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Uncertainty Principles on Weighted
Spheres, Balls, and Simplexes

Han Feng

Abstract. This paper studies the uncertainty principle for spherical h-harmonic expansions on the
unit sphere of R? associated with a weight function invariant under a general finite reflection group,
which is in full analogy with the classical Heisenberg inequality. Our proof is motivated by a new
decomposition of the Dunkl-Laplace-Beltrami operator on the weighted sphere.

1 Introduction

The uncertainty principle is a fundamental result in quantum mechanics, and it can
be formulated in the Euclidean space R, in the form of the classical Heisenberg in-
equality, as

v [ fe-alPlropa [ vseopass S [ )’

where V is the gradient operator. There are many papers devoted to the study of this
inequality and its various generalizations; see, for instance, [3,9,10].

In particular, on the unit sphere, F. Dai and Y. Xu [3] established the analogue
result, which states that if f: S9! — R satisfies

[ f(x)do(x)=0 and fS f(x)Pda(x) =1,
then

(12) ( min fsd_l(l— (x, 7)) \f(x)|2do(x)) ( fsd_l |v0f|2d0(x)) >Cy>0.

yESd71

In a recent paper [11], with a weight function h2(x) invariant under a group G, Xu
studied the uncertainty principle on the unit sphere S¢~!. By introducing a weighted
analogue Vo of the tangential gradient Vg, he proved in [11, Theorem 4.1] that if
f:S7! - Ris invariant under the group G and satisfies

[, F@RE e =0 and [ (xR do(x) =1,
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then
: 272 272
3 (min [ (1 (e)) fPR) do() ([, [9x0f P (x)do(x)
> Cy,q >0,
where e;, i = 1,...,d, is the standard vector; namely, only the i-th coordinate is non-

zero 1, and C, 4 is a constant that depends only on parameters x and d, and (-, - ) is
the inner product in R9.

The purpose of this paper is to show that inequality (1.3), with minimum being
taken over all y € S?~! rather than the finite subset {ej, ..., e; }, remains true without
the extra assumption that f is G-invariant.

Recall that the geodesic distance on the sphere is defined by d(x, y) = arccos (x, y),

so that p
1-(x, y) = 2sin’ 7(962’)/) ~d(x,y)?
with A ~ B meaning %A < B < cA for some ¢ > 0. It implies that (1.2) and (1.3) can be
regarded as close analogies of (L1).
Let G ¢ O(d) be a finite reflection group on R¢. For v € R? \ {0}, we denote by
o, the reflection with respect to the hyperplane perpendicular to v; that is,

2 >
(x ;)V’
vl

where (-, -) denotes the Euclidean inner product on R and |x| := \/{x, x). Let R
be the root system of G, normalized so that {v,v) = 2 for all v € R, and fix a positive
subsystem R, of R, such that R = R, U (-R, ). From the general theory of reflection
groups (see, e.g., [8]), the set of reflections in G associates with {g, : v € R, }, which
also generates the group G. Let x: R — [0,00), v = k, = x(v) be a nonnegative
multiplicative function on X; that is, « is a nonnegative G-invariant function on R.
Let h, denote the weight function on R defined by

(L4) he(x):= T [(x,v)[*, xeR%
veRy

x e RY,

OyX =X —

It is G-invariant and homogeneous of degree |k := 3z, .

Let A, o be the weighted analogy of the Laplace-Beltrami operator Ag on S,
whose precise definition will be given in next section. Then our main result can be
stated as follows:

Theorem 11 Let f € C'(S%') be such that

fsdilf(x)hﬁ(x)da(x)zo and de?l|f(x)|2hi(x)dcr(x):l.
Then

15 [min [ (- o)l 0PR () do()]
<[ [ VAo f (PR do ()] 2 Ca >0,

where Cg  is a constant depending only on d and «.
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As a direct corollary, we obtain the following improvement of [11, Theorems 4.1
and 4.2].

Corollary 1.2 If f € C(S?™!) satisfies that

L rem ) da(x) =0 and [ 17(x)PRA(x) do(x) = 1

then
(min, [, (=M IPR o)) ( [, IVansPhido() 2 o> 0.

Note that the improvement by taking the minimum over all y € S%~! instead of
{ei,...,eq} is nontrivial since the weight 42 is not invariant under all rotations. And
obviously, the requirement of the G-invariance of f turns out not to be necessary.

Finally, we shall also establish similar results for the weighted orthogonal polyno-
mial expansions (WOPEs) with respect to the weight function

(1.6) W2y s= (T lwn)P) (1= 1x) " w20

veR4

on the unit ball BY := {x e RY : |x| < 1}, where R, « are adopted as before, as well
as for the WOPEs with respect to the weight function

d
T(y.7dy ._ i-1/2 n-1/2 :
17) W (x,zz)._(gx;‘ )(1—|x|)xd1 2, min 20,
or
T d '~1/2
K - - .
1.8) W, (s Ha) = [Tf ™ T i~ )" ™2, min{i,x,p} 20,
i=1 I<i<j<d

on the simplex T := {x e R : x; > 0,...,x4 > 0,1 — |x| > 0}, here, and in what
follows, |x]| := Z;'i=1 |xj| for x = (x1,...,%4) € R%.

2 Preliminaries
2.1 The Dunkl Theory

This theory of spherical h-harmonics was initially developed by C. E. Dunkl in [5-7].
For details, one can refer to [2, 8]. Let R be a fixed root system in R4 normalized so
that (v,v) = 2 for all v € R, and G the associated reflection group. Let x: R — [0, 00)
be a multiplicity function on R.

The Dunkl operators associated with G and « are defined by

Dif(x) =0if(x)+ va(v,ei)w, i=1,...,d, feC(R?),

veR,; (x,v)

where 0; = %, R, is a fixed positive subsystem of R. Here we use the notation
gof(x):=f(gx)forgeG, feC(S*")and x e S,
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The k-Laplacian on R is defined by A, := Zle D?. The operator A, is G-invariant;
that is, g o Ay = A, o g for all g € G. Similarly, the k-gradient is defined by Vv, =
(D1,...,Dy). Furthermore, by restricting to the unit sphere, the weighted analogue
Ay, of the Laplace-Beltrami operator Ay and analogue V o of the tangential gradient
Vo are defined as follows:

Ao f(x) = AeF(2)| 22> x eS!
and

Viof (%) = VeF(2)|z=x> xS,
where F(z) = f(ﬁ)

2.2 h-harmonic Expansions

Let S*' = {x e R? : |x| = 1} denote the unit sphere of R equipped with the usual
Haar measure do(x), and the weight function h, given in (1.4). For 1 < p < oo, recall
that
1/p

£l = ([, OB G)da() .
We denote by IT¢ the space of all spherical polynomials of degree at most n on S%~1,
and by 3% (h2) the space of all spherical h-harmonics of degree n on S%~!. Thus,
3% (h2) is the orthogonal complement of IT¢_, in the space IT¢ with respect to the
inner product

(f2g)e = [, F)g(IMAx) do(x),

and each function f € L2(h2;S% 1) has a spherical h-harmonic expansion
f=3 proj,(h f)
n=0

converging in the norm of L?(h2;S971).
Here proj, (h2):L?(h%;S%™!) — (4 (h2) is the orthogonal projection. Also, the
projection proj, (h%; f) can be extended to all f € L'(h2;S9™) in the sense that

prol, (5 £)(x) = [ SR ) ()da(p), f e L (S,

with P, (h2; x, y) being the reproducing kernel of 3¢ (h?).

A crucial point in the theory of h-harmonics is that the space 3% (h2) can also be
seen as an eigenspace of a second order differential-difference operator A, o corre-
sponding to the eigenvalue —n(n + 21, ). Here and throughout the paper,

-2

Ay : + k|-

Given a € R, we define the fractional power (—A, )% of (-A4,0), in a distribu-
tional sense, by

projn(hi;(—A,c,o)“f) = (n(n +2/1K))aprojn(hi;f), n=0,1,....
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Next we introduce a first order differential operator on suitable functions defined
on RY:
Dy jf(x) =x0if(x) - xi0;f(x), 1<i,j<d
and

E,f(x) = W, veR?~ {0}.

The proof of our main result relies on a decomposition of (-A,,) and a practical
estimate of [ (=Ax,0)"2f]«,p in [1], which is stated as the following theorem.

Theorem 2.1 ([1]) For f € CI(S”H), with the notation given above,
(2.1 [(=860)?fl22= > IDifliz+ D wlEuflz,:

I<i<j<d veRy

Particularly, in the unweighted setting, namely when « = 0, this theorem will go
back to the classical result (see for instance [4, Section 1.8]) that for f € CI(S”H),

(2.2) [(-80) 2 f13 = IVofl3= Y IDif I3

I<i<j<d

where | g[3 = g [g(x)Pdo(x), g € L2(S77).

3 The Proof of Corollary 1.2

For the moment, we take Theorem 1.1 for granted and proceed with the proof of Corol-
lary 1.2.

Proof By (1.5), it suffices to show that

(3-1) H V _Ax,ofo,z < Hvx,OfHK,Z'

Indeed, noticing [11, (3.15), (3.13)], we have that

62 I Beof = 19nof e 2% [ (€ Tnof(IF©R(E)do(?),
d

where w¥ = [s h2(x) do(x). Here it should be pointed out that the last two terms
in [11, (3.15)] in fact can be cancelled out by realising that
(I-0,)=2(I-0,), veR,.

Furthermore, by [11, (3.3)], we obtain

L, (& nof(9) FOR(D da () -
5 w0 [, (FO)f(0,0) SR do(®).

veR4

However, by the Cauchy-Schwartz inequality,

[ FOf a0 R @) do(x) < |f12s veR,
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Thus,

L (9000 (®) (D) da(©) > 0.
The desired inequality (3.1) then follows by (3.2). ]

4 The Proof of Theorem 1.1

Now we turn to the proof of Theorem L.1. Recall that A, = % +|kland k| = ¥ yex, Ka-
Our proof relies on the following lemma.

Lemma 4.1 Iff € C1(S% ') and y € S, then

@n () [ e @RI do)
=y Ka(y,a)fHMda(x)

aeR, S (x, a)
d d
- [ S D (0] R 0) do),
i=1 j=1

where xj = (x, ej) and y; = (y, e;).
Proof By noticing that for f, g € C'(S* ') and i # j,
[, 76)Dg(x)do(x) = = [ Diif(x)g(x)do(x),
we obtain that for 2 < j < d,
L [xDuf ] ) dox) == [ G Dujf()]xhd(x) da(x)
- [ @R[ Dk () ] do(x).

A straightforward calculation shows that

2Ka X0t 2

D1,j(x]‘hi(x)) =(x1+x1 Z X2 Z ZKaal)hi(x),

aeRy <x’“) ! aeR, (x’ (X)

where a; = (a, e;j). Thus,
2[gm["J'Dl,jf(x)]f(x)hi(x) do(x)
2.2 2K q 01 2
- [ lrs( 2 S iz o)

aeR

S MUGHETS)

aeR <x’ 0()

2Ka X0t

]hi(x) do(x)
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Summing this last equation over j = 2,...,d yields
L. I[Z%DI O] FGE () do(x) =
[SH PP S 12 (x) dox)

aeR, (X, >
(W ) [ A RR ) do).

In general, for 1 < i < d, recalling D; ; = 0, and using symmetry, we obtain
d
(4.2) /Sd_l[ijD,-,jf(x)]f(x)hﬁ(x) do(x)
=1

2 Ka®i ;2
ST O

(i SN [ m PR dotxdoto)

2

Multiplying both sides of (4.2) by y; and summing the resulting equation over i =
., d yield the desired identity (4.1). ]

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let ¢ € (0,1) be a small absolute constant to be specified later.
If

fg (e f()PhE(x) do(x) <1-e,
then
fgd_l FP A= (x, y))hi(x) da(x) > &,

and (1.5) holds trivially, as |\/=A,0f [ x.2 = | fllx,2 = 1. Thus, without loss of general-
ity, we may assume that

(4.3) fs PR (x) do(x) > 1.

We will use the identity (4.1). Indeed, it will be shown that

(4.4) ]1::|fgd_l[i§d;ylx Diif ()] f(x)h2(x) do(x)|

i=1 j=1

< CIufleal [, IFOR A~ G )E() dx)

and that for each « € R, with x, > 0,

(45 1a(@) =] () fs W do(x)|

< SlEaflea( [, PO (r ) () do ()
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Once (4.4) and (4.5) are proved, then using (4.1), (4.3), and (2.1), we obtain

(1-)(Jxl+ e C|K|||\/—_Axof“x2( fsd,l|f(x>|2(1—<x,y>)hi<x>da<x))%

|«
1-¢

Thus, choosing ¢ € (0,1) small enough so that

(1-e)(J + 1)

1
- —|k|>Cy, >0,
2 £|K| dx

1-
we deduce the desired inequality (1.5).

It remains to show (4.4) and (4.5). For the proof of (4.4), we first note that for
x €S,

M&.

d d
Zx, ZZ x? ixj0; xix]?ai) =0.

j=1 i=1 j=1

Il
—

i

Thus,

n=| L i D0 = 23D ()| () () do ()

i=1 j=1

d - x;)x;D; i f(x)]? 3
S(/S'd1|zu 1(J’zl_<x)’;>D Jif (%) hﬁ(x)da(x))

([ RO~ (e ) () do())

But, by the Cauchy-Schwartz inequality,

d
> 20 50501y ()| [z|x]| (7i - x)][zwuﬂxn]

1j=1 i,j=1

:4(1—(x,y))[ > |Di,jf(x)|]-

1<i<j<d

M&

It follows that

e S [P de)

1<i<j<d
(L FGPa- (it de()’,

which implies (4.4) by (2.2).
Finally, we prove (4.5). Splitting the integral [, --- into two parts, we get

(4.6) Ja(a) < Joa(a) + Jaa(@),
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where

Jo(a) = ‘U” >Ax,a)\>(1—e)|<y,tx>l (x “> ’

Jo2(a) : W’ >Ax,a>\<(1-s)|<y,a>l <x,fx> o * )‘

A straightforward calculation shows that

(47) Ba@) < — [ F0PRE) do(x) = —
To estimate the term ], »(«), we first note that for any ¢ € (0, 1) and a € R,

TACII B 5
AWIQ hi(x)do(x) = Ax)a)‘gt(E,xf(x))f(x)hx(x) do(x).

{x, )

Thus,
@8 ha@=|lne [ aM oy (BT () R (x) do ()

U —y|| af(x))f(x)hz(x)da(x)‘

S PUEfleal [, 1RO (eI dot)

where the second step uses the fact that if [(x, a)| < (1-¢)|({y, «)|, then

el(y, ) <[(y, @) = [(x, &) < [x = y].

Now a combination of (4.6), (4.7) and (4.8) yields estimate (4.5).
This completes the proof of Theorem 1.1. ]

5 Uncertainty Principle on the Unit Ball and the Simplex

In this section, we will derive uncertainty principles for weighted orthogonal polyno-
mial expansions on the unit ball and the simplex from results established in the last
section.

Our argument is based on a close relationship among analysis on the unit sphere,
the unit ball, and the simplex (see, e.g., [8], [1, Sections 9,10]). More precisely, given
two changes of variables y = ¢(x), z = y(x) with

¢:BY > S xeB? > (x,1/1-|x]?) €S9,
vB? > T, xeB? o (x3,x%,...,x9) e TY,
we have that

G0 [ f0da) = [ [ £ I=TxP) + S —I=TxP) |~

and

52) [, e(v)ax= [

V1= H I?

dz
z .
|21+ 24
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Recall that G is a finite reflection group on R? with a root system R ¢ R%; x: R —
[0, 00) is a nonnegative multiplicity function on R; the weight functions W,f 4 on B
and W,Z:y on T are given in (1.6) and (1.7), (1.8), respectively.

Let AY u and AL u be the analogues of the Dunkl-Laplace-Beltrami operator Ay,

on B? and T?, respectively. They are second order differential-difference operators,
and their precise definitions can be found in [8, Sections 8.1, 8.2]. Here, we simply
emphasize the relations among the three operators. First, for a function f on B, the
identity

(53) (-82,)%f (%) = (-85.0)*F($(x)), x€B!, acR,

holds in a distributional sense, where the weight associated with Az g is

hi(x) = [xanl TT (e v)™, xes?

veRy

and f(x,%441) = f(x). Second, for a function f on C2(T%),

(5.4) ((-AL)%f) ow(x) =47%(-A2 )*(fow)(x), xeBY, acR

Then the following results on the unit ball and the simplex, which are similar to
that of Theorem 1.1 on the sphere, are immediate consequences of (5.1) ,(5.3) and
(5.2),(5.4).

Theorem 5.1 Let f € C'(BY) be such that
de FOOWE,(x)dx =0 and fB F)PWE, (x)dx = 1.
Then
[min [ (=GN PWEL () d()]

yeBd
<[ L WBESOPWE(x)d(x)] > Can > 0.

Theorem 5.2 Let f € C}(T?) be such that

fw FOWE (x)dx =0 and fT FG)PWT (x)dx = 1.
Then

[min [ (1= (070 DD LW, (x)d ()]

yeTd
<[ LWL P W) ()] > Cay >0,
where we recall that Y™ (x) = (\/X1, /X2, - - - »/%Xd)-

We remark that Theorems 5.1 and 5.2 improve the corresponding results obtained
recently in [11]. In fact, [11, Theorems 5.1, 5.2, 6.1, 6.2, and Corollary 5.3] follow di-
rectly from the above two theorems. We also note that equivalently, we can take the
minimums in the above two theorems over the sphere S rather than the ball B.
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