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AN EXTENDED INHOMOGENEOUS MINIMUM

E.S. BARNES

(Received 5 September 1975)

Abstract

A new arithmetic invariant E(f) is defined for integral binary quadratic forms f. It has the
property that, denoting by f,. the norm-form of a quadratic number field Q(v/m), E(f.)<1 if
and only if Q(\/m) has class number one.

1

The inhomogeneous minimum of a form has proved to be an important
concept in the study of algebraic number fields with a Euclidean algorithm. I
present here a generalization of this concept, for integral binary quadratic
forms, which bears a similar relation to the question of unique factorization in
quadratic fields.

Let f(x,y)=ax’+ bxy +cy’ be a binary quadratic form with real
coefficients and discriminant D = b®—4ac. The inhomogeneous minimum
M(f) of f may be defined thus: for real xo, yo, and writing xo = (xo, yo), set

(L.1) M(f;x0) = inf | f(x + X0,y + yo)|,
(x, y)ET

where I' denotes the integral lattice in the plane; then

(1.2) M(f) = sup M(f; x,).

Suppose from now on that f is a primitive integral form, and let & = &(f)
be the set of linear transformations of the plane with matrix of the form

[t —cu .
(1.3) T_<au t+bu> t,u integral.

It is easily seen that, under composition of transformations, & is a semigroup
with identity I (This follows most easily from the fact that an integral T
belongs to & if and only if T transforms f into (det T)f)
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For x, €T, define

(1.4) E(f; x0) = ;relfy M(f; Tx,)
TxoEl'
and
(1.5) E(f) = sup E(f; xo).
We call F(f) the ‘extended inhomogeneous minimum’ of f. Trivially, since
Ie ¥,
(1.6) E(f)=M(f)

for all f. Note also that since the transformations T of & are integral,
E(f;x))=E(f;x)) if x,=x,(modl).
We show first that, like M(f), E(f) is an arithmetical invariant.

LemMma 1.1. If g isequivalent to f (under integral unimodular tranforma-
tion) then E(g)= E(f).

ProOF. Suppose that g(x)= f(Ux) where U is integral unimodular, and
so UT =T. Then, for all x,, it is easily seen that

M(f; x0)= M(g; U 'xo).
Hence
M(f; Txg) = M(g; U 'TU(U 'x,))
The required result will follow at once when we show that
F(g)=U'F(U;

and for this it suffices, by symmetry, to show that
(1.7) U'F(HUC F(8).

A straightforward calculation shows that, with

f(x,y)=ax’+bxy +cy®, g(x,y)=a'x’+b'xy+c'y?,

if det U =1 and T € ¥(f) is given by (1.3),

1+3(b—b')u —c

—1 —
U TU_( a'u t+ b+

u
b')u )E 7(8).

A similar calculation shows that U™'TU € ¥(g) alsoifdet U = —1,s50(1.7)is
proved.
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To establish the connection with unique factorization in quadratic fields,
let F=Q(\/m) where m is square-free and not 0 or 1. Set

I )z{xz—myz if m=2 or 3(mod4)
%y x’+xy+i(l—-m)y®> if m=1(mod4).

THEOREM 1. Q(\/m) has class number 1 if and only if E(f.)< 1.
We first need

Lemma 1.2. If x, is not a rational point, then E(f; x,) = 0.

Proor. Given any ¢,0<¢ <1, we may, by Minkowski’s theorem on
linear forms, choose integers x, y, t, u not all zero so that

| x + txo— cuyo| < e
and
|y + auxo+ (t + bu)yo| < e.

Since € < 1, t,u# 0,0; hence if T is defined by (1.3), T € ¥(f) and T# 0 and
S0, since x, is not rational, Tx, &€ I'. Hence

E(fixo) =|f(x + Txo)| < e*(lal+]|b|+]c]).
Since ¢ is arbitrary, we have E(f; x,)= 0.
Proor ofF THEOREM 1. The Dedekind-Hasse criterion states (see for
example Pollard 1950):
if F is an algebraic number field and J its ring of integers, then F has class

number 1 if and only if, given any non-zero elements a, 8 of J with 8 £ «,
3y, 8 € J satisfying

0<|N(ay + B8)|<|INB|

(where N is the norm in F/Q). Setting p = a/B, so that p& J, we can write
this condition as: given any p € F — J, 3, 8 € J satisfying

0<|N(yp+98)<1.

Trivially, this inequality cannot be satisfied for any 8 if yp € J; while if yp & J,
N(yp + 8) #0 for all 6 € J. Thus we can finally write the condition as: given
any p € F—1J, 3v,86 € J with yp& J satisfying

(1.8) IN(yp + 8)| < 1.

Let now F be a quadratic field, so that F = Q(\/m ) where m # 0 or 1 and
m is square-free. A basis of J/Z is {1, w}, where
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vm if m=2 or 3(mod4)
v :{%(H\/m) if m=1 (mod4);
and then, for rational x, y,
N(x + oy)=falxy).

Writing p =xo+ wys (X0, o€ Q), y=t+owu (LUEZ), §=x+ wy
(x, y € Z), we can translate the Dedekind-Hasse criterion into: Q(\/m) has
class number 1 if and only if, given any rational x, = (xo, yo) € I', there exists a

t mu) or (t W(—1+mu

u ot u (+u ) respectively (t,u € Z)

(1.9) T=<

with Tx, & I" and an x = (x, y) €T satisfying
(1.10) | £ (Txo+ x)| < 1.

Since clearly T has the shape (1.9) if and only if T € #(f..), we see that (1.10)
holds precisely when

E(fn;x0)<1.

For irrational x,, Lemma 1.2 shows that this inequality is always satisfied;
so Theorem 1 follows immediately.

2

Although it is trivially true that E(f) = M(f) for all f, it appears that E
does not satisfy any stronger general inequality than M. More precisely, we
have

THEOREM 2.1. If f is a primitive integral indefinite quadratic form of
discriminant D >0, then

2.1) E(f)<iVvD;
and the constant ; is best possible.

Proor. (i) A well-known result of Minkowski states that, for indef-
inite f,
M(f)=iv/D,
where equality holds only for forms equivalent to a multiple of
fo(x,y) = xy.
(Y}

Now ¥(f,) contains the transformations (; ¢) and (§ {), from which it is easy to
see that E(f,) = 0. Hence (2.1) now follows from the fact that E(f) = M(f).
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(ii) Consider, for positive integral k, the form
o (x,y)=x"+2kxy — y?
with discriminant D = 4(k*+ 1). Davenport (1946) showed that
M) = M(e; (,2) = 2k
If now T € P(¢x),

[t u
T—<u t+2ku>’ LUEZ

and so
TG2) = G+ u),3(t+u)+ku)= QG+ u),3(t + u))(modT).
Hence if T(,3)&T, necessarily T(,3) = (3,3 (modT). It follows that
E(ex; G,2) = M(ec; G, 3) = 3k

The result of the theorem now follows on noting that 3k /\/D — { as k — o,
For a simple result in the opposite direction, define

w(f) = inf|f(x, y)|

x#0
(the homogeneous minimum of f).

THeoreM 2.2. If f(x,y) does not represent zero (for integral x, y # 0,0),
then

E(f)zin(f)zt.

Proor. An element T of ¥(f) maps each of the points (3, 0), (0,3), 3,3
either into a point of I or into a point of this set modulo I'. It follows that

E(f)z min{M(f; G, 0)), M(f; (0,2)), M(f; G, 2))}
zin ()

It is known that there exists a constant « >0 such that, if f is indefinite
and does not represent zero, then M(f)>«k+/D. It is an open question
whether a similar result holds for E(f); if it does, it could immediately be
deduced from Theorem 1.1 that there exist only finitely many real quadratic
fields with class number one (contrary to a well-known conjecture of Gauss!).

3. The evaluation of E (f..)

We indicate here a procedure for calculating E(f..) for given m, and in
particular for determining whether or not E(f.) < 1. The methods apply with
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obvious modifications to any integral form f, and indicate the necessarily close
relation between the value of E(f) and the number of classes of forms of
given discriminant D = D(f). It is convenient here to restrict attention to
forms which do not represent zero.

By Lemma 1.2, it suffices in evaluating E(f) to consider E(f; x,) for
rational xo T, say x,= (;r, -q£> where ged(r,s,q)=1 and q = 2. Since all

integral multiples of the identity belong to &(f) for all f, it follows easily that

“lr (g D)=l (52)) oo

We may therefore restrict our attention to prime g, and define for such ¢

(3.1 E,(f) = max E(f; x),
gxo€l
whence
(3.2) E(f) = max E (f).
LemMma 3.1. Suppose that f does not properly represent zero modulo q.
Then
(3.3) E,(N=5n().

Proor. By applying a suitable equivalence transformation, we may
assume that

f(x,y)=ax*+bxy +cy®> with u(f)=|al.
r s
Let x,= (-—, ——), xo &I'. Choose
q9 49

ar+ bs cs
T=<
—as ar

)eym.
Then

Tx, = (%f(r, s),O)

where, by hypothesis, f(r, s) #0 (mod q), so that Tx, & I". Choosing an integer
x with | x + (1/q)f(r, s)| =3, we obtain

E(f; xo) = M(f; Txo)élf(x +%f(r,s),0>' é%lal=%p.(f).
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Since this result holds for all x, with gx, €T, (3.3) follows.
We now look particularly at the forms f,.
Lemma 3.2. If q is prime and <A =1, then E,(f.)< A if

(i) m<0, m=2 or 3(mod4) and q* >%?l,

or (i) m<0, m=1(mod4) and q* >J§—2[,

or (iii)) m >0, m =2 or 3(mod4) and q° >j2_A21’

or (iv) m>5, m=1(mod4) and q* >]8T’1

Proor. Since u(f.)=1, Lemma 3.1 shows that it suffices to consider
only primes g for which f, properly represents zero modulo q.

Let xo = <3r’ ;s)’ xo&T. If f(r,s)#0(mod q), the argument of Lemma
3.1 shows that E,(f.; x,) =i < A. We may therefore suppose that
f(r,s)=0(mod q);

and since r, s# 0,0 (mod q), we see that s# 0 (mod q). Hence there exists an
integral z with r = sz (mod g) and so

(3.4) Xo= (%Z, 5) (modgq), s#0(modgq)
where
(3.5) fn(z,1)=0(mod q).

It is easily verified that the set of points (3.4) is permuted by the
transformations of ¥(f.); and that, although z is not uniquely defined by
(3.5), two different z yield the same value of M(f,.; xo) for the point (3.4). It
thus follows that, if E,(f.)> i, then

_ . sz S
e9) £G) = in,, M(t: (5. 7))
z is any integer satisfying (3.5).
Now
sz 5z 1
m{ X'+ —, ’+—)=—m x'+sz,qy'+ s
f( Vg e qy’+s)
1
=g max+zyy),
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where
x=x"—zy', y=qy'+s
so that (x',y)ET iff (x,y)ET and y =s (mod q). Now

qx*+2zxy +$(22—m)y2 m# 1 (mod4)

(3.7) %fm (qx + 2y, y) =

gx*+ 2z + )xy +5<22+ z- m; 1>y2
m =1 (mod4)

f2x, y),

say, where f%’ is an integral quadratic form of discriminant D = 4m or m. It
now follows from (3.6) that, if E,(f.)>%,

(x,y)El
y#0{(mod q)

(3.8) E, (fm)=§ min |£9(x y)].

By classical results on the homogeneous minima of quadratic forms,
there exist (x,y)ET, (x, y) # (0,0) satisfying

(3.9) oyl =B it m <o
and
D .
(3.10) [f&@x, y)| = \/§ if m>0 and m#5.

Hence, firstly, if m <0 and 3| D| < A%q? we have (x, y) €' —{0} satisfying
[f2(x )| < Ag;

since f¥(x, y)=0(mod q) if y =0 (mod (q), and since f’ is not a zero form, it
follows from (3.8) that

E, (f.)<A.

The results (i) and (ii) of the Lemma follow with |[D|=4/m| and |m|
respectively.
A similar analysis yields the results (iii) and (iv) in the case m >0 (m # 5).
When m <0, it is possible to obtain somewhat stronger results by using
the properties of reduced quadratic forms. Suppose that, in (3.5), we choose z
to satisfy
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-iq<z=iq when m =2 or 3(mod4)
(3.11) z=0 if g=2 and m =1(mod4)
-i{g+1)<z=i(q—1) when m =1(mod4) and q is odd.

Then f% is reduced in the sense of Gauss if also
(3.12) P00 = ¢ fulz DZ 4

and it then follows that, since f%(0, 1) is the least value assumed by fi(x, y)
with y#0,

1 1

E,(fa) =~ f20, )= fa(2,1):
q q

If however (3.12) does not hold, we have in any case
<1 (q) = 1

Eq(fm)=3fm (0’1)_;1_2fm(2»1)-

Summarizing, we have:

LemMma 3.3. If m <0, q is prime and z satisfies (3.5) and (3.11), then
. 1 .
(i) Eq(fm)=?fm(l, D if fu(z,)Z g%
. 1 .
(i) Eq(fm)§?fm(z, D) if fa(z, 1)< q’.
We conclude with some examples of the evaluation of E(f.).
(1) E(f-ss) = 1. We have
foas(x, y)= x>+ xy +9y>.
Since the congruence f-s5(z, 1) =0(mod?2) is insoluble, E.(f-3s) =i. Next
Os(x, y)=3x>+ xy +3y?,

so, by Lemma 3.3 (this form being reduced), Es(f-ss) = 1. Finally, by Lemma
3.2 (ii), E,(f-ss) <1 if qg*>35/3 and so if ¢ = 5. Hence

E(f-35) = Es(f-35) = 1
(2) E(fs) = 1. First
D(x,y)=2x*—19y* and fRQ3,1)=—1,
so that

Ez(fss) = %
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Next, the congruence
fss(z,1) = 2 —38=0(mod q)
is insoluble for ¢ = 3,5 and 7, whence
E,(fs) =% for g=3, 5 and 7.
Finally, by Lemma 3.2 (iii),
E,(fs)<: if ¢°>76

and so for all prime q > 7. Hence

E(fs) = Exfss) = 1.
(3) E(fe) =3 First, f@(x,y)=2x>—21y? congruences mod 8 give

2(x,y)= %3 (mod8)
for odd y; also fZ(3,1)= —3. Hence

Ey(fo) =3
Next
2x,y)=3x>—14y*> and f2Q2,1)= -2,
so that
Es(fo)=3.
Finally, E,(fs) <1 if g>> 21, by Lemma 3.2 (iii), and so for all primes q > 3.
Hence

E(faz) = Ez(fn) = %
(4) E(fg7) = % Here
folx,y) =x"+xy —24y°.

Hence
P(x,y)=2x>+xy —12y®> and f$(19,-7)=1,
and so
Ez(fw) = %
Next
fO(x,y)=3x>*+xy -8y’ and f§(3,2)=1,
and so

Ea(fm) = %
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The congruence

for(z,1)=0(mod 5)
is insoluble, whence Es(fs;) = i. Finally, by Lemma 3.2 (iv), E, (fo) <:zif ¢*> %
and so for all prime ¢ = 7. Hence

E(fr) = Ex(fs7) = 1.

This example is of interest, since Q(V/97), while simple, is not Euclidean.
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