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The Central Limit Theorem for
Subsequences in Probabilistic Number
Theory

Christoph Aistleitner and Christian Elsholtz

Abstract. Let (nk)k≥1 be an increasing sequence of positive integers, and let f (x) be a real function

satisfying

(1) f (x + 1) = f (x),

∫ 1

0

f (x) dx = 0, Var[0,1] f < ∞.

If limk→∞
nk+1
nk

= ∞ the distribution of

(2)

∑N
k=1 f (nkx)√

N

converges to a Gaussian distribution. In the case

1 < lim inf
k→∞

nk+1

nk

, lim sup
k→∞

nk+1

nk

< ∞

there is a complex interplay between the analytic properties of the function f , the number-theoretic

properties of (nk)k≥1, and the limit distribution of (2).

In this paper we prove that any sequence (nk)k≥1 satisfying lim supk→∞ nk+1/nk = 1 contains a

nontrivial subsequence (mk)k≥1 such that for any function satisfying (1) the distribution of∑N
k=1 f (mkx)√

N

converges to a Gaussian distribution. This result is best possible: for any ε > 0 there exists a sequence

(nk)k≥1 satisfying lim supk→∞
nk+1
nk

≤ 1 + ε such that for every nontrivial subsequence (mk)k≥1 of

(nk)k≥1 the distribution of (2) does not converge to a Gaussian distribution for some f .

Our result can be viewed as a Ramsey type result: a sufficiently dense increasing integer sequence

contains a subsequence having a certain requested number-theoretic property.

1 Introduction and Statement of Results

1.1 Revision of Results in Ramsey Theory

Ramsey theory has often been summarized with the words of T. Motzkin: “Complete

disorder is impossible”. The principle underlying Ramsey theory has often been ob-
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served in mathematics, and has for example been discussed by Burkill and Mirsky [9]

and Nešetřil [23].

Let S be a family of objects and let P be a property that an element of S ∈ S may

possess. Which additional property Q, perhaps in some quantitative or qualitative

form, does guarantee that all S ∈ S with property Q do also have property P? Let us

briefly recall two well known examples of this principle:

1. Let S be the family of 2-coloured complete finite graphs. Let Pn be the property

that a graph S ∈ S contains a monochromatic complete subgraph Kn on n ver-

tices. The main problem of Ramsey theory is, which size t on the original complete

graph Kt ∈ S does guarantee that Kt has property Pn? It is known (for example),

that a complete 2-coloured graph on t =
(

2n
n

)
vertices contains a monochromatic

subgraph Kn. A large proportion of P. Erdős’ papers, and those of the Hungarian

combinatorics school, are devoted to this circle of problems of extremal combina-

torics. Methodically, probabilistic methods play an important role in this area.

2. Similarly, let S denote the family of subsets of the positive integers. Let S have

property Pk if S contains k integers in arithmetic progression. Szemerédi’s theorem

states that a set of S ∈ S of positive upper density has property Pk. The main

open problem is to determine the correct density condition which guarantees that

S ∈ S has property Pk. Many eminent mathematicians, such as Roth, Szemerédi,

Fürstenberg, Bourgain, Gowers, Tao, Green, and Sanders, have worked on this

problem; for the most recent work see Sanders [28], with references to the relevant

literature. The methods include combinatorics, harmonic analysis and ergodic

theory. In particular the Szemerédi regularity lemma (a version of which is part of

Szemerédi’s proof of his theorem [31]) has had enormous impact in graph theory

and theoretical computer science.

Informally speaking, one says that by this Ramsey principle, no complete disorder

is possible, as for example for a sufficiently large arbitrarily coloured complete graph

a complete monochromatic induced subgraph (and hence a highly regular substruc-

ture) exists. Similarly, an arbitrary subset S of the positive integers contains a highly

regular substructure, namely an arithmetic progression of length k, if only the set is

dense enough.

Burkill and Mirsky [9] and Nešetřil [23] discussed this principle in a wider con-

text, giving many further examples in different areas, including for example finite

and infinite matrices, functions, etc.

Today’s vast amount of literature on Ramsey type results includes quantitative and

qualitative aspects. The former perhaps mainly coming from the harmonic analysis

approach, due to Roth and Gowers, the latter perhaps primarily coming from the

ergodic approach (Fürstenberg).

In spite of many works in the literature, we are not aware that this principle has

been studied in the context of limit distributions, which itself has an enormous body

of literature in classical probabilistic number theory. Informally speaking, in this pa-

per we show that for an arbitrary sequence, that only satisfies some “subexponential”

gap condition, namely lim supk
nk+1

nk
≤ 1, there exists some at most exponentially

growing subsequence (mk) such that simultaneously for a large class of real periodic
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functions f the distribution of

∑N
k=1 f (mkx)√

N

converges to a Gaussian distribution. Moreover we show that our result is best possi-

ble (a precise statement follows below). Our proof is based on the observation that a

sufficiently dense integer sequence offers enough choice to find a subsequence having

a certain requested number-theoretic property. On the other hand, if the original se-

quence is too thin, it is not possible to find an appropriate subsequence. Our theorem

can be seen as a counterpart of the so-called subsequence principle, a general infor-

mal principle in probability theory which asserts that a sequence of random vari-

ables always contains a (possibly extremely thin) subsequence which behaves like a

sequence of independent random variables (cf. Chatterji [10]). Utilizing the Ramsey

principle we show that if the original sequence contains sufficiently many elements,

then it is possible to restrict the growth of the subsequence to at most exponential

growth.

It can be hoped that this investigation encourages other researchers to find more

examples of the Ramsey principle in areas that have not traditionally been studied

from the view point of Ramsey theory.

1.2 Revision of Relevant Results on Limit Distributions in Probabilistic Number
Theory

A sequence (xk)k≥1 of real numbers from the unit interval is called uniformly dis-

tributed modulo one (u.d. mod 1) if for all subintervals [a, b) of the unit interval

1

N

N∑

k=1

1[a,b)(xk) → (b − a) as N → ∞.

The “quality” of the distribution of a sequence can be measured by the so-called

discrepancy function DN . The discrepancy DN (x1, . . . , xN ) of the first N elements of

(xk)k≥1 is defined as

DN (x1, . . . , xN ) = sup
0≤a<b≤1

∣
∣
∣

1

N

N∑

k=1

1[a,b)(xk) − (b − a)
∣
∣
∣ .

It is easy to see that a sequence is u.d. mod 1 if and only if its discrepancy tends to

zero as N → ∞ (we refer to [11] and [22] for an introduction to uniform distribution

theory and discrepancy theory).

In his seminal paper of 1916, Hermann Weyl showed that a sequence (xk)k≥1 is

u.d. mod 1 if and only if

1

N

N∑

k=1

cos 2πhxk → 0,
1

N

N∑

k=1

sin 2πhxk → 0, for all h ∈ Z, h 6= 0.
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This criterion can be used for an easy proof of the fact that the sequence (〈kx〉)k≥1,

where 〈·〉 denotes the fractional part, is u.d. mod 1 for irrational x. In many cases it

is very difficult to decide whether a certain sequence is u.d. or not; famous examples

are the sequence
(
〈(3/2)k〉

)

k≥1
and (〈2k

√
2〉)k≥1. By a general principle of Weyl, se-

quences of the form (〈nkx〉)k≥1, where (nk)k≥1 is a fixed sequence of distinct integers,

are u.d. mod 1 for almost all values of x (in the sense of Lebesgue measure). For fast

growing (nk)k≥1 much more is true: in this case the sequence of functions (〈nkx〉)k≥1,

where x ∈ [0, 1] (these functions may be seen as random variables over the probabil-

ity space
(

[0, 1],B([0, 1]), λ[0,1]

)
), exhibits many asymptotic properties which are

typical for sequences of independent and identically distributed (i.i.d.) random vari-

ables.

In this context, Weyl’s theorem that (〈nkx〉)k≥1 is u.d. mod 1 for almost all x

(which implies that the discrepancy of (〈nkx〉)k≥1 tends to zero for almost all x) can

be either seen as a variant of the Glivenko–Cantelli theorem for the random variables

(〈nkx〉)k≥1 or as a strong law of large numbers for (cos 2πnkx)k≥1 and (sin 2πnkx)k≥1.

As we mentioned before, for fast growing (nk)k≥1 much more is true. For example,

classical results of Salem and Zygmund [26], [27] and Erdős and Gál [13] show that

for any increasing sequence of positive integers (nk)k≥1 satisfying the growth condi-

tion

(3)
nk+1

nk

> q > 1, k ≥ 1,

the system (cos 2πnkx)k≥1 satisfies the central limit theorem (CLT)

λ
{

x ∈ (0, 1) :

∑N
k=1 cos 2πnkx
√

N/2
≤ t
}

→ Φ(t), t ∈ R,

where λ denotes the Lebesgue measure and Φ the standard normal distribution func-

tion. A sequence satisfying (3) is called a “lacunary” sequence.

If the function cos 2π· is replaced by a more general 1-periodic function f , the

situation becomes much more complicated, and the asymptotic behaviour of the dis-

tribution of

(4)

∑N
k=1 f (nkx)√

N

is controlled by a complex interplay between analytic properties of f and number-

theoretic properties of (nk)k≥1. The sequence (4) does not necessarily possess a limit

distribution, and if such a limit distribution exists it may be non-Gaussian. For ex-

ample, Erdős and Fortet (see [20, p. 646]) showed that in the case

f (x) = cos 2πx + cos 4πx, nk = 2k + 1,

the distribution of (4) converges to a non-Gaussian limit distribution. Typically it is

assumed that f satisfies

(5) f (x + 1) = f (x),

∫ 1

0

f (x) dx = 0, Var[0,1] f (x) <∞.
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For functions satisfying these conditions, the asymptotic distribution of (4) is a Gaus-

sian distribution if, for example (cf. [18], [32]),

nk+1

nk

→ ∞ as k → ∞,

nk+1

nk

is an integer for k ≥ 1,

nk+1

nk

→ θ for some θ satisfying θr /∈ Q , r = 1, 2, . . . .

(6)

Gaposhkin [19] observed that the asymptotic behaviour of (4) has an intimate con-

nection with the number of solutions (k, l) of Diophantine equations of the form

(7) ank ± bnl = c, a, b, c ∈ Z,

and Aistleitner and Berkes [3] found a necessary and sufficient condition, formulated

in terms of the number of solutions of Diophantine equations of the type (7), which

guarantees that the distribution of (4) converges to a Gaussian distribution.

There are only few precise results in the case of sub-lacunary growing sequences

(nk)k≥1. Generally speaking, in the lacunary case the behaviour of
(

f (nkx)
)

k≥1
is

somewhat similar to the behaviour of sequences of i.i.d. random variables, whereas

this is not necessarily true for sub-lacunary (nk)k≥1. In the sub-lacunary case one

needs either very strong number-theoretic conditions (cf. [1], [5], [6], [16], [17],

[25]), or obtains only results for “almost all” sequences (nk)k≥1 in an appropriate

statistical sense (cf. [4], [8], [14], [15]). An exception is the sequence nk = k, k ≥ 1,

where very precise results are known due to the fact that the behaviour of (〈kx〉)k≥1

is intimately connected with the properties of the continued fraction expansion of x

(cf. [12], [21], [29], [30]).

In this paper we will show, roughly speaking, the following principle: if (nk)k≥1 is

a sub-lacunary sequence, then it always contains a subsequence (mk)k≥1 such that for

any f satisfying (5) the distribution of

(8)

∑N
k=1 f (mkx)√

N

converges to a Gaussian distribution. On the other hand, if (nk)k≥1 is already la-

cunary, then it may happen that (8) does not converge to a Gaussian distribu-

tion for every possible nontrivial subsequence (mk)k≥1 of (nk)k≥1. In this informal

statement we call a subsequence “nontrivial” if it is not superlacunary (that means

lim supk→∞ nk+1/nk = ∞ is not allowed). This restriction is necessary, since triv-

ially an arbitrary sequence (nk)k≥1 contains a superlacunary growing subsequence,

for which by (6) the CLT is always true.

We mention that a similar problem has been considered in a more general context

by Bobkov and Götze [7]. Let X1,X2, . . . be a sequence of uncorrelated random

variables. Then under certain weak assumptions, such as e.g.,

max
1≤k≤N

|Xk| = o(
√

N), and
X2

1 + · · · + X2
N

N
→ 1 in probability,
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the sequence X1,X2, . . . contains a subsequence Xi1
,Xi2

, . . . for which the distribu-

tion of
Xi1

+ · · · + XiN√
N

converges to the standard normal distribution. In this result the sequence (ik)k≥1

can be chosen to grow slowly, in the sense that for any prescribed ( jk)k≥1 satisfying

jk/k → ∞ it is possible to have ik ≤ jk for sufficiently large k. We note that this result

of Bobkov and Götze does not apply in our situation, since our random variables
(

f (nkx)
)

k≥1
are (generally) not uncorrelated.

1.3 Statement of Results

We will prove the following two theorems.

Theorem 1 Let (nk)k≥1 be a strictly increasing sequence of positive integers. If

(9) lim sup
k→∞

nk+1

nk

= 1,

then there exists a subsequence (mk)k≥1 of (nk)k≥1, satisfying

q1 ≤
mk+1

mk

≤ q2, k ≥ 1, for some 1 < q1 < q2 <∞,

such that for all functions f satisfying (5) and for all t ∈ R,

λ
{

x ∈ (0, 1) :

∑N
k=1 f (mkx)
√

‖ f ‖2
2N

≤ t
}

→ Φ(t)

holds.

In the formulation of this theorem,

‖ f ‖2 =

(∫ 1

0

f (x)2 dx

) 1/2

.

Theorem 2 shows that condition (9) is optimal in Theorem 1.

Theorem 2 Let ε > 0. Then there exists a strictly increasing sequence (nk)k≥1 of

positive integers, satisfying

nk+1

nk

≤ 1 + ε, k ≥ 1,

such that for every subsequence (mk)k≥1 of (nk)k≥1, which satisfies

lim sup
k→∞

mk+1

mk

<∞,

there exists a trigonometric polynomial f such that the distribution of
∑N

k=1 f (mkx)√
N

does not converge to a Gaussian distribution.
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The similar problem concerning the law of the iterated logarithm (LIL) seems to

be much more complicated. In this context we formulate the following.

Open Problem

Under which assumptions does the sequence (nk)k≥1 contain a nontrivial subse-

quence (mk)k≥1 for which
(

f (mkx)
)

k≥1
satisfies the (exact) law of the iterated loga-

rithm for all functions f satisfying (5)?

This problem is related to the problem of finding the best possible condition, for-

mulated in terms of Diophantine equations of the form (7), that guarantees the (ex-

act) law of the iterated logarithm for f (nkx) for lacunary (nk)k≥1 (cf. [2]). As in the

case of the CLT, if (nk)k≥1 is already lacunary, there does in general not necessarily

exist a subsequence having the required properties concerning the LIL. On the other

hand, it is unclear if lim sup nk+1/nk = 1 is sufficient for the existence of a nontrivial

subsequence (mk)k≥1 for which the exact LIL is satisfied (a “not exact” version of the

LIL is true for an arbitrary lacunary sequence, see [24]).

2 Proof of Theorem 1

Let (nk)k≥1 be given, and assume that

(10) lim sup
k→∞

nk+1

nk

= 1.

For r ≥ 1 we set

(11) Ir = [2r0+4r, 2r0+4r+1),

where r0 is fixed and sufficiently large, such that we can find a positive nondecreasing

integer-valued function g(r) such that

g(r) ≥ 3, g(r) → ∞ as r → ∞

and

#{k ∈ N : nk ∈ Ir} ≥ g(r), r ≥ 1,

and a positive nondecreasing function h(r) such that h(r) → ∞ as r → ∞ and

(12) h(r) ≥ 1,
r

h(r)
≥ r − 1

h(r − 1)
, ⌈h(r)⌉4 < g(r), r ≥ 1.

By (10) it is possible to find such r0, g, h. In particular (12) holds if h is growing

very slowly.

Now we construct the sequence (mk)k≥1 inductively. For m1 we choose one of the

values of (nk)k≥1 in the interval I1, for m2 we choose one of the values of (nk)k≥1 in

I2, and generally, in the r-th step, we choose for mr one of the values of (nk)k≥1 in Ir.

Additionally, (mk)k≥1 shall have the following property:
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• for every N ≥ 1 and all integers a, b satisfying 1 ≤ a < b ≤ h(N), a 6= b,

log2(b/a) ≥ 2, and all integers c the number of solutions (k, l), k, l ≤ N, k 6= l, of

the Diophantine equation

amk − bml = c

where

a ≤ h(k), b ≤ h(l), and(13)

k − l =
∥
∥
∥

log2(b/a)

4

∥
∥
∥ ,(14)

is at most N/h(N) (in this statement, ‖ · ‖ denotes the nearest integer, i.e., for

y = ⌊y⌋ + 〈y〉 we set ‖y‖ = ⌊y⌋ or ‖y‖ = ⌈y⌉, depending on whether 〈y〉 < 1/2

or 〈y〉 ≥ 1/2).

To show that it is always possible to find inductively an appropriate mr, we assume

that m1, . . . ,mr−1 are already constructed and (mk)1≤k≤r−1 satisfies the above con-

ditions. For fixed a < b, there are at most ⌈h(r)⌉2 values of c for which the number

of solutions (k, l), k, l ≤ r − 1, k 6= l, of

amk − bml = c, subject to conditions (13), (14),

is greater than or equal to (r − 1)/⌈h(r)⌉2. Since there are at least g(r) > ⌈h(r)⌉4

elements of (nk)k≥1 in Ir, and since there are at most h(r)2 possible choices for a, b
such that 1 ≤ a < b ≤ h(r), log2(b/a) ≥ 2, there exists at least one number mr equal

to one of the elements of (nk)k≥1 in the interval Ir, for which for all 1 ≤ a < b ≤ h(r),

log2(b/a) ≥ 2, and all c ∈ Z,

#{(k, l), k, l ≤ r − 1, k 6= l, satisfying (13), (14) and amk − bnl = c}
+ 1(amr − bmr−‖ log2(b/a)/4‖ = c)

≤ (r − 1)/⌈h(r)⌉2 + 1

≤ (r − 1)/h(r)2 + 1

≤ r/h(r)

(where the last inequality follows from h(r) ≥ 1).

Lemma 1 The sequence (mk)k≥1 constructed as above satisfies

(15) 8 ≤ mk+1

mk

≤ 32, k ≥ 1,

and for all fixed positive integers a, b and all integers c

(16) #{(k, l) : 1 ≤ k, l ≤ N, amk − bml = c} = o(N) as N → ∞,

uniformly in c (with the exception of the trivial solutions k = l in the case a = b, c = 0).
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Theorem 1 follows from Lemma 1 and the following theorem, which can be found

in [3].

Theorem 3 Let (mk)k≥1 be a lacunary sequence of positive integers, and let f be a

function satisfying (5). Assume that for all fixed positive integers a, b and for all integers c

#{1 ≤ k, l ≤ N : ank − bnl = c} = o(N) as N → ∞,

uniformly in c (with the exception of the trivial solutions k = l in the case a = b, c = 0).

Then

λ
{

x ∈ (0, 1) :

∑N
k=1 f (mkx)
√

‖ f ‖2
2N

≤ t
}

→ Φ(t)

for all t ∈ R.

It remains to prove Lemma 1. Equation (15) is true by construction. In fact, since

mk ∈ Ik, and mk+1 ∈ Ik+1, clearly

mk+1

mk

∈ [23, 25], k ≥ 1

(the intervals Ik were defined in (11)).

Thus (mk)k≥1 is a lacunary sequence (and (amk)k≥1 for a ≥ 1 is also a lacunary

sequence), which implies that (16) is true in the case a = b, since for every lacunary

sequence (µk)k≥1 the number of solutions (k, l), k 6= l of

µk − µl = c

is bounded by a constant, uniformly in c ∈ Z (cf. [33, p. 203]).

Now assume a < b (which is also sufficient for the case a > b, since amk−bml = c

is equivalent to bml − amk = −c). If log2(b/a) < 2, then by (15) the sequences

(amk)k≥1 and (bmk)k≥1 have no elements in common, and the sequence containing

all numbers amk, k ≥ 1 and bmk, k ≥ 1 is a lacunary sequence. Therefore (16) holds

in this case.

If log2(b/a) ≥ 2 and k − l < ‖ log2(b/a)/4‖, then 4(k − l) + 2 ≤ log2(b/a) and

amk

bml

≤ 24(k−l)+1−log2(b/a) ≤ 1

2
.

On the other hand, if log2(b/a) ≥ 2 and k − l > ‖ log2(b/a)/4‖, then 4(k − l) − 2 >
log2(b/a) and

amk

bml

≥ 24(k−l)−1−log2(b/a) > 2.

This implies that in the case log2(b/a) ≥ 2 the existence of (k1, l1) and (k2, l2), satis-

fying ki − li 6= ‖ log2(b/a)/4‖, i = 1, 2, and

amk1
− bml1 = amk2

− bml2
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implies k1 = k2, l1 = l2. Therefore for given positive integers a < b, log2(b/a) ≥ 2,

and any c ∈ Z there is at most one solution (k, l) of the Diophantine equation

(17) amk − bml = c

for which k − l 6= ‖ log2(b/a)/4‖.

The number of solutions (k, l), k, l ≤ N, of (17), for which k− l = ‖ log2(b/a)/4‖
is o(N), uniformly in c (for any fixed a < b), by the construction of (mk)k≥1 (more

precisely, it is bounded by N/h(N), where h is the function in (12)). This proves

Lemma 1.

3 Proof of Theorem 2

Let ε > 0. We construct a sequence (nk)k≥1 satisfying

1 +
ε

2
≤ nk+1

nk

≤ 1 + ε, k ≥ 1,

such that for every subsequence (mk)k≥1 of (nk)k≥1 with

lim sup
k→∞

mk+1

mk

<∞

there exists a trigonometric polynomial f for which the distribution of

(18)

∑N
k=1 f (mkx)√

N

does not converge to a Gaussian distribution.

First we choose coprime integers p, q such that

(19) 1 +
5ε

8
≤ p

q
≤ 1 +

7ε

8

and define a sequence (νk)k≥1 by

νk =

⌈ pk

qk

⌉

−
⌈ 2p

p − q

⌉

, k ≥ 1.

Write k0 for the smallest index for which

νk ≥ 1, and 1 +
ε

2
≤ νk+1

νk

≤ 1 + ε for all k ≥ k0,

(it is possible to find such a k0 because of (19)).

Define

nk = νk+k0
, k ≥ 1.
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Then (nk)k≥1 satisfies

(20) 1 +
ε

2
≤ nk+1

nk

≤ 1 + ε for all k ≥ 1.

Let (mk)k≥1 be an arbitrary subsequence of (nk)k≥1 satisfying

(21) lim sup
k→∞

mk+1

mk

<∞.

We want to show that there exists a trigonometric polynomial f such that the distri-

bution of (18) does not converge to a Gaussian distribution.

As a consequence of (21) there exists a number q2 > 1 such that

mk+1

mk

≤ q2, k ≥ 1.

For consecutive elements of (mk)k≥1 we define a function

d(mk,mk+1) = w − v,

where v and w are the (uniquely defined) indices for which mk = nv, mk+1 = nw

(i.e., d measures the difference of the indices of the numbers mk and mk+1 within the

original sequence (nk)k≥1). Let

s = min
{

h ≥ 1 : lim sup
N→∞

( 1

N

N∑

k=1

1
(

d(mk,mk+1) = h
))

> 0
}

and define

f (x) = cos 2πpsx + cos 2πqsx.

Since by the definition of s and the orthogonality of the trigonometric system

∫ 1

0

( 1√
N

∑

1≤k≤N,
d(mk,mk+1)<s

f (mkx)
) 2

dx ≤ 4

N

∑

1≤k≤N,
d(mk,mk+1)<s

1 → 0 as N → ∞,

we have
1√
N

∑

1≤k≤N,
d(mk,mk+1)<s

f (mkx) → 0 in distribution,

and therefore we can assume without loss of generality that d(mk,mk+1) ≥ s for all

elements of (mk)k≥1.

If d(mk,mk+1) = s, then by the definition of (νk)k≥1 the numbers mk and mk+1 are

of the form
⌈ pr

qr

⌉

−
⌈ 2p

p − q

⌉

,
⌈ pr+s

qr+s

⌉

+
⌈ 2p

p − q

⌉
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1212 C. Aistleitner and C. Elsholtz

for some r ≥ 1, and therefore

qsmk+1 − psmk = qs
(⌈ pr+s

qr+s

⌉

−
⌈ 2p

p − q

⌉)

− ps
(⌈ pr

qr

⌉

−
⌈ 2p

p − q

⌉)

.

Thus, if d(mk,mk+1) = s,

qsmk+1 − psmk ≥ qs pr+s

qr+s
− qs 2p

p − q
− qs − ps pr

qr
− ps + ps 2p

p − q

≥ (ps − qs)
2p

p − q
− 2ps > 0,

and

qsmk+1 − psmk ≤ qs pr+s

qr+s
+ qs − qs 2p

p − q
− ps pr

qr
+ ps 2p

p − q
+ ps

≤ 2ps +
2ps+1

p − q
.

In other words, if d(mk,mk+1) = s, then

(22) qsmk+1 − psmk ∈
[

1, 2ps +
2ps+1

p − q

]

.

It is easy to see that the sequence consisting of all elements of the form psmk, k ≥ 1,

and all elements of the form

qsmk k ≥ 1, except those k for which d(mk,mk+1) = s,

sorted in increasing order, is a lacunary sequence. Since for every lacunary sequence

(µk)k≥1 the number of solutions (k, l) of

µk − µl = c

is bounded by a constant, uniformly in c ∈ Z (cf. [33, p. 203]), this proves that the

number of solutions (k, l), k 6= l, of

psmk − qsml = c,

subject to d(ml,ml+1) 6= s, is bounded by a constant, uniformly in c. If d(ml,ml+1) =

s, then by (22)

psmk − qsml = c

implies that

psmk − psml+1 ∈
[

c − 2ps +
2ps+1

p − q
, c + 2ps +

2ps+1

p − q

]

.
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This equation has only finitely many solutions (k, l) for which k 6= l+1 (since (mk)k≥1

is lacunary). Therefore the number of solutions (k, l) of

(23) psmk − qsml = c, where either d(ml,ml+1) 6= s or k 6= l + 1,

is bounded by a constant, uniformly in c, and in the case d(ml,ml+1) = s and k = l+1

we always have

psmk − qsml ∈
[

1, 2ps +
2ps+1

p − q

]

.

Divide N into consecutive blocks ∆1,∆
′
1,∆2,∆

′
2, . . . , where

|∆i | = ⌈log log i⌉, |∆ ′
i | = ⌈log(1+ε/2) 4ps⌉

(| · | denotes the number of elements of a set and log x should be understood as

max(1, log x)). Then by (20) for arbitrary i1 > i2 ≥ 1 and k1 ∈ ∆i1
, k2 ∈ ∆i2

we have

(24)
mk1

mk2

≥
(

1 +
ε

2

) k1−k2

≥
(

1 +
ε

2

) ⌈log(1+ε/2) 4ps⌉

≥ 4ps.

Since for every r ∈ Z

1
∑N

h=1 |∆h|
#
{

(k, l), k, l ∈
N⋃

h=1

∆h : psmk − qsml = r
}
∈ [0, 1], N ≥ 1,

by the Bolzano–Weierstrass theorem it is possible to choose a subsequence (h j) j≥1

of N such that for all r, 1 ≤ r ≤ 2ps + 2ps+1

p−q
,

(25)
1

∑N j

h=1 |∆h|
#
{

(k, l), k, l ∈
N j⋃

h=1

∆h : psmk − qsml = r
}
→ γr as j → ∞

for some appropriate constants γr, 1 ≤ r ≤ 2ps + 2ps+1

p−q
. For these constants γr,

necessarily

2ps+
2ps+1

p−q∑

r=1

γr = 1,

since by (22) and (23)

2ps+
2ps+1

p−q∑

r=1

1
∑N

h=1 |∆h|
#
{

(k, l), k, l ∈
N⋃

h=1

∆h : psmk − qsml = r
}
→ 1 as N → ∞.

Let t ∈ R, and define

ψ(x) =
1 + 2

∑2ps+
2ps+1

p−q

r=1 γr cos 2πrx

2
.
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The functions ψ(x) and e−t2ψ(x)/2 are Lipschitz-continuous, and therefore, as some

simple calculations show, for every positive integer w

∫ 1

0

e−t2ψ(x)/2 cos 2πwx dx ≪ w−1

(here and in the sequel “≪” is the Vinogradov symbol). Using standard trigonomet-

ric identities we can write the function

(26)

N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

in the form

∑∗( it

2

√
∑N j

h=1 |∆h|

)χ1+···+χN j

×
( N j∏

h=1

(4|∆h|)χh−1
)

cos 2π(±χ1µ1mk1
± · · · ± χN j

µN j
mN j

)x,

(27)

where
∑∗

contains all the sums

∑

k1∈∆1

· · ·
∑

kN j
∈∆N j

∑

(χ1,...,χ j )∈{0,1}
N j

∑

(µ1,...,µN j
)∈{ps,qs}

N j

∑

±

,

where ∑

±

is meant as a sum over all the 2N j many possible choices of signs “+” and “−” inside

the cos-function.

The factor 2
−(χ1+···+χN j

)
in (27) comes from cos x =

(
cos x + cos(−x)

)
/2 and

the iterative use of the formula cos x cos y = 2−1
(

cos(x + y) + cos(x − y)
)

, while

the norming factors in the product come from the surplus contribution of the sums
∑

ki

∑

µi

∑

± in the case χi = 0. For the vector (χ1, . . . , χN j
) 6= (0, . . . , 0), write

ĥ for the largest index of a nonzero element of this vector (i.e., ĥ(χ1, . . . , χN j
) =

max{h : 1 ≤ h ≤ N j , χh = 1}). By (24) the order of magnitude of the sum

±χ1µ1mk1
± · · · ± χN j

µN j
mN j

is determined by

µkĥ
mkĥ

.

More precisely, it follows from (24) that, independent of the choice of signs + and −,

the frequency of

cos 2π(±χ1µ1mk1
± · · · ± χN j

µN j
mN j

)x
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lies in the interval

[µkĥ
mkĥ

/2, 2µkĥ
mkĥ

],

which means that in this case
∫ 1

0

e−t2ψ(x)/2 cos 2π(±χ1mk1
± · · · ± χN j

mN j
)x dx ≪ m−1

kĥ
.

We assume w.l.o.g. |t| ≤ |∆N j
|, which is true for sufficiently large j, and which im-

plies

(28)

∣
∣
∣
∣

t
√
∑N j

h=1 |∆h|

∣
∣
∣
∣
≪ N

−1/2
j .

For a fixed vector (χ1, . . . , χN j
) 6= (0, . . . , 0), the sum (27) is a sum of

( N j∏

h=1

|∆h|
)

22N j

cos-functions, all of which have coefficient

( it

2

√
∑N j

h=1 |∆h|

)χ1+···+χN j
( N j∏

h=1

(4|∆h|)χh−1
)

and a frequency in

[qs(min
k∈∆ĥ

mk)/2, 2ps(max
k∈∆ĥ

mk)]

(where ĥ(χ1, . . . , χN j
) is defined as above). Thus by (28)

∣
∣
∣
∣

∫ 1

0

e−t2ψ(x)/2
∑

k1∈∆1

· · ·
∑

kN j
∈∆N j

∑

(µ1,...,µN j
)∈{ps,qs}

N j

∑

±

×
( it

2

√
∑N j

h=1 |∆h|

)χ1+···+χN j
( N j∏

h=1

(4|∆h|)χh−1
)

× cos
(

2π(±χ1µ1mk1
± · · · ± χN j

µN j
mN j

)x
)

dx

∣
∣
∣
∣

≪
( N j∏

h=1

|∆h|
)

22N j

( N j∏

h=1

(4|∆h|)χh−1
)

(min
k∈∆ĥ

mk)−1(2−1N
−1/2
j )

χ1+···+χN j

≪
( N j∏

h=1

(4|∆h|)χh

)

(min
k∈∆ĥ

mk)−1(2−1N
−1/2
j )

χ1+···+χN j

≪ (2|∆ĥ|)ĥN
−1/2
j (min

k∈∆ĥ

mk)−1.

(29)
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For the vector (χ1, . . . , χN j
) = (0, . . . , 0), which corresponds to multiplying N j

times the factor 1 in the product (26), the integral (29) gives

∫ 1

0

e−t2ψ(x)/2 dx.

Since there are at most 2v vectors (χ1, . . . , χN j
) for which the index ĥ of the largest

nonzero element is v, this implies

∣
∣
∣
∣

∫ 1

0

e−t2ψ(x)/2

N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

dx −
∫ 1

0

e−t2ψ(x)/2 dx

∣
∣
∣
∣

≪ N
−1/2
j

N j∑

v=1

2v(2|∆v|)v(min
k∈∆v

mk)−1

≪ N
−1/2
j .

In the sequel, the symbol E denotes the expected value with respect to x and λ[0,1].

Writing e(x) = ex and using the well-known estimate

e(ix) = (1 + ix)e−x2/2+w(x), where |w(x)| ≤ |x3|,

we have

E

(

e
( it

∑N j

h=1

∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

))

= E

( N j∏

h=1

e
( it

∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

))

= E

( N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

e
(

−
t2
∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|

)

eW j

)

,

where, using | f (x)| ≤ 2 and |t| ≤ |∆N j
|, we have

|W j | :=

N j∑

h=1

w
( t
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

≤
N j∑

h=1

|t|3 8|∆h|3

(
∑N j

h=1 |∆h|)3/2

≪ N j(log log N j)
6N

−3/2
j ≪ N

−1/4
j .

(30)
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Using 1 + x ≤ ex, we have

∣
∣
∣

N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)∣
∣
∣ ≤

N j∏

h=1

∣
∣
∣

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)∣
∣
∣

≤ e
( t2

∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|

)

.

Therefore,

∣
∣
∣
∣

E

(

e
( it

∑N j

h=1

∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

))

− Ee−t2ψ(x)/2

∣
∣
∣
∣

≪
∣
∣
∣
∣

E

( N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

× e
(

−
t2
∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|

)

(eW j − 1)

)∣
∣
∣
∣

+

∣
∣
∣
∣

E

( N j∏

h=1

(

1 +
it
∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

)

×
(

e
(

−
t2
∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|

)

− e−t2ψ(x)/2

))∣
∣
∣
∣

+ N
−1/2
j

≪ E|eW j − 1| + N
−1/2
j

+ E

∣
∣
∣1 − e

( t2
∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|
− t2ψ(x)/2

)∣
∣
∣ .

(31)

Using (30) we obtain

E|eW j − 1| ≪ N
−1/4
j .

The function

ψ j(x) :=

N j∑

h=1

(∑

k∈∆h

f (mkx)
) 2

is a sum of
N j∑

h=1

(2|∆h|)2
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cos-functions. Since

N j∑

h=1

(∑

k∈∆h

f (mkx)
) 2

=

N j∑

h=1

∑

k1,k2∈∆h

(cos 2πpsmk1
x + cos 2πqsmk1

x)(cos 2πpsmk2
x + cos 2πqsmk2

x)

=

N j∑

h=1

∑

k1,k2∈∆h

(
cos 2π(psmk1

+ psmk2
)x + cos 2π(psmk1

− psmk2
)x

+ 2 cos 2π(psmk1
+ qsmk2

)x + 2 cos 2π(psmk1
− qsmk2

)x

+ cos 2π(qsmk1
+ qsmk2

)x + cos 2π(qsmk1
− qsmk2

)x
)
,

and since the equations

psmk1
+ psmk2

= c

psmk1
+ qsmk2

= c

qsmk1
+ qsmk2

= c

trivially have only finitely many solutions (k1, k2), uniformly in c ∈ Z, since the

equations

psmk1
− psmk2

= c

qsmk1
− qsmk2

= c

only have finitely many solutions (k1, k2), uniformly in c ∈ Z (except the trivial solu-

tions k1 = k2 in case c = 0), and since

psmk1
− qsmk2

= c

has only finitely many solutions, uniformly in c ∈ Z\{1, . . . , 2ps + 2ps+1

p−q
}, this implies

that for

ψ j(x) =

∞∑

r=0

ar cos 2πrx =

2ps+
2ps+1

p−q∑

r=0

ar cos 2πrx

︸ ︷︷ ︸

=:ψ(1)
j (x)

+

∞∑

r=2ps+
2ps+1

p−q
+1

ar cos 2πrx

︸ ︷︷ ︸

=:ψ(2)
j (x)

we have for r > 2ps + 2ps+1

p−q

(32) |ar| ≪ 1, uniformly in r and therefore ‖ψ(2)
j ‖ ≪

( N j∑

h=1

|∆h|2
) 1/2

.
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By (25),

ψ(1)
j (x)

∑N j

h=1 |∆h|
→ ψ(x), as j → ∞, uniformly in x ∈ [0, 1].

Now for the last term in (31) we have

E

∣
∣
∣1 − e

( t2
∑N j

h=1

(∑

k∈∆h
f (mkx)

) 2

2
∑N j

h=1 |∆h|
− t2ψ(x)

2

)∣
∣
∣

= E

∣
∣
∣1 − e

( t2
(
ψ(1)

j (x) + ψ(2)
j (x)

)

2
∑N j

h=1 |∆h|
− t2ψ(x)

2

)∣
∣
∣

= E

∣
∣
∣
∣
∣
1 − e

(

t2

2

(( ψ(1)
j (x)

∑N j

h=1 |∆h|
− ψ(x)

)

+
ψ(2)

j (x)

2
∑N j

h=1 |∆h|

))
∣
∣
∣
∣
∣
.

(33)

Since
ψ(2)

j (x)
∑N j

h=1 |∆h|
≤ 4|∆N j

|, uniformly in x,

and since by (32)

P

{

x ∈ (0, 1) : ψ(2)
j (x) >

( N j∑

h=1

|∆h|
) 3/4}

≪ N
−1/2
j ,

we obtain that (33) is

≪ E

∣
∣
∣
∣
1 − e

(
t2

2

(∣
∣
∣

ψ(1)
j (x)

∑N j

h=1 |∆h|
− ψ(x)

∣
∣
∣ +

(
∑N j

h=1 |∆h|)3/4

∑N j

h=1 |∆h|
︸ ︷︷ ︸

→0 uniformly in x

))
∣
∣
∣
∣

+ e
t2|∆N j

|
N

−1/2
j

︸ ︷︷ ︸
→0

.

Combining all our estimates, we have shown that for every fixed t

E

(

e
( it

∑N j

h=1

∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

))

→ e−t2ψ(x)/2

as j → ∞.

It is easy to see that

∑N j

h=1

∑

k∈∆ ′

h
f (mkx)

√
∑N j

h=1(|∆h| + |∆ ′
h|)

→ 0 in distribution.
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Thus
∑N j

h=1

∑

k∈∆h
f (mkx)

√
∑N j

h=1 |∆h|

and consequently also
∑N j

h=1

∑

k∈∆h∪∆ ′

h
f (mkx)

√
∑N j

h=1(|∆h| + |∆ ′
h|)

converge in distribution to a non-Gaussian distribution (as j → ∞). Therefore it is

not possible that the distribution of

∑N
k=1 f (mkx)√

N

converges to a Gaussian distribution, which proves Theorem 2.
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