TRANSFORMATIONS OF n-SPACE WHICH PRESERVE A FIXED SQUARE-DISTANCE

J. A. LESTER

1. Introduction. Our interest here lies in the following theorem:

Theorem 1. Assume there is defined on $\mathbf{R}^{n}(n \geqq 3)$ a "square-distance" of the form

$$
d(x, y)=\sum_{i, j=1}^{n} g_{i j}\left(x^{i}-y^{i}\right)\left(x^{j}-y^{j}\right)
$$

where $\left(g_{i j}\right)$ is a given symmetric non-singular matrix over the reals and $x=$ $\left(x^{1}, \ldots, x^{n}\right), \quad y=\left(y^{1}, \ldots, y^{n}\right) \in \mathbf{R}^{n}$. Assume further that f is a bijection of \mathbf{R}^{n} which preserves a given fixed square-distance ρ, i.e. $d(x, y)=\rho$ if and only if $d(f(x), f(y))=\rho$. Then (unless $\rho=0$ and $\left(g_{i j}\right)$ is positive or negative definite) $f(x)=L x+f(0)$, where L is a linear bijection of R^{n} satisfying $d(L x, L y)=$ $\pm d(x, y)$ for all $x, y \in R^{n}$ (the - sign is possible if and only if $\rho=0$ and $\left(g_{i j}\right)$ has signature 0).

Several special cases of this theorem are known; see for example [1]-[5]. We establish its full generality by proving the following theorem:

Theorem 2. If the square-distance function is not Euclidean and f preserves a fixed square-distance ρ, then f preserves the square-distance 0.

Since [1] covers the Euclidean case and [5] the non-Euclidean case with $\rho=0$, Theorem 2 in conjunction with $[\mathbf{1}]$ and $[\mathbf{5}]$ establishes Theorem 1.

Before proceeding further, some terminology and notation are in order.
The symmetric bilinear form (,) defined by

$$
(x, y)=\sum_{1}^{n} g_{i j} x^{i} y^{j}
$$

for $x, y \in \mathbf{R}^{n}$ makes \mathbf{R}^{n} into a metric vector space; an exposition of the geometry of such spaces appears in [6]. If ($g_{i j}$) is congruent to $\pm I_{n}$, both the space and the square-distance function d are called Euclidean. When ($g_{i j}$) is congruent to $\pm \operatorname{diag}(+1,-1, \ldots,-1)$, the space and d are called Minkowskian. In this case, if $(x, x)=\lambda \neq 0$ for some $x \in \mathbf{R}^{n}, \quad \lambda \in R$, both x and λ are called timelike if λ and $g_{11}= \pm 1$ have the same sign, and spacelike if their signs differ (the terminology is borrowed from special relativity theory).

Finally, some notation: for $x, y, z, \ldots \in \mathbf{R}^{n},\langle x, y, z, \ldots\rangle$ denotes the subspace spanned by x, y, z, \ldots Also, for any subspace U of $\mathbf{R}^{n}, U^{\perp}$ denotes the orthogonal complement of U.

Received December 8, 1977 and in revised form August 2, 1978.
2. Proof of theorem 2. We now assume that d is not Euclidean and that $\rho \neq 0$. For arbitrary $a \in \mathbf{R}^{n}$, define

$$
Q(a)=\left\{x \mid x \in \mathbf{R}^{n}, d(x, a)=\rho\right\} ;
$$

then $f[Q(a)]=Q[f(a)]$, i.e. " f preserves Q 's".
If $Q(a) \cap Q(b) \neq \emptyset$ for all $a, b \in \mathbf{R}^{n}$ we may, with sufficient attention to details, generalize the basic method of [2]. We then show that if $Q(a) \cap Q(b)=$ \emptyset for some $a, b \in \mathbf{R}^{n}$, the square-distance function must be Minkowskian and the square-distance ρ timelike ; the proof of Theorem 2 in this case may then be found in [4]. We proceed now to the details.

For distinct $a, b \in \mathbf{R}^{n}$, define the hyperplane $H(a, b)$ by

$$
H(a, b)=\left\{x \mid 2(x, b-a)=(b, b)-(a, a), x \in \mathbf{R}^{n}\right\}
$$

Lemma 1. i) (Benz [2]) For distinct $a, b \in \mathbf{R}^{n}$,

$$
Q(a) \cap Q(b)=Q(a) \cap H(a, b)=Q(b) \cap H(a, b)
$$

ii) For distinct $a, b \in \mathbf{R}^{n}$,

$$
\begin{aligned}
& Q(a) \cap Q(b)=\left\{\left.\frac{1}{2}(a+b)+k \right\rvert\, k \in\langle b-a\rangle^{\perp},\right. \\
& 4(k, k)=4 \rho-(b-a, b-a)\} .
\end{aligned}
$$

Proof. i) Any two of the equations of $Q(a), Q(b), H(a, b)$ imply the third.
ii) A straightforward calculation verifies that any $\frac{1}{2}(a+b)+k$ for k as described is in $Q(a) \cap Q(b)$. Conversely, given any $x \in Q(a) \cap Q(b)$ define $k=x-\frac{1}{2}(a+b)=(x-a)-\frac{1}{2}(b-a)$. Then $x \in H(a, b)$ implies $k \in$ $\langle b-a\rangle^{\perp}$, and $x \in Q(a)$ implies $4(k, k)=4 \rho-(b-a, b-a)$.

Lemma 2. i) (Benz [2]) If $b-a$ is null for distinct $a, b \in \mathbf{R}^{n}$, then for some $c \neq a, b$ in $\mathbf{R}^{n}, Q(a) \cap Q(c)=Q(a) \cap Q(b)$.
ii) (generalization of Benz [2]) If for distinct $a, b, c \in \mathbf{R}^{n}, Q(a) \cap Q(b)=$ $Q(a) \cap Q(c)$, then either $b-a$ is null or $Q(a) \cap Q(b)=\emptyset$.

Proof i) Define $c=\frac{1}{2}(a+b)$; then $H(b, a)=H(c, a)$, and Lemma 1, i) completes the proof.
ii) Assume that $Q(a) \cap Q(b)=Q(a) \cap Q(c) \neq \emptyset$ for distinct a, b, c, and that $b-a$ is not null.

If $Q(a) \cap Q(b)$ is a point, Lemma 1 , ii) implies that exactly one $k \in$ $\langle b-a\rangle^{\perp}$ satisfies $4(k, k)=4 \rho-(b-a, b-a)$. Since $-k$ also satisfies this condition, $k=-k=0$, and $Q(a) \cap Q(b)=\{(a+b) / 2\}$. Similarly, $Q(a) \cap$ $Q(c)=\{(a+c) / 2\}$; thus $b=c$, a contradiction.

If $Q(a) \cap Q(b)$ is more than a point, then, since $\langle b-a\rangle^{\perp}$ is non-singular, the set of all k 's in $\langle b-a\rangle^{\perp}$ with $(k, k)=\rho-\frac{1}{4}(b-a, b-a)$ is a cone or non-degenerate quadric in $\langle b-a\rangle^{\perp}$. It follows that there exist $k_{1}, \ldots, k_{n} \in$ $\langle b-a\rangle^{\perp}$ with $\left(k_{i}, k_{i}\right)=\rho-\frac{1}{4}(b-a, b-a)$ whose endpoints do not all lie on any hyperplane in $\langle b-a\rangle^{\perp}$.

Define $y_{i}=\frac{1}{2}(b-a)+k_{i}, i=1, \ldots, n$; then we easily verify that $y_{i} \in$ $Q(0) \cap H(0, b-a)$. We next prove the y_{i} 's to be linearly independent: assume that $\sum_{1}^{n} \rho_{i} y_{i}=0$ for some $\rho_{1}, \ldots, \rho_{n} \in R$. Then

$$
\frac{1}{2}\left(\sum_{1}^{n} \rho_{i}\right)(b-a)+\sum_{1}^{n} \rho_{i} k_{i}=0 ;
$$

thus if $\sum_{1}^{n} \rho_{i} \neq 0, \quad b-a \in\left\langle k_{1}, \ldots, k_{n}\right\rangle \subseteq\langle b-a\rangle^{\perp}$, an impossibility since $b-a$ is not null. It follows that $\sum_{1}^{n} \rho_{i}=0$ and $\sum_{1}^{n} \rho_{i} k_{i}=0$; if some $\rho_{i} \neq 0$, then these two conditions then imply that the endpoints of the k_{i} 's lie on a hyperplane in $\langle b-a\rangle^{\perp}$, another impossibility. Thus y_{1}, \ldots, y_{n} are linearly independent.

Since translations preserve Q 's, we obtain from our original assumptions $Q(0) \cap Q(b-a)=Q(0) \cap Q(c-a) ;$ Lemma 1, i) then yields $Q(0) \cap$ $H(0, b-a)=Q(0) \cap H(0, c-a)$. Then both $H(0, b-a)$ and $H(0, c-a)$ contain the endpoints of the linearly independent y_{1}, \ldots, y_{n}, and hence are equal, which implies that $b-a=\mu(c-a)$ for some $\mu \in R$. But the equations of $H(0, b-a)$ and $H(0, c-a)$ then imply that $\mu^{2}-\mu=0$, which is impossible since a, b and c are distinct.

Lemma 3. Assume that for distinct $a, b \in R^{n}$ with $b-a$ not null, $Q(a) \cap$ $Q(b) \neq \emptyset$. Then Theorem 2 holds, i.e. $d(p, q)=0$ if and only if $d[f(p), f(q)]=0$.

Proof. If $d(p, q)=0, p-q$ is null ; thus for some $r \neq p, q, Q(p) \cap Q(q)=$ $Q(r) \cap Q(q)$. Since f preserves Q 's, we have $Q[f(p)] \cap Q[f(q)]=Q[f(r)] \cap$ $Q[f(q)]$, thus by part ii) of the previous lemma, $f(p)-f(q)$ is null, i.e. $d[f(p), f(q)]=0$. The proof of the converse is identical.

We may now assume that for some $a \neq b$ in $\mathbf{R}^{n}, Q(a) \cap Q(b)=\emptyset$ and $b-a$ is not null.

Lemma 4. The square-distance d is Minkowskian and ρ is timelike.
Proof. Assume that $Q(a) \cap Q(b)=\emptyset$ and $b-a$ is not null. Lemma 1, ii) implies that the non-singular hyperspace $\langle b-a\rangle^{\perp}$ contains no k with $(k, k)=$ $\rho-\frac{1}{4}(b-a, b-a)$; thus $\langle b-a\rangle^{\perp}$ must be Euclidean, since any non-singular non-Euclidean space contains k 's with $(k, k)=\lambda$ for any $\lambda \in R$. Hence our space is the orthogonal direct sum of a line and a Euclidean hyperspace, and is therefore Minkowskian.
Assume ρ is spacelike ; then ρ and $(b-a, b-a)$ have opposite signs. But then $\rho-\frac{1}{4}(b-a, b-a)$ has sign opposite that of $(b-a, b-a)$, so some $k \in\langle b-a\rangle^{\perp}$ satisfies $(k, k)=\rho-\frac{1}{4}(b-a, b-a)$. Since $Q(a) \cap Q(b)=\emptyset$, Lemma 1 , ii) shows that such k 's do not exist, a contradiction. Thus ρ is timelike, as required.

As mentioned previously, the proof of Theorem 2 for the Minkowskian case may be found in [4]; we have thus demonstrated the Theorem's full generality.

One final note: with sufficient attention to the algebraic details we can easily show that the method of Benz [2] also generalizes to square-distances
over more arbitrary fields, provided all pairs of Q 's intersect. If not, then either the space is anisotropic (contains no non-zero null vectors) or it has Witt index 1 (i.e. its largest totally null subspace has dimension 1). For these cases the results of [1], [4] or herein do not generalize, since they all use the order properties of \mathbf{R}; thus, for fields other than \mathbf{R}, the complete validity of Theorem 1 remains an open question.

References

1. F. S. Beckman and D. A. Quarles, Jr., On isometries of Euclidean spaces, Proc. A.M.S. 4 (1953), 810-815.
2. W. Benz, Zur charakterisierung der Lorentz-transformationen, J. Geometry 9, (1977), 29-37.
3. H. J. Borchers and G. C. Hegerfeldt, The structure of space-time transformations, Comm. Math. Phys. 28 (1972), 259.
4. E. M. Schröder, Zur kennzeichnung der Lorentz-transformationen, Aequationes Math., to appear.
5. J. A. Lester, Cone preserving mappings for quadric cones over arbitraryfields, Can. J. Math. 29 (1977), 1247-1253.
6. E. Snapper, R. J. Troyer, Metric affine geometry (Academic Press, New York 1971).

University of Waterloo, Waterloo, Ontario

