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Abstract

A version of the classical Buffon problem in the plane naturally extends to the setting
of any Riemannian surface with constant Gaussian curvature. The Buffon probabil-
ity determines a Buffon deficit. The relationship between Gaussian curvature and the
Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem
establishes between Gaussian curvature and both circumference and area deficits.
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1. Introduction

Buffon’s problem has attracted considerable interest and invited many generalizations and
analogues following its introduction [3, 4]. An analogue of this problem in the planar setting
with the ‘needle’ replaced by a ‘noodle’, a rigid rectifiable plane curve, was studied in [1].
The problem was studied in [6] in the setting of a long needle; the moments of the random
variable that counts the number of intersections were estimated, and an applied motivation for
this problem in detection deployment was discussed. The extensive treatment and review of
the problem in [12] presents many of its generalizations. The problem was treated in the planar
setting by relating it to the Crofton formula in [9], while [11] and [8] studied analogues of
Buffon’s problem on the sphere, the former with gratings formed by lines of longitude, and the
latter with gratings formed by lines of latitude.
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1128 A. ABELGAS ET AL.

The Crofton formula is closely related to Buffon’s problem, and the literature on the devel-
opment and application of this formula in the study of differential geometry is vast. An
engaging starting point for a reader who is interested in further study is [5]. Buffon’s problem
may be extended to the setting of certain planar fractals, and [7, Theorem 6.13] implies that
the intersection of a dropped needle with a fractal that belongs to a certain large class of planar
fractals is a zero-probability event [10]. The Favard length of a subset E of the unit square is
proportional to the probability that a needle dropped in the square intersects E. It appears that
[10] was the first study of the problem of estimating the decay of the Favard length for a class
of self-similar sets that includes K2, the Cartesian product of the middle half-Cantor set K with
itself. Although a survey of the literature is beyond the scope of this work, it is important for
perspective to at least recognize some appearances of ideas that are related to Buffon’s problem
in both the fractal and differential geometric settings.

It seems worthwhile to explore a connection between Buffon’s problem and Gaussian cur-
vature that utilizes only elementary prerequisite knowledge. Take M to be any Riemannian
surface with constant Gaussian curvature and denote by κ(M) the Gaussian curvature of M.
Section 2 describes a procedure for dropping a geodesic needle of length 2L on M and defines
a Bernoulli random variable I(X) that takes on the value 1 if the needle intersects a certain
grating in M with spacing 2L. The Buffon probability is the probability P(I(X) = 1). The prin-
cipal novelty of this paper is the introduction of the notion of a Buffon deficit together with
Theorem 1.1, which establishes a probabilistic characterization of Gaussian curvature.

Definition 1.1. The Buffon deficit for M for a needle of length 2L is the difference

2

π
− P(I(X) = 1).

Theorem 1.1. For any Riemannian surface M with constant Gaussian curvature,

lim
L→0+

9π

2

P(I(X) = 1) − 2/π

L2
= κ(M).

Corollary 1.1. For any Riemannian surface M with constant Gaussian curvature,

lim
L→0+ P(I(X) = 1) = 2

π
.

The relationship between Buffon deficits and Gaussian curvature that Theorem 1.1 estab-
lishes is similar to the relationship that the Bertrand–Diguet–Puiseux theorem [2] establishes
for circumference and area deficits more generally for any Riemannian surface.

2. A general framework

2.1. Isometries and gratings

Any Riemannian surface with constant Gaussian curvature is isometric to one of these sur-
faces: the plane, R2; the sphere of radius r, Sr; or, for any positive real number k, the Poincaré
disk with its usual metric scaled by a factor of k2, Hk. Take M to be any one of these surfaces.
The group G of isometries of M acts transitively on M. For any g in G and x in M, denote by
gx the result of applying the transformation g to the point x. For any subset S of M, denote by
gS the set gS = {gs : s ∈ S}. Henceforth, take L to be any positive real number if M is R2 or Hk,
and if M is Sr, take L to be equal to πr/2n for any natural number n that is greater than 1.

Definition 2.1. An equator for M is a directed geodesic in M. A grating line for an equator E is
a geodesic that intersects E at a right angle. A grating G(L) for M with equator E and spacing
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Buffon’s Problem 1129

FIGURE 1: Intersection of the needle with the grating.

2L is a set of grating lines for E such that G(L) ∩ E is an evenly spaced set of points with the
smallest spacing equal to 2L.

Take G′ to be the maximal nontrivial subgroup of G that preserves E , the direction of E ,
and acts transitively on E . There is an h0 in G′ that moves points in E in the positive direction
along E and that generates the subgroup H of G′ that both preserves and acts transitively on
G(L) ∩ E . For any g in G′, denote by αg the signed distance that g moves points along E .
The displacement function, α, takes each g in G′ to αg. In the case of Sr, the range of α is
R (mod 2πr). The displacement function is a homomorphism that orders the elements of G′.
Furthermore, for any g in G′, αg−1 = −αg and αh0 = 2L.

Proposition 2.1. For any M, any two equators E1 and E2 in M, and any two gratings G1(L)
and G2(L) with common spacing 2L and respective equators E1 and E2, there is a g in G such
that gE1 = E2 and gG1(L) = G2(L).

2.2. Dropping the needle

For each of the three types of surface, view a needle as a directed segment of length 2L of a
geodesic. Take X to be the random variable that is uniformly distributed in [ − L, L]. For any
real number z in the case when M is R2 or Hk, or for any z in R (mod 2πr) in the case when
M is Sr, and for any x in E , denote by px(z) the unique point in E that is a signed distance of z
from x (Figure 1).

The tip of the needle with center px(z) is a marked endpoint of the needle and its position
is uniformly randomly distributed on the geodesic circle Cx(z) of radius L and center px(z).
The geodesic circle Cx(z) intersects either one grating line at two distinct points or two distinct
grating lines at one point each. In the case when Cx(z) intersects a geodesic in G(L) at two
points, the intersection defines two arcs of Cx(z). Denote by �x(z) the arc length of the smaller
of the two arcs. If the geodesic circle Cx(z) intersects two grating lines at exactly one point each,
then define �x(z) to be 0. If Cx(z) intersects a grating line in such a way that the intersection
divides Cx(z) into two arcs of equal length, then take �x(z) to be half the circumference of
Cx(z).

Denote by Circ(L) the circumference of a geodesic circle of radius L. Denote by Ix(X) the
random variable that is 1 if a needle with midpoint px(X) intersects G(L) and 0 otherwise.
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A needle that intersects a grating line will still intersect the same grating line at the same point
when the needle is rotated by half of a circle, hence

P(Ix(X) = 1 | X = z) = 2�x(z)

Circ(L)
.

The law of total probability implies that

P(Ix(X) = 1) = 1

L

∫ L

−L

�x(z)

Circ(L)
dz. (2.1)

2.3. Consequences of homogeneity

The goal of this subsection is to show that the probability of intersection of a dropped
needle is independent of the choices of E , G(L), and x. To see this, take x0 to be any element
of G(L) ∩ E .

Proposition 2.2. For any g in G′, P(Igx0 (X) = 1) = P(Ix0 (X) = 1).

Proof. Since any h in H preserves intersections, arc lengths, and the grating G(L),

�hx0 (z) = �x0 (z). (2.2)

This invariance under h together with (2.1) implies that

P(Ihx0 (X) = 1) = P(Ix0 (X) = 1). (2.3)

For any z in [ − L, L], (2.1) together with the equality

�gx0 (z) = �x0 (z + αg) (2.4)

and a change of variables implies that

P(Igx0 (X) = 1) = 1

L

∫ L+αg

−L+αg

�x0 (z)

Circ(L)
dz.

If αg is in [0, L], then

P(Igx0 (X) = 1) = 1

L

∫ L

−L+αg

�x0 (z)

Circ(L)
dz + 1

L

∫ L+αg

L

�x0 (z)

Circ(L)
dz.

A change of variables together with (2.2) and (2.4) implies that

1

L

∫ L+αg

L

�x0 (z)

Circ(L)
dz = 1

L

∫ L+αg

L

�h−1
0 x0

(z)

Circ(L)
dz = 1

L

∫ L+αg−2L

L−2L

�x0 (z)

Circ(L)
dz,

and so

P(Igx0 (X) = 1) = P(Ix0 (X) = 1). (2.5)
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For any g in G′, there is an h in H and a g′ in G′ such that αg′ is in [0, L] and

hg′ = g. (2.6)

Associativity of the group action together with (2.3), (2.5), and (2.6) extends (2.5) to all g
in G′. �

For any grating G1(L), denote by E1 the equator for G1(L). Any x1 in E1 is the center of a
unique segment of E1 of length 2L. Take P1(Ix1 (X) = 1) to be the probability that a dropped
needle of length 2L intersects G1(L), where the center of the needle is in the segment of E1 that
x1 defines, and is uniformly randomly distributed with respect to arc length on that segment.

Theorem 2.1. For any grating G1(L) and any x1 in E1, P1(Ix1 (X) = 1) = P(Ix0 (X) = 1).

Proof. Proposition 2.1 guarantees that there is a g1 in G that takes E1 to E and G1(L) to G(L).
Isometries preserve intersections and the lengths of arcs, so

P1(Ix1 (X) = 1) = P(Ig1x1 (X) = 1).

Since g1x1 is in E , there is a g′
1 in G′ such that g′

1x0 is equal to g1x1, and so Proposition 2.2
implies the desired equality. �

3. Determination of the Buffon probabilities

3.1. The needle in the plane

Rotations around the origin, reflection across the y-axis, and translations generate G, the
isometry group of the plane. The geodesics are the straight lines, and the circumference of any
circle of radius L is equal to 2πL. Take the equator E , the subgroup G′ of G, and the subgroup
H of G′ to be, respectively, the positively oriented x-axis, the group of translations that fix the
x-axis, and the group that is generated by the vector 〈2L, 0〉. The set of translates of the y-axis
by H is the grating G(L).

We compress the notation by writing �(z) instead of �(0,0)(z) and I(X) instead of I(0,0)(X).
Since reflection across the y-axis is an isometry,

P(I(X) = 1) = 1

L

∫ L

0

�(z)

πL
dz.

The path γ that is given by

γ (t) = (z + L cos (t), L sin (t)), with
π

2
+ arcsin

(
z

L

)
≤ t ≤ 3π

2
− arcsin

(
z

L

)
,

parameterizes the arc of C(z) with arc length �(z) and endpoints given by the points of
intersection of C(z) with the y-axis, and so

P(I(X) = 1) = 1 − 2

πL

∫ L

0
arcsin

(
z

L

)
dz = 2

π
.

3.2. The needle in the sphere

View Sr as an embedded Riemannian submanifold of R3 and, to simplify the computations,
take its center to be (0, 0, 0). The distance between any two points p and q in Sr is the geodesic
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distance. Fix the length 2L to be equal to πr/n for some natural number n that is greater
than 1. The isometry group, G, of Sr is the orthogonal group O(3) and the geodesics of Sr are
the great circles. Take E to be the counterclockwise-oriented great circle that is formed by the
intersection of Sr with the (x, y) plane. Take G(L) to be the set of all great circles in Sr that
intersect (0, 0, r) so that

G(L) ∩ E =
{(

r cos

(
2mL

r

)
, r sin

(
2mL

r

)
, 0

)
: m ∈ {0, . . . , 2n − 1}

}
.

Great circles in G(L) intersect E at right angles at two antipodal points. The set of rotations with
the common axis given by the line that passes through (0, 0, r) and (0, 0, −r) is the subgroup
G′ of G, and H is the subgroup of G′ that is generated by the rotation h0, where

h0(r, 0, 0) =
(

r cos

(
2L

r

)
, r sin

(
2L

r

)
, 0

)
.

For any w in [ − L, L], write �(w) and I(X) instead of �(r,0,0)(w) and I(r,0,0)(X).

Proposition 3.1. For any positive real number r,

P(I(X) = 1) = 1 − 2

πL

∫ L

0
arcsin

(
tan

(
w

r

)
cot

(
L

r

))
dw. (3.1)

Proof. The circumference of any geodesic circle of radius L in Sr is 2πr sin (L/r). Since
reflection across the y-axis is an isometry, (2.1) implies that

P(I(X) = 1) =
∫ L

0

�(w)

πr sin (L/r)
· 1

L
dw. (3.2)

Take G0 to be the great circle of G(L) that intersects (r, 0, 0), the set

G0 = {(r sin (φ), 0, r cos (φ)) : 0 ≤ φ ≤ 2π}.
The geodesic circle CL(w) of radius L with center (r cos (w/r), r sin (w/r), 0) is the set

CL(w) =
{(

−r sin

(
w

r

)
sin (θ ) sin

(
L

r

)
+ r cos

(
w

r

)
cos

(
L

r

)
,

r cos

(
w

r

)
sin (θ ) sin

(
L

r

)
+ r sin

(
w

r

)
cos

(
L

r

)
, −r cos (θ ) sin

(
L

r

))
: 0 ≤ θ ≤ 2π

}
.

The points of intersection are therefore given by the equation sin (θ ) = − tan (w/r) cot (L/r).
For any w in [0, L], a counterclockwise-oriented path that parameterizes the smaller arc of
CL(w) that the intersection with G0 determines has endpoints given by the angles θ1 and θ2,
where

θ1 = π + arcsin

(
tan

(
w

r

)
cot

(
L

r

))
, and θ2 = 2π − arcsin

(
tan

(
w

r

)
cot

(
L

r

))
,

and so

�(w) = πr sin

(
L

r

)
− 2r sin

(
L

r

)
arcsin

(
tan

(
z

r

)
cot

(
L

r

))
. (3.3)

Equations (3.2) and (3.3) together imply that

P(I(X) = 1) = 1 − 2

πL

∫ L

0
arcsin

(
tan

(
w

r

)
cot

(
L

r

))
dw. �

https://doi.org/10.1017/jpr.2023.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.114


Buffon’s Problem 1133

3.3. The geometry of the Poincaré disk

View Hk as the scaled Poincaré disk, the open unit disk D in R
2 endowed with the

Riemannian metric ds2, where

ds2 = 4k2

(1 − (x2 + y2))2
(dx ⊗ dx + dy ⊗ dy). (3.4)

Any geodesic of Hk that contains (0, 0) is the intersection of a line in R
2 with D. All other

geodesics are the intersection with D of a circle in R
2 that intersects the unit circle at right

angles. Take E to be the geodesic given by the intersection of D with the x-axis.
For any point p in D, if the Euclidean distance from p to (0, 0) is d, then the hyperbolic

distance is 2k tanh−1 (d). The isometry group G of Hk is the subgroup of the Möbius transfor-
mations that map the open unit disk to itself. The subgroup G′ of G that maps E to itself and
preserves the orientation of E is the group of transformations of the form Fσ where, for any
real number σ ,

Fσ (x, y) =
(

τ (x2 + y2) + (τ 2 + 1)x + τ

(τx + 1)2 + τ 2y2
,

(1 − τ 2)y

(τx + 1)2 + τ 2y2

)
, where τ = tanh

(
σ

2k

)
.

Notice that for any real numbers h and σ , Fσ ( tanh (h/2k), 0) = ( tanh ((h + σ )/2k), 0), and so
Fσ is the Möbius transformation that maps E to E , preserves the orientation of E , and moves
points in E a signed hyperbolic distance of σ along E . Take H to be the subgroup of G′ that is
generated by the transformation F2L.

For each σ in R, take Gσ to be the geodesic Fσ (G0), where G0 is the unbounded geodesic in
Hk that is given by the intersection of the y-axis with D. Each Gσ intersects E at a right angle
at ( tanh (σ/2k), 0). Take G(L) to be the grating G(L) = {G2nL : n ∈Z}.

Hyperbolic circles in D are also Euclidean circles, but the hyperbolic radius and center and
the Euclidean radius and center may differ. An apropos example is the hyperbolic circle with
hyperbolic radius λ whose center is a point in E that is a signed distance of h from (0, 0). The
Euclidean center (x, 0) and radius r of this circle are given by

x = 1

2

(
tanh

(
h + λ

2k

)
+ tanh

(
h − λ

2k

))
, and r = 1

2

(
tanh

(
h + λ

2k

)
− tanh

(
h − λ

2k

))
.

3.4. The needle in the Poincaré disk

For each z in R, we once again compress the notation by writing �(z) instead of �(0,0)(z)
and I(X) instead of I(0,0)(X).

Theorem 3.1. For any (x, 0) in E ,

P(I(x,0)(X) = 1)

= 2

(
1 − 1

πL sinh (L/k)

∫ L

0

2( tanh ((z + L)/2k) − tanh ((z − L)/2k))√
(1 − tanh2 ((z + L)/2k))(1 − tanh2 ((z − L)/2k))

× arctan

(√
1 − tanh2 ((z − L)/2k)

1 − tanh2 ((z + L)/2k)
·
√

tanh ((L + z)/2k)

tanh ((L − z)/2k)

)
dz

)
. (3.5)
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Proof. It is convenient to take x to be equal to 0 and calculate the probability P(I(X) = 1).
The circumference of any geodesic circle of hyperbolic radius L in Hk is 2πk sinh (L/k). Since
reflection across the y-axis is an isometry, (2.1) implies that

P(I(X) = 1) =
∫ L

0

�(z)

πk sinh (L/k)
· 1

L
dz. (3.6)

For any z in [0, L], the Euclidean center of CL(z) is (x(z), 0) and the Euclidean radius of
CL(z) is r(z) for some real numbers x(z) and r(z). Take (0, ±y) to be the two intersections of
CL(z) with G0 so that y =√

r(z)2 − x(z)2.
The angle, θ (z), that is formed by the positive x-axis and the ray from (0, 0) to the point

(0, y) has the property that

cos (θ (z)) = −x(z)

r(z)
, and sin (θ (z)) =

√
r(z)2 − x(z)2

r(z)
. (3.7)

Equation (3.4) and the fact that reflection across the x-axis is an isometry of Hk together imply
that the hyperbolic arc length �(z) of the arc A of CL(z) that lies to the left of G0 is given by

�(z) =
∫
A

ds = 4kr(z)
∫ π

θ(z)

dt

1 − (x(z) + r(z) cos (t))2 − (r(z) sin (t))2
.

Rewrite the integral using the functions A and B that are given by A(z) = 1 − x(z)2 − r(z)2 and
B(z) = 2r(z)x(z), and integrate to obtain the equality

�(z) = 2k

(
π sinh

(
L

k

)
− 4r(z)√

A(z)2 − B(z)2
arctan

(√
A(z) + B(z)

A(z) − B(z)
· tan

(
θ (z)

2

)))
.

The equality

tan

(
θ (z)

2

)
= 1 − cos (θ (z))

sin (θ (z))
,

together with (3.7) and the equalities

x(z) − r(z) = tanh

(
z − L

2k

)
, and x(z) + r(z) = tanh

(
z + L

2k

)
,

implies, after some simplification, that

�(z) = 2k

(
π sinh

(
L

k

)
− 2( tanh ((z + L)/2k) − tanh ((z − L)/2k))√

(1 − tanh2 ((z + L)/2k))(1 − tanh2 ((z − L)/2k))

× arctan

(√
1 − tanh2 ((z − L)/2k)

1 − tanh2 ((z + L)/2k)
·
√

tanh ((L + z)/2k)

tanh ((L − z)/2k)

))
.

The formula for �(z) together with (3.6) implies (3.5). �
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4. Limiting behavior

This section presents second-order expansions in the parameter L for the probabilities given
by (3.1) and (3.5). Zeroth-order terms give the probability in the planar case (which is indepen-
dent of L), first-order terms vanish, and second-order terms depend on the Gaussian curvature
of the space. The following subsections utilize the standard ‘little-o’ notation to simplify
expressions, where o(L) describes the behavior of a function as L tends to 0.

4.1. Order estimates for spheres

Proposition 4.1. For any positive real number r, if M is Sr, then

P(I(X) = 1) = 2

π
+ 2

9πr2
L2 + o

(
L2).

Proof. Take F to be given by

F(L) = π

2
(1 − P(I(X) = 1)). (4.1)

Change variables and use the series expansions of tan and cot together with Proposition 3.1 to
obtain the expansion

F(L) =
∫ 1

0
arcsin

(
z + L2

(
z3

3r2
− z

3r2

)
+ o

(
L3)) dz.

Although F is not initially defined at 0, it has a continuous extension to 0. Once again, denote
by F this continuous extension. Differentiate F twice and integrate over the variable z to obtain
the equalities F(0) = π/2 − 1, F′(0) = 0, and F′′(0) = −2/9r2, which imply that

F(L) =
(

π

2
− 1

)
− L2

9r2
+ o

(
L2).

This expansion of F(L) to quadratic order together with (4.1) gives the desired expansion for
the Buffon probability. �

4.2. Order estimates for the Poincaré disk

Proposition 4.2. For any positive real number k, if M is Hk, then

P(I(X) = 1) = 2

(
1 − L

πk sinh (L/k)

(
(π − 1) + L2

6k2

(
π − 1

3

)
+ o

(
L2))).

Proof. Change variables to rewrite the equation in Theorem 3.1 as

P(I(X) = 1) =

2

(
1 − 1

π sinh (L/k)

∫ 1

0

2( tanh ((z + 1)L/2k) − tanh ((z − 1)L/2k))√
(1 − tanh2 ((z + 1)L/2k))(1 − tanh2 ((z − 1)L/2k))

× arctan

(√
1 − tanh2 ((z − 1)L/2k)

1 − tanh2 ((z + 1)L/2k)
·
√

tanh ((1 + z)L/2k)

tanh ((1 − z)L/2k)

)
dz

)
.
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Take H to be the function that is given by

H(L) = πk sinh (L/k)

L

(
1 − 1

2
P(I(X) = 1)

)
, (4.2)

and use a series expansions for tan and the square root to obtain the equality

H(L) =
∫ 1

0

(
1 + L2

6k2
+ o

(
L3))

× arctan

((
1 + L2z

2k2
+ o

(
L3))√ z + 1

1 − z

(
1 − L2z

3k2
+ o(L4)

))
dz. (4.3)

Take F to be the function that is given by

F(L) =
∫ 1

0
arctan

((
1 + L2z

2k2
+ o

(
L3))√ z + 1

1 − z

(
1 − L2z

3k2
+ o(L4)

))
dz

=
∫ 1

0
arctan

((
1 + L2z

3k2 + o
(
L3))√ z + 1

1 − z

)
dz. (4.4)

The function F has a continuous extension to 0. Once again denote by F this continu-
ous extension. Differentiate F twice and integrate with respect to z to obtain the equalities
F(0) = − 1

2 + π/2, F′(0) = 0, and F′′(0) = 1/9k2. Expand F(L) up to quadratic terms to obtain
the equality

F(L) = −1

2
+ π

2
+ 1

18k2
L2 + o

(
L2), (4.5)

and use (4.2), (4.3), (4.4), and (4.5) to obtain the expansion up to quadratic terms in L of the
Buffon probability for Hk. �

4.3. Buffon deficits and Gaussian curvature

Notice that the corollary to Theorem 1.1 follows immediately from Propositions 4.1
and 4.2.

Proof of Theorem 1.1. It is enough to establish the result for M equal to R
2, Sr, or Hk. The

result is immediate in the planar setting. For the Sr setting, use Proposition 4.1 to obtain the
equalities

lim
L→0+

9π

2

P(I(X) = 1) − 2/π

L2
= lim

L→0+
9π

2

2/π + (
2/9πr2

)
L2 + o

(
L2
)− 2/π

L2
= 1

r2
.

For the Hk setting, use Proposition 4.2 to obtain the equalities

lim
L→0+

9π

2

P(I(X) = 1) − 2/π

L2

= lim
L→0+

9π

2

2
(
1 − L/(πk sinh (L/k))

(
(π − 1) + (

L2/k2
)
(π/6 − 1/18) + o

(
L2
)))− 2/π

L2

= 9π

2

(
− 1

3k2
+ 1

9πk2

)
+ 9π

2
lim

L→0+
2(1 − L/(πk sinh (L/k))(π − 1)) − 2/π

L2
= − 1

k2
. �
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The similarity between Theorem 1.1 and the Bertrand–Diguet–Puiseux theorem merits
some further discussion. Denote by Circ(CL(M)) and Area(CL(M)) the circumference and area
of a geodesic circle of radius L in M. The Bertrand–Diguet–Puiseux theorem and Theorem 1.1
together imply that

κ(M) = lim
L→0+

6

L2

(
2πL − Circ(CL(M))

2πL

)

= lim
L→0+

12

L2

(
πL2 − Area(CL(M))

πL2

)
= lim

L→0+ − 9

L2

(
2/π − P(I(X) = 1)

2/π

)
.

Although the various deficits (circumference, area, and Buffon) initially appear to involve κ(M)
in different ways, the ratios of the deficits to the planar quantities involve κ(M) in the same
way, as a second-order term in the Taylor expansion of the ratio as a function of L.
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