INVOLUTIONS ASSOCIATED WITH THE
BURKHARDT CONFIGURATION IN [4]

A. F. HORADAM

1. Introduction. Horadam (11) has established the existence of a locus
L in [8] (projective 8-space) having order 45 and dimension 4, which is
invariant under a group of order 51840 X 81 (the Clifford similarity transform
group CT'). Associated with CT are two other groups, the Clifford collineation
group CG of order 81, and the Clifford substitution group CS of order 51840.
Furthermore, CS may be regarded as either a subgroup of CT', or a symplectic
group of index matrices of size 4. Among the matrices of size 9 which perform
the operations of CT, there is a set of 81 involutory, symmetric, orthogonal
matrices JW. As collineation matrices in [8], these produce 81 pairs of in-
variant spaces 2, IT of dimensions 3 and 4 respectively. These [4]'s give rise
to a configuration G invariant under the operations of CT', consisting of 360
points, 1080 lines, 120 Jacobian planes, and 81 [4]'s, and their various
inter-relationships.

Familiarity with the theory and notation of (11) is assumed in this paper.

If a section of L is taken by the II-space whose determining equations are
Xy = %2425 (3,7 = 0, 1, 2), the resulting locus consists of just 45 points forming
a Clifford-derived configuration identical with the Burkhardt configuration
in [4], B, which is associated with the rational Burkhardt quartic primal.
Such points (nodes in B) have co-ordinates of two types, namely,

Type I: (—2¢‘ € € e) witht+ u+ v+ 2 =0 (mod 3).

Type II: (.; 1 —€* . .).

Twenty-seven of these nodes belong to Type I and the remaining 18 to Type
II. A general node of Type I will, for convenience, be labelled P, ,,, or merely
P,, where there is no possible ambiguity, while the given node of Type Il
will be designated by P,.

Comparison may be made between our Clifford-derived configuration,
identical with B, and the figure in [4] which Edge (6) has explained in detail.
Based on GF(3), this latter figure differs fundamentally from B, but, at the
same time, displays striking similarities.

2. Involutions concerning nodes and their Jordan primes. Invariance
of B is preserved by the harmonic inversion, or projection p(4), with respect
to any node 4 and its Jordan prime. This projection is the operation of the
group +CS (subgroup of CS of index 2 and also the cubic surface (sub)group)
which leaves invariant /4 and the 12 nodes in the Jordan prime of A, and
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THE BURKHARDT CONFIGURATION 19

which interchanges in pairs the two nodes, other than 4, on each of the 16
«-lines through 4. Thus p(4) is involutory. (Jordan primes in the II lie on
L and do not intersect any of the 81 solids Z.) Operations relating to nodes
P, and P, will usually be denoted by p(t) and p(a) respectively. Explicit
matrix forms for the involutory projections p(¢) have been obtained in (11),
wherein the two corresponding involutory matrices in [8], p*(¢) and p'*(¢)
= Jp*(¢), which induce identical collineations in II, and the associated in-
volutory symplectic index matrices p(¢) and p’(¢) = 2p(¢) are also found.
(Starred notation used in (11) has been altered here for convenience.)

For the 18 Burkhardt nodes of Type II, the related matrices, which are
not given in (11), are much less complicated. Since they fall into six similar
triads, there is nothing lost in concentrating on only one triad, namely P,
(a = 0,1, 2). We deduce that

p@) = |. e

Correspondingly, in [8], p*(a) has only one non-zero element in each row and
column, these being: unity in positions age®, an'!, asi'?, a12?!, a??; € in
positions a10®!, a2¢°%; and €2* in positions a1, ag?’. Of course, p'™* (a) = Jp*(a).
Index matrices associated with these are

1 2a

1

p@=|;

1
of which the elements belong to the finite field GF(3). The basic Clifford set
is easilv shown to be converted by p(0), p(1), p(2) into the Clifford sets
Wo, Wa, Wu, Wi, Wi,
We, Woa, Wa, Wi, Wi,
We, Wa, W, Wi, Wi,

respectively, while each p’(a) has the effect of doubling the indices throughout

the set.
If the projection refers to the node (. ;..1 — €%), then it is found that the
corresponding index matrix is
2 . . a
2 . .
2a 1 1|’
1
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a result used later in § 5. Eight-dimensional forms and the corresponding re-
duced form in [4], together with the Clifford set arising from the basic Clifford
set under the appropriate transformations, are quite easily established in a
manner similar to that just stipulated.

Perhaps it is worth remarking that for any matrix p(¢) for which we have
{p()}? = 91, each column of p(f) — 3 I yields the co-ordinates of the node
P,, whereas each row of p(f) — 3 yields the prime co-ordinates of the
Jordan prime of P,. In the case of the matrices p(a), the appropriate matrix
whose columns and rows give rise to the node P, and its Jordan prime
respectively, is p(a) — I, since {p(a)}? = I.

Besides the 45 involutions (harmonic inversions) just enumerated, there
are 270 other involutions associated with B. These are analysed in § 5. The
aim of this paper is, specifically, to find matrix forms for these 45 4 270 = 315
involutions, to discover their symplectic forms and their augmented forms as
matrices of size 9 (also the effect of these on the basic Clifford set), and to
relate the invariant spaces of these (collineation) matrices to the invariant
configuration C we know to exist in [8]. Part of this objective has been
achieved in the above section.

3. Invariant spaces of the 45 harmonic inversions. Next, we examine
the invariant spaces in [8] generated by the 45 harmonic inversions. For the
harmonic inversion p(¢), the invariant solid A, or simply A, when there is
no confusion, is found to be determined by the 4 points:

€’ €'

(i)

—
m
-
[
@

with ¢, 4,0, w =0,1,2 and t+ %+ v+ w =0 (mod 3). Each of these 4
points remains unchanged under the given collineation. Altogether, nine
solids A pass through each of the points of (i).

Similarly, the invariant [4], T ., or T'y;, is uniquely determined by four
primes whose prime co-ordinates are like the set (i), except that the indices
are everywhere doubled. By their nature, p*(¢) and p'*(¢) effect the same in-
variance of spaces. Nine T lie in each prime.

Clearly, all the 26 solids A, lie in the [4] II since, by (11) the 12 points
in (i) are among the 40 points of II invariant under JW. Dually, all the 27
I', pass through the solid = (corresponding to the II) determined by the
four points A ;;, — Aau; (4,7 = 0, 1, 2). As we know, Z lies on L so thateach T,
cuts L in the same solid =.

Furthermore, since the [4]'s II and a particular T, lie in [8], they must
normally meet in a point. Now, by (ii), II may equally well be determined by
the five points 4, B; (z = 1,2,3,4) from which we derive the point (—2

el €l € € ® ¢ € €’) which, from our remarks about the primes determining
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I',, obviously lies in the T. Of course, this common point is merely the node
P, with which the harmonic inversion is associated. It does not belong to the
configuration G in [8]. Thus, we have shown that the 27 T, constitute a
family of [4]'s through 2.

Dually, the solid A,, which lies entirely in II, joins 2 to a prime. In prime
co-ordinates, this is (— 2 € €' €* €’ € €* €“ €") and must not be confused with
the prime (— 1 e’ e’ e e’ e’ € €” ¢”) whose [4] section by II produces the
Jordan (polar) prime of the node P, (Actually, these two primes in [8] meet
in a secundum through which the simplex prime X, = 0 passes.)

Systematising these results, we have, for the 27 nodes P;:

each T through Z meets II in a node;
each A in IT joins Z to a prime.
Irregularities occur in the case of the remaining 18 nodes P,.
Taking our standard P,, and considering both p*(a) and the associated

matrix p'*(a) = Jp*(a) which produce identical invariant spaces, we find
that the [4] T, is determined by the four primes (in prime co-ordinates)

(. 1 . 2. . . . L)

(. 1 €2 )

(. | . 1)

(. 1 1 ).

Alternatively, T', is determined by the five points

Aoo = X: ( 1 . . )

Ve (. 1 —¢ )

Z: (. 1 —e )

w: (. 1 .o—=1)

T: (. 1 -1 .),

none of which belongs to the configuration G, except X. Points W, T" and
Y —Z are contained in Z, while points X and Y+ Z belong to II. Of course,
Y+Z is merely the [8] form of the node P,.

Elements determining A, are either

four points corresponding to the four defining primes of T, or
five primes corresponding to the five defining points of T,

with the symbol a replaced everywhere by 2a in both cases. None of the
four defining points of A, belongs to C.

So, for the 18 P, we find that each T, meets Z in a plane (not a Jacobian
plane) and II in a line (joining P, to Ag), that is, each T, has three points
in 2 and two points in II, of which 4y, belongs to C.

Similarly, by duality, each A, lies in three primes of II and two primes of
¥, that is, each A, is the intersection of a [5] through I and a [6] (secundum)
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through 2, this secundum being the intersection of the prime dual of P,
and the simplex prime x4 = 0. Points of C are alien to A, though the solid
may be shown to possess three points of Z and one of II.

With regard to the matrix p*(a), it is worth noting that there are four
possible arrangements of the four units, in pairs, all of which yield a matrix
which leaves invariant the node and its corresponding Jordan prime, that
is, they are involutory projections. However, as similarity matrices operating
on a Clifford matrix W, they do not produce another W (except in the case
of the p*(a) chosen). That is, the other three possibilities are involutions which
are not members of the Clifford group CT. Likewise for p"*(a). Such involutions
do not belong to a group since the group multiplication property is absent.

4. Nodes in Jordan primes. Subsequently, it will be found useful to have
the forms of the twelve points in a Jordan prime at out disposal. Now the
polar (Jordan) prime of the node P, has prime co-ordinates (—1 €2 ¥ €*” €2?)
in [4]. Suppose the node P lies in this prime. To satisfy the incidence relation,
we must have

(i1) 2 4 el 4 AW 20k L wtw’ = ()
with the usual restrictions on the variables. That is, 2t + ¢, 2u + #/, 20 + ¢/,

2w + w’, # 0. Therefore, ¢ = ¢+ 1, t + 2, and similarly for the other
variables. Consequently, six nodes are given by

-9 eltl )’ 1 €2 02
leu+2 J et tl et+?
lev-v-a ot
and
—92 et )'€u+z e+l e+l
}\ &t } el 0+2
')\ev+2 e+l

so that in the Jordan prime of a node P, we have just six nodes of Type |
and, therefore, six of Type II.

Regarding nodes P,, we observe that the corresponding Jordan prime has
prime co-ordinates (- 1 — €. .) in [4], so that only three nodes of Type II
are contained therein, namely, the nodes (- - - 1 —¢%). Accordingly, there
must be nine nodes of Type I in it.

5. Involutions concerning Jordan pentahedra. Apart from the 45
involutions which leave invariant a node and its Jordan prime and inter-
change the nodes on each «-line through the given node, there is another set
of involutory operations for which we can find matrix forms. Following
Baker (1), Todd (12) has shown that such operations of period 2 form a
conjugate set, and are the products of pairs of projections.
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Now, it is known (12) that the twelve nodes of a Jordan prime fall
into three sets of 4, forming a triad of desmic tetrahedra, any two of which
are in perspective from each vertex of the third. Such a tetrahedron, together
with the pole of the Jordan prime, forms a Jordan pentahedron. Otherwise
stated, a Jordan pentahedron is a symmetrical set of five nodes such that the
polar prime of any one contains the other four, and the join of any two nodes
is an e-line and the plane containing any three nodes is an f-plane, that is, a
plane containing three nodes whose joins, in pairs, are e-lines. (By an e-line
we mean a line joining a node 4 to a node B in the Jordan prime of 4, and
containing no other point.) There are 27 such Jordan pentahedra in B (three
through a given node), as well as 270 f-planes, 270 e-lines, and 240 «-lines.

Suppose AB is an e-line. Then

p(A)p(B) = p(B)p(4)

so that from each e-line there arises one commutative operation p(4)p(B).
Todd remarks that p(4) and p(B) generate an Abelian group of order 4,
direct product of the cyclic groups generated by the projections p(4)p(B).
Further, p(4)p(B) is an axial homology having for invariant spaces the e-line
AB and the opposite plane (f-plane) CDE of the Jordan pentahedron having
AB for an edge. Consequently, p(4)p(B) leaves invariant the nodes 4, B,
C, D, E and just these.

Here we may interpolate the result, stated in Todd, that if 4B is a «-line
with C the third point on it, then

p(A)p(B) = p(B)p(C) = p(C)p(4),

so that, under these circumstances, $(4)p(B) has period 3. In addition, Todd
remarks that, if ABCDE is a Jordan pentahedron, then

p(A)p(B)p(C)p(D)p(E) = 1.

Both these results are easy to verify in terms of our matrices.

Because of the different co-ordinate forms for the nodes P, and P,, the
matrices for p(4) p(B) will have varying forms. Having regard to the com-
ments in § 4 about the type of a node in a Jordan prime, we realise that the
270 involutions may be classified in the following way:

For p(A4)p(B) of Type I X Type I, there are 27 X 6 = 162 possibilities,

For p(A4)p(B) of Type I X Type II, there are 27 X 6 + 18 X 9 = 324 pos-
sibilities,

For p(4)p(B) of Type II X Type II, there are 18 X 3 = 54 possibilities.
However, since each e-line occurs twice in the classification, on account of
the commutativity property, we find that the numbers of involutions are
81,162,27 (totalling 270).

Attention is next focused on the set of 81 involutions. On multiplying
together the matrices for the projections of two general nodes of Type I,
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say, A = P, and B = P,, we find, on simplifying by means of (ii) where
necessary, and using the convention of (11), that the matrix form of p*(4)
p*(B) is as shown in Table I. Actually, the convention has been slightly
extended, to allow us to interpret (say) — (2f) — (2t') as — €' — €%, that
is, only the portion in brackets is a power of € in cases like this.

Interchanging in pairs rows 2 and 3, 4 and 7, 5 and 9, and 6 and 8,that is,
operating on this matrix by J, we obtain the companion matrix {p*(4) p*(B)}’
= p*(B) p*(4) which induces the same collineation as the above matrix.
Further, p*(B) p*(4) is the inverse of p*(4) p*(B). From these facts, we
deduce that

{p*(A)p*(B)}* = {p*(B)p*(A)}* = J

in [8], that is, the operation p*(4) p*(B) in [8] is not involutory, but has
period 4. On account of the relationship p'*(4) = Jp*(A4), we have

p"*(4) p*(B) = Jp*(4) p*(B) = p*(B) p*(4).

Making the necessary adjustments for the form of the projection-product
in [4], we have, using our convention again, the equation in Table II. As this
is symmetrical in dashed and undashed letters, we have

p(4) p(B) = p(B) p(4)

as we expect, and, of course, {p(4) p(B)}? = I, that is, the operation is
involutory.

Finally, the general symplectic matrix is shown in Table III where
s= (w4 202+ 2ut + 2,5 = (w + 20')% 4+ 24/ + 2, and the arithmetic is
reduced mod 3.

Squaring this matrix always gives 2 I so that its period is 4. Calculation
of the square is complicated and tedious.

In particular, consider the nodes A = Py and B = Pi132. On calculation,
the reduced matrix form for p(4)p(B) is found to be

1 2¢  2e¢ 2e2  2¢é
e —1 2 —e —e¢
€e? 2 —1 —e —e¢
e —e —e —1 2
e —e2 —¢ 2 -1

which leaves invariant the points 4, B of the e-line and the points C = P,
D= (...1—=1)and E = Py of the f-plane in the Jordan pentahedron.
Additionally, in its [8] form, p*(4) p*(B), as a member of CT, transforms
the basic Clifford set into the Clifford set

10 00 21 20 22
Wao Wi, Wi, Wu, W,

Correspondingly, the index matrix is
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1 2

: 2 .
1 2
2 2

of which the square is 2 [.
Next, we examine the invariant spaces associated with the operation
p*(A) p*(B), whose period is 4. Direct calculation shows that the point

(1, — (e + ), — (¢ + €“) .. 0)

is transformed into the point whose first three co-ordinates are 3 .., and
whose succeeding three co-ordinates are

_ {2(6” + eu’) + tEu’~;—‘2l’+z + 6u+21+t’}
- {2(6” + e”') + el 2+t ‘l’ 6v+21+t'}
_ {2(610 + ew') + w2+t + €w+2t+z'}

with corresponding co-ordinates appropriately situated in the last three
positions. Note that the co-ordinates are symmetrical in dashed and undashed
symbols so that p*(4) p*(B) and p*(B) p*(4) produce the same invariant
solid. Similar forms apply for the transformations of the u-, v-, and w-co-ordi-
nates. Only one of the three pairs of co-ordinates in positions 4 and 7, 5 and
9, and 6 and 8, is non-zero, a fact we now proceed to establish.

Firstly, suppose that all three pairs are simultaneously non-zero. Then

W+ 2+t t+u+2+Y =u+u
o + 2%+t o+ 24+ =9 4+
w + 2%+ttt wt+ 24+t =w+ w

which imply (say)

(a) w +20 +t=uor v
(b) v 4+ 20 +t=vor ¢
(c) w + 20 +t=wor w

(Calculations hereunder are taken modulo 3.) Let «’ + 2t + ¢t = u’. Therefore,
2t' 4+t = 0 so that ¢’ = ¢ which is clearly impossible since one point lies in the
Jordan prime of the other.

Consequently, take ' + 2¢' + ¢ = u with similar selections in (b) and (c).
Combining these results, we have 2u + ' = 2v + ¢’ = 2w + @' = 2t + ¢/
which is obviously invalid from the incidence relation (ii).

Assume next that all three pairs vanish together. Then

w + 2+t =u+2+4¢ =2(utu)
v+ 2+ t= v+ 204+ =20+
w + 2+ t=w+ 2+t =2w+ w)

whence
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ut+u =49 =2wt+w =t+ 2

which, by virtue of (ii), is essentially inadmissible.

Accordingly, the three pairs cannot be either simultaneously zero or simul-
taneously non-zero. Suppose, then, that the #-co-ordinates vanish but not
the v-co-ordinates. This assumption involves 2u + «' =t + 2t' = 2(2¢t + ¢)
(as above) and v" 4+ 2¢ + ¢ = v, that is, v + 20" = ¢ 4+ 2¢'. Since, from (ii),
two powers of e are twice the other two, we must have

20 + w' = 220 + )
=¢+ 2

which means that the w-co-ordinate also vanishes. Analogous reasoning for
the vanishing of the v-co-ordinates or of the w-co-ordinates obviously applies.
Of the three pairs of co-ordinates, therefore, only one is non-zero.

To illustrate the theory, choose the nodes Pyiz0 and Prope. We find that
»(0120) p(1002) leaves invariant the solid Ass;. However, this projection-
product differs from the projection p(2211), which leaves Ay pointwise
invariant, in that it effects the substitution #fwv on the co-ordinates ¢ % v w
as specified in (i). The same solid Ass; may be shown to arise invariantly
from the projection-products $(0120) p(1002) and p(0102) p(1020) with
substitutions v w ¢t u and w v u ¢ respectively of tuvw. To see this in (say)
the first case, we take the vanishing of the #- and w-co-ordinates with the
equation

2(e" 4 €”) 4 eVt 4 ettt = 3¢ (t =0, =1)

and solve these equations.

In the manner indicated above, it is verifiable that the 81 invariant solids
formed from the projection-products p(¢) p(¢) are merely the 27 solids A,
each occurring three times. Generally, to the projection p(7T") correspond
three projection-products p(¢) p(2¢ + 27). This is seen by letting ¥/ = ¢t + «
in the projection-product corresponding to the projection p(7"). Comparing
the ¢-co-ordinates in the two matrices, we have

T = — (e + Y) ¢ =t+a

- €2l+nx

so that « = 2T 4+ ¢ But a =+¢ + 2¢, so that ¢ + 2t = 27 + ¢ whence
t =2t 4+ 2T.

Similarly for the U-, V-, and W-co-ordinates. There does not appear to
be any general matrix connection between p(7") and p(¢)p (2t + 27", though
in particular cases a simple relation may occur. For instance, p(2211) =
Kp(0000)p(1122) where K corresponds to the substitution (174 285 396) and

so K% =J.
Likewise, the 81 [4]'s T', are merely the original 27, each occurring three
times,
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Turning now to projection-products of Type I X Type II, we find, on
using the standard projection p(a) of Type 11, that p(£)p(a) yields the matrix
in Table IV. When squared, this matrix gives J, showing that it is of period
4. Operating on this matrix by J, we obtain the companion matrix which
produces the same invariance of spaces in [8]. Also

p*@)p* (@) = T p*()p*(a) = p™*(O)p*(a).

In [4], the above matrix becomes

0 2(2) 2(2u) 2(20) 2 (2w)
¢ —(0) 2(2a) —(2v+1t) —(Qw+t)
p)pla) = [»  2(a) —(0) = (2v+u) —Quwtu) | = pla)p(t)
v —(Q2t+v) —(2u+tv) 2(0) — (2w+v)
w — (24w —Qutw) —(2v+w) 2(0)

of which the square is I.

For the projection-product to refer to an e-line, the incidence relation
must be

(iii) el = &2 thatis, t=u -+ 2a

a fact used in the matrix calculation above and again in the determination
of the invariant solid hereunder.

It is easy to verify that, as a collineation matrix, p(f)p(a) has the effect
of interchanging the {- and #- co-ordinates of the solid A, whilst leaving
unaltered the v- and w- co-ordinates, that is, of performing the substitution
utvw on tuvw. Clearly, the same A arises from the substitutions vutw, wuvt,
tvuw, twou, and tuwv. Hence, each A is repeated six times, thus absorbing the
27 X 6 = 162 matrices of this kind. It is noted that the substitution utvw
corresponds to the node having only ¢- and #- co-ordinates non-zero, viz., the
node P,. Likewise for the other possibilities.

Similarly, each of the 27 [4]'s T occurs six times as an invariant space.

Writing M = w + 29, we have, on multiplying, that

t at+s M 2a M
1 2t . M
P@)p() = M alM 2u au + 2s
M 2 u

Squaring, we get {p(a)p(®)}2 = 2(M?2 + 1) I, where M? = 0,1. Thus, p(a)p(t)
is involutory if M? = 1, that is, if M = 1,2, but is of period 4 if M = 0,
that is, if w = v.

Illustrating the above in the case 4 and C (given earlier), we have
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2 2 2 2
-1 2 -1 -1
2 -1 -1 -1
-1 -1 2 -1
-1 -1 -1 2

p(d)p(C) =

Pk bk ek

which leaves invariant the nodes 4, C of the e-line and the points B, D, E
of the f-plane in the Jordan pentahedron. As a (non-involutory) matrix of
CT, p*(4) p*(C) may be shown to transform the basic Clifford set into the
Clifford set

00 20 20 21 21
Wio , W, Wiz, Wz, Waoo
and the index matrix performing this operation is

2
2

of period 4. Regarded as a collineation matrix in [8], p*(4) p*(C) is found
to leave the solid Agogo invariant. Incidentally, p(0000) = Ap*(4)p*(C) where
\ corresponds to the substitution (174 396 285) and thus has order 2.

Epitomizing, we see that the effect of the 81 4 162 = 243 projection-
products associated with a projection of Type I, as collineation matrices, is
to reproduce each of the 27 solids A, and each of the [4]'s Tinthe3 + 6 = 9
ways indicated. (These 9 substitutions do not form a group.) So the 243
projection-products make no effective contribution to the sets of invariant
spaces.

Finally, consider the last category of projection-products. There are 3 sets

of 9 e-lines constituting the 27 e-lines, to which these refer, namely, the
e-lines joining

points (. 1 —e . . ) to points (. .. 1 =€
points (. 1 . —¢ . )topoints (. . 1 . —é?)
points (. 1 . . —¢€%) to points (. .1 = L)),

a..,f=0,1,2.

We find that p*(a) p*(b) has only one non-zero element in each row and
column, these being unity in position ag®, € in positions a;o®! and a2,
€ in ao1!® and @p22?, € in 11! and as.?!, and €2 in 2! and ;.22 Also,

p*(a) p*(8) = Jp*(b) p*(a).

The reduced form in [4] is
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pl@p® =|. a . 4 .
. 2b :
b
of which the square is 2 I so that p(a) p(b) has period 4. Using the symplectic
form of p(b) given in § 2, we have, on multiplication,

pa)p(b) =

whose period is 4.
In particular, if ¢ = 2, & = 0, we may readily verify that p*(2) p*(0) con-
verts the basic Clifford set into the Clifford set

Wi, We, We, Wh, Wi,
and the symplectic matrix performing this function is

1 1
. . 1
2 1
2
In [4], p(2) p(0) leaves invariant the points D (used earlier) and F = P, of
an e-line and also the points G = Psioo, H = Pro11, I = Posse of the f-plane
in the Jordan pentahedron.
Under the collineation p*(a) p*(b) in [8], the solid A,, determined by the
4 points

N S N
. —
—
m
Q
™
8

(. . . . 1 e . e 1

has the second and fourth points left invariant, while the first and third are
interchanged. (None of these points belongs to the configuration C).
Observation reveals that, as a, b vary within their limits, the 10 points
determining the 9 A, lie wholly in II. Moreover, consideration of the solids
Acq, A.; shows that, in addition to these 10 points, two other points, viz.,

(.11 . ¢ .. . ¢ (g =1,2)

will arise from the collineations p*(c) p*(d) and p*(e) p*(f). Just these 12
points of TI, but not in G, thus suffice to define the 27 solids A,s, A.q, Al
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(Compare these with the twelve points of II in C—the set of points (ii)—
which suffice to determine the 27 A,) But these twelve points of II also
manifestly lie in the simplex prime x¢ = 0 through Z. Therefore, all 27
Asp, A, A,y coalesce into one solid, viz., the solid of intersection of II and
xo0 = 0. I find this an unexpected, but satisfying, simplification. Knowing,
however, the perverse forms of matrix operators like p(a) and remembering
the importance of our basic spaces, perhaps we should not be too surprised
at such eccentricities of behaviour.

Dually, the 27 Ty, T4, T'oy are united as one [4], joining Ao to Z.

So the solid, II M xgo = 0, and the [4], = + A, are the invariant spaces
of the 27 Type I X Type II operations.

A diagram will serve to emphasize the aesthetic simplicity of the invariant
spaces we have been investigating.

6. Summary. Explicit matrix forms for the 454270 = 315 involutory
operations used by Todd in connection with the configuration B have now
been found. Extensions of these matrices to [8] and to the symplectic forms
have been accomplished. As members of CT’, the augmented matrices, num-
bering 315 X 2 = 630, are proved to have period 4 in 270 X 2 = 540 cases,
and to be involutory in the remaining 45 X 2 = 90 cases. Symplectic matrices,
315 in all, are generally of period 4, except the set of 45, which are involutory,
and those matrices like p(a) p(¢) for which w = v, which are also involutory.
Moreover, the invariant spaces of the collineation matrices in [8] have been
found and related to the configuration C.

Geometrically, the results may be summed up in the following manner. As
collineation matrices in [8], the 630 members of CT leave invariant 315
solids A and 315 [4]'s T'. Of these, only 46 A and 46 T are distinct. Regarding
the A, we have:

27 A, lie entirely in II, being determined completely by twelve points of C,
and each lies in a prime through Z;

18 A, each of which lies in three primes through I and in two primes through
T, and contains no points of C;

1 Ay = I N xe = 0, containing no points of C.

And dually there exist:

27 T', containing 2 entirely, each meeting II in a Burkhardt node;

18 T, each meeting 2 in a plane and II in a line, such that the simplex
vertex Ag is a common point of these eighteen lines;

1 Pab =2 + Ao().

Intersection relations amongst the various A and I' may be obtained, but
this objective is beyond the purpose of this paper. Details of the intersections
of the invariant spaces with the locus L and the configuration B may safely
be left to the reader’s curiosity.

The results embodied in the above summary apply to the [4] II given by
Xi; = X2, (3,7 = 0,1, 2) and its dual space, the solid Z defined by 4y — Aoy
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(4,7 = 0, 1, 2). Obviously, they apply equally well in modified form to the
other II- and 2- spaces whose invariance is preserved by the collineation
matrices JW.

It is hoped that, in another paper, discussion of the complete set of invo-
lutions of the Clifford group CT will be forthcoming. The set of 81 JW and
90 p* (54 p*(¢¥) and 36 p*(a)) clearly do not form a group, as, for instance,
the product of two JW matrices yields merely a W. Also, the product of two
p*’s is a matrix of period 4, as we have shown.

7. Finale. Quite recently, some interesting and important articles have
appeared relative to the group CS of order 51840 which is known (11) to be
the factor group CT/CG, and to the group 3CS of order 25920.

Structural properties of CS have, within the past few years, been investi-
gated by Edge (7; 8). In the former, he shows that this group has a repre-
sentation by orthogonal matrices, of size 5 and determinant + 1, over GF(3).

Dieudonné (4) has dealt with geometrical properties associated with two
groups of order 25920. These groups, the projective groups corresponding to
the symplectic and unitary groups Sps(F3) and UsH(F.) respectively (in
Dieudonné’s notation), have been proved isomorphic by Dickson (3). Else-
where, Dieudonné (5) discusses the automorphisms of these groups.

By (11), the generators Q and D of $CS have periods 5 and 3 with defining
relation (QD)® = I. Compare these with the generators S and T of Brahana
(2), which have periods 5 and 2 respectively, with S7" and S?T of periods
12 and 9 respectively. Frame (9) in examining an abstractly identical group,
obtains two generators similar to Brahana's generators.

Finally, CS, the group of automorphisms of the 27 lines of a cubic surface
is, Frame (10), the subgroup of the group of order 51840 X 28 = 1451520
of the automorphisms of the 28 bitangents to a plane quartic curve, which
leaves one bitangent fixed.
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