A GENERALIZATION OF CLIFFORD ALGEBRAS
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(Received 26 December, 1972)

Let K be a field which contains a primitive nth root of unity  if n is odd and a primitive
2nth root of unity ¢ such that {? =  if 7 is even.
Define Cf,"'g to be the polynomial algebra generated over K by the set {e,,...,e,€p14,...,
€,+4} subject to the relations
e¢"=+1 for i=1,...,p;
e'=—1 for i=p+1,...,p+q;
.-and e;e; = weje; for 1Si<jSsp+g.

C™ is called a generalized Clifford algebra. Our aim in this paper is to find the structure of
{"’ for all values of p,q and n. This has already been accomplished for the special cases

7 > 0,g=0and p=0, g >0 by A. O. Morris in [1] and [2].
‘Let K(n) denote the full matrix algebra of nx n matrices overK. We first prove

LEMMA 1. There exists an algebra isomorphism
| P, = K(n).
Proof. Define, fori,j=1,...,n,
12} -
e )
n{,=o
As in [1], it can be easily proved that
Eij E, = 5jk E,. .
Let S={E;|i,j=1,...,n} and put S, = {E;;|j—i = x(modn)}; then we have S= US,,

. x=0
S:NS, =0if x # y.
Since w is a primitive nth root of unity, we have

det[w¢"VU-D]= T[] (o'-w)#0.

0si<jgn—-1

Thus each S, (x =0,...,n—1) is a linearly independent set over K, and therefore so is S.
Also (C{",:K) = n* = (K(n):K) and so the set S is a K-basis for C{"}, giving us the re-
quired isomorphism.
The next result will enable us to compute inductively the algebras C(") for any p, g and n.

LeMMA 2. There exist algebra isomorphisms
(i) C(n) ~ C(n) ®x C, L1

2

(i) CI @k Ce% = CP .,
(i) C§ @k C{h = CRao-
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Proof. (ii) and (iii) have been proved in [2, Theorem 4]. For the proof of (i), define
f=eten
We have
=@ ey
T 1 U 1)2(1-n) e'xl("- l)e;(+l 1_")
= @1’ (=)t
If n = 2d is even, then
fn = fn- 1)3(__ 1)

3— 2 -
— ___wd(n 3n2+3n-1)

= —o'.
But @*? = 1, @’ # 1 by the definition of the primitive nth root of unity w, and so

24
-1
0=2 I =w'+1.

d

Hence we have f" = 1 in the case that n = 2d is even.
Similarly, if n = 2d+1 is odd
= @232 - pand® _ q

Hence, in either case, we have f" = 1. Also, fori=1 or p+1, we have
e,'f= (J)fei.
Next we define a mapping ¢ from C") into C{"; @ C{, ,_, by
e®1 ifi=1or p+l,
P(e) = . .
f®e ifi=2,...,pori=p+2,...,p+q.

We have ¢(e))" =1fori=1,...,pand ¢(e)" = —1fori=p+1,...,p+q. Therefore ¢ maps
identity onto identity. Since e;f = wfe; for i=1 or p+1 and using the defining relations of

C{", we can easily verify that

¢(ei)¢(ej) = od(e j)(b(ei)
forlSi<j<p+gqg.
Thus, since ¢ maps basis elements of CI") onto basis elements of C{, ® C2, ., and

p—1,9-~
(CP:K) = nPta
= (C(l",)l ®K C;"—)l,q—l : K)’

we see that ¢ is an isomorphism, as required.
If A is an algebra over K, denote a direct sum of »n copies of A4 by "4, i.e.

"A=ADAD...®A (ncopies).
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The following lemma is [2, Theorem 2].

LemMa 3. Let K be a field which contains a primitive nth root of unity w if n is odd and a
primitive 2nth root of unity {, such that {* = w, if n is even. Then

(i) ¢ = CP, ~ 'K,
(i) C§h = C) = K(n).
Thus we have the following theorem.

THEOREM 4. If K is a field containing a primitive nth root of unity w if n is odd and a
primitive 2nth root of unity {, such that {* = w, if n is even, then

(i) CW =K(n*) ifp+q=22iseven and
(i) C™ ="K(n*) if p+q=24+1is odd.

Proof. The proof of both parts of the theorem is carried out by a simple inductive
argument using Lemmas 1, 2 and 3.

From now on we shall assume that K does not contain a primitive 2nth root of unity {
such that {? = w.

We now define, as in [2], C to be the quadratic field K(,/w), and H to be the generalized

quaternion algebra regarded as the polynomial algebra over K generated by x,y subject to
the relations

X=y’=w"'.1, xy=—yx.
For completeness, we now state two lemmas which are proved in [2].
LeEMMA 5. Let C and H be defined as above; then there exist isomorphisms
(i) CRxC=CaC,
(i) H®x C = C(2),
(iii) H @k H ~ K(4).
Proof. This is proved in [2, Lemma 1].

Lemma 6. Let K be a field which contains a primitive nth root of unity w but not a primitive
2nth root of unity { such that {* = w. Then

(i) CT% ="K;
(ii) ng’)l ~ K ifnisodd,
*C if n=2vis even;
(iii) C3% = K(n);
(iv) C§) = K(n) ifnisodd or n=2v, where v is even,
H(v) if n=2v, where v is odd;
() CP, = K(n).
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Proof. (i), (ii), (iii) and (iv) are proved in Theorem 3 of [2].

The proof of (v) is exactly the same as in Lemma 1 since the proof did not depend on the
existence of a primitive 2nth root of unity { such that {2 = .

We are now in a position to prove

THEOREM 7. IfK is a field which contains a primitive nth root of unity w but not a primitive
2nth root of unity { such that {* = w, then for n odd we have

(i) C > K(n*) ifp+q =22 is even,
(i) C ="K(n?) if p+q=24+1 is odd.

Proof. The theorem is proved by a simple inductive argument using Lemmas 1, 2 and 6.
We give the next two results in tabular form.

THeOREM 8. If K is a field as given in Theorem 7, then, for n = 2v, where v is even, C,(,’,';
is given by the table
p+g/-p+q= -4 -3 -2 -1 0 1 2 3 4
0
1 "K 'C
2 K(n) K(n) K(n)
3 YC(n) "K(n) YC(n) "K(n)
4 K(n?) K(n?) K(n?) K(n?) K(n?)
Proof. These results follow from Lemmas 2 and 6. For example,
CP = C, @k CM, by Lemma 2(j),
~ K(n) ®k"K, by Lemma 6,

and
C{) = C7), ®« €YY, by Lemma 2(i),

C
~ K(n) ®K(n), by Lemma 6,
K

whereas we have
C, = C, @xCY, by Lemma 2(3),

=~ K(n) ® C, by Lemma 6,

= "C(n)
and
M = CM @k Clh, by Lemma 2(i),
=~ K(n) ®cK(n), by Lemma 6,
=~ K(n?).
P
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The remaining entries in the table are obtained in exactly the same way.

TueoreM 9. IfK is a field as given in Theorem 7 and n = 2v, where v is odd, then C{) is
given by the table
pgl-p+q=—8 -7 —6 -5 -4 -3 —2-10 1 2 3 4 5 6 7 8

K
g e
K(n) K(n) H(v)
C(n) "K(n) ‘C(n) "H(v)
H(nv) K(n*) K(® H(nv) H(nv)
"H(nv) “C(n*) "K(n®) ‘C(n*) "H(nv) ‘C(n?)
H(n*v) Hn*) K@® K@)  H@Ev) H#H) K@)

'C(n¥) "H(n®v) *C(n*) "K(n*) ‘C(*) "H(n*) ‘C(n%) "K(n%)

Kr* H(@*) H@E»Y) K@Y  K@*  H@EY) H@EY) K0  K@n®)

W ~ N W AW NN = O

Proof. The theorem follows from Lemmas 2 and 6. We give a couple of examples; the
remaining entries in the table are obtained in the same way. For example,

CP = CP, ®x CYh, by Lemma 2(i),
=~ K(n) ®cK(n), by Lemma 6,
and
CP = CY, @ CY%, by Lemma 2(i),
=~ K(n) @cH(v), by Lemma 6,
= H(nv).

We note that the table in Theorem 8 is of periodicity 4 and the table in Theorem 9 is of
periodicity 8. These tables have been obtained for the special case n = 2 in Porteous [3].
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