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Abstract

This article distinguishes causal modeling, metaphysical, epistemic, and modeling reasons for
variable/parameter choice. I argue in favor of justifying variable/parameter choices by
appealing to modeling reasons concerning the limitations of the available measurements,
experimental data, modeling techniques, and modeling frameworks. I use this “tyranny of
availability” to identify normative criteria for variable/parameter choice that apply across
most scientific modeling contexts and investigate their metaphysical and epistemological
implications.

1. Introduction
A common problem in scientific practice is selecting a set of variables and parameters
to include in one’s scientific model.1 As Jim Woodward (2016) has recently argued, the
problem of variable choice is a scientific problem that goes beyond philosophers’
attempts to analyze which properties constitute natural kinds or which predicates are
“gerrymandered.” To motivate this claim, Woodward quotes physicist Herbert
Bernard Callan: “It should perhaps be noted that the choice of variables in terms of
which a given problem is formulated, while a seemingly innocuous step, is often the
most crucial step in the solution.” (1985, 465).2

The aim of this article is to evaluate various justifications that might be given for
why certain variables or parameters are the “right” variables to include in a scientific
model. I will argue that—contrary to Woodward’s (2016) and Robert Batterman’s
(2021) recent proposals—rather than appealing to casual modeling, metaphysical, or
epistemic reasons, scientific modelers often do, and should, appeal to what I call
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1 This also includes cases in which various variables/parameters are constructed—e.g., via de novo
introduction, averaging, coarse-graining.

2 It is worth noting that perhaps the problem of variable/parameter choice does not arise for every
scientific model. However, even in nonmathematical models scientists need to decide which features to
include/represent.
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modeling reasons as the primary justification for their choice of a certain set of
variables/parameters. These modeling reasons include considerations of which
measurements, experimental data, theories, modeling frameworks, and mathematical
modeling techniques are currently available with which to construct a viable
scientific model. That is, these considerations focus on the constraints involved in
trying to simply construct a workable model from the limited set of available
modeling resources.

Assuming that we would like our philosophical views to be useful for practicing
scientists, I contend that criteria for variable/parameter choice ought to balance the
trade-off between (1) being able to offer specific guidelines for practicing scientific
modelers, and (2) being as generally applicable as possible across scientific modeling
contexts.3 As we will see, some accounts provide very specific criteria for variable
choice but are rather limited in their scope of application. Others are more generally
applicable, but at the cost of providing little detailed guidance for practicing scientific
modelers. In contrast, I will argue that by focusing on the types of modeling
constraints that arise from needing to construct a viable model from limited modeling
resources we can distinguish generally applicable modeling reasons for variable
choice from other more commonly recognized metaphysical, epistemic, or context-
specific aims/goals. Indeed, to the extent that across most scientific modeling
contexts, modelers need to select the “right” variable/parameters for constructing a
viable model from the available resources, these modeling reasons will be applicable
across a wide range of modeling contexts. The general applicability of these modeling
reasons not only highlights their importance but also shows that more narrow
accounts leave out several important considerations involved in variable/parameter
choice.4

Focusing on these model-based justifications highlights what I call the “tyranny of
availability” that greatly constrains variable and parameter choice across scientific
practice. Rather than picking out a single best set of variables and parameters for
casual modeling purposes (Woodward 2016) or that are of interest to one’s audience
(Potochnik 2017), I will argue that—across a wide range of scientific modeling
contexts—scientists’ choices of variables and parameters are highly constrained by
the availability of the mathematical frameworks, modeling techniques, theories,
measurements, data, and so forth with which to construct a scientific model. As a
result, the variables or parameters that are favored for other reasons typically must be
drawn from within the set of variables and parameters delimited by these modeling
constraints. This gives modeling reasons a kind of priority over other reasons for
variable/parameter choice and makes them the most widely applicable normative
guides for scientific model building.5 While scientific modeling practices can/should
be evaluated within specific modeling contexts, the general applicability of modeling

3 Thanks to Julia Bursten for suggesting this way of clarifying the balance between these theoretical
aims.

4 Thanks to an anonymous reviewer for pressing me to be clearer about these desiderata.
5 I am here following a widely used methodology in philosophy of science that aims to provide

suggestions about what scientists ought to do by drawing on examples of successful scientific practice.
It is beyond the scope of this article to argue for this general methodology on behalf of the field.
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reasons means they offer helpful guidelines for scientific modelers across much
broader swatches of scientific practice.

A consequence of this view is that we ought to be cautious about drawing strong
metaphysical or epistemological conclusions concerning the status of the variables/
parameters that end up in our best scientific models. For example, instead of being
the most “natural” variables with which to characterize a phenomenon, we can
typically only say these are the most natural of the variables/parameters from among
the set of variables/parameters that might be used to construct a viable model given scientists’
limited modeling resources. Similarly, instead of being the best variables/parameters
with which to explain or understand a phenomenon, full stop, we ought to say that, of
the available variables/parameters with which scientists can construct a viable model, the
selected variables/parameters allow for the best explanation or understanding of the
phenomenon. As a result, modeling reasons for variable/parameter choice have
important metaphysical and epistemological implications.

The article will proceed as follows. In the following section, I distinguish causal
modeling, metaphysical, epistemic, and modeling reasons that might be offered for
the selection of a set of variables/parameters and argue that modeling reasons ought
to be preferred and given priority in scientific practice. Section 3 then contrasts
Batterman’s discussion of mesoscale modeling techniques in physics with an example
of mesoscale modeling in biology to show that, while there will sometimes be
metaphysical reasons for considering the variables within a scientific model to be
natural kinds, in many other cases, modeling reasons can justify the choice of (the
same types of) variables without warranting further metaphysical claims regarding
their naturalness. Using these cases as a guide, in section 4 I lay out a model-based
approach to variable/parameter choice and present specific criteria that ought to
guide scientists’ choices of variables/parameters. Although other reasons might
override them in certain cases, I argue that these modeling reasons yield generally
applicable constraints/criteria that ought to guide variable/parameter choice across
model-based science. Next, section 5 investigates what kind of priority modeling
reasons ought to be afforded in scientific practice. Section 6 responds to some possible
objections and the final section concludes.

2. Causal-Modeling, Metaphysical, Epistemic, and Modeling Reasons for
Variable Choice

2.1 Woodward’s Causal Modeling Reasons
Woodward’s (2016) analysis of the problem of variable choice is explicitly
instrumental in that it is tied to achieving specific aims of scientific inquiry within
a particular context: “My view : : : is that the problem of variable choice should be
approached within a means/ends framework: cognitive inquiries can have various
goals or ends and one can justify or rationalize candidate criteria for variable choice
by showing that they are effective means to these ends” (1051). More specifically,
Woodward tells us that “The broad goal of inquiry on which I focus in what follows is
causal representation/explanation” (ibid.). Thus, what is distinctive about
Woodward’s approach is the specification of the specific aim of causal modeling/
explanation and the selection of variables based solely on their ability to help
scientists accomplish that aim (ibid., 1053).
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By tying his approach to the specific aims of causal representation and
explanation, Woodward is able to use his interventionist framework to offer fairly
detailed criteria for variable choice:

(1) Choose variables that are well-defined targets for interventions in the sense
that they describe quantities or properties for which there is a clear answer
about what would happen if they were to be manipulated or intervened on.

(2) Choose variables that have unambiguous effects on other variables of interest
when they are manipulated.

(3) Choose variables that can (in principle) be manipulated independently of the
values taken by other variables.

(4) Choose variables that satisfy the causal Markov condition (or other standard
screening off relations).

(5) Choose variables that allow for the formulation of (as close as possible to)
deterministic causal relationships.

(6) Look for variables that figure in causal relationships that are stable across
changes in background conditions.

(7) Look for variables such that the resulting causal graph accurately represents
causal dependency relations (ibid., 1054–5).

While Woodward’s causal modeling criteria are acceptable as far as they go, I do not
think they go far enough. Specifically, the issue is that, because there are numerous
other scientific aims besides causal representation and explanation, the preceding
criteria will fail to be normatively helpful in other modeling contexts. In short, the
problem of variable choice arises in a wide range of cases in which the aim or purpose
of the model is something other than to provide a causal explanation/representation.
Woodward’s criteria will be unhelpful to scientific modelers in those cases. Woodward
is aware of this issue but is still hopeful that general guidance might be provided
regarding the problem of variable choice (ibid., 1048). In what follows, I argue that
model-based criteria for variable choice are more generally applicable beyond cases
that focus on the aims of manipulation, control, or providing causal explanations.

Unfortunately, I don’t think other authors referring to Woodward’s approach as
“pragmatic” is particularly helpful here since there can obviously be pragmatic
considerations that are disconnected from this sort of causal modeling approach (and
the word “pragmatic” is often used in ways that are so general that they will apply to
almost any aspect of scientific practice).6 As a result, I will instead refer to this
Woodwardian type of reason for variable choice as a “causal modeling” reason. It is
this focus on pursuing casual modeling ends that limits the applicability of
Woodward’s approach rather than his appeal to pragmatic considerations.

I will argue that what distinguishes what I call “modeling reasons” from
Woodwardian causal modeling reasons is that modeling reasons are motivated by the
general scientific task of building a useable model from limited modeling resources
(the tyranny of availability)—independently of whether the modeler aims to
construct a causal model of the phenomenon or has some other modeling aim. That is,
I will argue that modeling reasons for variable choice are applicable across most

6 I address the question of whether modeling reasons are pragmatic reasons more in section 6.
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(if not all) modeling contexts—regardless of the more context-specific purposes
(or ends) scientists have for their models.

2.2 Metaphysical Reasons
In contrast with Woodward’s causal modeling approach, other philosophers have
argued that certain kinds (and the variables that represent them) are “natural kinds”
or “natural properties.” Thus, one might argue that the variables/parameters that
ought to be included in scientific models are those that represent these natural kinds
—what Batterman calls “natural kind variables” (2021, 126). One attempt to do this
has been to try to identify the properties that will figure in some final or most
fundamental physics (Lewis 1983; Sider 2011). However, as both Woodward (2016,
1056) and Batterman (2021, 45) note, this analytic metaphysics approach isn’t
particularly helpful for practicing scientific modelers given that it depends on
metaphysicians’ intuitive judgments about what is natural and we simply do not have
access to any such final physics. Moreover, such an approach seems to require a
rather strong form of reductionism to evaluate the naturalness of the properties used
in biology or other “special sciences.” At the very least, it would be useful to have
normative criteria to offer scientific modelers that do not depend solely on
metaphysical intuitions of philosophers, having access to a final physics, or reducing
the properties of all models to properties in fundamental physics.

Alternatively, one might attempt to provide scientifically-motivated a posteriori
reasons for considering certain variables to be more “natural.” Indeed, Batterman
attempts to do precisely this when he contends that he is providing “nonpragmatic”
reasons for considering certain variables to be natural simpliciter (ibid., 124). Rather
than appealing to considerations of fundamentality, Batterman proposes that, “The
ultimate conclusion will be that the middle-out engineering approach to many-body
systems is often ontologically superior to one based in fundamental theory” (ibid., 121;
my emphasis). Moreover, he tells us that he is, “addressing metaphysical concerns
about the proper way to carve nature at its joints” (ibid.). Despite his ontological
focus, however, Batterman is rather explicit that “we do not need to engage in
metaphysical analysis” (ibid.) and that “sometimes we have non-metaphysical and
non-methodological reasons with which to identify or delimit a privileged class of
natural-kind variables” (ibid., 126). I interpret Batterman as rejecting various
attempts by metaphysicians (and philosophers of physics) to establish which
properties are natural using a priori reasoning concerning fundamentality. Yet, he
does intend to provide a posteriori reasons for drawing conclusions concerning the
naturalness of mesoscale variables.

Most of the a posteriori reasons offered by Batterman appeal to the ontological
implications of the Fluctuation-Dissipation Theorem (FDT), which I discuss in more
detail in the next section. After explaining the role of FDT in justifying mesoscale
modeling techniques, Batterman tells us that, “The Fluctuation-Dissipation theorem for
many-body systems is really a profound result with ontological consequences. It tells us that
we need to take mesoscale structures and the parameters : : : that code for those
structures via correlation functions to be genuine features of the world” (ibid., 110).
In other words, Batterman argues that we have scientifically-motivated reasons
“for treating the mesoscale parameters as, in a rather strong sense, among those that
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should be considered natural kinds” (ibid., 25). As a result of their naturalness,
Batterman contends that, “They are the right variables with which to model and
investigate various aspects of the bulk behavior of many-body systems” (ibid. 127; my
emphasis). That is, the FDT has important ontological consequences that, in turn,
justify the selection of mesoscale parameters as the best with which to model the
target phenomenon.

However, the same problems arise here as with Woodward’s approach. While the
FDT does allow for interesting and important inferences concerning which variables
ought to be prioritized in various cases within many-body physics, it is unclear how
such normative guidance would help with variable choice in other contexts. That is,
while Batterman’s a posteriori reasons concerning naturalness are certainly unique
and interesting, their dependence on the discovery of principles like the FDT limits
their applicability in other contexts. For example, in many parts of science there are
no physical or theoretical reasons to suppose that the variables included in a scientific
model are the most natural, or even that they represent properties that exist.
Moreover, the same mesoscale modeling techniques discussed by Batterman—for
example, homogenization—have been applied in modeling contexts outside of
physics in which there is little hope of establishing the naturalness of the mesoscale
variables/parameters included in the model. I discuss such a case in the next section.
As a result, while Batterman’s metaphysical approach to variable choice is
independent of pursuing causal modeling aims of science, it fails to yield generally
applicable normative guidance for scientific modelers.

2.3. Epistemic Reasons
While Woodward’s account is tied to the specific aim of causal modeling, his focus on
the aim of providing explanations is perhaps applicable across a much wider range of
modeling contexts (though it is unclear how well Woodward’s interventionist-based
criteria would apply to instances of noncausal modeling/explanation). This suggests
that there might be unique reasons/justifications for variable/parameter choice that
are involved in aiming to accomplish more general epistemic aims of science such as
knowledge, explanation, or understanding. Batterman (2021), too, appeals to various
kinds of epistemic reasons: “I will argue that mesoscale quantities and parameters
are, for the purpose of understanding the bulk behavior of many-body systems, much
superior to quantities and parameters at fundamental atomic scales” (2; my
emphasis). And later on, “This chapter aims to justify these variables/parameters as
better able to figure in explanations, as better able to provide descriptions and understanding
of certain behaviors” (ibid., 121; my emphasis). Similarly, Angela Potochnik (2017) has
argued that the variables that ought to be included in a scientific model are those that
contribute to the causal pattern of interest to one’s audience because this will best
promote understanding. Rather than tying variable choice to causal modeling
contexts or appealing to metaphysical naturalness, this epistemic approach aims to
justify scientists’ variable choices by showing how they contribute to more general
epistemic aims of scientific inquiry.

Turning this epistemic approach into more detailed normative criteria for
variable/parameter choice, of course, requires offering an account of these epistemic
aims and how scientific models play a role in accomplishing them—or at least some
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story about why certain kinds of variables/parameters will best aid in accomplishing
these epistemic aims. But this highlights a problem for the epistemological approach.
Given the myriad of different accounts of scientific knowledge, explanation,
and understanding, epistemic considerations will likely result in a plethora of
different criteria for variable choice. This is true both within and across different
epistemic aims.

For example, like Woodward, many philosophers have argued that the aim of
explanation will be best achieved by models that include variables and parameters
that capture the difference-making causes of the system (Strevens 2008). However,
other philosophers have argued that the variables that ought to be included in causal
explanations should be tailored to the intended audience rather than overly focused
on difference-making causes (Potochnik 2017). Moreover, many other philosophers
have argued that there are noncausal scientific explanations that would not be
captured by these causal accounts and have offered varying accounts of how
noncausal explanations work (Batterman and Rice 2014; Bokulich 2011; Rice 2021;
Khalifa 2017). Thus, even if we focus exclusively on the aim of explanation, adopting
even a modest pluralism will result in multiple conflicting normative criteria for
variable/parameter choice.

This problem is only exacerbated by considering additional epistemic aims like
understanding or knowledge. Indeed, several philosophers have argued that
knowledge, understanding, and explanation are importantly different (Elgin 2017;
Kvanvig 2003; Rice 2021). Moreover, the philosophical literature on these other
epistemic aims—for example, understanding—has generated a plethora of accounts
of how scientific models contribute to them as well (Elgin 2017; Khalifa 2017;
Potochnik 2017; Rice 2021).

Consequently, the combination of there being multiple epistemic aims of science
and a multitude of conflicting accounts of each of those aims makes it unclear how
this epistemic approach would generate widely applicable and consistent rules for
variable/parameter choice. That is, given the diversity of epistemic aims and the
different ways they are specified the epistemic approach’s increase in generality results in
less specificity (or consistency) in terms of the best means by which those epistemic ends are
accomplished. What is more, given that these epistemic aims are not the only aims of
scientific inquiry, these criteria are, once again, only normatively useful in so far as
these epistemic aims are the goal of scientists’ modeling projects. Therefore, while
epistemic aims are more general, it is unclear how they can provide generally
applicable, specific, and consistent normative criteria for variable choice.

At this point, one might suggest that there are common types of modeling
considerations that promote each of these epistemic aims, for example, identifying
dependency relations or empirically supported truths (Khalifa 2017). I reply that, even
if there are some general commonalities between these different epistemic aims,
those commonalities won’t be robust enough to yield specific criteria for variable/
parameter choice that would best accomplish the various epistemic aims of science.
For example, telling scientific modelers to select variables/parameters that are
involved in dependency relations is of limited use given the plethora of dependency
relations that one might include in a scientific model. Consequently, the normative
guidance extracted from what all epistemic aims of science have in common (or what
all accounts agree on) is likely to be rather thin.
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Another response might simply grant that this diversity of epistemic aims and
different means for achieving them is precisely what motivates only evaluating
models as being adequate for specific purposes within specific contexts. That is, one
might suggest that this diversity of aims is precisely why very few general principles
regarding variable/parameter choice are likely to be found.7 However, in the rest
of the article, I identify numerous more widely applicable criteria for variable/
parameter choice that can be applied across (almost) any context in which scientists
need to construct a model—regardless of their more specific aims for the model.
Specifically, I suggest that—while investigating particular modeling contexts is
certainly important—more general criteria (or constraints) for variable/parameter
choice can be also identified by investigating the constraints imposed by the tyranny
of availability.

2.4 Modeling Reasons
In light of the limitations of the above approaches, I contend that a new approach is
needed. Fortunately, Batterman (2021) suggests an alternative by appealing to various
kinds of modeling considerations to motivate the use of mesoscale variables/
parameters to model the bulk behaviors of many-body systems. I think these reasons
are importantly different from the more metaphysical reasons Batterman offers by
appealing to the FDT. Rather than being ontologically guaranteed to exist, mesoscale
parameters are often the “right” parameters because they allow for successful modeling
of the target phenomenon given the available modeling resources. For example, immediately
after telling us that the middle-out approach is ontologically superior, Batterman
clarifies that: “By ontological superiority, I mean that these quantities or kinds allow
for much more effective modeling of the mesoscale regularities exhibited by many-body
systems” (2021, 121; my emphasis). In addition, Batterman often characterizes the
“naturalness” of these variables in similar terms: “I argue that mesoscale parameters
—order parameters and material parameters—are natural variables in the sense that
they are the best variables with which to characterize certain dominant, lawful behaviors
of many-body systems” (ibid.; my emphasis).

Following these suggestions from Batterman, I propose that there can be
straightforward and generally applicable modeling reasons for preferring a set of
variables/parameters that are independent of causal modeling, metaphysical, or
epistemological considerations. These modeling reasons include using certain
(sometimes artificially constructed) parameters because they are necessary to
employ the available modeling techniques that have been successfully applied to
similar kinds of phenomena in other contexts. For example, modelers in ecology,
economics, and the climate science have attempted to model systems in terms of
particular kinds of variables and parameters as a means to employing the modeling
frameworks used to study phase transitions in physics (Jhun et al. 2017; Rice 2021).
Indeed, in many cases, scientific modelers will select certain variables/parameters
that are analogous to those used in other similar modeling contexts to enable them to
use already developed models or modeling frameworks.

7 Thanks to an anonymous reviewer for raising this objection.
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Another modeling reason is using certain variables/parameters because they can
be compared to the available measurements or experimental data sets from which a
model might be constructed and tested. As Batterman notes, one reason physicists
focus on mesoscale features is because, “these quantities provide a rather direct
connection with measurements we can actually perform on many-body systems”
(Batterman 2021, 66). Multiscale modelers in biology agree: “The starting point for a
‘middle-out’ approach to modeling biological systems may be influenced by a number
of factors, including the ready availability of relevant experimental data” (Walker and
Southgate 2009, 451). Indeed, scientific modelers often select certain variables and
parameters because they can be directly compared with the available experimental
data and measurements.

A third common type of modeling reason is when scientific modelers use coarse-
grained or homogenized variables/parameters because they greatly reduce
calculation times or allow for models/simulations to yield more precise solutions.
For example, Eric Winsberg notes that in climate modeling, parameterization involves
“replacing missing processes—ones that are too small-scale or complex to be
physically represented in the discretized model—by a more simple mathematical
description” (2018, 48). Moreover, these parameters are not physical since “no such
value exists in nature,” but they are instead “artifacts of the computation scheme”
(ibid., 49). In this case, scientific modelers make use of certain parameters because
they make it possible to build models/simulations that can be solved or run in
significantly less time, not because those parameters are thought to capture real,
natural, or causal properties of the target system(s).

What distinguishes these kinds of modeling reasons is that they need not be tied to
more commonly recognized causal modeling, metaphysical, or epistemic aims of
science such as manipulation, prediction, understanding, or explanation. Instead,
they are motivated by the very task of constructing a viable/workable model from limited
modeling resources—regardless of scientists’ further goals for that particular model. As
a result, I contend that these modeling reasons are importantly distinct from
(Woodwardian-style) causal modeling, metaphysical, or epistemic reasons for
variable choice discussed in the preceding text. While models are always built with
some further purpose in mind (Giere 2004; Weisberg 2017) and can, and should, be
evaluated according to their adequacy for those purposes (Parker 2020), the types of
justifications offered for various modeling decisions—for example, variable or
parameter choices—should also (when possible) be evaluated across a wide-range of
scientific modeling contexts independently of more specific aims/purposes for the
model. That is, we can both evaluate models using means-end reasoning within
specific contexts and identify more generally applicable criteria/reasons for variable/
parameter choice that apply across a wider range of contexts.8 Of course, in practice,
these generally applicable model-based reasons will interact with more context-
specific modeling purposes/aims in various ways. The ways these reasons interact
and constrain one another is an important and interesting avenue for future
philosophical research. Nonetheless, their being tied to the common challenge of

8 The view I defend here is perfectly compatible with also evaluating models based on their
adequacy for purpose, but the details of how these views interact is a subject for future research
(see Parker 2020, 467).
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constructing a viable model from limited modeling resources highlights what is
distinctive about modeling reasons for variable/parameter choice, shows that more
narrow accounts miss important considerations that influence variable/parameter
choice, and gives us strong reasons to believe modeling reasons will be generally
applicable across a wide range of scientific modeling contexts.

It is by focusing in on this most generally applicable model-building context that
we find scientists consistently appealing to model-based reasons to justify their
selection of certain variables/parameters to include within their models. Because
they are built into the general scientific task of constructing a scientific model from
limited modeling resources, I contend that these model-based reasons are the most
generally applicable reasons for variable or parameter choice—though, in practice,
their application will almost always be combined with other kinds of reasons for
variable/parameter choice. That is, regardless of a scientist’s more specific aims for
their model, or the type of model they aim to construct, (almost) all scientific
modelers must confront the tyranny of availability due to their being limited
modeling techniques, frameworks, measurements, and so forth from which to
construct their models.

3. A Tale of Two Sciences: Mesoscale Modeling in Physics and Biology
To draw out what is distinctive about these kinds of modeling reasons and use them to
extract more specific normative criteria for variable/parameter choice, it will be
useful to compare Batterman’s analysis of mesoscale modeling in physics where
ontological reasons drive the selection of particular variables/parameters with a case
of mesoscale modeling in biology where scientists appeal to model-based reasons for
choosing mesoscale variables/parameters.9

3.1 Mesoscale Modeling in Physics
Batterman (2021) persuasively argues that there can be ontological reasons for
variable choice in cases where mesoscale variables can be thought of as the “natural
variables” with which to model and characterize a many-body system. As I noted in
the preceding text, Batterman’s arguments rely heavily on the FDT. Many-body
systems are often in flux between states of equilibrium and nonequilibrium. The FDT
“states an equivalence between the response of such a system to a small external
disturbance (a push of some kind) and internal fluctuations in the absence of such a
disturbance” (ibid., 21). In other words, the FDT tells us that the evolution of the
system back to its equilibrium will be the same regardless of whether the disturbance
is internal or external. More specifically, systems that are perturbed out of their
equilibrium state by an internal perturbation will evolve back to equilibrium by
having the correlations between different spatial and temporal regions decay over
time. The FDT “asserts that the response of the system to an external push will decay
in the same way” (ibid., 22). Moreover, because the system’s evolution back to its

9 These case studies are intended to highlight what is distinctive about modeling reasons. They are not
meant to establish a “general applicability” claim. The argument for these reasons’ general applicability
is grounded in their being built into the general task of constructing a model from limited resources
across multiple modeling contexts.
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equilibrium state is characterized in terms of the decay of these correlations between
different regions of the systems (that are unobservable from the perspective of the
individual particles), the FDT guarantees that there will be mesoscale correlational
structures that are essential to understanding these changes in the system (ibid., 136). This
result, in turn, helps explain why hydrodynamic methods that focus on finding
parameters that directly code for those mesoscale correlational structures are so
successful.

For these reasons, Batterman argues that there are physical/ontological reasons,
grounded in the FDT, for why mesoscale parameters are the “right” or “natural”
variables with which to model these many-body systems (ibid., ch. 7). That is, the FDT
guarantees that these mesoscale correlational structures will exist and be essential to
understanding the bulk behaviors of the system. This, Batterman argues, means we
should treat them as “natural variables” and that “[t]hey are the right variables with
which to model and investigate various aspects of the bulk behavior of many-body
systems” (ibid., 127).

In contrast with Batterman’s proposal that, “there are theoretical, scientific
reasons for treating the mesoscale parameters as, in a rather strong sense, among
those that should be considered natural kinds” (ibid., 25), I argue that, in other cases,
there can be compelling modeling reasons for treating mesoscale variables as the
right variables with which to model a phenomenon, but that these modeling reasons
are often insufficient to warrant this stronger claim concerning natural kinds. That is,
I argue that there can be model-based reasons for selecting mesoscale variables/
parameters that are independent of the kind of ontological reasons/backing discussed
by Batterman. To see how this is possible, we can look to an example of mesoscale
modeling in biology.

3.2 Mesoscale Modeling in Biology without Appealing to Natural Variables
The same mesoscale modeling techniques discussed by Batterman—for example,
homogenization—have been successfully applied in biological contexts as well.
However, here, I will argue, the primary justification for focusing on particular
mesoscale parameters/variables appeals to modeling reasons rather than ontological
justifications.

As an example, Martha J. Garlick et al. (2011) apply homogenization techniques to
model the spread of chronic wasting disease (CWD) in mule deer. Diffusion models,
developed in physics to model the spread of gases, have been used to model various
biological problems such as the spread of genes/organisms. The issue is that these
approaches assume that diffusion takes place across homogeneous landscapes and
conditions. However, “most animals do not diffuse like particles” (ibid., 2089) and
their spread/movement is different depending on the landscapes in which they exist.
This is because, “[Organisms] are greatly influenced by habitat type, moving slowly
through landscapes that provide needed resources and more quickly through
inhospitable regions and are therefore much more likely to be found some places than
others” (ibid.). Simply averaging over the entire system would ignore these important
heterogeneities at mesoscales. However, modeling all the smaller scale details of the
system would be “daunting to implement in a model, particularly at large spatial
scales” (ibid., 2090).
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In response, Garlick et al. adopt a homogenization approach that aims to capture
the relevant mesoscale differences in terms of types of landscapes by incorporating
important small-scale variations into the averages, while keeping the model
computationally tractable by ignoring most of the (irrelevant) small-scale variations
in the system (ibid., 2090–91). In addition to these computational savings, these
modelers justify their use of certain idealizing assumptions that eliminate various
variables/parameters from the model because doing so enables them to apply
homogenization modeling techniques that have been successfully applied in other
similar contexts.10 As they put it, their model, “will ignore other modeling
considerations such as seasonal and sex differences in movement and age structure of
the disease for purposes of developing the homogenization approach” (ibid., 2092; my
emphasis).11 Moreover, their decision to include certain variables and parameters was
justified by claiming that it “allows us to apply a homogenization procedure similar to the
one derived for [other similar contexts]” (ibid., 2093). More generally, the desire to
employ an existing and previously successful modeling technique is presented as
justification for including certain mesoscale variables and parameters and ignoring or
idealizing other factors.

The next question is at which mesoscale of the system ought these variables and
parameters be described? For these modelers, this modeling decision is dictated by
the available measurements and experimental data. In particular, they carved the
landscape up into 30 × 30 kilometer blocks because this is the scale at which the US
Geological Survey Landcover Institute had collected their measurements of mule deer
movements through different landscapes (ibid.). Carving the landscape up this way
and homogenizing over these mesoscale regions resulted in mesoscale ecological
diffusion equations for the different parts of the landscape that made use of different
motility coefficients designed to capture/incorporate various contributions of the
terrain and resources to animal movement (ibid., 2102).

After constructing this homogenization model for the spread of CWD, these
modelers argue for the utility of using this modeling approach by pointing out that
the nonhomogenized model took 45 hours to run a one-year simulation whereas the
homogenized model took just 3.85 seconds! In other words, the decision to include
only certain mesoscale variables is further justified by showing that using the
homogenization technique provides similar results in 1/42000 of the time. This is,
without a doubt, “a substantial computational savings” (ibid., 2103).

In summary, these biological modelers do not appeal to ontological facts,
principles, or theorems that would lead us to expect their mesoscale modeling
approach to capture certain “natural” variables of these biological systems. Instead,
they offer several different modeling reasons tied to the ability to construct, apply,
test, and run their idealized model. Specifically, they offer the following reasons for
selecting particular variables/parameters:

10 For example, the model assumes that death from causes other than CWD are balanced by births and
ignores indirect ways that the disease might be spread.

11 Of course, this is a form of means-end reasoning. However, this is motivated by the limited
modeling resources available and is generally applicable regardless of one’s further aims/purposes for
the model.
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(1) The (existing) homogenization modeling techniques that focus on these
mesoscale variables/parameters have been successfully applied to similar
kinds of problems in physics and other areas of biology.

(2) Other factors are ignored for the purposes of implementing the homogeniza-
tion approach.

(3) The available data/measurements concern variables/parameters at a
particular mesoscale.

(4) Computational savings.

None of the preceding justifications require us to show that there is some kind of
physical theorem or metaphysical reason why this modeling approach is applicable,
universal, or likely to be successful. That is, we need not argue that these parameters/
variables are more natural to argue that they are, nonetheless, the “right”
parameters/variables with which to characterize/model the phenomenon. Moreover,
these variables/parameters need not be targets for intervention or manipulation of
the kind focused on in causal modeling. Finally, these modelers do not appeal to
epistemic reasons concerning improved understanding or explanation, but rather
appeal to the available modeling approaches, measurements, and computational
resources as justification for their variable/parameter choices. Therefore, in this
case, I argue that modeling reasons alone provide sufficient reasons for these
modelers’ variable/parameter choices without appealing to (Woodwardian-style)
causal modeling, metaphysical, or epistemic reasons.

Of course, just because scientists appeal to these considerations does not mean they
ought to. However, the fact that this is a successful instances of scientific modeling in
which the modelers are able to construct a viable/usable scientific model from the
existing resources that is able to accomplish their aims does provide reasons to think
they are justified. By choosing variables to use the available modeling techniques (that
were previously applied to similar types of phenomena), drawing on the available data/
measurements, and limiting the necessary computational resources, these modelers
were able to build a successful scientific model for accomplishing their purposes from
the limited modeling resources available. That is, using these modeling reasons for
variable choice were crucial to the success of their modeling project.

4. Adopting a Model-Based Approach to Variable/Parameter Choice
I now draw on the preceding example to identify several model-based justifications
that might be given for selecting particular variables/parameters. I then use these
model-based reasons to construct a list of criteria that ought to normatively guide
variable/parameter choice across scientific practice.

4.1 Certain Variables/Parameters Are Necessary for Using the Available Modeling
Techniques
A primary consideration in adopting a model-based approach to variable/parameter
choice is that, in many cases, the inclusion of certain types of parameters, conserved
quantities, and limiting cases is necessary for employing the currently available
mathematical modeling techniques. In the preceding case, we saw that the inclusion
of certain (idealized) features and the exclusion of various complicating factors was
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done “for purposes of developing the homogenization approach” (ibid., 2092). That is,
these modelers wanted to use an existing modeling technique and included/excluded
various variables/parameters as a means to being able to employ that modeling
approach. Other examples include the inclusion of certain variables/parameters that
are “self-similar” to apply certain multiscale modeling techniques (Batterman 2021;
Rice 2021) and the inclusion of variables for population averages and variation that
are necessary to apply certain statistical modeling frameworks (Ariew et al. 2015).

The flipside of these reasons for including certain variables/parameters is that
wanting to adopt a particular modeling framework is also often used to justify ignoring
certain variables/parameters. For example, R. A. Fisher (1930) motivated his inclusion
of random mating and a sufficiently large number of genes in his biological models so
that he could apply statistical modeling techniques. This modeling choice, in turn,
motivated Fisher to build biological models that ignored smaller scale variations:

Finally, and perhaps most importantly, he assumed that the factors were
sufficiently numerous so that some small quantities could be neglected; in other
words, large numbers of genes were treated in a way similar to large numbers of
molecules and atoms in statistical mechanics. As a result, Fisher was able to
calculate statistical averages that applied to populations of genes in a way
analogous to calculating the behaviour of molecules that constitute a gas.
(Morrison 2004, 1197)

These cases illustrate that, often, scientific modelers motivate/justify their choices
regarding which variables/parameters to include (and whether to randomize them or
introduce various limits) by their desire to use the available modeling frameworks
and the necessity of those variables/parameters for employing those modeling
techniques. More generally, scientific modelers are often constrained by the limited
range of representational/modeling frameworks that have been developed for
modeling a certain type of phenomenon. While scientific modelers certainly can, and
sometimes do, construct new types of models, in most cases scientific modelers prefer
to choose from among the already existing types of models and make variable/
parameter choices motivated by the desire to use existing modeling techniques.

4.2 If It Ain’t Broke, Don’t Fix It
A related, but importantly different, justification for using certain variables/
parameters within a model is the desire to use modeling techniques that have been
successfully applied to other similar problems in the past. In the preceding case, the
modelers justify their use of particular variable/parameters to use homogenization
techniques because such a modeling approach had been successfully applied to
similar kinds of problems by other ecologists and physicists. Moreover, they
incorporated the variables/parameters, such as coefficients for “ecological diffusion”
that were developed by those other modelers. Christopher Pincock (2012) describes a
similar case in which the use of a variable that represents an organism’s “domain of
danger” is central to Hamilton’s selfish-herd modeling research program.
Interestingly, Pincock argues that this proxy variable is an idealization because
there is evidence that predation risk is not accurately captured by an organisms’
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domain of danger. But biologists continue to use the variable because it enables them
to develop models of predation risk and apply them in similar contexts. As Pincock
puts it, “[T]he central anchor for Hamilton’s program is the claim that predation risk
is accurately reflected in the relative size of a prey organism’s domain of danger : : :
this anchor is an idealization. It is used to formulate a model despite the fact that the
scientists using it believe it to be false” (ibid., 492; my emphasis). In these cases, the
general motivation is to include variables/parameters that enable for the application
of a previously successful modeling technique and to use the parameters that have
been specially developed for constructing models of a particular type of phenomenon.
As a result, it isn’t just the employment of an existing modeling strategy but also the
use of specific ways of deploying those strategies to solve particular types of problems
that motivates the inclusion of certain types of variables/parameters within a
scientific model.

4.3 Confronting the “Tyranny of Scales”
Another modeling consideration that motivates/justifies the inclusion of certain
variables/parameters within a model are the challenges raised by the so-called
tyranny of scales (Oden 2006; Batterman 2013; Bokulich 2021; Rice 2021). Essentially
the problem is that most of the available scientific models have been developed to
represent process at particular characteristic scales (or a narrow range of scales).
However, when modeling multiscale phenomena, often features and processes at a
wide range of spatial and temporal scales need to be modeled and put in
communication with one another. As J. T. Oden explains:

Virtually all simulation methods known at the beginning of the twenty-first
century were valid only for limited ranges of spatial and temporal scales. Those
conventional methods, however, cannot cope with physical phenomena
operating across large ranges of scale : : : . At those ranges, the power of the
tyranny of scales renders useless virtually all conventional methods. (2006,
29–30)

This situation creates the modeling challenge of needing to select models and
variables that can be more easily integrated with other types of models used to describe
features and processes at other scales. As a result, in most multiscale modeling situations,
“Multiscale modeling, besides modeling the system, needs to address the issue of how
to bridge the gaps between different methodologies and between models at different
scales” (Castiglione et al. 2014, 7). As a specific example, several biological modelers’
motivation for building middle-out mesoscale cellular automata is that these models
“can be integrated with other modeling modalities (e.g. partial or ordinary
differential equations) to model multi-scale phenomena” (Walker and Southgate
2009, 450). Batterman provides a similar example in which modeling multiscale
phenomena in biological contexts, “requires linking together different types of
modeling at various levels.” (Bassingthwaighte et al. 2009, 597). In short, often
scientific modelers choose certain variables/parameters because they enable them to
construct models at particular scales that can be more easily integrated with different
types of models used to represent features at other scales.
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4.4 Comparison with the Available Measurements or Experimental Data
Another kind of justification seen in the preceding case is the inclusion of certain
variables/parameters because they allow for direct comparisons with the available
experimental data/measurements. Indeed, as Batterman argues at numerous places
in A Middle Way, “One of the most important aspects of the hydrodynamic description
in terms of correlation functions is its rather direct connection with experiment.”
(2021, 15). Numerous biological modelers agree: “The starting point for a ‘middle-out’
approach to modeling biological systems may be influenced by a number of factors,
including the ready availability of relevant experimental data” (Walker and Southgate 2009,
451; my emphasis). I take these justifications to be appeals to generally applicable
modeling reasons because they are motivated by the need to have measurements and
data with which to build, test, and verify scientific models. And often, despite certain
variables/parameters being desirable for various causal modeling or epistemic
purposes, if they are not measurable, then they are often not the “right” variables. For
example, in many cases, although directly representing fitness would often be the
most explanatory/predictive, various proxies for fitness (e.g., amount of food
consumed or number of eggs fertilized) are used in biological models instead because
they are directly measurable.

4.5 Computational Savings
Finally, as we saw in the spatial ecology case mentioned previously, often the choice
of a particular set of variables/parameters is justified by showing that the approach
yields accurate (or similar) results while using fewer computational resources. Rather
than suggesting that this makes the explanations provided by the model better or
better tracks the true ontology of the system, scientific modelers often argue that
certain variables/parameters (or modeling techniques) ought to be employed because
they can provide similar calculations/results in less time or with fewer computational
resources. While certainly pragmatic (given that time is a resource), computational
savings are not tied exclusively to causal modeling contexts as are Woodwardian
casual modeling reasons. Instead, computational savings can motivate variable/
parameter choice regardless of the modeler’s more specific aims.

4.6 Model-Based Criteria for Variable/Parameter Choice
Using these model-based considerations, let me now lay out a (clearly nonexhaustive)
list of some of the criteria for variable/parameter choice that might be motivated/
justified by what I have been calling modeling reasons:

(1) Choose variables/parameters that are necessary to use the available
mathematical models or modeling techniques.

(2) Choose variables/parameters that enable the use of modeling techniques that
have been successfully applied to similar types of problems/phenomena in
other contexts.

(3) Choose variables/parameters that will best allow the model to “communicate”
or “pass information” to different types of models used to represent other
scales (or features) of the system.
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(4) Choose variables/parameters such that at least some of the features of the
model can be constructed from, or compared against, the available measure-
ments or data.

(5) Choose variables/parameters that utilize the least computational resour-
ces/time.

Like Woodward’s criteria, these model-based criteria are intended to be “general
normative guides” or “rules of thumb.” That is, they provide general guidelines for
how scientists ought to make variable/parameter choices rather than being
exceptionless rules that must be adhered to in every case. Indeed, there will be
modeling contexts in which each of these normative criteria ought to be violated—
for example, when the best option is for scientists to construct a new kind of model
for a novel type of phenomenon. However, his does not mean that these modeling
reasons fail to be broadly applicable across scientific modeling contexts. Something
can be a good reason in most or all instances even if other reasons override it in
particular contexts/cases. Relatedly, it is crucial to remember that these model-based
criteria ought to be weighed against each other and applied collectively rather than in
isolation. When considered collectively, these criteria can provide clear guidance for
practicing scientific modelers across a wide range of modeling contexts.

5. The Priority of Modeling Reasons
A primary reason for emphasizing these modeling reasons for variable/parameter
choice is that they are widely applicable because they are built into the very question of
which variables/parameters to include in a model. Indeed, the tyranny of availability gives
rise to constraints on variable/parameter choice whenever a scientist aims to
construct a model of the phenomenon from limited modeling resources. I contend
that this gives modeling reasons a kind of priority as general constraints on scientific
model building. In addition to their widespread applicability, my claim that modeling
reasons have a kind of priority in scientific practice is also motivated by noting that
model-based reasons typically constrain other justifications/motivations for variable/
parameter choice. Rather than a claim about temporal sequence (in practice, these
different types of reasons will often interact and intertwine in complex ways), my
claim is that scientific modelers often must identify a set of variables/parameters that
will enable them to construct a workable model of the phenomenon and will then
choose from among that constrained set the variables/parameters that will best serve
their more specific modeling purposes.

This priority of model-based reasons entails that scientific modelers’ frequent
appeals to model-based justifications for variable/parameter choice have important
epistemological and metaphysical consequences. Specifically, the selection of a set of
variables/parameters to include in a scientific model ought not be interpreted as a
purely metaphysical or epistemological claim about these variables/parameters being
the closest carving of nature at its joints, or the best for explaining or understanding
the phenomenon, full stop. Instead, these claims about the metaphysically or
epistemically (or otherwise) preferred variables/parameters need to be relativized to the
available variables/parameters with which scientists can construct a viable model. This
means we should instead say things like “these are the variables/parameters that
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allow for the best explanation of the phenomenon from among those variables/
parameters with which scientists can construct a workable model.” Similarly, we can
typically only say that “these are the most natural variables/parameters from among
the set of variables/parameters that might be used to construct a viable scientific
model given the existing modeling resources.”

More generally, my model-based approach to variable/parameter choice focused
on the availability of modeling resources shows that, although investigating how
models can be adequate for specific purposes has revealed numerous important
insights, we can also identify more general normative guides for scientists by looking
at features of scientific practice that arise across most (or perhaps all) modeling
contexts. This can help provide more generally applicable philosophical accounts of
scientific modeling that then ought to be combined with more context-specific
considerations. In sum, philosophers of science analyzing scientific modeling
practices need not be completely particularist (or case-specific) in their conclusions;
nor do they need to make pronouncements about exceptionless universal principles/
rules for all of scientific practice. Instead, philosophers of science can, and should,
investigate specific modeling contexts, while also looking for more general lessons
that can be applied across larger swatches of scientific practice. I contend that the
modeling reasons identified above are generally applicable normative guides for
scientific modelers when deciding which variables/parameters to include in a
scientific model. That is, of the kinds of reasons considered here, modeling reasons
best navigate the trade-off of being widely applicable, while being able offer specific
guidelines for variable/parameter choice.

6. Objections and Replies
There are several possible objections to the preceding arguments for a model-based
approach to variable choice. In this final section, I try to address some of them.

First, one might object to my suggestion that these reasons for variable/parameter
choice are really distinct. Indeed, in scientific practice, casual modeling, metaphysical,
epistemic, and modeling reasons often seem intertwined rather than being distinct
options. While I think this in practice claim is certainly right, I offer three brief replies.
One response is to simply acknowledge that while distinguishing these kinds of
reasons is an idealized representation of what happens in actual model construction,
it is nonetheless a useful philosophical exercise to distinguish them so they can be
considered and analyzed independently. In particular, distinguishing these reasons
for variable/parameter choice helps us better analyze the justification/warrant they
provide for certain modeling decisions—even if they are always applied in
combination within scientific practice. Another response is to note that although
more than one type of reason will often be applied across the same model
construction process, those reasons need not be given equal weight. Instead, as I
suggested, I think modeling reasons ought to be given priority because they apply
across all model-building contexts and are typically constraints on other types of
considerations given for variable choice. A final response appeals to the lessons drawn
from the cases discussed in the preceding text. Specifically, I think it is crucial to
differentiate modeling reasons from metaphysical reasons to avoid conflating the
presence of certain variables/parameters in our scientific models with their being
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natural kinds (or being plausible targets for intervention). While I think Batterman
has convincingly shown that we can sometimes have metaphysical reasons that
justify why certain variables/parameters ought to appear in scientific models, we
ought to be careful about overapplying any kind of “reading our metaphysics off our
best scientific models.”

A second objection might suggest that a generalized version of Woodward’s
account that focused on “pragmatic” reasons generally would capture these modeling
reasons. First, my argument is that these modeling reasons are importantly different
from Woodward’s causal modeling reasons; I am not arguing that modeling reasons
are never pragmatically motivated or are completely distinct from more context-
specific reasons. My claim is that modeling reasons for variable choice are not unique
to specific causal modeling contexts or aims and that this makes them importantly
different from the kinds of reasons appealed to by Woodward.

Of course, one might suggest that Woodward’s account is too narrow and that what
we might call “pragmatic reasons” are just anything that pays attention to utility,
context, or resource constraints. If we adopt this extremely generic sense of
pragmatic, then I agree that modeling reasons would (almost always) be pragmatic
reasons. But this vague use of the term pragmatic would include both generally
applicable modeling reasons motivated by limited modeling resources and highly
context-specific reasons tied to specific modeling aims/purposes. While I commend
this focus on the constraints/contexts in which models are built, in addition to
highlighting the various purposes to which models can be put, it is also important to
highlight the kinds of reasons that can be given for variable/parameter choice across
all (or at least most) modeling contexts. A key part of what is interesting and useful about
identifying these modeling reasons is that they focus on the general challenge of
attempting to construct useable/workable scientific models from limited modeling
resources. Although, in practice, these generally applicable modeling reasons will
typically interact with more context-specific pragmatic purposes for models—and
those interactions are interesting to investigate in their own right—it is also
important to highlight the general considerations that limit/constrain scientific
model building across large swatches of scientific practice.

A final objection might suggest that even though modeling reasons can be
sufficient for variable/parameter choices, if we have ontological reasons for choosing
certain variables they should always override the modeling reasons. A somewhat
different way that Batterman (2021) poses this idea is to suggest that the reason why
certain kinds of mathematical modeling techniques are able to be successful/effective
across multiple contexts is because of the way the world is. Indeed, as Batterman
suggests, even without the FDT, the success of mesoscale modeling strategies gives us
reason to think that one ought to include those mesoscale variables and eschew
smaller scale details. I think this generalization of the lessons of Batterman’s FDT
cases is on the right track, but that more specific versions of it involving the reality
and naturalness of particular variables/parameters are less feasible. There certainly
are ways that real systems are—for example, having dependence and independence
relations, various degrees of autonomy, separable scales—that are essential for our
ability to successfully use (mesoscale) mathematical models to explain and
understand their behaviors. This warrants some kind of realist, or naturalist, claims
about how our mathematical models track features of reality. But this rough “tracking
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of reality” claim is much weaker than suggesting that the effectiveness of
mathematical models that include particular variables/parameters enables us to
infer that those variables/parameters reflect, mirror, or accurately represent natural
kinds more generally. Mathematical modeling can be justified by tracking features of
reality without the additional claim that the best variables/parameters to use within
a mathematical model will (always) be ones that accurately describe real or natural
properties.

7. Conclusion
This article has distinguished causal modeling, metaphysical, epistemic, and modeling
reasons for choosing certain variables and parameters with which to model and
characterize a phenomenon. I have argued that scientific modelers typically do, and
should, justify their choice of a particular set of variables and parameters by
appealing to modeling reasons concerning the available measurements/data,
computational resources, modeling techniques, theories, and modeling frameworks.
Adopting this approach has enabled the identification of specific and generally
applicable criteria that ought to guide variable/parameter choice across scientific
modeling contexts. Going forward, philosophers of science should continue to
investigate the ways in which the available modeling resources constrain scientists’
choices about which variables/parameters to include in their models. Doing so will
help illuminate the context(s) in which scientific model construction takes place, help
guide scientists’ selection of variables/parameters, and clarify the inferences that
ought to be drawn concerning the variables/parameters within our best scientific
models.
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