 1 6 m 6 6p).
We observe that if Oi � Ok and Ok � Oi, then both orders Oi and Ok represent the same

integers up to 6p with the same optimal multiplicity, and so it follows by Schiemann [16] and
Lemma 5.2 that they are of the same type, that is, Oi = Ok. Hence � is a partial order on
the set of maximal order types {O1,O2, . . . ,Otp}.

Now consider that we have just finished Step (2) of Algorithm 2 and consider 1 6 i 6 tp
such that ci = 0 (if ci = 1 for all 1 6 i 6 tp then the algorithm clearly terminates without even
performing Step (3)). Without loss of generality, assume i = 1. From the discussion following
Algorithm 1, we know G1(X) is square-free and so before performing Step (3) we can write

G1(X) = (X − j1)(X − j2) . . . (X − jk),

where the j-invariants j1, j2, . . . , jk are all distinct and represent at least two different maximal
orders, that is, we don’t have k = 1, nor do we have k = 2 and j1, j2 form a conjugate pair.
Without loss of generality, assume that O(j1) = O1 that is, j1 is the correct j-invariant
associated with O1, and likewise that O(j2) = O2,O(j3) = O3, etc.

Since the roots j2, j3, . . . , jk were not removed from G1(X) when we ran Step (2), this implies
that O2,O3, . . . ,Ok all optimally dominate O1 up to 6p, that is, we have O1 ≺ Oi (meaning
that O1 � Oi and O1 6∼= Oi) for all 1 6 i 6 k.

Now assume that c1 never becomes 1 after any number of repetitions of Step (3). This
implies that one of c2, c3, . . . , ck always remains 0 as well, since otherwise the roots j2, j3, . . . , jk
would ultimately be removed from G1(X) with enough repetitions of Step (3). Without loss

https://doi.org/10.1112/S1461157014000254 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000254


84 i. chevyrev and s. d. galbraith

of generality, assume that c2 always remains 0. But now the same argument applies to c2, and
there must exist another index 1 6 i 6 tp such that O2 ≺ Oi and that ci always remains 0.

Hence we can find an ascending chainO1 ≺ O2 ≺ Oi ≺ . . . such that c1, c2, ci, . . . all remain 0.
However every ascending chain clearly has an upper bound, so let us take O1 ≺ O2 ≺ Oi ≺
. . . ≺ On, where c1, c2, ci, . . . , cn all remain 0, and such that we cannot find another order Om

such that On ≺ Om and cm always remains 0. But this implies that cn ultimately becomes
1 after a finite number of repetitions of Step (3), which clearly leads to a contradiction. It
follows that eventually ci becomes 1 for every 1 6 i 6 tp, and so Algorithm 2 halts with the
correct output.

To analyze the running time of Algorithm 2, we start by looking at Step (2). By the same
argument as in the analysis of the running time of Algorithm 1 (there under Conjecture 5.2)
we conclude that Step (2) can be done in time O(p1.5+ε) for every 1 6 i 6 tp. Since tp is
approximately p/24, Step (2) can be done overall in time O(p2.5+ε).

By earlier discussion and results from Cerviño [4], Steps (1), (3) and (4) can also be done
within this running time. Hence the overall complexity of Algorithm 2 is O(p2.5+ε). We stress
that in contrast to Algorithm 1, Algorithm 2 is guaranteed to always halt within this running
time irrespective of Conjectures 5.1 and 5.2.

Finally, we remark that Algorithm 2 can be restricted to the case when j(O) ∈ Fp. It
is possible to enumerate in Step (1) the maximal order types O1,O2, . . . ,OH(−4p) whose
j-invariants lie in Fp in O(p0.5+ε) field operations (from Kohel in a personal communication,
2012). From the analysis of Algorithm 1 under condition (2.3), we know that Step (2) of
Algorithm 2 can be done in timeO(p1+ε) for every 1 6 i 6 H(−4p). SinceH(−4p) = O(p0.5+ε),
this leads to a complexity of O(p1.5+ε) in this restricted case.

6. Two examples

We give two examples of how Algorithm 1 runs, both constructed using Magma [3]; the code
can be found on the second author’s webpage.

Example 6.1. Let p = 61. The quaternion algebra B61 is spanned by {1, i, j, k} where
i2 = −61, j2 = −7 and k = ij = −ji. It can be checked that

O = Z + Z( 1
2 + 1

2j) + Z(− 1
2 −

1
14j + 1

7k) + Z(− 1
2 + 1

2 i−
3
14j −

1
14k)

is a maximal order of B61.
We construct OT and find that its shortest element is y1 = j. We set d1 = Nr(y1) = 7, and

G(X) = H−d1(X) = H−7(X) = X − 41 ∈ F61[X].

We conclude that the j-invariant associated to the maximal order O is j(O) = 41 ∈ Fp.

Example 6.2. Let p = 20063. The quaternion algebra B20063 is spanned by {1, i, j, k} where
i2 = −20063, j2 = −1 and k = ij = −ij. We take O as the maximal order in B20063 with
Z-basis

O = Z( 1
2 + 1

16j + 13615
16 k) + Z( 1

512 i+ 151
4096j + 1109113

4096 k)

+ Z( 1
8j + 13615

8 k) + 2048Zk.

We construct OT and begin searching through its short elements. We find

y1 = 11
64 i−

8323
512 j + 51

512k,
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which gives
d1 = Nr(y1) = 1056,

and
G1(X) = H−d1

(X) = H−1056(X) ∈ F20063[X],

where deg(H−1056(X)) = 16.
Next we find

y2 = 67
256 i+ 52101

2048 j −
85

2048k,

which gives
d2 = Nr(y2) = 2056,

and

G2(X) = gcd(G1(X), H−2056(X)) = X3 + 8728X2 + 8070X + 5035 ∈ F20063[X],

where deg(H−2056(X)) = 16.
Next we find

y3 = 23
256 i+ 85393

2048 j −
289
2048k

which gives
d3 = Nr(y3) = 2300,

and

G3(X) = gcd(G2(X), H−2300(X)) = X2 + 2748X + 6627 = (X − α)(X − α) ∈ F20063[X],

where deg(H−2300(X)) = 18 and α, α form a conjugate pair.
Hence we conclude that O corresponds to a conjugate pair of supersingular j-invariants,

j(O) = α, α with minimal polynomial X2 + 2748X + 6627 over F20063.

Appendix. Proof of Theorem 2.2

We now describe the general strategy of the proof of Theorem 2.2. For further technical details
see the full version of the paper (http://arxiv.org/abs/1301.6875).

As with Theorem 2.1, the first step is to take appropriate sublattices 〈x, y〉 in OT and 〈x′, y′〉
in O′T and to show that 〈x, y〉 and 〈x′, y′〉 are isometric. This is done by first proving that
D′1 = D1 and then that D′2 = D2. The final step is to extend to the full lattices OT and O′T.

A.1. Proving that 〈x, y〉 and 〈x′, y′〉 are isometric

Since x and y represent the first two successive minima of OT, we have Nr(x + y) = Nr(x) +
Nr(y) + Tr(xy) > Nr(y) and likewise Nr(x− y) = Nr(x) + Nr(y)− Tr(xy) > Nr(y). It follows
that |Tr(xy)| 6 Nr(x) = D1 as otherwise one of these two inequalities would not hold. We
hence have Tr(xy) = µD1 for some |µ| 6 1, and, without loss of generality, take −1 6 µ 6 0
(as otherwise we swap the sign of either x or y). Similarly we will let Tr(x′y′) = λD′1 with
−1 6 λ 6 0.

Lemma A.1. Let notation be as above. Then −1 < µ, λ 6 0 and D1 6= D2.

Proof. We first show that the cases µ = −1 and λ = −1 are impossible. If µ = −1, then
Nr(y) = Nr(x + y). Hence D2 would have two different optimal representations in OT, and
so Kaneko [13, Theorem 2′] implies that D2

2 > p2. As D3 > D2, (4.1) would imply that
D1D2D3 > 15p2 > 8p2, which contradicts (4.3). So µ = −1 is indeed impossible. Similarly
if λ = −1, then D′22 > p2. By (4.2) this would imply D2 > p, and we again reach the same
contradiction. The same application of Kaneko’s result shows that D1 6= D2.
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As shown in § 3, p | 4D1D2 − T 2. On [13, page 853], Kaneko obtains this result by writing
α1 = (x + D1)/2 and α2 = (y + D2)/2, defining s = Tr(α1α2), and considering the quantity
(D1D2 − (2s−D1D2)2)/4. Note that 2s−D1D2 = Tr(xy)/2 = −T/2 so this is just (D1D2 −
(T/2)2)/4. It is straightforward to verify that

s = −µ
4
D1 +

1

2
D1D2.

Substituting this value for s, we find that 4p divides D1(D2−µ2D1/4). The same result applies
to O′T (which is actually where we will use it), and so defining M := D′1(D′2 − λ2D′1/4), it
follows that

4p 6M. (A.1)

We remark that the above with (4.3) gives

4p 6 D1D2 and D3 6 2p, (A.2)

and in particular under conditions (4.1),

4p 6 D1D2 <
16
3 p and 3

4p < D3 6 2p. (A.3)

We now begin to prove some technical lemmas. The following lemma will only be used in the
context of maximal orders, but we remark that it can be readily generalized to all 2-dimensional
lattices.

Lemma A.2. Under the condition µ, λ ∈ (−1, 0], x+ y is the next shortest element of 〈x, y〉
after ±y that is not in 〈x〉, and likewise x′ + y′ is the next shortest element of 〈x′, y′〉 after
±y′ that is not in 〈x′〉.

Proof. One shows that Nr(ax+ by) = a2D1 + b2D2 + abµD1 will always exceed Nr(x+ y) =
D1 +D2 + µD1 for a, b ∈ Z unless a = b = ±1. The details are omitted.

The following lemma is the first of two technical lemmas, being Lemmas A.3 and A.4. In
these lemmas we require bounds on D1, D1D2, and sometimes on p, that we explicitly state.
The bounds required by the following Lemma A.3 are the strictest and, unlike in Lemma A.4,
we have not yet found a way to loosen them. If the bound on D1D2 in the following lemma
can be loosened, then the restriction imposed in Theorem 2.2 can be loosened as well.

Lemma A.3. Let notation be as in Notation 4.1. Assume D1 and D2 are both represented
optimally by O′T. Then D1 = D′1 provided that

D1D2 <
16
3 p and (A.4)

8 6D1. (A.5)

Proof. We first prove that the vectors of O′T that optimally represent D1 and D2 lie in
〈x′, y′〉. We recall that since D1 and D2 are represented optimally by O′, we have (4.2). By (A.4)
this implies D′1D

′
2 < 16p/3, and so from (4.3) we have

3

4
p <

4p2

D′1D
′
2

6 D′3.

Since the norm of the shortest element in O′T outside 〈x′, y′〉 is D′3, if D2 is represented outside
〈x′, y′〉 then 3p/4 < D′3 6 D2 and hence

D1 <
16p

3D2
<

64

9
< 8,
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which contradicts (A.5). So D2 cannot be represented outside 〈x′, y′〉. Clearly D1 cannot be
represented outside 〈x′, y′〉 either.

We now assume D1 = Nr(ax′ + by′) with b 6= 0. This implies in particular that D′2 6 D1,
and so by (A.4) we have

D′2 <
4√
3

√
p. (A.6)

From Lemma A.2, we know that x′+y′ is the next shortest element after ±y′ in 〈x′, y′〉\〈x′〉,
and we recall from Lemma A.1 that λ ∈ (−1, 0] and D1 6= D2. The latter implies that D1 and
D2 must have different optimal representations in O′T, and so it follows that Nr(x′ + y′) =
D′2 + (1 + λ)D′1 6 D2. Combined with D′2 6 D1, we have that

D′2(D′2 + (1 + λ)D′1) 6 D1D2 <
16
3 p. (A.7)

We recall the definition M = D′1(D′2 − λ2D′1/4) and define

K =
1

1 + λ

(
16p

3D′2
−D′2

)
.

We will show that M < 4p under the constraints

D′1 6 min{D′2,K},

and this will be a contradiction to (A.1).
We consider two cases depending on whether or not D′2 6 K. Note that this happens exactly

when (D′2)2(2 + λ) 6 16p/3.
First note that M is maximized when D′1 is as large as possible. In the case (D′2)2(2 + λ) 6

16p/3 this means D′1 = D′2 and so

M 6 D′22

(
4− λ2

4

)
6

16

3
p

1

λ+ 2

(
4− λ2

4

)
< 4p.

In the case (D′2)2(2 + λ) > 16p/3 we take D′1 = K. Writing γ = (D′2)2 we have

M 6
1

4(1 + λ)2γ

(
16

3
p− γ

)(
γ(λ+ 2)2 − λ2 16

3
p

)
. (A.8)

The right-hand side of (A.8) is subject to the constraints γ = D′22 6 D2
1 < 16p/3 (which

comes from (A.6)) and 16p < 3(λ + 2)γ. It is then routine to verify that the right-hand side
of (A.8) is maximized when γ is minimal, that is, γ = 16/(3(λ+ 2))p (a simple way to verify
this is to compute the partial derivative of the right-hand side of (A.8) with respect to γ and
observe that it is negative when 16|λ|p < 3(λ+ 2)γ). Substituting γ = 16/(3(λ+ 2))p into the
right-hand side of (A.8) reduces it to 4(2−λ)p/3, which for λ ∈ (−1, 0] is always less than 4p.

Hence, in both cases, we obtain that M < 4p, which contradicts (A.1). In conclusion, if D1

and D2 are both represented optimally by O′T with D1 = Nr(ax′ + by′), then we must have
b = 0 and it follows that a = 1 and D1 = D′1.

Lemma A.4. Let notation be as in Notation 4.1. Assume D1 = D′1 and that D2, Nr(x+ y)
and Nr(x−y) are all represented optimally by O′T. Then x ∼ x′, y ∼ y′ and x+y ∼ x′+y′ (and
so 〈x, y〉 ∼ 〈x′, y′〉 by Lemma 4.3) provided that

D1D2 < 7p, (A.9)

15 6D1, and (A.10)

286< p. (A.11)
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Proof. This is the longest proof in the paper. Due to lack of space, we refer to the full version
of the paper for all details of the proof.

In light of Lemma 3.2, it suffices to prove that D2 = D′2 and Nr(x+ y) = Nr(x′ + y′) since
all vectors in question have zero trace.

Recall that Nr(x+y) = (1+µ)D1+D2 and Nr(x′+y′) = (1+λ)D′1+D′2 where −1 < µ, λ 6 0.
To avoid trivial cases later on, one can check (details omitted) that µ, λ 6= 0.

One can also check (details omitted) that the vectors in O′T that represent Nr(x), Nr(y),
Nr(x+ y) and Nr(x− y) all lie in 〈x′, y′〉.

Hence assume D2 = Nr(ax′ + by′) for some a, b ∈ Z. Remarking that a(a+ bλ) > −(λb/2)2,
and recalling that D1 = D′1 by assumption, we obtain

D2 = a2D′1 + b2D′2 + abλD′1 = aD′1(a+ bλ) + b2D′2 > b2D′2 −
(
λb

2

)2

D1,

which implies D′2 6 D2/b
2 + λ2D1/4. Hence by (A.9), for |b| > 2 we have

M = D′1D
′
2 −

λ2

4
D′21 6 D1

(
1

b2
D2 +

λ2

4
D1

)
− λ2

4
D2

1 =
D1D2

b2
< 4p,

which contradicts (A.1), and so we must have |b| = 1. Without loss of generality, (changing
the sign of a if necessary), we can take b = 1.

Now let Nr(x+ y) = (1 + µ)D1 +D2 = Nr(cx′ + dy′) = c2D′1 + d2D′2 + cdλD′1. Remarking
as before that c(c+ dλ) > −(λd/2)2, we obtain

Nr(x+ y) = D1(1 + µ) +D2 > d2D′2 −
(
λd

2

)2

D′1.

This with (A.9) implies that, for |d| > 2, we have

M = D′1D
′
2 −

λ2

4
D′21 6 D1

D1(1 + µ) +D2 + (λ2d2/4)D1

d2
− λ2

4
D2

1 6
2D1D2

d2
< 4p,

which again contradicts (A.1), and so we must have |d| = 1. Without loss of generality,
(changing the sign of c if necessary), we can take d = 1.

Since D1 = D′1 and b = d = 1, we have

D2 = a(a+ λ)D1 +D′2 and (A.12)

D1(1 + µ) +D2 = c(c+ λ)D1 +D′2. (A.13)

We observe that a 6= c since otherwise µ = −1, which is impossible from before. So
subtracting (A.12) from (A.13), factorizing and dividing, gives us

1 + µ

c− a
= a+ c+ λ. (A.14)

We observe that if a = 0 then 1+µ = c(c+λ), where the left-hand side is in (0, 1), which implies
from the right-hand side that c = 1. But this implies that D2 = D′2 and Nr(x+y) = Nr(x′+y′)
as desired, and we conclude by Lemma 3.2.

So we assume now that a 6= 0. We note that if a = 1, then (A.14) becomes 1 + µ =
c(c+ λ)− 1− λ, from which we see that the only possible solution (since the left-hand side is
again in (0, 1)) is c = −1 and λ = −(1 + µ)/2 ∈ (−1/2, 0).

We now claim that
D2 <

7
4D
′
2. (A.15)
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Indeed, if this was not the case, by (A.9) we would have

M 6 D′1D
′
2 6 4

7D1D2 < 4p,

which contradicts (A.1).
Now (A.15) and (A.12) imply that a(a + λ)D1 + D′2 = D2 6 7D′2/4. We remark that

a(a+ λ) > 0 for all integers a 6= 0. Hence we have

D1 6
3D′2

4a(a+ λ)
. (A.16)

Now let Nr(x− y) = (1− µ)D1 +D2 = Nr(ex′ + fy′) = e2D′1 + f2D′2 + efλD′1. We remark
that e2 + λef > −(λf/2)2, and so with (A.16), we have

D2 > f2D′2 +

(
−
(
λf

2

)2

− (1− µ)

)
D1 > D′2

(
f2 − 3

4a(a+ λ)

(
1− µ+

λ2f2

4

))
= D′2

(
f2

(
1− 3λ2

16a(a+ λ)

)
− 3(1− µ)

4a(a+ λ)

)
. (A.17)

We observe that for all λ ∈ (−1, 0) and a ∈ Z, with a 6= 0, and with λ ∈ (− 1
2 , 0) when a = 1,

it holds that

δ = 1− 3λ2

16a(a+ λ)
> 0.

Hence for all |f | > 2, it holds that

D2 > D′2

(
4δ − 3(1− µ)

4a(a+ λ)

)
> D′2

(
4− 3(1− µ+ λ2)

4a(a+ λ)

)
. (A.18)

By separating into the cases a 6 −2, a = −1, a = 1 and a > 2, it can be readily checked that
for λ, µ ∈ (−1, 0) and a ∈ Z, with a 6= 0, and with λ = −(1 + µ)/2 when a = 1, it holds that

1− µ+ λ2

a(a+ λ)
6

5

2
,

with equality only in the case that a = 1 and µ = 0, λ = − 1
2 . As a result,

D2 > D′2

(
4− 15

8

)
>

7

4
D′2,

which contradicts (A.15). We conclude that |f | > 2 is impossible, and hence, without loss of
generality, we take f = 1.

We now have
D1(1− µ) +D2 = eD1(e+ λ) +D′2. (A.19)

Viewing (A.12) and (A.19), we observe that e 6= a, as otherwise we would have µ = 1, which
is impossible. Hence subtracting (A.12) from (A.19) we obtain

1− µ
e− a

= a+ e+ λ. (A.20)

Viewing this in conjunction with (A.14), it remains to find the possible solutions to (A.14) and
(A.20) with a, c, e ∈ Z, a 6= 0, and λ, µ ∈ (−1, 0). We omit the elementary calculations. The
conclusion is that the only possible solution to D2 = Nr(ax′ + by′), Nr(x+ y) = Nr(cx′ + dy′)
and Nr(x − y) = Nr(ex′ + fy′) is a = 0, b = 1, c = 1, d = 1, e = −1, f = 1 (and the
corresponding negative solutions if we wish to change signs). This implies by Lemma 3.2 that
y ∼ y′ and x+ y ∼ x′ + y′ as desired.
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A.2. Completing the proof

We have shown that 〈x, y〉 and 〈x′, y′〉 are isometric. Hence, by Lemma 4.3, we can conjugate
O by an appropriate element c ∈ Bp and hence assume that 〈x, y〉 = 〈x′, y′〉. It remains to deal
with D3. After conjugation, we have that OT = 〈x, y, z〉 and O′T = 〈x, y, z′〉 where Nr(z) = D3

and Nr(z′) = D′3. Since z, z′ 6∈ 〈x, y〉 and θ′OT (D3) 6 θ′O′T (D3) it follows that D′3 6 D3. The
next result shows that we may assume D′3 = D3, in which case the proof will follow from the
argument used to prove Theorem 2.1.

Lemma A.5. Let notation be as in Notation 4.1. Suppose that 〈x, y〉 = 〈x′, y′〉. Suppose
furthermore that there exists w ∈ O′T, w /∈ 〈x, y〉, such that Nr(w) = D3. It holds that
w = ±z′.

Proof of Lemma A.5. As in Lemma 4.5 we let u and u′ be the projections of z and z′ to
〈x, y〉⊥. We want to show that u′ = ±u. Lemma 4.4 shows that

det(OT ) 6 det(〈x, y〉)Nr(z) 6 D1D2D3 6 2 det(OT ),

from which it follows that

Nr(z) = D3 6
2 det(OT )

det(〈x, y〉)
. (A.21)

On the other hand, as D3 is represented by w ∈ O′T = 〈x, y, z′〉 outside of 〈x, y〉, we have that
w = ax+ by + cz′ for some a, b, c ∈ Z, c 6= 0. Therefore

D3 = Nr(w) = Nr(ax+ by + cz′) > c2Nr(u′) = c2
det(OT )

det(〈x, y〉)
,

where the last equality comes from (4.8). Hence c = ±1 as required.

Proof of Theorem 2.2. Assume that D1, D2, Nr(x+ y), Nr(x− y) and D3 are all optimally
represented in O′T and that θ′OT (D3) 6 θ′O′T (D3). The case D1 < 15 is treated by Lemma 4.1
so we assume conditions (4.1). From Lemma A.2, we know that D′1 = D1. Hence, from
Lemma A.4, we have that y ∼ y′ and x + y ∼ x′ + y′. By Lemma 4.3, conjugating O′ by
an appropriate element c ∈ Bp, we can assume that 〈x, y〉 = 〈x′, y′〉. Now, in order that
θ′OT (D3) 6 θ′O′T (D3), we require that D3 is represented in O′T outside of 〈x, y〉. Hence, by
Lemma A.5 we may assume that D′3 = D3. Lemma 4.5 then implies OT = O′T. Lemma 3.3
implies that O and O′ are of the same type as desired. This completes the proof.

Acknowledgements. We are very grateful to David Kohel for answering our questions about
quaternion algebras and to John Voight for his helpful discussions.
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