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TRANSFORMATIONS OF 77-SPACE WHICH PRESERVE 
A FIXED SQUARE-DISTANCE 

J. A. LESTER 

1. Introduction. Our interest here lies in the following theorem: 

THEOREM 1. Assume there is defined on Kn (n ^ 3) a "square-distance" of the 
form 

n 

d(x,y) = X) gab* ~ / ) ( * ' - yj) 

where (gi3) is a given symmetric non-singular matrix over the reals and x = 
(x\ . . . , xn), y = (y1, . . . , yn) G Rw. Assume further that f is a bijection of Rn 

which preserves a given fixed square-distance p, i.e. d(x, y) = p if and only if 
d(f(x),f(y)) = p. Then (unless p = 0 and (gtj) is positive or negative definite) 
f(x) = Lx + /(0), where L is a linear bijection of Rn satisfying d(Lx, Ly) = 

±d(x, y) for all x, y £ Rn (the - sign is possible if and only if p = 0 and (g^) 
has signature 0). 

Several special cases of this theorem are known; see for example [l]-[5]. 
We establish its full generality by proving the following theorem : 

THEOREM 2. If the square-distance function is not Euclidean and f preserves a 
fixed square-distance p, then f preserves the square-distance 0. 

Since [1] covers the Euclidean case and [5] the non-Euclidean case with 
p = 0, Theorem 2 in conjunction with [1] and [5] establishes Theorem 1. 

Before proceeding further, some terminology and notation are in order. 
The symmetric bilinear form ( , ) defined by 

(x, y) = TA gijXY 

for x, y £ Kn makes Rn into a metric vector space ; an exposition of the geometry 
of such spaces appears in [6]. If (gi3) is congruent to zLln, both the space and 
the square-distance function d are called Euclidean. When (gi3) is congruent to 
ztzdiag ( + 1, —1, . . . , —1), the space and d are called Minkowskian. In this 
case, if (x, x) = X ^ 0 for some x G Rw, X G R, both x and X are called time
like if X and gn = =b 1 have the same sign, and spacelike if their signs differ (the 
terminology is borrowed from special relativity theory). 

Finally, some notation : for x, y, z} . . . G Rw, (x, y, z, . . . ) denotes the sub-
space spanned by x, y, z, . . . . Also, for any subspace U of Rw, U1- denotes the 
orthogonal complement of U. 
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2. Proof of theorem 2. We now assume that d is not Euclidean and that 
p J* 0. For arbitrary a G Rn, define 

Q(a) = {x | x 6 Rw, d(#, a) = p} ; 

then/[Ç(a)] = <2[/(a)], i.e. "/preserves (?V\ 
If Q(a) P Q(b) 9e 0 for all a, K R" we may, with sufficient attention to 

details, generalize the basic method of [2]. We then show that if Q(a) P Q(b) = 
0 for some a, b £ Rw, the square-distance function must be Minkowskian and 
the square-distance p timelike ; the proof of Theorem 2 in this case may then be 
found in [4]. We proceed now to the details. 

For distinct a, b g Rn, define the hyperplane H(a, b) by 

H(a, b) = {x | 2(x, b - a) = (b} b) - (a, a), x £ Rn}. 

LEMMA 1. i) (Benz [2]) For distinct a, b £ Rw, 

Q{a) P Q{b) = Q(a) P H(a, b) = Q(b) P H(a, b). 

ii) i w distinct a, b 6 Rn, 

(2(a) P Q(&) = {|(a + 6) + k \ k £ (b - a ) \ 

4:(k,k) = 4p - (b - a,b - a)}. 

Proof, i) Any two of the equations of (2(a), Q(b), H(a, b) imply the third. 
ii) A straightforward calculation vérifies that any | (a + 6) + k for k as 

described is in Q(a) P Q(b). Conversely, given any x £ Q(a) P Q(&) define 
& = x — \(a + b) = (x — a) — %(b — a). Then x £ # (a , &) implies & £ 
(6 — a)-1, and x G Ç(a) implies 4(fe, k) = 4p — (6 — a, 6 — a). 

LEMMA 2. i) (Benz [2]) If b — a is null for distinct a, b £ Rw, then for some 
c 9* a,b in Rn, Q(a) P Q(c) = Q(a) P Q(b). 

ii) (generalization of Benz [2]) If for distinct a, b, c £ Rw, Q(a) ^ (?(&) = 

(2(a) P Q(c), /Aew either b — a is null or Q(a) P Q(b) — 0. 

Proof i) Define c = \(a + b) ; then H(b, a) = H(c, a), and Lemma 1, i) com
pletes the proof. 

ii) Assume that Q(a) P Q(b) = Q(a) P Q(c) ^ 0 for distinct a, 6, c, and that 
b — a is not null. 

If Ç(a) P Q(6) is a point, Lemma 1, ii) implies that exactly one k £ 
(b — a)1- satisfies 4(&, k) = 4p — (b — a, & — a). Since — & also satisfies this 

condition, jfe = -jfe = 0, and Q(a) P Q(b) = {(a + b)/2). Similarly, Q(a) P 
Q(c) = {(a + c)/2\ ; thus 6 = c, a contradiction. 

If Ç(a) P ()(&) is more than a point, then, since (6 — a )-L is non-singular, 
the set of all &'s in (b — a)1- with (&, k) = p — J(6 — a, & — a) is a cone or 
non-degenerate quadric in (b — a ) ± . It follows that there exist ki, . . . , kn £ 
{b — a)1- with (ki, ki) — p — l(b — a, b — a) whose endpoints do not all lie 
on any hyperplane in (b — a )-L. 
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Define yt = \(p — a) + ku i = 1, . . . , n\ then we easily verify that y{ £ 
(2(0) r\ H(0, b — a). We next prove the y/s to be linearly independent : assume 
that YA PiJi = 0 for some pi, . . . , pn G R. Then 

hŒniPi)(b-a) + UPiki = 0; 

thus if Xlï Pi 7* 0, b — a £ (ki, . . . , kn ) C (è — a )J-, an impossibility since 
& — a is not null. It follows that ]£! p* = 0 and 2 ! P*&* = 0 ; if some pt ^ 0, 
then these two conditions then imply that the endpoints of the fe/s lie on a 
hyperplane in (b — a )-L, another impossibility. Thus yi, . . . , yn are linearly 
independent. 

Since translations preserve <2's, we obtain from our original assumptions 
Ç(0) H Q(6 - a) = (2(0) H <2(c - a) ; Lemma 1, i) then yields (2(0) H 
i7(0, b - a) = (2(0) H ff(0, c - a). Then both ff(0, ft - a) and i ï(0, c - a) 
contain the endpoints of the linearly independent 3/1, . . . , 3>w, and hence are 
equal, which implies that b — a = /x(c — a) for some /x Ç R. But the equations 
of H(0, b — a) and H(0, c — a) then imply that /z2 — /x = 0, which is impos
sible since a, & and c are distinct. 

LEMMA 3. Assume that for distinct a, b £ Rn with b — a not null, Q(a) H 
Q(b) ?± 0. Then Theorem 2 holds, i.e. d(p, q) = 0 if and only if d[f(p),f(q)] — 0. 

Proof. If d(£, g) = 0, p — q is null ; thus for some r ^ p, q, Q(p) P\ <2(g) = 
Q(r)nQ(q). Since / preserves Q's, we have ^ ) ] n Ç [ / ( g ) ] = Q[f(r)) H 
(?[/(#)]> thus by part ii) of the previous lemma, f(p) — f(q) is null, i.e. 
d[f{p),f(q)] = 0. The proof of the converse is identical. 

We may now assume that for some a ^ b in Rw, Q(a) C\ Q(b) = 0 and b — a 
is not null. 

LEMMA 4. 77£e square-distance d is Minkowskian and p is timelike. 

Proof. Assume that Q(a) r\ Q(b) = 0 and b — a is not null. Lemma 1, ii) im
plies that the non-singular hyperspace (b — a )-L contains no k with (k, k) = 
P — l(b — a,b — a) ; thus (b — a)1- must be Euclidean, since any non-singular 
non-Euclidean space contains &'s with (k, k) = X for any X £ R. Hence our 
space is the orthogonal direct sum of a line and a Euclidean hyperspace, and is 
therefore Minkowskian. 

Assume p is spacelike ; then p and (b — a,b — a) have opposite signs. But then 
P — \{b — a, b — a) has sign opposite that of (b — a, b ~ a)} so some 
k e (b - a)1- satisfies (fe, k) = p - l(b - a, b - a). Since Q{a) C\ Q{b) = 0, 
Lemma 1, ii) shows that such k's do not exist, a contradiction. Thus p is time
like, as required. 

As mentioned previously, the proof of Theorem 2 for the Minkowskian case 
may be found in [4] ; we have thus demonstrated the Theorem's full generality. 

One final note : with sufficient attention to the algebraic details we can 
easily show that the method of Benz [2] also generalizes to square-distances 
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over more arbitrary fields, provided all pairs of Ç's intersect. If not, then either 
the space is anisotropic (contains no non-zero null vectors) or it has Witt 
index 1 (i.e. its largest totally null subspace has dimension 1). For these cases 
the results of [1], [4] or herein do not generalize, since they all use the order 
properties of R ; thus, for fields other than R, the complete validity of Theorem 
1 remains an open question. 

REFERENCES 

1. F . S. Beckman and D. A. Quarles, Jr., On isometries of Euclidean spaces, Proc. A.M.S. 4 
(1953), 810-815. 

2. W. Benz, Zur charakterisierung der Lorentz-transformationen, J. Geometry #, (1977), 29-37. 
3. H. J. Borchers and G. C. Hegerfeldt, The structure of space-time transformations, Comm. 

Math. Phys. 28 (1972), 259. 
4. E. M. Schroder, Zur kennzeichnung der Lorentz-transformationen, Aequationes Math., 

to appear. 
5. J. A. Lester, Cone preserving mappings for quadric cones over arbitrary fields, Can. J. Math. 29 

(1977), 1247-1253. 
6. E. Snapper, R. J. Troyer, Metric affine geometry (Academic Press, New York 1971). 

University of Waterloo, 
Waterloo, Ontario 

https://doi.org/10.4153/CJM-1979-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-043-6

