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AN EXTENDED INHOMOGENEOUS MINIMUM

E. S. BARNES
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Abstract

A new arithmetic invariant E(f) is defined for integral binary quadratic forms /. It has the
property that, denoting by fm the norm-form of a quadratic number field Q(\/m), £( /„)< 1 if
and only if Q(\/m) has class number one.

1

The inhomogeneous minimum of a form has proved to be an important
concept in the study of algebraic number fields with a Euclidean algorithm. I
present here a generalization of this concept, for integral binary quadratic
forms, which bears a similar relation to the question of unique factorization in
quadratic fields.

Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form with real
coefficients and discriminant D = b2 — Aac. The inhomogeneous minimum
M(f) of / may be defined thus: for real JC0, y0, and writing x0 = (x0, y0), set

(1.1) M(/;xo)= inf |/(x + xo,y + yo)|,

where F denotes the integral lattice in the plane; then

(1.2) M(J) = sup M(/;*o).

Suppose from now on that / is a primitive integral form, and let Zf =
be the set of linear transformations of the plane with matrix of the form

(1.3) T=(f l
f
M , ; - ) t,u integral.

It is easily seen that, under composition of transformations, $f is a semigroup
with identity /. (This follows most easily from the fact that an integral T
belongs to Sf if and only if T transforms / into (det T)f.)
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For x0 £ T, define

(1.4) E(f;xo)= in£ M(f; Tx0)

and

(1.5) E(f) = sup E(f;x0).

We call F(f) the 'extended inhomogeneous minimum' of /. Trivially, since

(1.6) E( / )SM(/ )

for all /. Note also that since the transformations T of Sf are integral,

E(f;x,)=E(f;x0) if x, = x0 (mod V).

We show first that, like M(f), E(J) is an arithmetical invariant.

LEMMA 1.1. If g is equivalent to f (under integral unimodular tranforma-
tion) thenE(g)=E(f).

PROOF Suppose that g(x) = f(Ux) where U is integral unimodular, and
so UT = F. Then, for all x0, it is easily seen that

M(/;*0)=M(g ;£/-*„).

Hence

M(f; Txn) = M(g; U'TU(U-'xt)))

The required result will follow at once when we show that

and for this it suffices, by symmetry, to show that

(1.7) U~l&'U)UQ&'{g).

A straightforward calculation shows that, with

f(x, y ) = ax2 + bxy + cy2, g(x, y) = a'x2 + b'xy + c'y2,

if det U = 1 and T G Sf{f) is given by (1.3),

+ {{b'b')u ~c'u

a'u r + Kfc + 6 >
A similar calculation shows that U 'TUG Sf(g) also if det U = - 1, so (1.7) is
proved.
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To establish the connection with unique factorization in quadratic fields,
let F = Q(V"i) where m is square-free and not 0 or 1. Set

/«(*,?)={ x2- my2 if m = 2 or 3(mod4)
.x2 + xy + \(1 - m)y2 if m = l ( m o d 4 ) .

THEOREM 1. Q{\/m) has class number 1 if and only if E(Jm)<\.

We first need

LEMMA 1.2. If x0 is not a rational point, then E(f;xo) = 0.

PROOF. Given any e, 0 < e < 1, we may, by Minkowski's theorem on
linear forms, choose integers x, y, t, u not all zero so that

\x + tx0- cuyo\ < e

and

| y + auxo + (t + bu)yo\ < e.

Since e < 1, t, u/ 0,0; hence if T is defined by (1.3), T G ^ ( / ) a n d 7Y0and
so, since x0 is not rational, Tx0 £ F. Hence

£ ( / ; x0) ^ | f(x + Txo)\ < e\\ a | + | 6 | + | c | ) .

Since e is arbitrary, we have E(f; xo) = 0.

PROOF OF THEOREM 1. The Dedekind-Hasse criterion states (see for
example Pollard 1950):
if F is an algebraic number field and / its ring of integers, then F has class
number 1 if and only if, given any non-zero elements a, /3 of / with (3 l a ,
3y, S £ / satisfying

(where N is the norm in F/Q). Setting p = a//8, so that pg! /, we can write
this condition as: given any p £ F — J, 3y, 8 E. J satisfying

Trivially, this inequality cannot be satisfied for any 8 if yp G J; while if yp£ J,
N(yp + 8 ) ^ 0 for all 8 G. J. Thus we can finally write the condition as: given
any p G F — /, 3y, 8 £ / with ypf£ J satisfying

(1.8) \N(yp + S)\<l.

Let now F be a quadratic field, so that F = Q(y/m) where m ^ 0 or 1 and
m is square-free. A basis of / / Z is {l,o»}, where
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_ (
U

\/m if m = 2 or 3(mod4)
+ Vm) if m = l ( m o d 4 ) ;

and then, for rational x, y,

W r i t i n g p = x 0 + coy0 (x0, yn G Q ) , y = t + cou (t,uG Z ) , 8 = x + <oy
(x, y G Z), we can translate the Dedekind-Hasse criterion into: O(Vm) has
class number 1 if and only if, given any rational x,, = (x0, yo) £ F, there exists a

,, „. „ It mu\ I t -A-\-V m\u\ . . . ~ ~,(1.9) T= or v ' respectively (t,uEZ)v ' \u t ) \u t+u I v 3 v '

with Tx0 £ F and an x = (x, y) G F satisfying

(1.10) |/M(Tx0 + x ) | < l .

Since clearly T has the shape (1.9) if and only if T G Sf{fm), we see that (1.10)
holds precisely when

E(fm;xa)<\.

For irrational x0, Lemma 1.2 shows that this inequality is always satisfied;
so Theorem 1 follows immediately.

Although it is trivially true that E(f)S M(f) for all /, it appears that E
does not satisfy any stronger general inequality than M. More precisely, we
have

THEOREM 2.1. // / is a primitive integral indefinite quadratic form of
discriminant D > 0, then

(2.1) E(f)<WD;

and the constant \ is best possible.

PROOF, (i) A well-known result of Minkowski states that, for indef-
inite /,

where equality holds only for forms equivalent to a multiple of

/0(x, y)=xy.

Now y(f0) contains the transformations (<'> °) and („ "), from which it is easy to
see that £(/„) = 0. Hence (2.1) now follows from the fact that E(f) g M(/).
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(ii) Consider, for positive integral k, the form

<pk(x, y) = x2 + 2kxy - y2

with discriminant D = 4(fc2 + 1). Davenport (1946) showed that

If now TESf(<pk),

T = „, , r, M £ Z
\w t + 2ku)

and so

T(|J) = (10 + M),Kr + u)+ku) = (l(t + u)A(t + «)) (mod F).

Hence if T(U)£F, necessarily T(|J) = (\J) (mod F). It follows that

The result of the theorem now follows on noting that \k I\/D —> 1 as k -* °°.
For a simple result in the opposite direction, define

M(/)=inf | / (x ,y) |

(the homogeneous minimum of /).

THEOREM 2.2. // f(x, y) does not represent zero (for integral x,y^ 0,0),
then

PROOF. An element T of Sf(f) maps each of the points (|, 0), (0,1), (|, I)
either into a point of F or into a point of this set modulo F. It follows that

E(f) g min{M(/; (1,0)), M(/; (0,|)), M(/; (i J))}

^ ( f l -
it is known that there exists a constant K > 0 such that, if / is indefinite

and does not represent zero, then M(/)> K\/D. It is an open question
whether a similar result holds for E(f); if it does, it could immediately be
deduced from Theorem 1.1 that there exist only finitely many real quadratic
fields with class number one (contrary to a well-known conjecture of Gauss!).

3. The evaluation of E (fm)

We indicate here a procedure for calculating E(fm) for given m, and in
particular for determining whether or not E(fm)< 1. The methods apply with
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obvious modifications to any integral form /, and indicate the necessarily close
relation between the value of E(f) and the number of classes of forms of
given discriminant D = D(f). It is convenient here to restrict attention to
forms which do not represent zero.

By Lemma 1.2, it suffices in evaluating E(f) to consider E(f;x0) for

rational JCO£F, say xo= I—, — j where gcd(r, s, q) = 1 and q g 2. Since all

integral multiples of the identity belong to 5^(/) for all /, it follows easily that

We may therefore restrict our attention to prime q, and define for such q

(3.1) E,(/)
<?xoer

whence

(3.2) Etf)= max £,(/).

LEMMA 3.1. Suppose that f does not properly represent zero modulo q.
Then

(3-3) Eq(f)^\n(f).

PROOF. By applying a suitable equivalence transformation, we may
assume that

f(x, y ) = ax2+ bxy + cy2 w i t h (i(f) = \a\.

Let xQ= (—, —I, x o £ r . Choose
\q q)

T=/ar + bs « \
\ - as ar I KJ'

Then

where, by hypothesis, f(r, s)^0 (mod q), so that Tx0 £ F. Choosing an integer
x with | x + (l/q)f(r, s)\ ̂ i we obtain
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Since this result holds for all x0 with qx0 £ F, (3.3) follows.
We now look particularly at the forms /„.

LEMMA 3.2. // q is prime and | < A SI, then Eq(fm)< A if

(i) m <0, m = 2 or 3 (mod4) and q2> ' J;

or (ii) m < 0, m = 1 (mod 4)

or (iii) m > 0, m = 2 or 3 (mod4) and q2>

or (iv) m > 5, m = 1 (mod 4) and q2 > ^ — j .
oA

PROOF. Since /x(/m)= 1, Lemma 3.1 shows that it suffices to consider
only primes q for which fm properly represents zero modulo q.

Let x0 =(—,—), x0 ̂  F. If f(r, s) ^ 0 (modq), the argument of Lemma

3.1 shows that Eq(fm;xo)S\< A. We may therefore suppose that

and since r, 5f̂  0,0(mod q), we see that s^O(modq). Hence there exists an
integral z with r = sz (mod q) and so

(3.4) x0 = ( - , - ) (mod q), s& 0 (mod q)

where

(3.5) /m(z,l) = 0(modq).

It is easily verified that the set of points (3.4) is permuted by the
transformations of ¥(fm); and that, although z is not uniquely defined by
(3.5), two different z yield the same value of M(fm; x0) for the point (3.4). It
thus follows that, if Eq(jm)>\, then

(3.6) Eq(fm)= min
^o(mod

z is any integer satisfying (3.5).
Now

( + ' +

-2fm(qx + zy,y),
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where

x = x'- zy', y = qy' + s

so that (x', y ' ) e r iff (x,y)e.F and y = 5 (modq). Now
1.

(3-7) -

qx2 + 2zxy +-L{z2-m)y2

qx2+{2z + \)xy+-[z2+z--

[8]

(mod4)

m = 1 (mod 4)

say, where fX1 is an integral quadratic form of discriminant D = Am or m. It
now follows from (3.6) that, if Eq(Jm)>\,

(3.8)
y )<0 (mod <j)

By classical results on the homogeneous minima of quadratic forms,
there exist (x, y )EF, (x, y)^(0,0) satisfying

(3.9)

and

(3.10)

if m < 0

S ^ if m >0 and

Hence, firstly, if m <0 and | |D |<A 2 q 2 , we have (x, y)Gf-{0} satisfying

\f«\x,y)\<\q;

since /^'(x, y) = 0 (mod q) if y = 0 (mod (<7), and since /£ ' is not a zero form, it
follows from (3.8) that

Eq(fm)<\.

The results (i) and (ii) of the Lemma follow with | D | = 4| m \ and | m
respectively.

A similar analysis yields the results (iii) and (iv) in the case m > 0 (m / 5).
When m < 0, it is possible to obtain somewhat stronger results by using

the properties of reduced quadratic forms. Suppose that, in (3.5), we choose 2
to satisfy
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-\q<z^k\q when m = 2 o r 3 ( m o d 4 )

(3.11) • z = 0 if q=2 and m = l ( m o d 4 )

— \{q + 1) < z S= j(q — 1) when m = 1 (mod4) and q is odd .

Then / „ ' is reduced in the sense of Gauss if also

(3.12) /L"(0,l) = - / » , ( z , l ) s 9 ;

and it then follows that, since /^'(0,1) is the least value assumed by fm\x, y)
with y 7̂  0,

If however (3.12) does not hold, we have in any case

i q m q2 m '

Summarizing, we have:

LEMMA 3.3. If m <0 , q is prime and z satisfies (3.5) and (3.11), (hen

q2 m ' ~

(ii) E,(/m)S-^/m(z,l) iffm(z,\)<q2.

We conclude with some examples of the evaluation of E(fm).
(1) E(/-35)=l. We have

/_3 5(x,y)=x2+xy+9y2.

Since the congruence f-3s(z, I) = 0(mod2) is insoluble, E2(J-3s) = i Next

so, by Lemma 3.3 (this form being reduced), fj3(/-35) = 1. Finally, by Lemma
3.2 (ii), £,(/_35)< 1 if q2> 35/3 and so if q S 5. Hence

(2) E(/3S) = L First

f%(x, y) = 2x2- 19y2 and /S>(3,1) = - 1,

so that
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Next, the congruence

/38(z,l)= z2- 38 = 0 (mod q)

is insoluble for q = 3,5 and 7, whence

£,(/38)Sl for q =3, 5 and 7.

Finally, by Lemma 3.2 (iii),

and so for all prime q >7. Hence

(3) E(f42) = i First, /i!'(x, y) = 2x2-21y2; congruences mod8 give

fS(x,y)^ ±3 (mod8)

for ocfd y; a/so /if(3,1)= -3. Hence

E2(f42) = h

Next

/&>(x, y) = 3x2 - Uy2 and /S'(2,1) = - 2,

so that

Finally, Eq(fi2)<1 if q2> 21, by Lemma 3.2 (iii), and so for all primes <? > 3.
Hence

(4)£(/97) = i Here

f97(x,y)=x2 + xy

Hence

/gV,y) = 2x2 + xy-12y2 and /g?(19, - 7)

and so

E2fc) = l.
Next

/S)(x,y) = 3x 2 +xy-8y 2 and /g>(3,2)=

and so
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The congruence

/97(z, I) = 0(mod5)

is insoluble, whence E5(f97) S \. Finally, by Lemma 3.2 (iv), E,(/97) < \ if q2 > T
and so for all prime q^l. Hence

This example is of interest, since O(V97), while simple, is not Euclidean.
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