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Abstract. We show that surfaces such that the natural projections of the unit
normal bundles are harmonic morphisms are composed of minimal points and totally
umbilical points. As its application, we find a harmonic map from the torus to the
complex quadric in CP3 such that the projection map of the associated sphere bundle
constructed by Gudmundsson is not a harmonic morphism. This contrasts sharply with
the situation for holomorphic maps. We also establish sufficient conditions for reducing
the codimension of an isometric immersion with conformal second fundamental
form.
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1. Introduction. A class of harmonic maps with a strong geometric flavour is the
class of harmonic morphisms. Harmonic morphisms between Riemannian manifolds
are solutions to an over-determined non-linear system of partial differential equtions.
For this reason they have no general existence theory, not even locally.

For any holomorphic map ξ : M → Qn from a Riemannian surface M to an n-
dimensional complex quadric Qn, Gudmundsson constructed in [9] (cf.(4.1)) a sphere
bundle Mξ over M with projection map that is a harmonic morphism with totally
geodesic fibres; this was later generalized by Aprodu and Aprodu ([1]). Eells and
Sampson proved in [6] that any holomorphic map between Kaehler manifolds is
harmonic. It is natural to study the following more general situation: Given a harmonic
map ξ : M → Qn into the complex quadric in CPn+1, is the natural projection of Mξ

a harmonic morphism?
Let φ : M → Rn+2 be an isometric immersion with n ≥ 2. Then its unit normal

bundle TM⊥
1 is exactly the same as Mξ where ξ is the Gauss map of φ. As a natural

extension of a result in [9], Gudmundsson and the author proved in [11] that the
projection map of the unit normal bundle of a minimal or totally umbilical surface
in a Riemannian manifold is a harmonic morphism with totally geodesic fibres (see
Proposition 4.2).

In this paper we show that the converse holds, i.e., for any immersed surface in a
Riemannian manifold, if the projection map of the unit normal bundle is a harmonic
morphism, then the surface can be split into two parts, one is minimal and the other is
totally umbilical (see Theorem 5.1).
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Then we apply Ruh-Vilms’ theorem and construct a harmonic map ξ from the

torus S1(
√

1
2 ) × S1(

√
1
2 ) to Q2 such that the projection map π : (S1(

√
1
2 ) × S1(

√
1
2 ))ξ →

S1(
√

1
2 ) × S1(

√
1
2 ) is not a harmonic morphism which gives a negative answer to the

problem mentioned above.
Our approach is to discuss the geometry of submanifolds with conformal second

fundamental forms (Definition 3.1). First we describe the structure of a surface with
conformal second fundamental form (Proposition 3.3) which will be used in the proof of
our main result (Theorem 5.1). Meanwhile Proposition 3.3 means that the dimensions
of the first normal spaces for surfaces with conformal second fundamental forms
are smaller than in the general case. After noting this interesting fact, we investigate
the dimensions of the first normal spaces for submanifolds with conformal second
fundamental forms (Proposition 3.7). Finally, using dimensional estimation of the first
normal spaces and J. Erbacher’s reduction theorem we establish sufficient conditions
for reducing the codimension of an isometric immersion with conformal second
fundamental form in a space of constant curvature (Proposition 3.8).

2. Submanifolds in a Riemannian manifold. Let M be a submanifold immersed
into a Riemannian manifold (N, h) by a mapping φ : M → N. We denote the second
fundamental form (resp. the mean curvature vector) of φ by B (resp. H). φ is said to
have parallel mean curvature if H is parallel with respect to the normal connection. In
particular, if H vanishes identically, then φ is said to be minimal.

Let ξ be a normal vector field of φ(M). Then we define the quadratic differential
form by Bξ = h(B, ξ ). If BH is proportional to the induced Riemannian metric
φ∗h := g, that is, if BH = ρg, then the immersion φ is said to be pseudo-umbilical.
In particular, if Bξ is proportional to g for all normal vectors ξ , φ is said to be
totally umbilical. It is easy to see that the immersion φ is totally umbilical if and only if
B(X , Y ) = g(X , Y )H for all tangent vector X , Y of φ(M), and any minimal submanifold
is pseudo-umbilical.

REMARK 2.1. Let Sq(r) := {x ∈ Rq+1, ‖x‖ = r} be an Euclidean sphere in an
Euclidean space Rq+1. The inclusion map i : Sq(r) → Rq+1 is totally umbilical. Minimal
submanifold in Euclidean spheres are submanifolds with parallel mean curvature in
Euclidean spaces (see[12], page 167, Remark 2).

Let φ : (M, g) → (N, h) be an isometric immersion and ξ a normal vector field of
φ(M). We denote the shape operator in the direction ξ by Aξ , i.e.,

g(Aξ X, Y ) = Bξ (X, Y ) X, Y ∈ �(TM). (2.1)

A simple calculation yields

trAξ = trBξ = mh(H, ξ ) (2.2)

where m = dimM. The following facts will be used in the next section.

LEMMA 2.2. Let φ : (M, g) → (N, h) be an isometric immersion.
(1) Let ξ be a normal vector field which is orthogonal to H. Then tr Aξ = 0;
(2) φ is a minimal immersion if and only if tr AH = 0;
(3) φ is a pseudo-umbilical immersion if and only if AH is proportional to the

identity;
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(4) φ is a totally umbilical immersion if and only if Aξ is proportional to the identity
for all normal vector fields ξ ;

(5) Suppose that φ is pseudo-umbilical. Then φ is totally umbilical if and only if
Aξ = 0 for all normal vector fields ξ which are orthogonal to H.

We omit the proof as it is just a direct calculations using (2.1) and (2.2).

3. Isometric immersions with conformal second fundamental form. As a natural
generalization of totally umbilical submanifold, we introduce the following (see [11]):

DEFINITION 3.1. Let (M, g) and (N, h) be Riemannian manifolds, and φ : M → N
an isometric immersion. The second fundamental form of φ is said to be conformal if
the squares of all the corresponding shape operators along φ are proportional to the
identity.

Since the shape operator Aξ is symmetric for any normal vector field ξ , it follows
that the condition that A2

ξ be proportional to the identity is equivalent to 〈Aξ X, Aξ X〉 =
λ〈X, X〉 for all tangent vector fields X and some function λ, thus explaining why the
second fundamental form is called ‘conformal’.

EXAMPLE 3.2. Any 2-dimensional minimal surface in a Riemannian manifold has
conformal second fundamental form (cf. [11]).

Conversely, we shall prove following

PROPOSITION 3.3. Let M be an immersed surface in a Riemannian manifold (N, h).
Then M has conformal second fundamental form if and only if M = M1 ∪ M2 where M1

is minimal and M2 is totally umbilical. In particular M is a pseudo-umbilical surface.

We require the following result, the proof of which is omitted.

LEMMA 3.4. Let A be a real and symmetric 2 × 2 matrix. Then A2 is proportional to
the identity matrix if and only if either the trace of A vanishes or A is proportional to the
identity matrix.

Proof. Sufficiency is an immediate consequence of Theorem 4.5 and Example 4.6
in [11]. Let x ∈ M and {e1, e2} an orthogonal basis of TxM. Let ξ be a normal vector
field of φ(M). Denote the matrix of (Aξ )x : TxM → TxM with respect to {e1, e2} by Ãξ .
Then the conformality of second fundamental form implies that Ã2

ξ is proportional
to the identity matrix. We work at a non-minimal point. Then (2) in Lemma 2.2
implies that tr ÃH �= 0. Together with Lemma 3.4 we have

ÃH ∝ identity matrix. (3.1)

It follows from (3) of Lemma 2.2 that φ is pseudo-umbilical. Consider a normal vector
field ξ which is orthogonal to H. (1) of Lemma 2.2 tells us that

trÃξ = 0. (3.2)

At x, we set η = H
‖H‖ cos θ + ξ sin θ where θ = constant ∈ (0, π

2 ). Then (2.1) yields

Ãη = cos θ

‖H‖ ÃH + sin θÃξ . (3.3)
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Together with (2.2) and (3.2) we get

trÃη = cos θ

‖H‖ trÃH + sin θ trÃξ

= 2 cos θ‖H‖ �= 0.

By the conformality of the second fundamental form of φ and Lemma 3.4 we get

Ãη ∝ identity matrix. (3.4)

On the other hand, (3.3) implies that

Ãξ = Ãηcsc θ − ÃH
ctg θ

‖H‖
from which, together with (3.1) and (3.4), it follows that Ãξ is proportional to the
identity matrix. Together with (3.2) we have Ãξ = 0. From (5) of Lemma 2.2, x is a
totally umbilical point of φ.

By using Obata’s result ([14]), we have following

COROLLARY 3.5. Suppose that a surface M is isometrically immersed into a space
form with conformal second fundamental form. Then the Gauss map is conformal.

Let M be an immersed surface in a Riemannian manifold (N, h) with conformal
second fundamental form. By Proposition 3.3, M is composed of minimal points and
totally umbilical points. It is an elementary observation that at a minimal (resp. totally
umbilical) point the dimension of the image of the second fundamental form of M is
at most two (resp. one) ([11, 16]). We have following

COROLLARY 3.6. Let M be a surface in a Riemannian manifold (N, h) with conformal
second fundamental form. Then at each point the dimension of the first normal space, i.e.
the image of the second fundamental form of M, is at most two.

In the general case, we have

PROPOSITION 3.7. Let M be a submanifold in a Riemannian manifold (N, h) with
conformal second fundamental form. If the dimension of M is odd, or if N has constant
sectional curvature and the unit mean curvature vector field is parallel in the normal
bundle, then at each point the dimension of the first normal space is at most one.

Proof. Let ξ be a normal vector field which is orthogonal to H. Then tr Aξ = 0
(cf. Lemma 2.2). Choose an orthonormal frame on M such that the shape operator in
the direction ξ is diagonalized, that is,

Ãξ = diag(λ1, . . . , λm)

where m = dimM. By the conformality of the second fundamental form of M, we
have

λ2
1 = · · · = λ2

n = µ2

where µ is a locally non-negative function. If Ãξ = µI , then Ãξ = 0 using tr Aξ = 0
where I denotes identity matrix. Otherwise we can assume

λ1 = · · · = λp = −λp+1 = · · · = −λm = µ.
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Then

0 = trÃξ = (2p − m)µ.

If m is odd, then we have µ = 0 which implies that Aξ = 0. Together with (2.1) we have

‖H‖2B = BHH.

Hence the first normal space is generated by H. In the general case, using the
conformality of the second fundamental form of M we have

Ãξ ÃH + ÃHÃξ = Ã 2
ξ+H − Ã 2

ξ − Ã 2
H = τξ I, (3.4)

ÃH2 = σ I. (3.5)

If (N, h) has constant sectional curvature and the unit mean curvature vector field is
parallel in the normal bundle, then [17, 19]

Ãξ ÃH = ÃHÃξ . (3.6)

Substitute (3.6) into (3.4) we have

Ãξ ÃH = 1
2
τξ I. (3.7)

The existence of the unit mean curvature vector implies that ‖H‖ �= 0. Using (2.2) we
get trÃH �= 0. Together with (3.5) we have detÃH �= 0. Thus from (3.5) and (3.7) we see

Ãξ = 1
2
τξ Ã−1

H = τξ

2σ
ÃH .

Combine with (2.1) we have

B = �αBeα
eα = �α

τeα

2σ
BHeα = 1

2σ
BHV

where

V := �ατeα
eα

and {eα} an orthonormal frame of the normal bundle of M.

We now use Proposition 3.7 to show the following reduction of the codimension
of an isometric immersion with conformal second fundamental form. We assume that
M is a connected manifold.

PROPOSITION 3.8. Let N be a space of constant curvature and M an m-dimensional
submanifold of N with conformal second fundamental form. Suppose that m is odd and
M has parallel mean curvature, or M has flat normal bundle and the first normal spaces
of M have constant dimension. Then either

(1) M is totally geodesic, i.e. B ≡ 0, or
(2) M lies in an (m + 1)-dimensional totally geodesic submanifold with conformal

second fundamental form.
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Proof. Suppose that dim M is odd. From the metric-compatibility of Levi–Civita
connection and the connectedness of M, it is easy to see that, if M has parallel mean
curvature, then either

(i) M is minimal or
(ii) ‖H‖ is a non-zero constant and M has parallel unit mean curvature vector

field.
Suppose that M is minimal, then as in the proof in Proposition 3.7 we have

Aξ = 0 for all normal vector field ξ . Hence M is a totally geodesic submanifold from
(2.1). Suppose instead that ‖H‖ is non-zero constant and M has parallel unit mean
curvature vector field. Then, from the proof of Proposition 3.7, the image of the
second fundamental form of M is generated by the mean curvature vector field. Using
J. Erbacher’s reduction theorem [7], we have that M is a hypersurface of a totally
geodesic submanifold, denoted by P, of N. Moreover the shape operator of M in P
along a normal vector field ξ is exactly the same as the shape operator M in N along
ξ . Hence M is a hypersurface in P with conformal second fundamental form. Next,
suppose that M has flat normal bundle and the dimensions of the first normal spaces
are constant. If M is not totally geodesic, then Aξ �= 0 for some normal vector field
ξ . Since N has constant sectional curvature, the normal bundle of M is flat if and
only if all the shape operators can be diagonalized simultaneously [17]. Using a similar
argument to that the proof of Proposition 3.7 we have all first normal spaces of M form
a rank one vector bundle. The flatness of the normal bundle implies that this bundle
is parallel with respect to the normal connection. Again using J. Erbacher’s reduction
theorem we get (2).

4. Sphere bundles over surfaces and harmonic maps. Let CPn+1 be the (n + 1)-
dimensional complex projective space with the Fubini–Study metric and Qn(⊂CPn+1)
be the n-dimensional complex quadric. Notice that Qn with induced Kaehler metric
is isometric to the real Grassmannian G2(Rn+2) ([17]). Let M be a surface. Using the
standard inner product in Rn+2, we associate to the map ξ : M → Qn the Sn−1-bundle
(cf. [9])

Mξ = {(z, x) ∈ M × Sn+1|ξ (z) ⊥ x} (4.1)

with projection map Mξ → M given by the restriction of the natural projection. Let
n ≥ 2 and let φ : M → Rn+2 be an isometric immersion of a surface and ξ its Gauss
map. Then the unit normal bundle of M

TM⊥
1 := {(z, x) ∈ TM⊥

1 ‖x‖ = 1}
is the Sn−1-bundle Mξ associated to ξ ([9, 11]).

Let P and Q be Riemannian manifolds. A map f : P → Q is called harmonic if it
is a critical point of the energy functional

1
2

∫
D

‖df ‖2dv.

For a detailed account of harmonic maps of a compact domain D see [4, 5]. As
an example, for an isometric immersion φ : P → Rn+2 with parallel mean curvature,
the Gauss map of φ is harmonic [15]. A map f : P → Q between Riemannian manifolds
is called a harmonic morphism if for any harmonic function ψ : U → R defined on an
open subset U of Q with f −1(U) non-empty, ψ ◦ f : f −1(U) → R is a harmonic
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function. We refer the reader to [2] for the basic properties of and further references to
harmonic morphisms. Recall (cf. [8, 13]) that a map f : P → Q between Riemannian
manifolds is a harmonic morphism if and only if it is harmonic and horizontally
(weakly) conformal, in the sense that, at any point p ∈ P not contained in the critical
set Cf = {p ∈ P|dfp = 0} of f , the restriction of dfp to the orthogonal complement

{X ∈ TpP|〈X, Y〉 = 0 for all Y ∈ Ker dfp}
of Ker dfp is surjective and conformal onto the tangent space Tf (p)Q. It is easy to see that
the class of horizontally (weakly) conformal maps includes Riemannian submersions.

Let ξ : M → Qn be a map from a surface M. Denote by i : Qn → CPn+1 the
inclusion map. Since Qn is a Kaehler hypersurface of CPn+1 it follows that ξ is
holomorphic if and only if i ◦ ξ is holomorphic. Combining with Proposition 3.1
in [9] we have.

PROPOSITION 4.1. Let ξ : M → Qn be a holomorphic curve and Mξ its associated
sphere bundle. Then the projection map from Mξ to M is a harmonic morphism.

PROPOSITION 4.2. ([11]) Let (M, g) be a minimal or totally umbilical surface in a
Riemannian manifold (N, h) and TM⊥

1 be the unit normal bundle of M in (N, h). Then
the projection map

π :
(
TM⊥

1 , ds2) → (M, g)

is a harmonic morphism with totally geodesic fibre. Here ds2 denotes the restriction of
the Sasaki metric on TN to the submanifold TM⊥

1 .

For more interesting examples of harmonic morphisms we refer the reader to [10]
on the World Wide Web.

5. Main result and its application. In this section, we prove the main result of
this note (Theorem 5.1) which completes Proposition 4.2. As an application, we give a
negative answer to the problem described in the introduction.

THEOREM 5.1. Let φ : (M, g) → (N, h) be an isometric immersion from a surface M
and (TM⊥

1 , ds2) its unit normal bundle where ds2 is the restriction of the Sasaki metric on
TN to TM⊥

1 . Then the projection map π : (TM⊥
1 , ds2) → (M, g) is a harmonic morphism

if and only if M = M1 ∪ M2 where M1 is minimal and M2 is totally umbilic, i.e. M is
composed of minimal points and totally umbilical points.

Proof. By Proposition 3.3 it is sufficient to show that π is a harmonic morphism
if and only if φ has a conformal second fundamental form. Suppose that π is a
harmonic morphism. By using Proposition 4.2 in [11] we have φ has a conformal
second fundamental form. The converse is an immediate consequence of Proposition
4.4 in [11] since dimension of M is two.

An important application of Theorem 5.1 is to give a negative answer of the
interesting problem mentioned in the introduction, as follows.

Let Sq(r) denote a q-dimensional sphere in Rq+1 with radius r. Let m and n
be positive integers such that m < n and let Mm,n−m = Sm(

√m
n ) × Sn−m(

√
n−m

n ). The
image of the canonical embedding Mm,n−m → Rn+2 lies in the unit sphere Sn+1(1). We
call Mm,n−m(⊂ Sn+1(1)) a Clifford hypersurface. We have the following.
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PROPOSITION 5.2. Let M be a Clifford hypersurface in Sn+1(1) ⊂ Rn+2. As a
submanifold in Rn+2 of codimension two, then

(i) M is a pseudo-umbilical submanifold;
(ii) M has parallel mean curvature;

(iii) There are neither totally umbilical points nor minimal points on M.

Proof. Let e0, e1, . . . , em be an orthonormal frame field for Rm+1 such that e0 is
normal to Sm(

√m
n ). Similarly, for Sn−m(

√
n−m

n ) in Rn−m+1, we choose an orthonormal
frame field em+1, . . . , en+1 such that en+1 is normal to Sn−m(

√
n−m

n ). Put

ξ =
√

m
n

e0 +
√

n − m
n

en+1, η =
√

n − m
n

e0 −
√

m
n

en+1.

Then ξ is normal to Sn+1(1) and η is normal to Mm,n−m. On Mm,n−m, {ξ, η} is an
orthonormal normal frame. By the total umbilicity of Sm(

√m
n ), Sn−m(

√
n−m

n ) and
Sn+1(1), we have, with respect to {e1, . . . , en}(cf.[3]),

Ãη = diag (λ, . . . , λ,︸ ︷︷ ︸
m

µ, . . . , µ︸ ︷︷ ︸
n−m

), Ãξ = identity matrix

where λ = √
(n − m)/m and µ = −√

m/(n − m). So tr Ãη = 0. Combining this with
(2.2) shows that ξ is the mean curvature vector field of submanifold Mm,n−m ⊂ Rn+2.
Now (ii) is an immediate consequence of tr Ãη = 0 and Remark 2.1. Part (i) follows
from (3) of Lemma 2.2. Using (2) and (5) of Lemma 2.2 and tr Ãξ �= 0, Ãη �= 0 we now
obtain (iii).

Consider n = 2 and m = 1, i.e. M1,1 = S1(
√

1
2 ) × S1(

√
1
2 ) → R4. We have the

following.

COROLLARY 5.3. There is a harmonic map ξ : M1,1 = S1(
√

1
2 ) × S1(

√
1
2 ) → Q2 such

that the projection map π : (M1,1)ξ → M1,1 is not a harmonic morphism.

Proof. Let φ : M1,1 → R4 be the inclusion map and ξ : M1,1 → Q2 its Gauss map.
Then φ has parallel mean curvature from Proposition 5.2. Together with Ruh-Vilms’
theorem [15] we get ξ is harmonic. Recall that Q2 with induced Kaehler metric is
isometric to the real Grassmannian G2(R4) ([18]). Again using Proposition 5.2, φ has
neither totally umbilical points nor minimal points. Theorem 5.1 tells us that the
unit normal projection π : (TM⊥

1 , ds2) → (M, g) is not a harmonic morphism. As we
mention in section 4, the unit normal bundle of M1,1 is exactly the same as the S1-
bundle associated to ξ . It follows that the projection map π : (M1,1)ξ → M1,1 is not a
harmonic morphism.
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