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For subsets in the standard symplectic space (R2n, ω0) whose closures are
intersecting with coisotropic subspace Rn,k we construct relative versions of the
Ekeland–Hofer capacities of the subsets with respect to Rn,k, establish
representation formulas for such capacities of bounded convex domains intersecting
with Rn,k. We also prove a product formula and a fact that the value of this
capacity on a hypersurface S of restricted contact type containing the origin is equal
to the action of a generalized leafwise chord on S.
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1. Introduction

1.1. Coisotropic capacity

Recently, Lisi and Rieser [29] introduced the notion of a coisotropic capacity
(i.e. a symplectic capacity relative to a coisotropic submanifold of a symplec-
tic manifold), and discussed their motivations and backgrounds. Let (M,ω) be
a symplectic manifold and N ⊂M a coisotropic submanifold. (In this paper all
manifolds are assumed to be connected without special statements!) An equiva-
lence relation ∼ on N was called a coisotropic equivalence relation if x and y
are on the same leaf then x ∼ y (cf. [29, definition 1.4]). Special examples are
the trivial relation defined by x ∼ y for every pair x, y ∈ N and the so-called leaf
relation defined by x ∼ y if and only if x and y are on the same leaf. For two
tuples (M0, N0, ω0,∼0) and (M1, N1, ω1,∼1) as above, a relative symplectic embed-
ding from (M0, N0, ω0) to (M1, N1, ω1) is a symplectic embedding ψ : (M0, ω0) →
(M1, ω1) satisfying ψ−1(N1) = N0 [29, definition 1.5]. Such an embedding ψ is said
to respect the pair of coisotropic equivalence relations (∼0,∼1) if for every x, y ∈ N0,

ψ(x) ∼1 ψ(y) =⇒ x ∼0 y.
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The standard symplectic space (R2n, ω0) has coisotropic linear subspaces

R
n,k = {x ∈ R

2n |x = (q1, . . . , qn, p1, . . . , pk, 0, . . . , 0)}

for k = 0, . . . , n, where we understand R
n,0 = {x ∈ R

2n |x = (q1, . . . , qn, 0, . . . , 0)}.
Denote by ∼ the leaf relation on R

n,k, and by

V n,k0 = {x ∈ R
2n |x = (0, . . . , 0, qk+1, . . . , qn, 0, . . . , 0)}, (1.1)

V n,k1 = {x ∈ R
2n |x = (q1, . . . , qk, 0, . . . , 0, p1, . . . , pk, 0, . . . , 0)}. (1.2)

Hereafter it is understood that V n,00 = {x ∈ R
2n |x = (q1, . . . , qn, 0, . . . , 0)} = R

n,0,
V n,n0 = {0} and V n,01 = {0}, V n,n1 = R

2n. Then Ln0 := V n,00 is a Lagrangian sub-
space, and two points x, y ∈ R

n,k satisfy x ∼ y if and only if their difference x− y
sits in V n,k0 . Observe that R

2n has the orthogonal decomposition R
2n = J2nV

n,k
0 ⊕

R
n,k = J2nR

n,k ⊕ V n,k0 with respect to the standard inner product, where J2n

denotes the standard complex structure on R
2n given by (q1, . . . , qn, p1, . . . , pn) �→

(p1, . . . , pn,−q1, . . . ,−qn).
For a ∈ R we write a := (0, . . . , 0, a) ∈ R

2n. Denote by B2n(a, r) and B2n(r) the
open balls of radius r centred at a and the origin in R

2n respectively, and by

W 2n(R) :=
{
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n |x2
n + y2

n < R2 or yn < 0
}
, (1.3)

Wn,k(R) := W 2n(R) ∩ R
n,k and Bn,k(r) := B2n(r) ∩ R

n,k. (1.4)

(W 2n(R) was written as W (R) in [29, definition 1.1]).
According to [29, definition 1.7], a coisotropic capacity is a functor c, which

assigns to every tuple (M,N,ω,∼) as above a non-negative (possibly infinite)
number c(M,N,ω,∼), such that the following conditions hold:

(i) Monotonicity. If there exists a relative symplectic embedding ψ
from (M0, N0, ω0,∼0) to (M1, N1, ω1,∼1) respecting the coisotropic
equivalence relations where dimM0 = dimM1, then c(M0, N0, ω0,∼0) �
c(M1, N1, ω1,∼1).

(ii) Conformality. c(M,N,αω,∼) = |α|c(M,N,ω,∼), ∀ α ∈ R\{0}.
(iii) Non-triviality. With the leaf relation ∼ it holds that for k = 0, . . . , n− 1,

c(B2n(1), Bn,k(1), ω0,∼) =
π

2
= c(W 2n(1),Wn,k(1), ω0,∼). (1.5)

As remarked in [29, remark 1.9], any symplectic capacity cannot serve as a
coisotropic capacity because of the non-triviality (iii).

From now on, we abbreviate c(M,N,ω,∼) as c(M,N,ω) if ∼ is the leaf relation
on N . In particular, for domains D ⊂ R

2n we also abbreviate c(D,D ∩ R
n,k, ω0) as

c(D,D ∩ R
n,k) for simplicity.

https://doi.org/10.1017/prm.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.59


1566 R. Jin and G. Lu

Given a (n+ k)-dimensional coisotropic submanifold N in a symplectic manifold
(M,ω) of dimension 2n we defined in [26, definition 1.3]

wG(N ;M,ω) := sup

⎧⎪⎨⎪⎩πr2
∣∣∣∣∣∣∣

∃ a relative symplectic embedding
(B2n(r), Bn,k(r)) → (M,N) respecting
the leaf relations on Bn,k(r) and N

⎫⎪⎬⎪⎭
the relative Gromov width of (M,N,ω). Here we always assume k ∈ {0, 1 . . . , n− 1}.
(If k = n then wG(N ;M,ω) is equal to the Gromov width wG(N,ω|N ) of (N,ω|N ).)

When k = 0, N is a Lagrangian submanifold and this relative Gromov width was
introduced by Barraud, Biran and Cornea [6–9]. It is easily seen that wG satisfies
monotonicity, conformality and

wG(B2n(r) ∩ R
n,k;B2n(r), ω0) = πr2, ∀ r > 0.

In fact wG(N ;M,ω)/2 is the smallest coisotropic capacity by the nonsqueezing
theorem in [29]. Rizell [33] observed that the Lagrangian submanifolds of C

3

constructed by Ekholm, Eliashberg, Murphy and Smith [15] have infinite relative
Gromov width.

Similar to the construction of the Hofer–Zehnder capacity, Lisi and Rieser [29]
constructed an analogue relative to a coisotropic submanifold, called the coisotropic
Hofer–Zehnder capacity, and denoted by cLR in this paper. By properties of this
coisotropic capacity, they also studied symplectic embeddings relative to coisotropic
constraints and got some corresponding dynamical results. The coisotropic capacity
cLR also played a key role in the proof of Humiliére–Leclercq–Seyfaddini’s important
rigidity result that symplectic homeomorphisms preserve coisotropic submanifolds
and their characteristic foliations [21].

For the coisotropic capacity cLR(D,D ∩ R
n,k) of a bounded convex domain

D ⊂ R
2n, we [26] proved a representation formula, some interesting corollaries and

corresponding versions of a Brunn–Minkowski type inequality by Artstein–Avidan
and Ostrover and a theorem by Evgeni Neduv.

1.2. A relative version of the Ekeland–Hofer capacity with respect to a
coisotropic submanifold R

n,k

Prompted by Gromov’s work [17], Ekeland and Hofer [13, 14] constructed a
sequence of symplectic invariants for subsets in the standard symplectic space
(R2n, ω0), the so-called Ekeland and Hofer symplectic capacities. (In this paper,
the Ekeland and Hofer symplectic capacity always means the first Ekeland and
Hofer symplectic capacity without special statements.) We introduced the gener-
alized Ekeland–Hofer and the symmetric Ekeland–Hofer symplectic capacities and
developed corresponding results [24, 25]. The aim of this paper is to construct a
coisotropic analogue of the Ekeland–Hofer capacity for subsets in (R2n, ω0) relative
to a coisotropic submanifold R

n,k, the coisotropic Ekeland–Hofer capacity.
Fix an integer 0 � k � n. For each subset B ⊂ R

2n whose closure B has
nonempty intersection with R

n,k, we define a number cn,k(B), called coisotropic
Ekeland–Hofer capacity of B (though it does not satisfy the stronger monotonicity
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as in (i) above (1.5)), which is equal to the Ekeland–Hofer capacity of B if k = n.
The coisotropic capacity cn,k satisfies cn,k(B) = cn,k(B) and the following:

Proposition 1.1. Let λ > 0 and B ⊂ A ⊂ R
2n satisfy B ∩ R

n,k �= ∅. Then

(i) (Monotonicity) cn,k(B) � cn,k(A).

(ii) (Conformality) cn,k(λB) = λ2cn,k(B).

(iii) (Exterior regularity) cn,k(B) = inf{cn,k(Uε(B)) | ε > 0} and so cn,k(B) =
cn,k(B), where Uε(B) is the ε-neighbourhood of B.

(iv) (Translation invariance) cn,k(B + w) = cn,k(B) for all w ∈ R
n,k, where B +

w = {z + w | z ∈ B}.
The group Sp(2n) = Sp(2n,R) of symplectic matrices in R

2n is a connected Lie
group. Kun Shi shows in Appendix A that its subgroup

Sp(2n, k) := {A ∈ Sp(2n) |Az = z ∀ z ∈ R
n,k} (1.6)

is also connected.

Theorem 1.2 (Symplectic invariance). Let B ⊂ R
2n satisfy B ∩ R

n,k �= ∅. Suppose
that φ ∈ Symp(R2n, ω0) satisfies for some w0 ∈ R

n,k,

φ(w) = w − w0 ∀ w ∈ R
n,k and dφ(w0) ∈ Sp(2n, k).

Then cn,k(φ(B)) = cn,k(B).

Corollary 1.3. For a subset A ⊂ R
2n satisfying A ∩ R

n,k �= ∅, suppose that there
exists a star-shaped open neighbourhood U of A with respect to some point w0 ∈ R

n,k

and a symplectic embedding ϕ from U to R
2n such that

ϕ(w) = w − w0 ∀w ∈ R
n,k ∩ U and dϕ(w0) ∈ Sp(2n, k). (1.7)

Then cn,k(ϕ(A)) = cn,k(A). In particular, for a subset A ⊂ R
2n satisfying A ∩

R
n,k �= ∅, if it is star-shaped with respect to some point w0 ∈ R

n,k and there exists
a symplectic embedding ϕ from some open neighbourhood U of A to R

2n such that
(1.7) holds, then cn,k(ϕ(A)) = cn,k(A).

There exists a natural class of symplectic mappings satisfying the conditions in
corollary 1.3. For ε > 0 small, let R

n,k
ε = {(q1, . . . , qn, p1, . . . , pn) | p2

k+1 + · · · + p2
n <

ε2}, that is, the tubular open neighbourhood of R
n,k of radius ε. Let U be as in

corollary 1.3, and let H : [0, 1] × R
2n → R be any smooth Hamiltonian that van-

ishes in [0, 1] × (Rn,kε ∩ U). Suppose that XH can determine a 1-parameter family
of symplectic mappings φtH for t ∈ [0, 1] as usual (e.g. this can be satisfied if H
has compact support). Then ϕ := (ψw0 ◦ φ1

H)|U satisfies the conditions in corollary
1.3, where ψw0 ∈ Symp(R2n, ω0) is the translation defined by ψw0(w) = w − w0 for
w ∈ R

2n.
For a bounded convex domain D in (R2n, ω0) with boundary S, recall that a

nonconstant absolutely continuous curve z : [0, T ] → R
2n (for some T > 0) is said
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to be a generalized characteristic on S if z([0, T ]) ⊂ S and ż(t) ∈ J2nNS(z(t)) a.e.,
where NS(x) = {y ∈ R

2n | 〈u− x, y〉 � 0∀ u ∈ D} is the normal cone to D at x ∈ S
[24, definition 1.1]. When D ∩ R

n,k �= ∅, such a generalized characteristic z :
[0, T ] → S is called a generalized leafwise chord (abbreviated GLC) on S for
R
n,k if z(0), z(T ) ∈ R

n,k and z(0) − z(T ) ∈ V n,k0 . (Generalized characteristics and
generalized leafwise chords on S become characteristics and leafwise chords on
S respectively if S is of class C1.) The action of a GLC z : [0, T ] → S is
defined by

A(z) =
1
2

∫ T

0

〈−J2nż, z〉dt,

where 〈·, ·〉 denotes the Euclid norm on R
2n. As generalizations of representation

formulas for the Ekeland–Hofer capacities of bounded convex domains we have:

Theorem 1.4. Let D ⊂ R
2n be a bounded convex domain with C1,1 boundary S =

∂D. If D ∩ R
n,k �= ∅ (and so ∂D contains at least two points of R

n,k), then there
exists a leafwise chord x∗ on ∂D for R

n,k such that

A(x∗) = min{A(x) > 0 |x is a leafwise chord on ∂D for R
n,k}

= cn,k(D) (1.8)

= cn,k(∂D). (1.9)

Moreover, if D ⊂ R
2n is only a bounded convex domain such that D ∩ R

n,k �= ∅,
then the above conclusions are still true after all words ‘leafwise chord’ are replaced
by ‘generalized leafwise chord’.

This theorem may be false if the domain is not convex. Consider the following
domain

A2n(r1, r2) := {z ∈ R
2n | r21 < |z| < r22} = B2n(r2) \B2n(r1),

where 0 < r1 < r2 <∞. Then by monotonicity of coisotropic Ekeland–Hofer capac-
ity and theorem 1.4,

cn,k(∂B2n−1(r2)) � cn,k(A2n(r1, r2)) � cn,k(B2n(r2)) = cn,k(∂B2n−1(r2))

and

cn,k(A2n(r1, r2)) = cn,k(A2n(r1, r2)) =

{π
2
r22, k < n,

πr22, k = n.
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However, since ∂A2n(r1, r2) = ∂B2n−1(r1) ∪ ∂B2n−1(r2),

min{A(x) > 0 |x is a leafwise chord on ∂A2n(r1, r2) for R
n,k}

= min{min{A(x) > 0 |x is a leafwise chord on ∂B2n−1(r1) for R
n,k},

min{A(x) > 0 |x is a leafwise chord on ∂B2n−1(r2) for R
n,k}}

= min{cn,k(∂B2n−1(r1)), cn,k(∂B2n−1(r2))}

=

{π
2
r21, k < n,

πr21, k = n.

Hence theorem 1.4 is false for A2n(r1, r2).
Theorem 1.4 and [26, theorem 1.5] show that cn,k(D) = cLR(D,D ∩ R

n,k) for
a bounded convex domain D ⊂ R

2n as in theorem 1.4. It follows from (3.18) and
interior regularity of cLR that

cn,k(D) = cLR(D,D ∩ R
n,k) (1.10)

for any convex domain D ⊂ R
2n such that D ∩ R

n,k �= ∅. Hence theorems 1.6, 1.12
and corollaries 1.7–1.10 in [26] are still true if cLR is replaced by suitable cn,k.

Moser [32] first studied Hamiltonian leafwise chords for understanding pertur-
bations of Hamiltonian dynamical systems, his framework has been extended in
many directions, which promotes the research of symplectic topology, see [3, 4,
12, 16, 18, 19, 27, 29, 38, 39] etc. Given two autonomous C1,1 Hamiltonians
H,G : R

2n → R and a regular energy surface G−1(c′), one may ask the following
natural mechanics problem: Is there a point on G−1(c′) from which two particles
start, move respectively along Hamiltonian trajectories of XH and XG and after
some finite time return to an intersection point of these two trajectories?

Suppose for some c ∈ R that D0 := {z ∈ R
2n |H(z) < c} is a bounded convex

domain whose intersection with G−1(c′) is a nonempty relative open subset in a
(2n− 1)-dimensional coisotropic subspace V in R

2n. Then theorem 1.4 implies an
affirmative answer to the problem. In fact, since there exists a linear symplectic
transformation Ψ : (R2n, ω0) → (R2n, ω0) such that Ψ(V ) = R

n,n−1, we can replace
H and G by H ◦ Ψ−1 and G ◦ Ψ−1, respectively, and therefore reduce the question
to the case V = R

n,n−1. The desired conclusion follows from theorem 1.4.
Theorem 1.4 is also closely related to the famous Arnold’s chord conjecture in

[5, § 8]. Many cases for this problem have been proved to be true, see [1, 2, 10, 11,
22, 23, 30, 31, 33–35, 40] etc. When k = 0, the intersection S ∩ R

n,0 is a closed
C1,1 Legendrian submanifold of dimension n− 1 in the contact manifold S with
the standard contact form, which is diffeomorphic to the sphere Sn−1, and theorem
1.4 affirms the conjecture in this case though for the smooth S it was proved by
Mohnke [31] with a different method. Clearly, our result also gives the action of
this chord.

As the Ekeland–Hofer capacity, cn,k satisfies the following product formulas,
which play key roles for computations of cLR and the proof of [26, theorem 1.12].
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Theorem 1.5. For convex domains Di ⊂ R
2ni containing the origin, i =

1, . . . ,m � 2, and integers 0 � l0 � n := n1 + · · · + nm, lj = max{lj−1 − nj , 0},
j = 1, . . . ,m− 1, it holds that

cn,l0(D1 × · · · ×Dm) = min
i
cni,min{ni,li−1}(Di). (1.11)

Moreover, if all these domains Di are also bounded then

cn,l0(∂D1 × · · · × ∂Dm) = min
i
cni,min{ni,li−1}(Di). (1.12)

Hereafter R
2n1 × R

2n2 × · · · × R
2nm is identified with R

2(n1+···+nm) via

R
2n1 × R

2n2 × · · · × R
2nm � ((q(1), p(1)), . . . , (q(m), p(m)))

�→ (q(1), . . . , q(m), p(1), . . . , p(m)) ∈ R
2n.

If l0 = n then li =
∑
j>i nj and thus min{ni, li−1} = ni for i = 1, . . . ,m. It follows

that theorem 1.5 becomes theorem in [37, § 6.6]. We pointed out in [26, remark
1.11] that theorems 1.4, 1.5 and [26, theorem 1.5] can be combined together to
improve some results therein.

Corollary 1.6. Let S1(ri) be boundaries of discs B2(0, ri) ⊂ R
2, i = 1, . . . , n � 2,

and integers 0 � l0 � n, lj = max{lj−1 − 1, 0}, j = 1, . . . , n− 1. Then

cn,l0(S1(r1) × · · · × S1(rn)) = min
i
c1,min{1,li−1}(B2(0, ri)).

Here c1,1(B2(0, ri)) = πr2i and c1,0(B2(0, ri)) = πr2i /2. Precisely,

cn,0(S1(r1) × · · · × S1(rn)) = min{πr21/2, . . . , πr2n/2},
cn,k(S1(r1) × · · · × S1(rn)) = min{min

i�k
πr2i ,min

i>k
πr2i /2}, 0 < k < n,

cn,n(S1(r1) × · · · × S1(rn)) = min{πr21, . . . , πr2n}.

Note that corollary 1.6 becomes [37, corollary 6.6] for l0 = n.
Define U2(1) = {(qn, pn) ∈ R

2 | q2n + p2
n < 1 or − 1 < qn < 1andpn < 0} and

U2n(1) = R
2n−2 × U2(1) and Un,k(1) = U2n(1) ∩ R

n,k. (1.13)

By (1.10) and [26, corollary 1.9] we obtain for k = 0, 1, . . . , n− 1,

cn,k(U2n(1)) = cLR(U2n(1), U2n(1) ∩ R
n,k) =

π

2
. (1.14)

The proof of theorem 1.5 relies partially on the representation of coisotropic
Ekeland–Hofer capacity of convex domains given by theorem 1.4. It is possible
that theorem 1.5 is still true for some product of non-convex domains. For integers
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0 � l0 � n := n1 + n2 and l1 = max{l0 − n1, 0}, as the arguments below theorem
1.5 we can get

cn,l0(B2n1(r2) ×B2n2(r3)) = cn,l0(∂B2n1−1(r2) × ∂B2n2−1(r3))

� cn,l0(A2n1(r1, r2) ×B2n2(r3))

� cn,l0(B2n1(r2) ×B2n2(r3))

and therefore

cn,l0(A2n1(r1, r2) ×B2n2(r3)) = cn,l0(A2n1(r1, r2) ×B2n2(r3))

= cn,l0(B2n1(r2) ×B2n2(r3))

= min{cn1,min{n1,l0}(B2n1(r2)), c
n2,min{n2,l1}(B2n2(r3))}

=

⎧⎨⎩min
{π

2
r22,

π

2
r23

}
, l0 < n1,

min{πr22, cn2,l0−n1(B2n2(r3))}, l0 � n1.

On the other hand

min{cn1,min{n1,l0}(A2n1(r1, r2)), cn2,min{n2,l1}(B2n2(r3))}

=

⎧⎨⎩min
{π

2
r22,

π

2
r23

}
, l0 < n1,

min{πr22, cn2,l0−n1(B2n2(r3))}, l0 � n1.

Hence (1.11) is also true for the produce of A2n1(r1, r2) and B2n2(r3).
Recall that a vector field X defined on an open set U ⊂ R

2n is called a Liouville
vector field if LXω0 = ω0. A hypersurface S ⊂ R

2n is said to be of restricted contact
type if there exists a Liouville vector field X globally defined on R

2n which is
transversal to S. Corresponding to the representation of the Ekeland–Hofer capacity
of a bounded domain in R

2n with boundary of restricted contact type we have:

Theorem 1.7. Let U ⊂ (R2n, ω0) be a bounded domain with C2n+2 boundary S of
restricted contact type. Suppose that U contains the origin and that there exists a
globally defined C2n+2 Liouville vector field X transversal to S whose flow φt maps
R
n,k to R

n,k and preserves the leaf relation of R
n,k. Then

ΣS := {A(x) > 0 |x is a leafwise chord on S for R
n,k}. (1.15)

has empty interior and contains cn,k(U) = cn,k(S).

In order to show that cn,k is a coisotropic capacity (with the weaker monotonic-
ity), we need to prove that cn,k satisfies the non-triviality as in (1.5). By theorem
1.4 we immediately obtain

cn,k(B2n(1)) =
π

2
, k = 0, . . . , n− 1. (1.16)

Proposition 1.1(i) and (1.14) also lead to cn,k(W 2n(1)) � cn,k(U2n(1)) = π/2
directly. Using the extension monotonicity of cLR in [29, lemma 2.4], Lisi and Rieser
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proved that

cLR

(
W 2n(1),Wn,k(1)

)
= cLR

(
U2n(1), Un,k(1)

)
above [29, proposition 3.1]. However, our proposition 1.1 and theorem 1.2 cannot
yield such strong extension monotonicity for cn,k. Instead, we may use theorems
1.5 and 1.7 (though the latter does not hold for cLR in general), to derive:

Theorem 1.8. For k = 0, . . . , n− 1, it holds that

cn,k(W 2n(1)) =
π

2
.

By this theorem, corollary 1.6 and theorem 1.2 we deduce:

Corollary 1.9. If min{2mini�k r2i ,mini>k r2i } > 1 for some 0 < k < n, then
there is no φ ∈ Symp(R2n, ω0) which satisfies φ(w) = w − w0 ∀ w ∈ R

n,k and
dφ(w0) ∈ Sp(2n, k)0 for some w0 ∈ R

n,k, such that φ maps S1(r1) × · · · × S1(rn) =
{(x1, . . . , xn, y1, . . . , yn) ∈ R

2n |x2
i + y2

i = r2i , i = 1, . . . , n} into W 2n(1).

Under the assumptions of corollary 1.9 it is easy to see that there always exists
a φ ∈ Symp(R2n, ω0) such that φ(S1(r1) × · · · × S1(rn)) ⊂W 2n(1).

Let τ0 ∈ L(R2n) be the canonical involution on R
2n given by τ0(x, y) = (x,−y).

For a subset B ⊂ R
2n such that τ0B = B and B ∩ Ln0 �= ∅, let cEH,τ0(B) be the

τ0-symmetrical Ekeland–Hofer capacity constructed in [25]. We shall prove in § 8:

Theorem 1.10. The τ0-symmetrical Ekeland–Hofer capacity cEH,τ0(B) of each
subset B ⊂ R

2n satisfying τ0B = B and B ∩ Ln0 �= ∅ is greater than or equal to
cn,0(B).

Structure of the paper. In § 2 we provide necessary variational preparations on the
basis of [26, 29]. In § 3 we give the definition of the coisotropic Ekeland–Hofer
capacity and proofs of proposition 1.1, theorem 1.2 and corollary 1.3. In § 4 we
prove theorem 1.4. In § 5 we prove a product formula, theorem 1.5. In § 6 we
prove theorem 1.7 about the representation of the coisotropic capacity cn,k of a
bounded domain in R

2n with boundary of restricted contact type. In § 7 we prove
theorem 1.8.

2. Variational preparations

We follow [26, 29] to present necessary variational materials. Fix an integer 0 �
k < n. Consider the Hilbert space defined in [29, definition 3.6]

L2
n,k =

{
x ∈ L2([0, 1],R2n)

∣∣∣∣∣x L2

=
∑
m∈Z

emπtJ2nam +
∑
m∈Z

e2mπtJ2nbm

am ∈ V n,k0 , bm ∈ V n,k1 ,
∑
m∈Z

(|am|2 + |bm|2) <∞
}

(2.1)

with L2-inner product. We proved in [26, proposition 2.3] that the Hilbert space
L2
n,k is exactly L2([0, 1],R2n). (If k = n this is clear as usual because V n,n0 = {0}
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and V n,n1 = R
2n.) For any real s � 0 we follow [29, definition 3.6] to define

Hs
n,k =

{
x ∈ L2([0, 1],R2n)

∣∣∣∣∣x L2

=
∑
m∈Z

emπtJ2nam +
∑
m∈Z

e2mπtJ2nbm

am ∈ V n,k0 , bm ∈ V n,k1 ,
∑
m∈Z

|m|2s(|am|2 + |bm|2) <∞
}
. (2.2)

Lemma 2.1 [29, lemmas 3.8, 3.9]. For each s � 0, Hs
n,k is a Hilbert space with the

inner product

〈φ, ψ〉s,n,k = 〈a0, a
′
0〉 + 〈b0, b′0〉 + π

∑
m �=0

(|m|2s〈am, a′m〉 + |2m|2s〈bm, b′m〉).

Furthermore, if s > t, then the inclusion j : Hs
n,k ↪→ Ht

n,k and its Hilbert adjoint
j∗ : Ht

n,k → Hs
n,k are compact.

Let ‖ · ‖s,n,k denote the norm induced by 〈·, ·〉s,n,k. For r ∈ N or r = ∞ let
Crn,k([0, 1],R2n) denote the space of Cr maps x : [0, 1] → R

2n such that x(i) ∈ R
n,k,

i = 0, 1, and x(1) ∼ x(0), where ∼ is the leaf relation on R
n,k. (Note: Hs

n,n is exactly
the space Hs on p. 83 of [20]; Crn,n([0, 1],R2n) is Cr(R/Z,R2n).)

Lemma 2.2 [29, lemma 3.10]. If x ∈ Hs
n,k for s > 1/2 + r where r is an integer,

then x ∈ Crn,k([0, 1],R2n).

Lemma 2.3 [29, lemma 3.11]. j∗(L2) ⊂ H1
n,k and ‖j∗(y)‖1,n,k � ‖y‖L2 .

Let

E = H
1/2
n,k and ‖ · ‖E := ‖ · ‖1/2,n,k. (2.3)

It has an orthogonal decomposition E = E− ⊕ E0 ⊕ E+, where

E− =

{
x ∈ H

1/2
n,k

∣∣∣∣∣x L2

=
∑
m<0

emπtJ2nam +
∑
m<0

e2mπtJ2nbm

}
,

E0 = {x = x0 ∈ R
n,k},

E+ =

{
x ∈ H

1/2
n,k

∣∣∣∣∣x L2

=
∑
m>0

emπtJ2nam +
∑
m>0

e2mπtJ2nbm

}
.

Let P+, P 0 and P− be the orthogonal projections to E+, E0 and E− respectively.
For x ∈ E we write

x+ = P+x, x0 = P 0x and x− = P−x.

Define a functional a : E → R by

a(x) = 1
2 (‖x+‖2

E − ‖x−‖2
E).
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Then there holds

a(x) =
1
2

∫ 1

0

〈−J2nẋ, x〉dt, ∀ x ∈ C1
n,k([0, 1],R2n).

(See [29].) The functional a is differentiable with gradient ∇a(x) = x+ − x−.
From now on we assume that for some L > 0,

H ∈ C1(R2n,R) and ‖∇H(x) −∇H(y)‖R2n � L‖x− y‖R2n ∀ x, y ∈ R
2n. (2.4)

Then there exist positive real numbers Ci, i = 1, 2, 3, 4, such that

|∇H(z)| � C1|z| + C2, |H(z)| � C3|z|2 + C4

for all z ∈ R
2n. Define functionals b,ΦH : E → R by

b(x) =
∫ 1

0

H(x(t)) dt and ΦH = a − b. (2.5)

Lemma 2.4 [20, § 3.3, lemma 4]. The functional b is differentiable. Its gradient ∇b
is compact and satisfies a global Lipschitz condition on E. In particular, b is C1,1.

Lemma 2.5 [26, lemma 2.8]. x ∈ E is a critical point of ΦH if and only if x ∈
C1
n,k([0, 1],R2n) and solves

ẋ = XH(x) = J2n∇H(x).

Moreover, if H is of class Cl (l � 2) then each critical point of ΦH on E is Cl.

Since ∇ΦH(x) = x+ − x− −∇b(x) satisfies the global Lipschitz condition, it has
a unique global flow R × E → E : (u, x) �→ ϕu(x).

Lemma 2.6 [29, lemma 3.25]. ϕu(x) has the following form

ϕu(x) = e−ux− + x0 + eux+ +K(u, x),

where K : R × E → E is continuous and maps bounded sets into precompact sets.

This may follow from the proof of lemma 7 in [20, § 3.3] directly.

3. The Ekeland–Hofer capacity relative to a coisotropic subspace

We closely follow Sikorav’s approach [37] to the Ekeland–Hofer capacity in [13]. Fix
an integer 0 � k � n. Let E = H

1/2
n,k be as in (2.3) and S+ = {x ∈ E+ | ‖x‖E = 1}.

Definition 3.1. A continuous map γ : E → E is called an admissible deformation
if there exists a homotopy (γu)0�u�1 such that γ0 = id, γ1 = γ and satisfies

(i) ∀u ∈ [0, 1], γu(E \ (E− ⊕ E0)) ⊂ E \ (E− ⊕ E0), i.e. γu(x)+ �= 0 for any x ∈
E such that x+ �= 0.
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(ii) γu(x) = a(x, u)x+ + b(x, u)x0 + c(x, u)x− +K(x, u), where (a, b, c,K) is a
continuous map from E × [0, 1] to (0,+∞)3 ×E and maps any closed bounded
sets to compact sets.

Let Γn,k be the set of all admissible deformations on E. It is not hard to verify
that the composition γ ◦ γ̃ ∈ Γn,k for any γ, γ̃ ∈ Γn,k. (If k = n, Γn,k is equal to Γ
in [37].) Corresponding to [37, § 3, proposition 1] or [13, § II, proposition 1] we
can easily prove the following intersection property.

Proposition 3.2. γ(S+) ∩ (E− ⊕E0 ⊕ R+e) �= ∅ for any e ∈ E+ \ {0} and γ ∈
Γn,k.

Definition 3.3. For H ∈ C0(R2n,R�0), the R
n,k-coisotropic capacity of H is

defined by

cn,k(H) := sup
h∈Γn,k

inf
x∈h(S+)

ΦH(x) (3.1)

where ΦH is as in (2.5).

By proposition 1 in [37, § 3.3], for any H ∈ C0(R2n,R�0) there holds

cn,n(H) � sup
z∈Cn

(
π|z1|2 −H(z)

)
, (3.2)

where z1 ∈ C is the projection of z ∈ C
n ≡ C × C

n−1 to C. Correspondingly, we
have

Proposition 3.4. For any H ∈ C0(R2n,R�0) there holds

cn,k(H) � sup
z∈Cn

(π
2
|z|2 −H(z)

)
, k = 0, 1, . . . , n− 1. (3.3)

Proof. Let e(t) = eπJ2ntX, where X ∈ V n,k0 and |X| = 1. For any x = y + λe, where
y ∈ E− ⊕ E0 and λ > 0, it holds that

a(x) � 1
2
‖λe‖2

E =
π

2
λ2

and ∫ 1

0

〈x(t), eπJ2ntX〉dt =
∫ 1

0

〈λ eπJ2ntX, eπJ2ntX〉dt = λ.

It follows that

a(x) � π

2

(∫ 1

0

〈x(t), eπJ2ntX〉dt
)2

� π

2

∫ 1

0

|x(t)|2 dt.

This and proposition 3.2 lead to

inf
x∈γ(S+)

ΦH(x) � sup
x∈E−⊕E0⊕R+e

ΦH(x) � sup
z∈R2n

{π
2
|z|2 −H(z)

}
∀ γ ∈ Γn,k,

and hence (3.3) is proved. �
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A function H ∈ C0(R2n,R�0) is called R
n,k-admissible if it satisfies:

(H1) Int(H−1(0)) �= ∅ and intersects with R
n,k,

(H2) there exists z0 ∈ R
n,k, real numbers a, b such that H(z) = a|z|2 + 〈z, z0〉 + b

outside a compact subset of R
2n, where a > π for k = n, and a > π/2 for

0 � k < n.

Moreover, a R
n,n-admissible H is said to be nonresonant if a in (H2) does not

belong to πN; and a R
n,k-admissible H with k < n is called strong nonresonant if

a in (H2) does not sit in Nπ/2.
Clearly, for any R

n,k-admissible H ∈ C2(R2n,R�0), ∇H : R
2n → R

2n satisfies a
global Lipschitz condition.

Note that cn,k(H) < +∞ if H ∈ C0(R2n,R�0) satisfies

H(z) � a|z|2 + C, ∀ z ∈ R
2n (3.4)

for some constant C, where a = π for k = n, and a = π/2 for 0 � k < n. In par-
ticular, we have cn,k(H) < +∞ for any H ∈ C0(R2n,R�0) satisfying (H2). In fact,
for k = n this can be derived from (3.2) (cf. [37]). For 0 � k < n, since there exist
constants a > π/2, b such that H(z) � a|z|2 + 〈z, z0〉 + b for all z ∈ R

2n, using the
inequality

|〈z, z0〉| � ε|z|2 +
1
4ε

|z0|2

for any 0 < ε < a− π
2 , we deduce that

π

2
|z|2 −H(z) �

(
ε−
(
a− π

2

))
|z|2 +

|z0|2
4ε

− b � |z0|2
4ε

− b <∞.

Then proposition 3.4 leads to cn,k(H) < +∞.
It is easy proved that cn,k(H) satisfies:

Proposition 3.5. Let H,K ∈ C0(R2n,R�0) satisfy (H1) and (H2). Then the
following holds:

(i) (Monotonicity) If H � K then cn,k(H) � cn,k(K).

(ii) (Continuity) |cn,k(H) − cn,k(K)| � supz∈R2n |H(z) −K(z)|.
(iii) (Homogeneity) cn,k(λ2H(·/λ)) = λ2cn,k(H) for λ �= 0.

By proposition 2 in [37, § 3.3] the following proposition holds for k = n.

Proposition 3.6. Suppose that H ∈ C0(R2n,R�0) satisfies

H(z0 + z) � C1|z|2 and H(z0 + z) � C2|z|3 ∀ z ∈ R
2n (3.5)

for some z0 ∈ R
n,k and for constants C1 > 0 and C2 > 0. Then cn,k(H) > 0. In

particular, cn,k(H) > 0 for any R
n,k-admissible H ∈ C2(R2n,R�0).
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Proof. We assume k < n. For a constant ε > 0 define γε ∈ Γn,k by γε(x) = z0 +
εx ∀ x ∈ E. We claim that

inf
y∈γε(S+)

ΦH(y) > 0 (3.6)

for sufficiently small ε. Since

ΦH(z0 + x) =
1
2
‖x‖2

E −
∫ 1

0

H(z0 + x) dt ∀ x ∈ E+, (3.7)

it suffices to prove that

lim
‖x‖E→0

∫ 1

0
H(z0 + x) dt
‖x‖2

E

= 0. (3.8)

Otherwise, suppose there exists a sequence (xj) ⊂ E and d > 0 satisfying

‖xj‖E → 0 and

∫ 1

0
H(z0 + xj) dt
‖xj‖2

E

� d > 0 ∀ j. (3.9)

Let yj = xj/‖xj‖E and hence ‖yj‖E = 1. Then lemma 2.1 implies that (yj) has a
convergent subsequence in L2. By a standard result in Lp theory, we have w ∈ L2

and a subsequence of (yj), still denoted by (yj), such that yj(t) → y(t) a.e. on (0, 1)
and that |yj(t)| � w(t) a.e. on (0, 1) for each j. It follows from (3.5) that

H(z0 + xj(t))

‖xj‖2
E

� C1
|xj(t)|2
‖xj‖2

E

= C1|yj(t)|2 � C1w(t)2, a.e. on (0, 1), ∀ j,

H(z0 + xj(t))

‖xj‖2
E

� C2
|xj(t)|3
‖xj‖2

E

= C2|xj(t)| · |yj(t)|2 � C2|xj(t)|w(t)2, a.e. on (0, 1), ∀j.

The first claim in (3.9) implies that (xj) has a subsequence such that xjl(t) → 0,
a.e. in (0, 1). Hence the Lebesgue dominated convergence theorem leads to∫ 1

0

H(z0 + xjl(t))
‖xjl‖2

E

dt→ 0.

This contradicts the second claim in (3.9).
For any fixed R

n,k-admissible H ∈ C2(R2n,R�0), pick some z0 ∈ R
n,k ∩

Int(H−1(0)). Since (H1) implies that H vanishes near z0, by (H2) and the Tay-
lor expansion of H at z0 ∈ R

2n, we have constants C1 > 0 and C2 > 0 such that H
satisfies (3.5). �

By (3.2) and propositions 3.4 and 3.6 we see that cn,k(H) is a finite positive
number for each R

n,k-admissible H. The following is a generalization of lemma 3
in [37, § 3.4].
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Lemma 3.7. Let H ∈ C0(R2n,R�0) satisfy (3.4) and (3.5). Then

cn,k(H) = sup
F∈Fn,k

inf
x∈F

ΦH(x),

where

Fn,k := {γ(S+) | γ ∈ Γn,k and inf(ΦH |γ(S+)) > 0}. (3.10)

Moreover, if H is also of class C2 and has bounded derivatives of second order, then
Fn,k is positive invariant under the flow ϕu of ∇ΦH (which must exist as pointed
out above in lemma 2.6).

Proof. Since cn,k(H) is a finite positive number by proposition 3.6, the first claim
follows from the arguments above proposition 3.5.

When H has bounded derivatives of second order, (2.4) is satisfied naturally.
Then ∇ΦH satisfies the global Lipschitz condition, and thus has a unique global
flow R × E → E : (u, x) �→ ϕu(x) satisfying lemma 2.6, that is, ϕu(x) = e−ux− +
x0 + eux+ + K̃(u, x), where K̃ : R × E → E is continuous and maps bounded sets
into precompact sets. For a set F = γ(S+) ∈ Fn,k with γ ∈ Γn,k, we have α :=
inf(ΦH |γ(S+)) > 0 by the definition of Fn,k. Let ρ : R → [0, 1] be a smooth function
such that ρ(s) = 0 for s � 0 and ρ(s) = 1 for s � α. Define a vector field V on E
by

V (x) = x+ − x− − ρ(ΦH(x))∇b(x).

Clearly V is locally Lipschitz and has linear growth. These imply that V has a
unique global flow, denoted by Υu. Moreover, it is obvious that Υu has the same
property as ϕu described in lemma 2.6. For x ∈ E− ⊕ E0, we have ΦH(x) � 0
and hence V (x) = −x−, which implies that Υu(E− ⊕ E0) = E− ⊕ E0 and Υu(E \
E− ⊕ E0) = E \ E− ⊕ E0 since Υu is a homeomorphism for each u ∈ R. Therefore,
Υu ∈ Γn,k for all u ∈ R.

Note that V |Φ−1
H ([α,∞]) = ∇ΦH(x). For each u � 0 we have Υu(x) = ϕu(x) for any

x ∈ Φ−1
H ([α,∞]), and especially Υu(F ) = ϕu(F ), that is, (Υu ◦ γ)(S+) = ϕu(F ).

Since Γn,k is closed for the composition operation and

inf(ΦH |(Υu◦γ)(S+)) = inf(ΦH |ϕu(F )) � inf(ΦH |F ) > 0,

we obtain ϕu(F ) ∈ Fn,k, that is, Fn,k is positively invariant under the flow ϕu of
∇ΦH . �

Clearly, a R
n,k-admissible H ∈ C2(R2n,R�0) satisfies the conditions of

lemma 3.7.

Theorem 3.8. If an R
n,k-admissible H ∈ C2(R2n,R�0) is nonresonant for k = n,

and strong nonresonant for k < n, then cn,k(H) is a positive critical value of ΦH .

The case of k = n was proved in [13, § II, proposition 2] (see also [37, § 3.4,
proposition 1]). It remains to prove the case k < n. By lemma 2.4, the functional
ΦH is C1,1 and its gradient ∇ΦH satisfies a global Lipschitz condition on E. By a
standard minimax argument, theorem 3.8 follows from lemma 3.7 and the following
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Lemma 3.9. If an R
n,k-admissible H ∈ C1(R2n,R� 0) is strong nonresonant, then

each sequence (xj) ⊂ E with ∇ΦH(xj) → 0 has a convergent subsequence. In
particular, ΦH satisfies the (PS) condition.

Proof. The functional b is differentiable. Its gradient ∇b is compact and satisfies a
global Lipschitz condition on E. Since ∇ΦH(x) = x+ − x− −∇b(x) for any x ∈ E,
we have

x+
j − x−j −∇b(xj) → 0. (3.11)

Case 1. (xj) is bounded in E. Then (x0
j ) is a bounded sequence in the space R

n,k of
finite dimension. Hence (x0

j ) has a convergent subsequence. Moreover, since ∇b is
compact, (∇b(xj)) has a convergent subsequence, and so both (x+

j ) and (x−j ) have
convergent subsequences in E. It follows that (xj) has a convergent subsequence.

Case 2. (xj) is unbounded in E. Without loss of generality, we may assume
limj→+∞ ‖xj‖E = +∞. For z0 ∈ R

n,k defined as in (H2), let

yj =
xj

‖xj‖E − 1
2a
z0.

Then |y0
j | � ‖yj‖E � 1 + |z0/2a|, and (3.11) implies

y+
j − y−j − j∗

(∇H(xj)
‖xj‖E

)
→ 0. (3.12)

Also by (H2) there exist constants C1 and C2 such that∥∥∥∥∇H(xj)
‖xj‖E

∥∥∥∥2
L2

� 8a2‖xj‖2
L2 + C1

‖xk‖2
E

� C2

that is, (∇H(xj)/‖xj‖E) is bounded in L2. Hence the sequence j∗(∇H(xj)/‖xj‖E)
is compact. (3.12) implies that (yj) has a convergent subsequence in E. Without
loss of generality, we may assume that yj → y in E. Since (H2) implies that H(z) =
Q(z) := a|z|2 + 〈z, z0〉 + b for |z| sufficiently large, there exists a constant C > 0
such that |∇H(z) −∇Q(z)| � C for all z ∈ R

2n. It follows that as j → ∞,∥∥∥∥∇H(xj)
‖xj‖E −∇Q(y)

∥∥∥∥
L2

�
∥∥∥∥∇H(xj)

‖xj‖E −∇Q(yj)
∥∥∥∥
L2

+ ‖∇Q(yj) −∇Q(y)‖L2

�
∥∥∥∥∇H(xj) −∇Q(xj)

‖xj‖E

∥∥∥∥
L2

+
|z0|

‖xj‖E + 2a‖yj − y‖L2

� C

‖xj‖E +
|z0|

‖xj‖E + 2a‖yj − y‖L2 → 0.

This implies that j∗(∇H(xk)/‖xk‖E) tends to j∗(∇Q(y)) in E, and thus we arrive
at

y+ − y− − j∗(∇Q(y)) = 0 and
∥∥∥y +

z0
2a

∥∥∥
E

= 1.
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Then y is smooth and satisfies

ẏ = J2n∇Q(y) and y(1) ∼ y(0), y(0), y(1) ∈ R
n,k.

Clearly y(t) is given by

y(t) +
1
2a
z0 = e2aJ2nt

(
y(0) +

1
2a
z0

)
.

Since ‖y + (1/2a)z0‖E = 1 implies that y + (1/2a)z0 is nonconstant, using the
boundary condition satisfied by y and the assumption that z0 ∈ R

n,k, we deduce
that 2a ∈ mNπ. This gives rise to a contradiction because H is strong non-
resonant. �

Corresponding to [37, § 3.5, lemma] we have

Lemma 3.10. Suppose that H : R
2n → R is of class C2n+2 and that ∇H : R

2n →
R

2n satisfies a global Lipschitz condition. Then the set of critical values of ΦH has
empty interior in R.

Proof. The method is similar to that of [26, lemma 3.5]. For clearness we give it in
details. By lemma 2.4, ΦH is C1,1. Lemma 2.5 implies that all critical points of ΦH
sit in C2n+2

n,k ([0, 1],R2n). Thus the restriction of ΦH to C1
n,k([0, 1],R2n), denoted by

Φ̂H , and ΦH have the same critical value sets. As in the proof of [24, claim 4.4] we
can deduce that Φ̂H is of class C2n+1.

Let P0 and P1 be the orthogonal projections of R
2n to the spaces V n,k0 and V 2k

1

in (1.1) and (1.2), respectively. Take a smooth g : [0, 1] → [0, 1] such that g equals
1 (resp. 0) near 0 (resp. 1). Denote by φt the flow of XH . Since XH is C2n+1, we
have a C2n+1 map

ψ : [0, 1] × R
n,k → R

2n, (t, z) �→ g(t)φt(z) + (1 − g(t))φt−1(P0φ
1(z) + P1z).

For any z ∈ R
n,k, since ψ(0, z) = φ0(z) = z and ψ(1, z) = P0φ

1(z) + P1z, we have

ψ(1, z), ψ(0, z) ∈ R
n,k and ψ(1, z) ∼ ψ(0, z).

These and [24, corollary B.2] show that ψ gives rise to a C2n map

Ω : R
n,k → C1

n,k([0, 1],R2n), z �→ ψ(·, z).

Hence ΦH ◦ Ω : R
n,k → R is of class C2n. By Sard’s theorem we deduce that the

critical value sets of ΦH ◦ Ω is nowhere dense (since dim R
n,k < 2n).

Let z ∈ R
n,k be such that φ1(z) ∈ R

n,k and φ1(z) ∼ z. Then P0φ
1(z) − P0z =

φ1(z) − z and therefore P0φ
1(z) + P1z = φ1(z), which implies ψ(t, z) = φt(z)∀ t ∈

[0, 1].
For a critical point y of ΦH , that is, y ∈ C2n+2

n,k ([0, 1],R2n) and solves ẏ =
J2n∇H(y) = XH(y), with zy := y(0) ∈ R

n,k we have y(t) = φt(zy) ∀ t ∈ [0, 1],
which implies that φ1(zy) ∈ R

n,k, φ1(zy) ∼ zy and therefore y = ψ(·, zy) = Ω(zy).
Hence zy is a critical point of ΦH ◦ Ω and ΦH ◦ Ω(zy) = ΦH(y). Thus the critical
value set of ΦH is contained in that of ΦH ◦ Ω. The desired claim is obtained. �
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Having this lemma we can prove the following proposition, which corresponds to
proposition 3 in [13, § II].

Proposition 3.11. Let H ∈ C2n+2(R2n,R�0) be R
n,k-admissible with k < n and

strong nonresonant. Suppose that [0, 1] � s �→ ψs is a smooth homotopy of the
identity in Symp(R2n, ω0) satisfying

ψs(Rn,k) = R
n,k, ψs(w + V n,k0 ) = ψs(w) + V n,k0 ∀ w ∈ R

n,k (3.13)

and

ψs(z) = z + ws ∀ z ∈ R
2n \B2n(0, R),

where R > 0 and [0, 1] � s �→ ws is a smooth path in R
n,k. Then s �→ cn,k(H ◦ ψs)

is constant. Moreover, the same conclusion holds true if all ψs are replaced by
translations R

2n � z �→ z + ws, where [0, 1] � s �→ ws is a smooth path in R
n,k. In

particular, cn,k(H(· + w)) = cn,k(H) for any w ∈ R
n,k.

Proof. By the assumptions each H ◦ ψs is also R
n,k-admissible and strong nonreso-

nant. Hence c(H ◦ ψs) is a positive critical value for each s. Let x ∈ E be a critical
point of ΦH◦ψs with critical value c(H ◦ ψs). Then x ∈ C2n+2

n,k ([0, 1],R2n) and solves
ẋ = J2n∇(H ◦ ψs)(x) = XH◦ψs(x). Let ys = ψs ◦ x. Then ys ∈ C2n+2

n,k ([0, 1],R2n)
and satisfies

ẏs(t) = (dψs(x(t))ẋ(t) = (dψs(x(t))XH◦ψs(x(t)) = XH(ψs(x(t)) = J2n∇H(ys(t))

since dψs(z)XH(z) = XH(ψs(z)) for any z ∈ R
2n by [20, p. 9]. Therefore ys is a

critical point of ΦH on E. We claim that

ΦH(ys) = ΦH◦ψs(x). (3.14)

Clearly, it suffices to prove the following equality:

A(ys) =
1
2

∫ 1

0

〈−J2nẏs, ys〉dt =
1
2

∫ 1

0

〈−J2nẋ, x〉dt = A(x). (3.15)

Extend x into a piecewise C2n+2-smooth loop x∗ : [0, 2] → R
2n by setting x∗(t) =

(2 − t)x(1) + (t− 1)x(0) for any 1 � t � 2. We get a piecewise C2n+2-smooth loop
extending of ys, y∗s = ψs(x∗). Clearly, we can extend x∗ into a piecewise C2n+2-
smooth u : D2 → R

2n, where D2 is a closed disc bounded by ∂D2 ≡ [0, 2]/{0, 2}.
Then ψs ◦ u : D2 → R

2n is piecewise C2n+2-smooth and ψs ◦ u|∂D2 = y∗s . Stokes
theorem yields

1
2

∫ 2

0

〈−J2nẋ
∗, x∗〉dt =

∫
D2
u∗ω0,

1
2

∫ 2

0

〈−J2nẏ
∗
s , y

∗
s 〉dt =

∫
D2

(ψs ◦ u)∗ω0 =
∫
D2
u∗ω0.

Moreover, for any t ∈ [1, 2] we have ẋ∗(t) = x(0) − x(1) ∈ V n,k0 and x∗(t) ∈ R
n,k,

and therefore 〈−J2nẋ
∗(t), x∗(t)〉 = 0 because R

2n has the orthogonal decomposition
R

2n = J2nV
n,k
0 ⊕ R

n,k. Then (3.15) follows from these.
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Since s �→ cn,k(H ◦ ψs) is continuous by proposition 3.5, and a critical point x of
ΦH◦ψs with critical value c(H ◦ ψs) yields a critical point ys of ΦH on E satisfying
(3.14), we deduce that each c(H ◦ ψs) is also a critical value of ΦH . Lemma 3.10
shows that s �→ cn,k(H ◦ ψs) must be constant.

Finally, let ψs(z) = z + ws. It is clear that H ◦ ψs is R
n,k-admissible and strong

nonresonant. Thus c(H ◦ ψs) is a positive critical value. If x ∈ E is a critical point
of ΦH◦ψs with critical value c(H ◦ ψs), then ys := ψs ◦ x is a critical point of ΦH
on E and (3.14) holds. Hence s �→ cn,k(H(· + ws)) is constant. �

Let Fn,k(R2n) = {H ∈ C0(R2n,R�0) |H satisfies (H2)}. For each bounded subset
B ⊂ R

2n such that B ∩ R
n,k �= ∅, we define

Fn,k(R2n, B) = {H ∈ Fn,k(R2n) |H vanishes near B}. (3.16)

Definition 3.12. For each bounded subset B ⊂ R
2n such that B ∩ R

n,k �= ∅,
cn,k(B) := inf{cn,k(H) |H ∈ Fn,k(R2n, B)} ∈ [0,+∞) (3.17)

is called the coisotropic Ekeland–Hofer capacity of B (relative to R
n,k). For any

unbounded subset B ⊂ R
2n such that B ∩ R

n,k �= ∅, its coisotropic Ekeland–Hofer
capacity is defined by

cn,k(B) = sup{cn,k(A) |A ⊂ B,A is bounded and A ∩ R
n,k �= ∅}. (3.18)

Remark 3.13. When k = n in the above definition, cn,n(B) is the (first)
Ekeland–Hofer capacity of B.

For each bounded B ⊂ R
2n such that B ∩ R

n,k �= ∅, we write

En,k(R2n, B) = {H ∈ Fn,k(R2n, B) |H is strong nonresonant} if k < n,

En,n(R2n, B) = {H ∈ Fn,k(R2n, B) |H is nonresonant}.
Clearly, eachH ∈ En,k(R2n, B) satisfies (H1), and En,k(R2n, B) is a cofinal family of
Fn,k(R2n, B), that is, for any H ∈ Fn,k(R2n, B) there exists G ∈ En,k(R2n, B) such
that G � H. Moreover, for each l ∈ N ∪ {∞} the smaller subset En,k(R2n, B) ∩
Cl(R2n,R�0) is also a cofinal family of Fn,k(R2n, B). By the definition, we
immediately get:

Proposition 3.14.

(i) cn,k(B) = cn,k(B).

(ii) Fn,k(R2n, B) in (3.17) can be replaced by any cofinal subset of it.

(iii) Suppose that B ⊂ B2n(R). For each l ∈ N ∪ {∞} let Eln,k(R
2n, B) consist of

H ∈ Fn,k(R2n, B) ∩ Cl(R2n,R�0) for which there exists z0 ∈ R
n,k, real num-

bers a, b such that H(z) = a|z|2 + 〈z, z0〉 + b outside the closed ball B2n(R),
where a > π and a /∈ πN for k = n, and a > π/2 and a /∈ πN/2 for 0 � k < n.
Then each Eln,k(R

2n, B) is a cofinal subset of Fn,k(R2n, B).
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Proof. We only prove (iii). By (ii) it suffices to prove that for each given H ∈
En,k(R2n, B) there exists G ∈ Eln,k(R

2n, B) such that G � H. We may assume that
H(z) = a|z|2 + 〈z, z0〉 + b outside a larger closed ball B2n(R1), where a > π and
a /∈ πN for k = n, and a > π/2 and a /∈ πN/2 for 0 � k < n. Let Uε(B) be the
ε-neighbourhood of B. We can also assume that H vanishes in U2ε(B). Since
B2n(R1) is compact, we may find numbers a′ > a, b′ such that a′ /∈ πN for k = n,
a′ /∈ πN/2 for 0 � k < n, and a′|z|2 + 〈z, z0〉 + b′ � H(z) for all z ∈ R

2n. Take a
smooth function f : R

2n → R�0 such that it equals to zero in Uε(B) and 1 out-
side U2ε(B). Define G(z) := f(z)(a′|z|2 + 〈z, z0〉 + b′) for z ∈ R

2n. Then G � H and
G ∈ E∞

n,k(R
2n, B). �

Remark 3.15. Let Hn,k(R2n, B) consist of H ∈ C∞(R2n,R�0) which vanishes near
B and for which there exists z0 ∈ R

n,k and a real number a such that H(z) = a|z|2
outside a compact subset, where a > π and a /∈ πN for k = n, and a > π/2 and
a /∈ πN/2 for 0 � k < n. As in the proof of proposition 1.1 it is not hard to prove
that Hn,k(R2n, B) is a cofinal subset of Fn,k(R2n, B). When k = n this shows that
Sikorav’s approach [37] to the Ekeland–Hofer capacity in [13] defines the same
capacity.

Proof of proposition 1.1. Proposition 3.5(i)–(iii) lead to the first three claims.
Let us prove (iv). We may assume that B is bounded. By (3.17) we have a
sequence (Hj) ⊂ Fn,k(R2n, B) such that cn,k(Hj) → cn,k(B). Note thatHj(· − w) ∈
Fn,k(R2n, B + w) for each j. Hence

cn,k(B + w) � inf
j
cn,k(Hj(·−w)) = inf

j
cn,k(Hj) = cn,k(B)

by the final claim in proposition 3.11. The same reasoning leads to cn,k(B) =
cn,k(B + w + (−w)) � cn,k(B + w) and so cn,k(B + w) = cn,k(B). �

Proposition 3.16 (Relative monotonicity). Let subsets A,B ⊂ R
2n satisfy A ∩

R
n,k �= ∅ and B ∩ R

n,k �= ∅. If there exists a smooth homotopy of the identity
in Symp(R2n, ω0) as in proposition 3.11, [0, 1] � s �→ ψs, such that ψ1(A) ⊂ B,
then cn,k(A) = cn,k(ψs(A)) for all s ∈ [0, 1], and in particular cn,k(A) � cn,k(B)
by proposition 1.1(i).

Proof. Note that

En,k(R2n, A) ∩ C∞(R2n,R�0) → En,k(R2n, ψs(A))∩C∞(R2n,R�0), H �→H ◦ ψ−1
s

is a one-to-one correspondence. Then

cn,k(ψs(A)) = inf{cn,k(G) |G ∈ En,k(R2n, ψs(A)) ∩ C∞(R2n,R�0)}
= inf{cn,k(H ◦ ψ−1

s ) |H ∈ En,k(R2n, A) ∩ C∞(R2n,R�0)}
= inf{cn,k(H) |H ∈ En,k(R2n, A) ∩ C∞(R2n,R�0)} = cn,k(A).

Here the third equality comes from proposition 3.11. �
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Proof of theorem 1.2. We may assume that B is bounded, and complete the proof
in two steps.

Step 1. Prove cn,k(Φ(B)) = cn,k(B) for every Φ ∈ Sp(2n, k). Take a smooth path
[0, 1] � t �→ Φt ∈ Sp(2n, k) such that Φ0 = I2n and Φ1 = Φ. We have a smooth func-
tion [0, 1] × R

2n � (t, z) �→ Gt(z) ∈ R
2n such that the path Φt is generated by XGt

and that Gt(z) = 0 ∀ z ∈ R
n,k (see step 2 below). Since ∪t∈[0,1]Φt(B) is compact,

it can be contained in a ball B2n(0, R) for some R > 0. Take a smooth cut func-
tion ρ : R

2n → [0, 1] such that ρ = 1 on B2n(0, 2R) and ρ = 0 outside B2n(0, 3R).
Define a smooth function G̃ : [0, 1] × R

2n → R by G̃(t, z) = ρ(z)Gt(z) for (t, z) ∈
[0, 1] × R

2n. Denote by ψt the Hamiltonian path generated by G̃ in Hamc(R2n, ω0).
Then ψt(z) = Φt(z) for all (t, z) ∈ [0, 1] ×B2n(0, R). Moreover each ψt restricts to
the identity on R

n,k because G̃(t, z) = ρ(z)Gt(z) = 0 for all (t, z) ∈ [0, 1] × R
n,k.

Hence we obtain cn,k(Φ(B)) = cn,k(Φ1(B)) = cn,k(B) by proposition 3.16.

Step 2. Prove cn,k(φ(B)) = cn,k(B) in case w0 = 0. Let Φ = (dφ(0))−1. Since
cn,k(Φ ◦ φ(B)) = cn,k(φ(B)) by step 1, and Φ ◦ φ(w) = w ∀ w ∈ R

n,k, replacing Φ ◦
φ by φ, we may assume dφ(0) = idR2n . Define a continuous path in Symp(R2n, ω0),

ϕt(z) =

{
z if t � 0,
1
t
φ(tz) if t > 0,

(3.19)

which is smooth except possibly at t = 0. As in [36, proposition A.1] we can
smoothen it with a smooth function η : R → R defined by

η(t) =
{

0 if t � 0,
e2 e−2/t if t > 0,

(3.20)

where e is the Euler number. Namely, defining φt(z) := ϕη(t)(z) for z ∈ R
2n and

t ∈ R, we get a smooth path R � t �→ φt ∈ Symp(R2n, ω0) such that

φ0 = idR2n , φ1 = φ, φt(z) = z, ∀ z ∈ R
n,k, ∀ t ∈ R. (3.21)

Define Xt(z) = ((d/dt)φt)(φ−1
t (z)) and

Ht(z) =
∫ z

0

iXtω0, (3.22)

where the integral is along any piecewise smooth curve from 0 to z in R
2n. Then R ×

R
2n � (t, z) �→ Ht(z) ∈ R is smooth and Xt = XHt . By the final condition in (3.21),

for each (t, z) ∈ R × R
n,k we have Xt(z) = 0 and therefore Ht(z) = 0. As in step 1,

we can assume that ∪t∈[0,1]φt(B) is contained a ball B2n(0, R). Take a smooth cut
function ρ : R

2n → [0, 1] as above, and define a smooth function H̃ : [0, 1] × R
2n →

R by H̃(t, z) = ρ(z)Ht(z) for (t, z) ∈ [0, 1] × R
2n. Then the Hamiltonian path ψt

generated by H̃ in Hamc(R2n, ω0) satisfies

ψt(z) = φt(z), ∀ (t, z) ∈ [0, 1] ×B2n(0, R) and ψt(z) = z, ∀ (t, z) ∈ [0, 1] × R
n,k.

It follows from proposition 3.16 that cn,k(φ(B)) = cn,k(ψ1(B)) = cn,k(B) as above.
Step 3. Prove cn,k(φ(B)) = cn,k(B) in case w0 �= 0. Define ϕ(w) = φ(w + w0) for
w ∈ R

2n. Then dϕ(0) = dφ(w0) ∈ Sp(2n, k) and ϕ(w) = φ(w + w0) = w∀ w ∈ R
n,k.
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By step 2 we arrive at cn,k(ϕ(B − w0)) = cn,k(B − w0). The desired equality follows
because φ(B) = ϕ(B − w0) and cn,k(B − w0) = cn,k(B) by proposition 1.1. �

Proof of corollary 1.3. As discussed above the proof is reduced to the case w0 = 0.
Moreover we can assume that both sets A and U are bounded and that U is also
star-shaped with respect to the origin 0 ∈ R

2n.
Next the proof can be completed following [36, proposition A.1]. Now [0, 1] �

t �→ φt(·) := ϕη(t)(·) given by (3.19) and (3.20) is a smooth path of symplectic
embeddings from U to R

2n with properties

φ0 = idU , φ1 = ϕ, φt(z) = z, ∀ z ∈ R
n,k ∩ U, ∀ t ∈ R. (3.23)

Thus Xt(z) := ((d/dt)φt)(φ−1
t (z)) is a symplectic vector field defined on φt(U),

and (3.22) (where the integral is along any piecewise smooth curve from 0 to z in
φt(U)) defines a smooth function Ht on φt(U) in the present case. Observe that
H : ∪t∈[0,1]({t} × φt(U)) → R defined by H(t, z) = Ht(z) is smooth and generates
the path φt. Since K = ∪t∈[0,1]{t} × φt(A) is a compact subset in [0, 1] × R

2n we
can choose a bounded and relative open neighbourhood W of K in [0, 1] × R

2n such
that W ⊂ ∪t∈[0,1]({t} × φt(U)). Take a smooth cut function χ : [0, 1] × R

2n → R

such that χ|K = 1 and χ vanishes outside W . Define Ĥ : [0, 1] × R
2n → R by

Ĥ(t, z) = χ(t, z)H(t, z). It generates a smooth homotopy ψt (t ∈ [0, 1]) of the
identity in Hamc(R2n, ω0) such that ψt(z) = φt(z) for all (t, z) ∈ [0, 1] ×A. More-
over, the final condition in (3.21) implies that R

n,k ∩ U ⊂ φt(U) and Xt(z) = 0
for any t ∈ [0, 1] and z ∈ R

n,k ∩ U . Hence for any (t, z) ∈ [0, 1] × R
n,k we have

Ĥ(t, z) = χ(t, z)H(t, z) = 0 and so ψt(z) = z. Then proposition 3.16 leads to
cn,k(A) = cn,k(ψ1(A)) = cn,k(φ1(A)) = cn,k(ϕ(A)). �

4. Proof of theorem 1.4

The case of k = n was proved in [13, 14, 37]. We assume k < n below. By
proposition 1.1(iv), cn,k(D) = cn,k(D + w) for any w ∈ R

n,k. Moreover, for each
x ∈ C1

n,k([0, 1]) there holds

A(x) =
1
2

∫ 1

0

〈−J2nẋ, x〉dt =
1
2

∫ 1

0

〈−J2nẋ, x+ w〉dt = A(x+ w), ∀ w ∈ R
n,k.

Recalling that D ∩ R
n,k �= ∅, we may assume that D contains the origin 0 below.

Let jD be the Minkowski functional associated to D, H := j2D and H∗ be the
Legendre transform of H. Then ∂D = H−1(1), and there exists a constant R � 1
such that

|z|2
R

� H(z) � R|z|2 and so
|z|2
4R

� H∗(z) � R

4
|z|2 (4.1)

for all z ∈ R
2n. Moreover H is C1,1 with uniformly Lipschitz constant.

By [26, theorem 1.5]

Σn,k∂D := {A(x) > 0 |x is a leafwise chord on ∂D for R
n,k}

contains a minimum number �, that is, there exists a leafwise chord x∗ on ∂D for
R
n,k such that A(x∗) = min Σn,k∂D = �. Actually, the arguments therein shows that
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there exists w ∈ C1
n,k([0, 1]) such that

A(w) = 1 and I(w) :=
∫ 1

0

H∗(−J2nẇ) dt = A(x∗) = �. (4.2)

Let us prove (1.8) and (1.9) by the following two steps. As done in [24, 25]
(see also step 4 below), by approximating arguments we can assume that ∂D is
smooth and strictly convex. In this case Σn,k∂D has no interior points in R because of
[26, lemma 3.5], and we give a complete proof though the ideas which are similar
to those of the proof of [37] (and [25, theorem 1.11] and [24, theorem 1.17]).

Step 1. Prove that cn,k(D) � �. By the monotonicity of cn,k it suffices to prove
cn,k(∂D) � �. For a given ε > 0, consider a cofinal family of Fn,k(R2n, ∂D),

En,kε (R2n, ∂D) (4.3)

consisting of H = f ◦H, where f ∈ C∞(R,R�0) satisfies

f(s) = 0 for s near1 ∈ R,
f ′(s) � 0 ∀ s � 1, f ′(s) � 0 ∀ s � 1,
f ′(s) = α ∈ R \ Σn,k∂D if f(s) � ε s > 1

⎫⎬⎭ (4.4)

and where α is required to satisfy for some constant C > 0

αH(z) � π

2
|z|2 − C for |z| sufficiently large (4.5)

because of (4.1) and Int(Σn,k∂D) = ∅.
Then each H ∈ En,kε (R2n, ∂D) satisfies all conditions in lemma 3.7. Indeed, it

belongs to C∞(R2n,R�0), restricts to zero near ∂D and thus satisfies (H1). Note
that f(s) = αs+ ε− αs0 for s � s0, where s0 = inf{s > 1 | f(s) � ε}. (4.5) implies
that H(z) � (π/2)|z|2 − C ′ ∀ z ∈ R

2n for some constant C ′ > 0, and therefore
cn,k(H) < +∞ by the arguments above proposition 3.5. Moreover, it is clear that
R
n,k ∩ Int(H

−1
(0)) �= ∅ and |Hzz(z)| is bounded on R

2n. Then (3.5) is satisfied with
any z0 ∈ R

n,k ∩ Int(H
−1

(0)) by the arguments at the end of proof of proposition
3.6. Hence cn,k(H) > 0.

By combining proofs of lemma 3.9 and [26, lemma 3.7] we can obtain the first
claim of the following.

Lemma 4.1. For every H ∈ En,kε (R2n, ∂D), ΦH satisfies the (PS) condition and
hence cn,k(H) is a positive critical value of ΦH .

Lemma 4.2. For every H ∈ En,kε (R2n, ∂D), any positive critical value c of ΦH is
greater than min Σn,k∂D − ε. In particular, cn,k(H) > min Σn,k∂D − ε.
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Proof. For a critical point x of ΦH with positive critical values there holds

−J2nẋ(t) = ∇H(x(t)) = f ′(H(x(t)))∇H(x(t)), x(1) ∼ x(0), x(1), x(0) ∈ R
n,k

and H(x(t)) ≡ c0 (a positive constant). Since

0 < ΦH(x) =
1
2

∫ 1

0

〈J2nx(t), ẋ(t)〉dt−
∫ 1

0

H(x(t)) dt

=
1
2

∫ 1

0

〈x(t), f ′(c0)∇H(x(t))〉dt−
∫ 1

0

f(s) dt

= f ′(c0)c0 − f(c0),

we deduce β := f ′(c0) > 0, and so c0 > 1. Define y(t) = (1/
√
c0)x(t/β) for 0 � t �

β. Then

H(y(t)) = 1, −J2nẏ = ∇H(y(t)), y(β) ∼ y(0), y(β), y(0) ∈ R
n,k

and therefore f ′(c0) = β = A(y) ∈ Σn,k∂D . By the definition of f this implies f(c0) < ε
and so

ΦH(x) = f ′(c0)c0 − f(c0) > f ′(c0) − ε � min Σn,k∂D − ε. �

Since for any ε > 0 and G ∈ Fn,k(R2n, ∂D), there exists H ∈ En,kε (R2n, ∂D) such
that H � G, we deduce that cn,k(G) � cn,k(H) � min Σn,k∂D − ε. Hence cn,k(∂D) �
min Σn,k∂D = �.

Step 2. Prove that cn,k(D) � �. Denote by w∗ the projections of w in (4.2) onto E∗

(according to the decomposition E = E1/2 = E+ ⊕ E− ⊕ E0), ∗ = 0,−,+. Then
w+ �= 0. (Otherwise, a contradiction occurs because 1 = A(w) = A(w0 ⊕ w−) =
− 1

2‖w−‖2.) Define y := w/
√
�. Then y ∈ C1

n,k([0, 1]) satisfies I(y) = 1 and A(y) =
1/�. It follows from the definition of H∗ that for any λ ∈ R and x ∈ E,

λ2 = I(λy) =
∫ 1

0

H∗(−λJ2nẏ(t)) dt �
∫ 1

0

{〈x(t),−λJẏ(t)〉 −H(x(t))}dt

and so∫ 1

0

H(x(t)) dt �
∫ 1

0

〈x(t),−λJ2nẏ(t)〉dt− λ2 = λ

∫ 1

0

〈x(t),−J2nẏ(t)〉dt− λ2.

In particular, taking λ = 1
2

∫ 1

0
〈x(t),−J2nẏ(t)〉dt we arrive at

∫ 1

0

H(x(t)) dt �
(

1
2

∫ 1

0

〈x(t),−J2nẏ(t)〉dt
)2

, ∀ x ∈ E. (4.6)

Since y+ = w+/
√
� �= 0 and E− ⊕ E0 + R+y = E− ⊕ E0 ⊕ R+y

+, by proposi-
tion 3.2(ii),

γ(S+) ∩ (E− ⊕ E0 + R+y) �= ∅, ∀ γ ∈ Γn,k.
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Fixing γ ∈ Γn,k and x ∈ γ(S+) ∩ (E− ⊕ E0 + R+y), write x = x−0 + sy = x−0 +
sy−0 + sy+ where x−0 ∈ E− ⊕ E0, and consider the polynomial

P (t) = a(x+ ty) = a(x) + t

∫ 1

0

〈x,−J2nẏ〉dt+ a(y)t2 = a(x−0 + (t+ s)y).

Since a|E−⊕E0 � 0 implies P (−s) � 0, and a(y) = 1/� > 0 implies P (t) → +∞ as
|t| → +∞, there exists t0 ∈ R such that P (t0) = 0. It follows that(∫ 1

0

〈x,−J2nẏ〉dt
)2

� 4a(y)a(x).

This and (4.6) lead to

a(x) � (a(y))−1

(
1
2

∫ 1

0

〈x,−J2nẏ〉dt
)2

� �

∫ 1

0

H(x(t)) dt. (4.7)

In order to prove that that cn,k(D) � �, it suffices to prove that for any ε > 0
there exists H̃ ∈ Fn,k(R2n,D) such that cn,k(H̃) < �+ ε, which is reduced to prove:
for any given γ ∈ Γn,k there exists x ∈ h(S+) such that

ΦH̃(x) < �+ ε. (4.8)

Now for τ > 0 there exists Hτ ∈ Fn,k(R2n,D) such that

Hτ � τ

(
H −
(

1 +
ε

2�

))
. (4.9)

For γ ∈ Γn,k choose x ∈ h(S+) satisfying (4.7). We shall prove that for τ > 0 large
enough H̃ = Hτ satisfies the requirements.

• If
∫ 1

0
H(x(t)) dt � (1 + ε

� ), then by Hτ � 0 and (4.7), we have

ΦHτ (x) � a(x) � �

∫ 1

0

H(x(t)) dt � �

(
1 +

ε

�

)
< �+ ε.

• If
∫ 1

0
H(x(t)) dt > (1 + ε/�), then (4.9) implies∫ 1

0

Hτ (x(t)) dt � τ

(∫ 1

0

H(x(t)) dt−
(

1 +
ε

2�

))
� τ

ε

2a

(
1 +

ε

�

)−1 ∫ 1

0

H(x(t)) dt (4.10)

because (
1 +

ε

2�

)
=
(

1 +
ε

2�

)(
1 +

ε

�

)−1(
1 +

ε

�

)
<

(
1 +

ε

2�

)(
1 +

ε

�

)−1 ∫ 1

0

H(x(t)) dt
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and

1 −
(

1 +
ε

2�

)(
1 +

ε

�

)−1

=
(

1 +
ε

�

)−1 [(
1 +

ε

�

)
−
(

1 +
ε

2�

)]
=

ε

2�

(
1 +

ε

�

)−1

.

Choose τ > 0 so large that the right side of the last equality is more than �. Then∫ 1

0

Hτ (x(t)) dt � �

∫ 1

0

H(x(t)) dt

by (4.10), and hence (4.7) leads to

ΦHτ (x) = a(x) −
∫ 1

0

Hτ (x(t)) dt � a(x) − �

∫ 1

0

H(x(t)) dt � 0.

In summary, in the above two cases we have ΦHτ (x) < �+ ε. (4.8) is proved.
Step 3. Prove the final claim. By [26, theorem 1.5] we have

cLR(D,D ∩ R
n,k) = min{A(x) > 0 |x is a leafwise chord on ∂D for R

n,k}.

Using proposition 1.12 and corollary 2.41 in [28] we can choose two sequences of
C∞ strictly convex domains with boundaries, (D+

j ) and (D−
j ), such that

(i) D−
1 ⊂ D−

2 ⊂ · · · ⊂ D and ∪∞
j=1D

−
j = D,

(ii) D+
1 ⊇ D+

2 ⊇ · · · ⊇ D and ∩∞
j=1D

+
j = D,

(iii) for any small neighbourhood O of ∂D there exists an integer N > 0 such that
∂D+

k ∪ ∂D−
k ⊂ O ∀ k � N .

Now step 1–step 2 and [26, theorem 1.5] give rise to cLR(D+
j ,D ∩ R

n,k) = cn,k(D+
j )

and cLR(D−
j ,D ∩ R

n,k) = cn,k(D−
j ) for each j = 1, 2, . . .. We have also that the

sequence cLR(D+
j ,D ∩ R

n,k) converges decreasingly to cLR(D,D ∩ R
n,k) as j → ∞

and that the sequence cLR(D−
j ,D ∩ R

n,k) converges increasingly to cLR(D,D ∩
R
n,k) as j → ∞. Moreover for each j there holds cn,k(D−

j ) � cn,k(D) � cn,k(D+
j )

by the monotonicity of cn,k. These lead to cn,k(D) = cLR(D,D ∩ R
n,k).

5. Proof of theorem 1.5

Clearly, the proof of theorem 1.5 can be reduced to the case that m = 2 and all
Di are also bounded. Moreover, by an approximation argument in step 3 of § 4 we
only need to prove the following:

Theorem 5.1. For bounded strictly convex domains Di ⊂ R
2ni with C2-smooth

boundary and containing the origin, i = 1, 2, and any integer 0 � k � n := n1 + n2
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it holds that

cn,k(∂D1 × ∂D2) = cn,k(D1 ×D2)

= min{cn1,min{n1,k}(D1), cn2,max{k−n1,0}(D2)}.

We first prove two lemmas. For convenience we write E = H
1/2
n,k as En,k, and E∗

as E∗
n,k, ∗ = +,−, 0. As a generalization of lemma 2 in [37, § 6.6] we have:

Lemma 5.2. Let D ⊂ R
2n be a bounded strictly convex domain with C2-smooth

boundary and containing 0. Then for any given integer 0 � k � n, function H ∈
Fn,k(R2n, ∂D) and any ε > 0 there exists γ ∈ Γn,k such that

ΦH |γ(B+
n,k\εB+

n,k)
� cn,k(D) − ε and ΦH |γ(B+

n,k)
� 0, (5.1)

where B+
n,k is the closed unit ball in E+

n,k.

Proof. The case k = n was proved in lemma 2 of [37, § 6.6]. We assume k < n below.
Let S+

n,k = ∂B+
n,k and E

n,k
ε/2(R

2n, ∂D) be as in (4.3). Replacing H by a greater func-

tion we may assume H ∈ E
n,k
ε/2(R

2n, ∂D). Since H = 0 near ∂D, by the arguments
at the end of proof of proposition 3.6, the condition (3.5) may be satisfied with any
z0 ∈ R

n,k ∩ Int(H−1(0)). Fix such a z0 ∈ R
n,k ∩ Int(H−1(0)). It follows that there

exists α > 0 such that

inf ΦH |(z0+αS+
n,k)

> 0 and ΦH |(z0+αB+
n,k)

� 0, (5.2)

(see (3.6)–(3.8) in the proof of proposition 3.6). Define γε : En,k → En,k by γε(z) =
z0 + αz. It is easily seen that γε ∈ Γn,k. The first inequality in (5.2) shows that
γε(S+

n,k) belongs to the set Fn,k = {γ(S+
n,k) | γ ∈ Γn,k and inf(ΦH |γ(S+

n,k)
) > 0} in

(3.10). Lemma 3.7 shows that

cn,k(H) = sup
F∈Fn,k

inf
x∈F

ΦH(x),

and Fn,k is positively invariant under the flow ϕu of ∇ΦH . Define Su = ϕu(z0 +
αS+

n,k) and d(H) = supu�0 inf(ΦH |Su). It follows from these and (5.2) that

0 < inf ΦH |S0 � d(H) � sup
F∈Fn,k

inf
x∈F

ΦH(x) = cn,k(H) <∞. �

Since ΦH satisfies the (PS) condition by lemma 4.1, d(H) is a positive critical value
of ΦH , and d(H) � cn,k(D) − ε/2 by lemma 4.2. Moreover, by the definition of
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d(H) there exists r > 0 such that ΦH |Sr � d(H) − ε/2 and thus

ΦH |Sr � cn,k(D) − ε. (5.3)

Because ΦH is nondecreasing along the flow ϕu, we arrive at

ΦH |Su � ΦH |S0 � inf(ΦH |S0) > 0, ∀ u � 0. (5.4)

Define γ : En,k → En,k by γ(x+ + x0 + x−) = γ̃(x+) + x0 + x−, where

γ̃(x) = z0 + 2(α/ε)x if x ∈ E+
n,k and‖x‖En,k � 1

2
ε,

γ̃(x) = ϕr(2‖x‖En,k−ε)/ε(z0 + αx/‖x‖En,k) if x ∈ E+
n,k and

1
2
ε < ‖x‖En,k � ε,

γ̃(x) = ϕr(z0 + α x/‖x‖En,k) if x ∈ E+
n,k and ‖x‖En,k > ε.

The first and second lines imply γ((ε/2)B+
n,k) = (z0 + αB+

n,k) and γ(B+
n,k \

(ε/2)B+
n,k) =

⋃
0�u�r Su, respectively, and so

γ(B+
n,k) = (z0 + αB+

n,k)
⋃

0�u�r
Su;

the third line implies γ(B+
n,k \ εB+

n,k) = Sr. It follows from these, (5.2) and
(5.3)–(5.4) that γ satisfies (5.1).

Finally, we can also know that γ ∈ Γn,k by considering the homotopy

γ0(x) = 2(α/ε)x+ + x0 + x−, γu(x) =
1
u

(γ(ux) − z0) + z0, 0 < u � 1.

Lemma 5.3. Let integers n1, n2 � 1, 0 � k � n := n1 + n2. For a bounded strictly
convex domain D ⊂ R

2n1 with C2 smooth boundary S and containing 0, it holds
that

cn,k(D × R
2n2) = cn1,min{n1,k}(D). (5.5)

Moreover, if Ω ⊂ R
2n2 is a bounded strictly convex domain with C2 smooth boundary

and containing 0, then

cn,k(R2n1 × Ω) = cn2,max{k−n1,0}(Ω).

Proof. Let H(z) = (jD(z))2 for z ∈ R
n1 and define

ER = {(z, z′) ∈ R
2n1 × R

2n2 |H(z) + (|z′|/R)2 < 1}.
By the definition and the monotonicity of cn,k we have

cn,k(D × R
2n2) = sup

R
cn,k(ER).

Since the function R
2n1 × R

2n2 � (z, z′) �→ G(z, z′) := H(z) + (|z′|/R)2 ∈ R is con-
vex and of class C1,1, ER is convex and SR = ∂ER is of class C1,1. By theorem 1.4
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we arrive at

cn,k(ER) = min Σn,kSR .

Let λ be a positive number and u = (x, x′) : [0, λ] → SR satisfy

u̇ = XG(u) and u(λ), u(0) ∈ R
n,k, u(λ) ∼ u(0). (5.6)

Namely, u is a leafwise chord on SR for R
n,k with action λ. Let k1 = min{n1, k} and

k2 = max{k − n1, 0}. Clearly, k1 + k2 = k, and (5.6) is equivalent to the following

ẋ = XH(x) and x(λ), x(0) ∈ R
n1,k1 , x(λ) ∼ x(0), (5.7)

ẋ′ = 2J2n2x
′/R2 and x′(λ), x′(0) ∈ R

n2,k2 , x′(λ) ∼ x′(0) (5.8)

because R
n,k ≡ (Rn1,k1 × {0}2n2) + ({0}2n1 × R

n2,k2). Note that nonzero constant
vectors cannot be solutions of (5.7) and (5.8) and that H(z) and (|z′|/R)2 take
constant values along solutions of (5.7) and (5.8), respectively. There exist three
possibilities for solutions of (5.7) and (5.8):

• x ≡ 0, |x′| = R and so 2λ/R2 ∈ πN if k < n1 + n2, and 2λ/R2 ∈ 2πN if k =
n1 + n2 by (5.8).

• x′ ≡ 0, H(x) ≡ 1 and so λ ∈ Σn1,min{n1,k}
S by (5.7).

• H(x) ≡ δ2 ∈ (0, 1) and |x′|2 = R2(1 − δ2), where δ > 0. Then y(t) :=
(1/δ)x(t) and y′(t) := x′(t/δ) satisfy respectively the following two lines:

ẏ = XH(y) and y(λ), y(0) ∈ R
n1,k1 , y(λ) ∼ y(0), H(y) ≡ 1,

ẏ′ = 2J2n2y
′/R2 and y′(λ), y′(0) ∈ R

n2,k2 , y′(λ) ∼ y′(0), |y′| ≡ R.

Hence we have also λ ∈ Σn1,min{n1,k}
S by the first line, and

λ ∈ R2π

2
N if k < n1 + n2, λ ∈ πR2

N if k = n1 + n2

by the second line.
In summary, we always have

Σn,kSR ⊂ Σn1,min{n1,k}
S

⋃ R2π

2
N if k < n1 + n2, (5.9)

Σn,kSR ⊂ Σn1,min{n1,k}
S

⋃
R2πN if k = n1 + n2. (5.10)

A solution x of (5.7) siting on S gives a solution u = (x, 0) of (5.6) on SR. It follows
that

min Σn,kSR = min Σn1,min{n1,k}
S

for R sufficiently large. (5.5) is proved.
The second claim can be proved in the similar way. �
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Proof of theorem 5.1. Since D1 ×D2 ⊂ D1 × R
2n2 and D1 ×D2 ⊂ R

2n1 ×D2, we
get

cn,k(D1 ×D2) � min{cn1,min{n1,k}(D1), cn2,max{k−n1,0}(D2)}
by lemma 5.3. In order to prove the inverse direction inequality it suffices to prove

cn,k(∂D1 × ∂D2) � min{cn1,min{n1,k}(D1), cn2,max{k−n1,0}(D2)} (5.11)

because cn,k(D1 ×D2) � cn,k(∂D1 × ∂D2) by the monotonicity.
We assume n1 � k. (The case n1 > k is similar!) Then (5.11) becomes

cn,k(∂D1 × ∂D2) � min{cEH(D1), cn2,k−n1(D2)} (5.12)

because cn1,n1(D1) = cEH(D1) by definition. Note that for eachH ∈ Fn,k(R2n, ∂D1 ×
∂D2) we may choose Ĥ1 ∈ Fn1,n1(R

2n1 , ∂D1) and Ĥ2 ∈ Fn2,k−n1(R
2n2 , ∂D2) such

that

Ĥ(z) := Ĥ1(z1) + Ĥ2(z2) � H(z), ∀ z.
Let k1 = n1 and k2 = n− k1. By lemma 5.2, for any

0 < ε < min{cn1,n1(D1), cn2,k−n1(D2), 1/4}

and each i ∈ {1, 2} there exists γi ∈ Γni,ki such that

ΦĤi |γi(B+
ni,ki

\εB+
ni,ki

) � cni,ki(Di) − ε and ΦĤi |γi(B+
ni,ki

) � 0. (5.13)

Put γ = γ1 × γ2, which is in Γn,k. Since for any x = (x1, x2) ∈ S+
n,k ⊂ B+

n1,k1
×

B+
n2,k2

there exists some j ∈ {1, 2} such that

xj ∈ B+
nj ,kj

\ 4−1B+
nj ,kj

⊂ B+
nj ,kj

\ εB+
nj ,kj

,

it follows from this and (5.13) that

ΦĤ(γ(x)) = ΦĤ1
(γ1(x1)) + ΦĤ2

(γ2(x2)) � min{cn1,n1(D1), cn2,k−n1(D2)} − ε > 0

and hence

cn,k(H) � cn,k(Ĥ) = sup
h∈Γn,k

inf
y∈h(S+

n,k)
ΦĤ(y) � min{cn1,n1(D1), cn2,k−n1(D2)} − ε.

This leads to (5.12) because cn1,n1(D1) = cEH(D1). �

6. Proof of theorem 1.7

6.1. The interior of ΣS is empty

Let λ := ıXω0, and λ0 := 1
2 (qdp− pdq), where (q, p) is the standard coordinate

on R
2n.
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Claim 6.1. For every leafwise chord on S for R
n,k, x : [0, T ] → S, there holds

A(x) =
∫
x

λ0 =
∫
x

λ. (6.1)

Proof. Since S is of class C2n+2, so is x. Define y : [0, T ] → R
n,k by y(t) = tx(0) +

(1 − t)x(T ). As below (3.15) we can take a piecewise C2n+2-smooth map u from a
suitable closed disc D2 to R

2n such that u|∂D2 is equal to the loop x ∪ (−y). Now
it is easily checked that

∫
y
λ0 = 0 and hence∫

x

λ0 =
∫
x∪(−y)

λ0 =
∫
u(D2)

dλ0 =
∫
u(D2)

ω0. (6.2)

On the other hand, since the flow of X maps R
n,k to R

n,k, X is tangent to R
n,k

and therefore ω0(X, ẏ) = 0, i.e. y∗λ = 0. It follows that∫
x

λ =
∫
x∪(−y)

λ =
∫
u(D2)

dλ =
∫
u(D2)

ω0.

This and (6.2) lead to (6.1). �

Choosing ε > 0 so small that R
2n \ ∪t∈(−ε,ε)φt(S) has two components, we obtain

a very special parameterized family of C2n+2 hypersurfaces modelled on S, given
by

ψ : (−ε, ε) × S � (s, z) �→ ψ(s, z) = φs(z) ∈ R
2n

which is C2n+2 because both S and X are C2n+2. Define U := ∪t∈(−ε,ε)φt(S) and

Kψ : U → R, w �→ τ

if w = ψ(τ, z) ∈ U where z ∈ S. This is C2n+2. Denote by XKψ the Hamiltonian
vector field of Kψ defined by ω0(·,XKψ ) = dKψ. Then it is not hard to prove

XKψ (ψ(τ, z)) = e−τ dφτ (z)[XKψ (z)] ∀ (τ, z) ∈ (−ε, ε) × S,
and for w = φτ (z) = ψ(τ, z) ∈ U there holds

λw(XKψ ) = (ω0)w(X(w),XKψ (w)) =
d
ds

∣∣∣∣
s=0

Kψ(φs(w)) = 1. (6.3)

Let Sτ := ψ({τ} × S). Since φt preserves the leaf of R
n,k, y : [0, T ] → Sτ satisfies

ẏ(t) = XKψ (y(t)), y(0), y(T ) ∈ R
n,k and y(T ) ∼ y(0)

if and only if y(t) = φτ (x(e−τ t)), where x : [0, e−τT ] → S satisfies

ẋ(t) = XKψ (x(t)), x(0), x(e−τT ) ∈ R
n,k and x(e−τT ) ∼ x(0).

In addition, y(t) = φτ (x(e−τ t)) implies
∫
y
λ = eτ

∫
x
λ. By (6.1) and (6.3) we deduce

A(y) =
∫
y

λ0 =
∫
y

λ =
∫ T

0

λ(ẏ) dt =
∫ T

0

λw(XKψ ) dt = T and A(x) = e−τT.

Fix 0 < δ < ε. Let Aδ and Bδ denote the unbounded and bounded components
of R

2n \ ∪t∈(−δ,δ)φt(S), respectively. Then ψ({τ} × S) ⊂ Bδ for −ε < τ < −δ. Let
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Fn,k(R2n) be given by (3.10). We call H ∈ Fn,k(R2n) adapted to ψ if

H(x) =

⎧⎪⎪⎨⎪⎪⎩
C0 � 0 if x ∈ Bδ,
f(τ) if x = ψ(τ, y), y ∈ S, τ ∈ [−δ, δ],
C1 � 0 if x ∈ Aδ ∩B2n(0, R),
h(|x|2) if x ∈ Aδ \B2n(0, R),

(6.4)

where f : (−1, 1) → R and h : [0,∞) → R are smooth functions satisfying

f |(−1,−δ] = C0, f |[δ,1) = C1, (6.5)

sh′(s) − h(s) � 0 ∀ s. (6.6)

Clearly, H defined by (6.4) is C2n+2 and its gradient ∇H : R
2n → R

2n satisfies a
global Lipschitz condition.

Lemma 6.2.

(i) If x is a nonconstant critical point of ΦH on E such that x(0) ∈ ψ({τ} × S)
for some τ ∈ (−δ, δ) satisfying f ′(τ) > 0, then

e−τf ′(τ) ∈ ΣS and ΦH(x) = f ′(τ) − f(τ).

(ii) If some τ ∈ (−δ, δ) satisfies f ′(τ) > 0 and e−τf ′(τ) ∈ ΣS , then there is a
nonconstant critical point x of ΦH on E such that x(0) ∈ ψ({τ} × S) and
ΦH(x) = f ′(τ) − f(τ).

Proof. (i) By lemma 2.5 x is C2n+2 and satisfies ẋ = XH(x) = f ′(τ)XKψ (x), x(j) ∈
R
n,k, j = 0, 1, and x(1) ∼ x(0). Moreover x(0) ∈ ψ({τ} × S) implies H(x(1)) =

H(x(0)) = f(τ) and therefore x(1) ∈ ψ({τ} × S) by the construction of H above.
These show that x is a leafwise chord on ψ({τ} × S) for R

n,k. By the arguments
below (6.3), [0, 1] � t �→ y(t) := φ−τ (y(t)) is a leafwise chord on S for R

n,k. It follows
from (6.3) and (6.1) that

f ′(τ) =
∫ 1

0

f ′(τ)λ(XKψ ) dt =
∫ 1

0

λ(XH) dt =
∫

[0,1]

x∗λ =
∫

[0,1]

y∗(φτ )∗λ

= eτ
∫

[0,1]

y∗λ = eτA(y)

These show that e−τf ′(τ) = A(y) ∈ ΣS . By (6.1) we have

ΦH(x) = A(x) −
∫ 1

0

H(x(t)) dt =
∫

[0,1]

x∗λ−
∫ 1

0

H(x(t)) dt = f ′(τ) − f(τ).

(ii) By the assumption there exists y : [0, 1] → S satisfying

ẏ(t) = e−τf ′(τ)XKψ (y(t)), y(0), y(1) ∈ R
n,k and y(1) ∼ y(0).
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Hence x(t) = ψ(τ, y(t)) = φτ (y(t)) satisfies

ẋ(t) = dφτ (y(t))[ẏ(t)] = e−τf ′(τ) dφτ (y(t))[XKψ (y)]

= f ′(τ)XKψ (φτ (y(t))) = f ′(τ)XKψ (x(t)) = XH(x(t)),

x(0, x(1) ∈ R
n,k, j = 0, 1, x(1) ∼ x(0) ∈ φτ (S).

By lemma 2.5, x is a critical point of ΦH . Moreover ΦH(x) = f ′(τ) − f(τ)
as in (i). �

Proposition 6.3. Let S be as in theorem 1.7. Then the interior of ΣS in R is
empty.

Proof. Otherwise, suppose that T ∈ ΣS is an interior point of ΣS . Then for some
small 0 < ε1 < δ the open neighbourhood O := {e−τT | τ ∈ (−ε1, ε1)} of T is con-
tained in ΣS . Let us choose the function f in (6.4) such that f(u) = Tu+ C �
0 ∀ u ∈ [−ε1, ε1] (by shrinking 0 < ε1 < δ if necessary). By lemma 6.2(ii) we deduce

(−ε1, ε1) ⊂
{
τ ∈ (−ε1, ε1) | e−τT ∈ ΣS

} ⊂ {τ ∈ (−ε1, ε1) |T
−f(τ) is a critical value of ΦH}

It follows that the critical value set of ΦH has nonempty interior. This is a
contradiction by lemma 3.10. Hence ΣS has empty interior. �

6.2. cn,k(U) = cn,k(S) belongs to ΣS

This can be obtained by slightly modifying the proof of [37, theorem 7.5]
(or [25, theorem 1.18] or [24, theorem 1.17]). For completeness we give it in detail.
For C > 0 large enough and δ > 2η > 0 small enough, define H = HC,η ∈ Fn,k(R2n)
adapted to ψ as follows:

HC,η(x) =

⎧⎪⎪⎨⎪⎪⎩
C � 0 if x ∈ Bδ,
fC,η(τ) if x = ψ(τ, y), y ∈ S, τ ∈ [−δ, δ],
C if x ∈ Aδ ∩B2n(0, R),
h(|x|2) if x ∈ Aδ \B2n(0, R)

(6.7)

where B2n(0, R) ⊇ ψ((−ε, ε) × S) (the closure of ψ((−ε, ε) × S)), fC,η : (−ε, ε) →
R and h : [0,∞) → R are smooth functions satisfying

fC,η|[−η,η] ≡ 0, fC,η(s) = C if |s| � 2η,

f ′C,η(s)s > 0 if η < |s| < 2η,

f ′C,η(s) − fC,η(s) > cn,k(S) + 1 if s > 0 and η < fC,η(s) < C − η,

hC,η(s) = aHs+ b for s > 0 large enough, aH = C/R2 >
π

2
, aH /∈ π

2
N,

sh′C,η(s) − hC,η(s) � 0 ∀ s � 0.

We can choose such a family HC,η (C → +∞, η → 0) to be cofinal in Fn,k(R2n,S)
defined by (3.16) and also to have the property that

C � C ′ ⇒ HC,η � HC′,η, η � η′ ⇒ HC,η � HC,η′ . (6.8)
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It follows that

cn,k(S) = lim
η→0,C→+∞

cn,k(HC,η).

By proposition 3.5(i) and (6.8), η � η′ implies that cn,k(HC,η) � cn,k(HC,η′), and
hence

Υ(C) := lim
η→0

cn,k(HC,η) (6.9)

exists, and

Υ(C) = lim
η→0

cn,k(HC,η) � lim
η→0

cn,k(HC′,η) = Υ(C ′),

i.e. C �→ Υ(C) is non-increasing. We claim

cn,k(S) = lim
C→+∞

Υ(C). (6.10)

In fact, for any ε > 0 there exists η0 > 0 and C0 > 0 such that |cn,k(HC,η) −
cn,k(S)| < ε for all η < η0 and C > C0. Letting η → 0 leads to |Υ(C) − cn,k(S)| � ε
for all C > C0. (6.10) holds.

Claim 6.4. Let ΣS be the closure of ΣS . Then ΣS ⊂ ΣS ∪ {0}.

Proof. In fact, let ϕt denote the flow of XKψ . It is not hard to prove

ΣS = {T > 0 | ∃z ∈ S ∩ R
n,ksuch that ϕT (z) ∈ S ∩ R

n,k & ϕT (z) ∼ z}.

Suppose that (Tk) ⊂ ΣS satisfy Tk → T0 � 0. Then there exists a sequence
(zk) ⊂ S ∩ R

n,k such that ϕTk(zk) ∈ S ∩ R
n,k and ϕTk(zk) ∼ zk for k = 1, 2, . . ..

Define γk(t) = ϕTkt(zk) for t ∈ [0, 1] and k ∈ N. Then γ̇k(t) = TkXKψ (γk(t)). By
the Arzelá-Ascoli theorem (γk) has a subsequence converging to some γ0 in
C∞([0, 1],S), which satisfies the following relations

γ̇0(t) = T0XKψ (γ0(t)) for all t ∈ [0, 1],

γ0(0) = lim
k→∞

γk(0) = lim
k→∞

zk ∈ S ∩ R
n,k,

γ0(1) = lim
k→∞

γk(1) = lim
k→∞

ϕTk(zk) ∈ S ∩ R
n,k,

γ0(1) − γ0(0) = lim
k→∞

(γk(1) − γk(0)) ∈ V n,k0 , i.e.γ0(1) ∼ γ0(0).

Hence γ0(t) = ϕT0t(z0) and T0 ∈ ΣS if T0 > 0. It follows that ΣS ⊂ ΣS ∪ {0}. �

Note that so far we do not use the assumption aH /∈ Nπ/2.

Claim 6.5. If aH /∈ Nπ/2 then either Υ(C) ∈ ΣS or

Υ(C) + C ∈ ΣS . (6.11)
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Proof. Since aH /∈ Nπ/2, by theorem 3.8 we get that cn,k(HC,η) is a positive critical
value of ΦHC,η and the associated critical point x ∈ E gives rise to a nonconstant
leafwise chord sitting in the interior of U . Then lemma 6.2(i) yields

cn,k(HC,η) = ΦHC,η (x) = f ′C,η(τ) − fC,η(τ),

where f ′C,η(τ) ∈ eτΣS and η < |τ | < 2η. Choose C > 0 so large that cn,k(HC,η) <
cn,k(S) + 1. By the choice of f below (6.7) we get either fC,η(τ) < η or fC,η(τ) >
C − η. Moreover cn,k(HC,η) > 0 implies f ′C,η(τ) > fC,η(τ) � 0 and so τ > 0.

Take a sequence of positive numbers ηn → 0. By the arguments above, passing
to a subsequence we have the following two cases.

Case 1. For each n ∈ N, cn,k(HC,ηn) = f ′C,ηn(τn) − fC,ηn(τn) = eτnan − fC,ηn(τn),
where an ∈ ΣS , 0 � fC,ηn(τn) < ηn and ηn < τn < 2ηn.
Case 2. For each n ∈ N, cn,k(HC,ηn) = f ′C,ηn(τn) − fC,ηn(τn) = eτnan − fC,ηn(τn) =
eτnan − C − (fC,ηn(τn) − C), where an ∈ ΣS , C − ηn < fC,ηn(τn) � C and ηn <
τn < 2ηn.

In case 1, since cn,k(HC,ηn) → Υ(C) by (6.9), the sequence an = e−τn(cn,k

(HC,ηn) + fC,ηn(τn)) is bounded. Passing to a subsequence we may assume an →
aC ∈ ΣS . Then

aC = lim
n→∞ an = lim

n→∞
(
e−τn(cn,k(HC,ηn) + fC,ηn(τn))

)
= Υ(C)

because e−τn → 1 and fC,ηn(τn) → 0.
Similarly, we can prove Υ(C) + C = aC ∈ ΣS in case 2. �

Step 1. Prove cn,k(S) ∈ ΣS . Suppose that there exists an increasing sequence Cn
tending to +∞ such that Cn/R2 /∈ Nπ/2 and Υ(Cn) ∈ ΣS for each n. Since (Υ(Cn))
is non-increasing we conclude

cn,k(S) = lim
n→∞Υ(Cn) ∈ ΣS . (6.12)

Otherwise, we have

there exists C̄ > 0 such that (6.11) holds
for each C ∈ (C̄,+∞) satisfying C/R2 /∈ Nπ/2.

}
(6.13)

Claim 6.6. Let C̄ > 0 be as in (6.13). Then for any C < C ′ in (C̄,+∞) there holds

Υ(C) + C � Υ(C ′) + C ′.

Its proof is carried out later. Since Ξ := {C > C̄ |C satisfying C/R2 /∈ Nπ/2} is
dense in (C̄,+∞), it follows from claim 6.6 that Υ(C ′) + C ′ � Υ(C) + C if C ′ > C
are in Ξ. Fix a C∗ ∈ Ξ. Then Υ(C ′) + C ′ � Υ(C∗) + C∗ for all C ′ ∈ {C ∈ Ξ |C >
C∗}. Taking a sequence (C ′

n) ⊂ {C ∈ Ξ |C > C∗} such that C ′
n → +∞, we deduce

that Υ(C ′
n) → −∞. This contradicts the fact that Υ(C ′

n) → cn,k(S) > 0. Hence
(6.13) does not hold! (6.12) is proved.
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Proof of claim 6.6. By contradiction we assume that for some C ′ > C > C,

Υ(C) + C < Υ(C ′) + C ′. (6.14)

Let us prove that (6.14) implies:

for any given d ∈ (Υ(C) + C,Υ(C ′) + C ′)

there exists C0 ∈ (C,C ′) such that Υ(C0) + C0 = d.

}
(6.15)

Clearly, this contradicts the facts that Int(ΣS) = ∅ and (6.11) holds for all large C
satisfying C/R2 /∈ Nπ/2.

It remains to prove (6.15). Put Δd = {C ′′ ∈ (C,C ′) |C ′′ + Υ(C ′′) > d}. Since
Υ(C ′) + C ′ > d and Υ(C ′) � Υ(C ′′) � Υ(C) for any C ′′ ∈ (C,C ′) we obtain
Υ(C ′′) + C ′′ > d if C ′′ ∈ (C,C ′) is sufficiently close to C ′. Hence Δd �= ∅. Set
C0 = inf Δd. Then C0 ∈ [C,C ′).

Let (C ′′
n) ⊂ Δd satisfy C ′′

n ↓ C0. Since Υ(C ′′
n) � Υ(C0), we have d < C ′′

n +
Υ(C ′′

n) � Υ(C0) + C ′′
n for each n ∈ N, and thus d � Υ(C0) + C0 by letting n→ ∞.

We conclude d = Υ(C0) + C0, and so (6.15) is proved. By contradiction suppose
that

d < Υ(C0) + C0. (6.16)

Since d > C + Υ(C), this implies C �= C0 and so C0 > C. For Ĉ ∈ (C,C0), as
Υ(Ĉ) � Υ(C0) we derive from (6.16) that Υ(Ĉ) + Ĉ > d if Ĉ is close to C0. Hence
such Ĉ belongs to Δd, which contradicts C0 = inf Δd. �

Step 2. Prove cn,k(U) = cn,k(S). Note that cn,k(U) = infη>0,C>0 c
n,k(ĤC,η), where

ĤC,η(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ Bδ,

f̂C,η(τ) if x = ψ(τ, y), y ∈ S, τ ∈ [−δ, δ],
C if x ∈ Aδ ∩B2n(0, R),
ĥ(|x|2) if x ∈ Aδ \B2n(0, R)

where B2n(0, R) ⊇ ψ((−ε, ε) × S), f̂C,η : (−ε, ε) → R and ĥ : [0,∞) → R are
smooth functions satisfying the following conditions

f̂C,η|(−∞,η] ≡ 0, f̂C,η(s) = C if s � 2η,

f̂ ′C,η(s)s > 0 if η < s < 2η,

f̂ ′C,η(s) − f̂C,η(s) > cn,k(S) + 1 if s > 0 and η < f̂C,η(s) < C − η,

ĥC,η(s) = aHs+ b for s > 0 large enough, aH = C/R2 >
π

2
, aH /∈ π

2
N,

sĥ′C,η(s) − ĥC,η(s) � 0 ∀ s � 0.

For HC,η in (6.7), choose an associated ĤC,η, where f̂C,η|[0,∞) = fC,η|[0,∞)

and ĥC,η = hC,η. Consider Hs = sHC,η + (1 − s)ĤC,η, 0 � s � 1, and put Φs(x) :=
ΦHs(x) for x ∈ E.
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It suffices to prove cn,k(H0) = cn,k(H1). If x is a critical point of Φs with Φs(x) >
0, as in lemma 6.2, we have x([0, 1]) ∈ Sτ = ψ({τ} × S) for some τ ∈ (η, 2η). The
choice of ĤC,η shows Hs(x(t)) ≡ HC,η(x(t)) for t ∈ [0, 1]. This implies that each
Φs has the same positive critical value as ΦHC,η . By the continuity in proposition
3.5(ii), s �→ cn,k(Hs) is continuous and takes values in the set of positive critical
value of ΦHC,η (which has measure zero by Sard’s theorem). Hence s �→ cn,k(Hs) is
constant. We get cn,k(ĤC,η) = cn,k(H0) = cΨEH(H1) = cn,k(HC,η).

Summarizing the above arguments we have proved that cn,k(S) = cn,k(U) ∈ ΣS .
Noting that cn,k(U) > 0, we deduce cn,k(S) = cn,k(U) ∈ ΣS by claim 6.4.

7. Proof of theorem 1.8

For W 2n(1) in (1.3), note that W 2n(1) ≡ R
2n−2 ×W 2(1) ⊇ R

2n−2 × U2(1) via the
identification under (1.12). For each integer 0 � k < n, (1.14) and (1.11) yield

cn,k(W 2n(1)) � min{cn−1,k(R2n−2), c1,0(U2(1))} =
π

2
.

We only need to prove the inverse direction of the inequality.
Fix a number 0 < ε < 1

100 . For N > 2 define

W 2(1, N) :=
{
(xn, yn) ∈W 2(1) | |xn| < N, |yn| < N

}
.

Let us smoothen W 2(1) and W 2(1, N) in the following way. Choose positive num-
bers δ1, δ2 � 1 and a smooth even function g : R → R satisfying the following
conditions:

(i) g(t) =
√

1 − t2 for 0 � t � 1 − δ1,

(ii) g(t) = 0 for t � 1 + δ2,

(iii) g is strictly monotone decreasing, and g(t) �
√

1 − t2 for 1 − δ1 � t � 1.

Denote by

W 2
g (1) := {(xn, yn) ∈ R

2 | yn < g(xn)},
and by W 2

g (1, N) the open subset in R
2(xn, yn) surrounded by curves yn = g(xn),

yn = −N , xn = N and xn = −N (see figure 2). Then W 2
g (1, N) contains W 2(1, N),

and we can require δ1, δ2 so small that

0 < Area(W 2
g (1, N)) − Area(W 2(1, N)) <

ε

2
. (7.1)

Take another smooth function h : [0,∞) → R satisfying the following conditions:

(iv) h(0) = ε/2 and h(t) = 0 for t > ε/2,

(v) h′(t) < 0 and h′′(t) > 0 for any t ∈ (0, ε/2),

(vi) the curve {(t, h(t)) | 0 � t � ε/2} is symmetric with respect to line s = t in
R

2(s, t).
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Figure 1. Domains �i, i = 1, 2, 3, 4.

Let �1 be the closed domain in R
2(xn, yn) surrounded by curves yn = h(xn),

yn = 0 and xn = 0 (see figure 1). Denote by

�2 = {(xn, yn) ∈ R
2 | (−xn, yn) ∈ �1}, �3 = −�1, �4 = −�2.

Let p1 = (N, 0), p2 = (−N, 0), p3 = (−N,−N), p4 = (N,−N). Define

W 2
g,ε(1, N) = W 2

g (1, N) \ ((p1 + �3) ∪ (p2 + �4) ∪ (p3 + �1) ∪ (p4 + �2)).

Then W 2
g,ε(1, N) has smooth boundary (see figure 2) and

0 < Area(W 2
g (1, N)) − Area(W 2

g,ε(1, N)) = 4Area(�1) < 4
(ε

2

)2
= ε2 <

ε

2
.

For n > 1 and N > 2 we define

W 2n
g (1) := {(x, y) ∈ R

2n | (xn, yn) ∈W 2
g (1)} = R

2n−2 ×W 2
g (1),

W 2n(1, N) :=
{
(x, y) ∈W 2n(1) | |xn| < N, |yn| < N

}
= R

2n−2 ×W 2(1, N),

W 2n
g (1, N) := {(x, y) ∈ R

2n | (xn, yn) ∈W 2
g (1, N)} = R

2n−2 ×W 2
g (1, N),

W 2n
g,ε(1, N) := {(x, y) ∈ R

2n | (xn, yn) ∈W 2
g,ε(1, N)} = R

2n−2 ×W 2
g,ε(1, N).

Clearly, W 2n
g,ε(1, N) ⊂W 2n

g,ε(1,M) for any M > N > 2, and each bounded subset of
W 2n
g (1) can be contained in W 2n

g,ε(1, N) for some large N > 2. It follows that

cn,k(W 2n
g (1)) = sup

N>2
{cn,k(W 2n

g,ε(1, N))} = lim
N→+∞

cn,k(W 2n
g,ε(1, N)). (7.2)

Let us estimate cn,k(W 2n
g,ε(1, N)) with theorem 1.7. Regrettably, W 2

g,ε(1, N) is
not star-shaped with respect to the origin. Fortunately, it can be approximated

https://doi.org/10.1017/prm.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.59


1602 R. Jin and G. Lu

Figure 2. Domain W 2
g,ε(1, N).

arbitrarily by star-shaped domains with respect to the origin and with smooth
boundary. Indeed, for a very small 0 < η < ε the set

W 2
g,ε(1, N, η) := W 2

g,ε(1, N) ∪ (W 2
g,ε(1, N) + (0, η))

is the desired one.
Define jg,N,ε,η : R

2 → R by

jg,N,ε,η(zn) := inf
{
λ > 0

∣∣∣zn
λ

∈W 2
g,ε(1, N, η)

}
, ∀ zn = (xn, yn) ∈ R

2.

Then jg,N,ε,η is positively homogeneous, and smooth in R
2 \ {0}. For (x, y) ∈ R

2n

we write (x, y) = (ẑ, zn) and define

W 2n
g,ε,R(1, N, η) :=

{ |ẑ|2
R2

+ j2g,N,ε,η(zn) < 1
}
, ∀ R > 0.

Then we have W 2n
g,ε,R1

(1, N, η) ⊂W 2n
g,ε,R2

(1, N, η) for R1 < R2, and

W 2n
g,ε(1, N, η) =

⋃
R>0

W 2n
g,ε,R(1, N, η),

which implies by (3.18) that

cn,k(W 2n
g,ε(1, N, η)) = lim

R→+∞
cn,k(W 2n

g,ε,R(1, N, η)). (7.3)

Observe that for arbitrary N > 2 and R > 0 we can shrink 0 < η < ε so that
there holds

W 2n
g,ε,R(1, N, η) ⊂W 2n

g,ε(1, N, η) ⊂ U2n(N),
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where for r > 0,

U2n(r) := {(x, y) ∈ R
2n |x2

n + y2
n < r2} ∪ {(x, y) ∈ R

2n | |xn| < r and yn < 0}.
We obtain

cn,k(W 2n
g,ε,R(1, N, η)) � cn,k(W 2n

g,ε(1, N, η)) � cn,k(U2n(N)) =
π

2
N2. (7.4)

Note that W 2n
g,ε,R(1, N, η) is a star-shaped domain with respect to the origin and

with smooth boundary SN,g,ε,R,η transversal to the globally defined Liouville vector
field X(z) = z. Since the flow φt of X, φt(z) = etz, maps R

n,k to R
n,k and preserves

the leaf relation of R
n,k, by theorem 1.7 we obtain

cn,k(W 2n
g,ε,R(1, N, η)) ∈ ΣSN,g,ε,R,η

where

ΣSg,N,ε,R,η = {A(x) > 0 |x is a leafwise chord on SN,g,ε,R,η for R
n,k}.

Arguing as in the proof of (5.9) we get that

ΣSg,N,ε,R,η ⊂ Σ∂W 2
g,ε(1,N,η)

⋃ πR2

2
N.

Hence for R > N , by (7.4) we have

cn,k(W 2n
g,ε,R(1, N, η)) ∈ Σ∂W 2

g,ε(1,N,η)
. (7.5)

Let us compute Σ∂W 2
g,ε(1,N,η)

. Note that the part of ∂W 2
g,ε(1, N) over the line

yn = − ε
2 and between lines xn = −N and xn = N is {(xn, f(xn)) ∈ R

2 | |xn| � N},
where

f(xn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−h(xn +N) if −N � xn � −N +

ε

2
,

g(xn) if −N +
ε

2
< xn < N − ε

2
,

−h(−xn +N) if N − ε

2
< xn � N.

Let t0 ∈ (0, ε/2) be the unique number satisfying h(t0) = η. Then there only exist
two leafwise chords on ∂W 2

g,ε(1, N, η) for R
1,0. One is the curve in R

2(xn, yn),

γ1 := {(xn, η + f(xn)) ∈ R
2 | t0 −N � xn � N − t0},

and the other is γ2 := ∂W 2
g,ε(1, N, η) \ γ1. Then A(γ1) is equal to the area of the

domain in R
2(xn, yn) surrounded by curves γ1 and xn-axis, that is,

A(γ1) =
∫ N−t0

t0−N
(η + f(xn)) dxn

= 2(N − t0)η + Area(W 2
g (1, N)) − 2N2 − 2

∫ ε/2

t0

h(t) dt, (7.6)
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and

A(γ2) = 2N2 − 2Area(�1) − 2
∫ t0

0

h(t) dt

� 2N2 − 4Area(�1)

> 2N2 − ε. (7.7)

Hence Σ∂W 2
g,ε(1,N,η)

= {A(γ1), A(γ2)}. Let us chooseN > 2 so large that (π/2)N2 <

2N2 − ε. Then (7.4), (7.5) and (7.7) lead to

cn,k(W 2n
g,ε,R(1, N, η)) = A(γ1). (7.8)

Note that 2N2 − 4Area(�1) > 2N2 − ε and that (7.1) implies

Area(W 2
g (1, N)) − 2N2 < Area(W 2(1, N)) +

ε

2
− 2N2 =

π

2
+
ε

2
.

It follows from this, (7.6) and (7.8) that

cn,k(W 2n
g,ε,R(1, N, η)) = A(γ1) <

π

2
+
ε

2
+ 2(N − t0)η − 2

∫ ε/2

t0

h(t) dt.

For fixed N and ε we may choose 0 < η < ε so small that 2(N − t0)η < ε/2. Then

cn,k(W 2n
g,ε,R(1, N, η)) <

π

2
+ ε.

From this and (7.2)–(7.3) we derive

cn,k(W 2n(1)) � cn,k(W 2n
g (1)) � π

2
+ ε

and hence cn,k(W 2n(1)) � π/2 by letting ε→ 0+.

8. Comparison to symmetrical Ekeland–Hofer capacities

For each i = 1, . . . , n, let ei be the vector in R
2n with 1 in the ith position and 0s

elsewhere. Then {ei}ni=1 is an orthonormal basis for Ln0 := V n,00 = {x ∈ R
2n |x =

(q1, . . . , qn, 0, . . . , 0)} = R
n,0. It was proved in [26, corollary 2.2] that L2([0, 1],R2n)

has an orthogonal basis

{emπtJ2nei}1�i�n, m∈Z,

and every x ∈ L2([0, 1],R2n) can be uniquely expanded as form x =∑
m∈Z

emπtJ2nxm, where xm ∈ Ln0 for all m ∈ Z and satisfies
∑
m∈Z

|xm|2 <∞.
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Noting that V n,01 = {0}, the spaces in (2.1) and (2.2) become, respectively,

L2
n,0 =

{
x ∈ L2([0, 1],R2n)

∣∣∣∣∣x L2

=
∑
m∈Z

emπtJ2nam, am ∈ Ln0 ,
∑
m∈Z

|am|2 <∞
}

= L2([0, 1],R2n)

and

Hs
n,0 =

{
x ∈ L2([0, 1],R2n)

∣∣∣∣∣x L2

=
∑
m∈Z

emπtJ2nam, am ∈ Ln0 ,
∑
m∈Z

|m|2s|am|2 <∞
}

for any real s � 0. It follows that the space E in [25, § 1.2] is a subspace of E = H
1/2
n,0

in (2.3). Denote by Γ̂ the set of the admissible deformations on E (see [25, § 1.2])
and Ŝ+ the unit sphere in E. Then Γn,0|E ⊂ Γ̂ and Ŝ+ ⊂ S+

n,0. Note that each
function H ∈ C0(R2n,R�0) satisfying the conditions (H1), (H2) and (H3) below
[25, definition 1.4] is naturally R

n,0-admissible. Then

cn,0(H) = sup
γ∈Γn,0

inf
x∈γ(S+

n,0)
ΦH(x)

� sup
γ∈Γn,0

inf
x∈γ(Ŝ+)

ΦH(x)

� sup
γ∈Γ̂

inf
x∈γ(Ŝ+)

ΦH(x) = cEH,τ0(H).

It follows that cn,0(B) � cEH,τ0(B) for each B ⊂ R
2n intersecting with R

n,0.

Appendix A. Connectedness of the subgroup Sp(2n, k) ⊂ Sp(2n)
(by Kun Shi1)

Let e1, . . . , e2n be the standard symplectic basis in the standard symplectic
Euclidean space (R2n, ω0). Then ω0(ei, ej) = ω0(en+i, en+j) = 0 and ω0(ei, en+j) =
δij for all 1 � i, j � n.

Claim A.1. A ∈ Sp(2n) belongs to Sp(2n, k) if and only if

A =

⎛⎜⎜⎝ In+k

⎛⎝ Ok×(n−k)
B(n−k)×(n−k)
Ok×(n−k)

⎞⎠
O(n−k)×(n+k) In−k

⎞⎟⎟⎠ (A.1)

for some B(n−k)×(n−k) = (B(n−k)×(n−k))t ∈ R
(n−k)×(n−k). Consequently, tA0 +

(1 − t)A1 ∈ Sp(2n, k) for any 0 � t � 1 and Ai ∈ Sp(2n, k), i = 0, 1. Specially,
Sp(2n, k) is a connected subgroup of Sp(2n).

1School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic
of China, shikun@mail.bnu.edu.cn
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The following proof of this claim is presented by Kun Shi.
Let A ∈ Sp(2n, k). Then Aei = ei for i = 1, . . . , n+ k. For k < j � n, suppose

Aen+j =
∑2n
s=1 as(n+j)es, where ast ∈ R. For 1 � j � k and k < l � n, we may

obtain

0 = ω0(en+l, en+j) = ω0(Aen+l, Aen+j) = ω0(Aen+l, en+j)

=
2n∑
s=1

as(n+l)ω0(es, en+j) =
2n∑
s=1

as(n+l)δsj = aj(n+l) (A.2)

by a straightforward computation. Similarly, for 1 � j � n and k < l � n, we have

−δjl = ω0(en+l, ej) = ω0(Aen+l, Aej) = ω0(Aen+l, ej) =
2n∑
s=1

as(n+l)ω0(es, ej)

=
2n∑

s=n+1

as(n+l)ω0(es, ej) =
n∑
i=1

a(n+i)(n+l)(−δji) = −a(n+j)(n+l).

It follows from this and (A.2) that Aen+l = en+l +
∑n
j=k+1 aj(n+l)ej . By

substituting this and Aen+s = en+s +
∑n
j=k+1 aj(n+s)ej into ω0(en+l, en+s) =

ω0(Aen+l, Aen+s) we obtain aj(n+l) = al(n+j) for all k < j, l � n.
Conversely, suppose that A ∈ Sp(2n) has form (A.1), that is, A satisfies: Aei =

ei for i = 1, . . . , n+ k, and Aen+l = en+l +
∑n
j=k+1 aj(n+l)ej for k < l � n, where

aj(n+l) = al(n+j) ∈ R for k < j, l � n. Then it is easy to check that A ∈ Sp(2n, k).

Acknowledgements
We are deeply grateful to the anonymous referees for giving very helpful comments
and suggestions to improve the exposition.

Financial support
This study was partially supported by the NNSF 11271044 of China and the Funda-
mental Research Funds for Central Universities, Civil Aviation University of China,
3122021074.

References

1 C. Abbas. A note on V. I. Arnold’s chord conjecture. Int. Math. Res. Note 1999 (1999),
217–222.

2 C. Abbas. The chord problem and a new method of filling by pseudoholomorphic curves.
Int. Math. Res. Note 2004 (2004), 913–927.

3 P. Albers and U. Frauenfelder. Leaf-wise intersections and Rabinowitz Floer homology.
J. Topol. Anal. 2 (2010), 77–98.

4 P. Albers and A. Momin. Cup-length estimates for leaf-wise intersections. Math. Proc.
Cambridge Philos. Soc. 149 (2010), 539–551.

5 V. I. Arnol’d. First steps in symplectic topology. Russ. Math. Surveys 41 (1986), 1–21.

6 J.-F. Barraud and O. Cornea. Homotopic dynamics in symplectic topology. In Morse the-
oretic methods in nonlinear analysis and in symplectic topology (ed. P. Biran, O. Cornea
and F. Lalonde). NATO Sci. Ser. II Math. Phys. Chem., vol. 217, pp. 109–148 (Dordrecht:
Springer, 2006). MR2276950.

https://doi.org/10.1017/prm.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.59


Coisotropic Ekeland–Hofer capacities 1607

7 J.-F. Barraud and O. Cornea. Lagrangian intersections and the Serre spectral sequence.
Ann. Math. (2) 166 (2007), 657–722. https://doi.org/10.4007/annals.2007.166.657. MR
2373371.

8 P. Biran and O. Cornea. A Lagrangian quantum homology. In New perspectives and chal-
lenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, pp. 1–44 (Providence,
RI: Am. Math. Soc., 2009). MR 2555932.

9 P. Biran and O. Cornea. Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol.
13 (2009), 2881–2989. MR 2546618.

10 K. Cieliebak. Handle attaching in symplectic homology and the chord conjecture. J. Eur.
Math. Soc. 4 (2002), 115–142.

11 D. Cristofaro-Gardiner and M. Hutchings. From one Reeb orbit to two. J. Differ. Geom.
102 (2016), 25–36.

12 D. L. Dragnev. Symplectic rigidity, symplectic fixed points, and global perturbations of
Hamiltonian systems. Commun. Pure Appl. Math. 61 (2008), 346–370.

13 I. Ekeland and H. Hofer. Symplectic topology and Hamiltonian dynamics. Math. Z. 200
(1989), 355–378.

14 I. Ekeland and H. Hofer. Symplectic topology and Hamiltonian dynamics II. Math. Z. 203
(1990), 553–567.

15 T. Ekholm, Y. Eliashberg, E. Murphy and I. Smith. Constructing exact Lagrangian
immersions with few double points. Geom. Funct. Anal. 23 (2013), 1772–1803.

16 V. L. Ginzburg. Coisotropic intersections. Duke Math. J. 140 (2007), 111–163.

17 M. Gromov. Pseudo holomorphic curves on almost complex manifolds. Invent. Math. 82
(1985), 307–347.
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21 V. Humiliére, R. Leclercq and S. Seyfaddini. Coisotropic rigidity and C0-symplectic
geometry. Duke Math. J. 164 (2015), 767–799.

22 M. Hutchings and C. H. Taubes. Proof of the Arnold chord conjecture in three dimensions
I. Math. Res. Lett. 18 (2011), 295–313.

23 M. Hutchings and C. H. Taubes. Proof of the Arnold chord conjecture in three dimensions,
II. Geom. Topol. 17 (2013), 2601–2688.

24 R. Jin and G. Lu. Generalizations of Ekeland–Hofer and Hofer–Zehnder symplectic
capacities and applications. Preprint (2019), arXiv:1903.01116v2[math.SG].

25 R. Jin and G. Lu. Representation formula for symmetric symplectic capacity and applica-
tions. Discrete Cont. Dyn. Sys. A 40 (2020), 4705–4765.

26 R. Jin and G. Lu. Representation formula for coisotropic Hofer–Zehnder capacity of convex
bodies and related results. Preprint (2020), arXiv:1909.08967v2[math.SG].

27 J. Kang. Generalized Rabinowitz Floer homology and coisotropic intersections. Int. Math.
Res. Note IMRN 10 (2013), 2271–2322.

28 S. G. Krantz. Convex analysis. Textbooks in Mathematics (Boca Raton, FL: CRC Press,
2015).

29 S. Lisi and A. Rieser. Coisotropic Hofer–Zehnder capacities and non-squeezing for relative
embeddings. J. Symplectic Geom. 18 (2020), 819–865.

30 W. J. Merry. Lagrangian Rabinowitz Floer homology and twisted cotangent bundles. Geom.
Dedicata 171 (2014), 345–386.

31 K. Mohnke. Holomorphic disks and the chord conjecture. Ann. Math. (2) 154 (2001),
219–222.

32 J. Moser. A fixed point theorem in symplectic geometry. Acta Math. 141 (1978), 17–34.

33 G. D. Rizell. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds. Ark. Mat.
53 (2015), 37–64.

34 G. D. Rizell and M. G. Sullivan. An energy-capacity inequality for Legendrian submanifolds.
J. Topol. Anal. 12 (2020), 547–623.

https://doi.org/10.1017/prm.2022.59 Published online by Cambridge University Press

https://doi.org/10.4007/annals.2007.166.657
arXiv:1903.01116v2[math.SG]
arXiv:1909.08967v2[math.SG]
https://doi.org/10.1017/prm.2022.59


1608 R. Jin and G. Lu

35 S. Sandon. On iterated translated points for contactomorphisms of R2n + 1 and R2n × S1.
Int. J. Math. 23 (2012), 1250042, 14 pp.

36 F. Schlenk. Embedding problems in symplectic geometry. De Gruyter Expositions in
Mathematics, vol. 40 (Berlin: Walter de Gruyter GmbH & Co. KG, 2005).
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