THE DOUBLE TRANSITIVITY OF A CLASS OF
PERMUTATION GROUPS

RONALD D. BERCOV

1. Introduction. Certain finite groups H do not occur as a regular sub-
group of a uniprimitive (primitive but not doubly transitive) group G. If such
a group H occurs as a regular subgroup of a primitive group G, it follows that
G is doubly transitive. Such groups H are called B-groups (8) since the first
example was given by Burnside (1, p. 343), who showed that a cyclic p-group
of order greater than p has this property (and is therefore a B-group in our
terminology).

Burnside conjectured that all abelian groups are B-groups. A class of counter-
examples to this conjecture due to W. A. Manning was given by Dorothy
Manning in 1936 (3). This class of counter-examples has been generalized by
Wielandt, who showed that if H is the direct product of two or more groups
of the same order greater than two, then H is not a B-group (8, p. 79).

In 1933, Schur (4) developed a new method which he used to show that a
cyclic group of composite order is a B-group.

In 1935, Wielandt (6, 8) used the method of Schur to show that if an abelian
group H of composite order has a cyclic Sylow subgroup, then it is a B-group.

In 1937, Kochendorffer (2) used the Schur methods to show that if H is
the direct product of two cyclic groups of order p<, p# respectively where
a > B> 0, then H is a B-group.

This paper is a generalization of these results. Let H be abelian, P a Sylow
p-subgroup of H, and ¢ an element of P of maximal order, p*. Let 4 be the
cyclic group generated by a. Then H = 4 X B X C,where P = A X Band C
is of order prime to p. We prove that if B # 1 is of exponent pf < p= (with
the additional assumption a > 3 if p = 2), then either H is a direct product
of groups of the same order greater than 2, or else H is a B-group. If B =1,
we have by the theorem of Wielandt that H is a B-group unless C = 1 and
a = 1. Thus apart from the case p = 2, « = 2, 8 = 1, the question of whether
or not the abelian group H is a B-group is settled unless H is the direct product
of two groups of the same exponent.

We might also mention that two classes of non-abelian B-groups are known.
Wielandt (7) has shown that dihedral groups are B-groups and Scott (5) has
shown that generalized dicyclic groups are B-groups.

2. Notation, definitions, and theorems from the theory of Schur
rings. Let G be a primitive permutation group on the letters {1,...,#n}. Let

Received August 27, 1963 and revised April, 1964. This work was supported by United
States Office of Naval Research contract Nonr (G)00100-62.

480

https://doi.org/10.4153/CJM-1965-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-047-9

A CLASS OF PERMUTATION GROUPS 481

H be a regular abelian subgroup of G. We denote the image of the letter j
under the permutation g € G by j°. Since H is regular, there is a unique 2 € H
for which 1* = j. We call this element %;. The correspondence j <> k; allows us
to regard G as a permutation group on H. To the permutation g € G (on

{1,...,n}) corresponds the permutation (},) (on H) where A’ is the element of
H uniquely determined by the formula
1% = 10,

We continue to denote the permutation (},) by g, and the group of such
permutations by G.
Let R(H) be the group ring of H over the rational integers. For

n= ZheH ‘Y(h)h € R(H)
and any integer j we put 9 = 3, v(B)hI. Let

177, = theII ’Y(h)hl = Ynerr v ().

With K € H we associate the element

= _J1 .. REK,
K = hzd; vy(h)h € R(H), where y(h) = {0 if ha K

For K C H,let|K| = |K|, the number of elements of K. Let (K) be the smallest
subgroup of H containing K. Let G, be the subgroup of G (regarded as a per-
mutation group on H) fixing 1, the identity element of H. Let
{1} = To, Ty, ..., Ty be the orbits of G, where T, C H for ¢ =0,...,k
Let

R(H, G,) = { P vi—TZ}

be the additive subgroup of R(H) spanned by the 7',. Throughout this paper
k will denote the number of orbits of G, different from {1}. G is doubly transitive
if and only if 2 = 1.

TuEOREM 1 (Schur, 1933).
(i) R(H, G1) s a subring of R(H).
Gi) (T) =Hfori=1,..., k.
(i) T = T, for appropriate q if (G, |H|) = 1.
DEFINITION 1. 9? is said to be conjugate to n € R(H) if (4, |H|) = 1.

DEFINITION 2. If ¢ =49 for all j with (j, |H|) = 1, then n is said to be
rational.

DErFINITION 3. The sum of all distinct conjugates of n € R(H) s called the
trace of n and is denoted by tr 7.

tr gy is clearly rational and lies in R(H, G,) whenever n does, by Theorem 1.
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DeriNiTION 4. For h € H, tr {k} is called the elementary trace of h and is
denoted by tr h.

Clearly if £ has non-zero coefficient in tr &, then tr & = tr k.
By Theorem 1, tr T; is a sum of distinct T',. Thus tr T"; = S, where
S, ={tt €Ty (G,n) =1}.
If necessary by renumbering the 7°;, we may assume without loss of

generality that Si, ..., S, are distinct and that for any j > r there is an
i < r with S; = §,. Clearly S, = 1.

THEOREM 2 (Schur, 1933). Let

S = 1 ZO y,?,-l'yirational integers} .

Then S is a subring of R(H, G1) all of whose elements are rational.

Our notation so far has been that of (8). We now introduce further notation.
For K, L € H, let K — L be the set of elements of K not belonging to L.
For K € Hlet K = K — {1}. For h € H, K C H, let

K(h) = {k € K| k' € K.

Thus K (%) is the set of those elements of K which “hit’” other elements of K
in such a way as to contribute to the coefficient of % in [K]?, and |K (k)| is
this coefficient.
Let H =4 X B X C, where A = {a) is cyclic of order p2, B is of exponent
p8,0 < B <aand (|C|,p) =1. Letu = a* ' and U = (u); thus |U] = p.
We assume without loss of generality that « € 7'; & Si, and we put
T = T], S = S].

By Theorem 2, [S]? is a linear combination of the S; (i = 0, ..., 7). Thus we
have

LemMma 2.1. [S(B)| = |[S(k)| for h, k € S; (¢

1,...,7).

h € H has a unique representation of the form 2 = a"*bc where (s, p) =1,
b€ B,c€ C. For K C H we define Ky, Ky, K ; as follows:

Ky = {k € K|\ = 0} is the set of all elements of K of order divisible by p=.

Ky = {k € K|\ # 0, ()] < po} is the set of elements of K with p-part
having order less than p* but larger than the order of the B-component.

K, = {k € K||[()] > p=} is the set of elements of K with p-part having
order equal to the order of the B-component.

Thus K is the set union of the three disjoint sets Ky, Ky, K 5.

Forb€ B,K C H,let K® = {k € K|k = a*”b'c, where (¢, p) = 1}, be the
set of elements of K whose B component is a power of & with exponent prime
to p. We have (Kx)? = (K”)x and denote this set by Kx’. For & € B, let C,
be the set of all elements of C which occur as the p’-part of some element of Sy?°.
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We now show that by appropriate choice of ¢ we may assume that C; is
non-empty.

LEMMA 2.2, If necessary by changing a (the generator of A) we have C non-
empty.

Proof. By Theorem 1(ii), (I") = H; hence (S) = H. Thus S has an element

of order divisible by p2, say a®bc. Now H = {(a®b) X B X Candsinceexp B < «
holds, we have (a®5)** ' = u*, which is in S since # € S and 8§ is rational.

Henceforth we assume that C; is non-empty. We are now in a position to
state the two theorems of this paper.,

THEOREM A. Assume that
. G is a primitive group of degree n;

SR

. H is a regular abelian subgroup of G;
. pis a prime dividing n;
. P s a Sylow p-subgroup of H;
. P =4 X B, where A = {a) is cyclic of order p* and B is of exponent
P8, 0 # B < a;

6. 11} = To, Ty ..., Ty are the orbits of Gy and S; = tr T, = H* for
i=1,...,k

Then G is doubly transitive (i.e. B = 1).

LSV

[

THEOREM B. Let Hypotheses 1-5 of Theorem A hold. In addition if p = 2,
let o« > 3. Then if G is not doubly transitive, there exist e > 2 subgroups H; of G
such that H = Hi X ... X H, and

|H| = |H|>2 fori,j=1,..., e

Remark. Schur (4) proved what I have called Theorem A for all abelian
groups H which are not of prime power order. Thus Theorem A of this paper
is new only in the case C = 1.

We first prove Theorem A and then devote the greater part of the paper to
showing that Hypothesis 6 of Theorem A follows from the hypotheses of
Theorem B unless H has the special direct product structure indicated.

3. Proof of theorem A. We begin by proving a lemma which is of import-
ance also in the proof of Theorem B.

LEmMA 3.1. Let Hypotheses 1-5 of the above statement of Theorem A hold.
Leth ¢ (Hx\UHy) — UC.Let1 < j < p — 1. Then there existsq = 1 (mod p)
with (q, H|) = 1 such that

ht = uh.

Proof. Let h = a*bc, where (s,p) =1, € B, ¢ € C. Let |C] = m and let
s, m’ satisfy s’s = 1 (mod %), and m'm = 1 (mod p=). Then it is easily seen
that ¢ = 1 4+ mm's’jp>=>~1 has the desired properties.
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For the remainder of Section 3 we assume that Hypotheses 1-6 in the above
statement of Theorem A hold.

LemMA 3.2. T, is conjugate to T forq =1, ..., k.
Proof. We have assumed tr T, = H for ¢ = 1,...,k Thus T,N Ut is
non-empty. Let / € T, N U’ and let I = j(p) with (I, |H|) = 1. By Theorem

1, 7™ is a T, Now since u’ b_(_elongs to both T'; and 7', it follows that these
orbits are the same and 7, = 7',

LemMmA 3.3. Let I = |T N Uf|, n = |H|. Then
@) k=0@—-1/,
@) [T, = (n — l)/kforg 1,...,k

@) [(T)x] ———————forq =1,...,k

Proof. Since each conjugate of T has I elements of Uf and |U*| = p— 1,
it follows that T has (p — 1)/I conjugates; thus & = (p — 1)/L. Since T, is
conjugate to T, |T,| = |T|. Moreover,

=n—1

since 7o =1 and the 7, are disjoint. Thus each 7', has order (n — 1)/k.
Since T, is conjugate to T', T, and T have the same number of elements of Hx
and T, has no such elements. Moreover, |Hx| = ((p — 1)/p)|H|. Thus we have

1p— 1
I(Tq)X[ - kp P
LEMMA 3.4. The coefficient of u? in TTV is >|Tx| forj =1,...,p — L.

Proof. By Lemma 3.1 for x € T, there is a ¢ = 1 (mod p) with (¢.7) =1
such that #—x has non-zero coefficient in 7@. By Theorem 1, 7@ = T, for
some 7. But ¢ = u since ¢ = 1 (mod p). Thus u belongs to both 7" and T,
and T = T;. We conclude that #~x € T. Thus x(u#’x!) contributes to the
coefficient of %7 in TTV for all x € Ty, so this coefficient must be >|7'|.

LEMMA 3.5. The coefficient of h € H in TTV is >|Tx].
Proof. By Theorem 1, T=v ¢ R(H, G,) holds and
TTY = z v T
Since each 7; has an element of U? and each element of Uf has coefficient

>|Tx|, we have v; > |Tx| for 7 = 1,..., k. Clearly vo = |T| > [Txl, and
k € H belongs to some T',.

THEOREM A. k& = 1.
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Proof. By Lemma 3.5 we have that
|TTE] = |T12 > |Tx||H].
By Lemma 3.3 we have
7] = (n — 1)/k
and

Tel = 25

;IR

Thus we have

n—1V_p—1n_ _p—1(@m—1)°
<k >> > k"7 5 2

and

<L _ <o

p—1°"

Since & is a positive integer, it follows that £ = 1 and Theorem A is proved.

4. Proof of Theorem B. Throughout Section 4 we assume the hypotheses
of Theorem B. We begin with two important lemmas.

LeMMA 4.1. Let R C H such that R is rational. Then
(Rx U Ry) — uC C R(u9) forj=1,...,p— 1.

Proof. Let b € (Rx U Ry) — #?C. By Lemma 3.1 if 2 ¢ UC, there exists
g prime to |H| such that A? = u=7h. For b = u’%, 7 # j (and 0 < i < p — 1),
¢ € C, such a g obviously exists. Now 2=? = k~'u’/ € R holds by the rationality
of R. Thus we have & € R(u?).

LeMMA 4.2. Let x € Hx and let R C H such that R is rational. Let
1<j<p— 1 Then if h belongs to R(x) — R(u?), the element u’h~"'x belongs
to R(u?) — R(x).

Proof. Let h,h-'x € R. If h ¢ R(u?’) we have by Lemma 4.1 that
h € Ry \U R . h~x therefore lies in Rx. We may now conclude by Lemma 3.1
that #’h—'x € Rx holds, and Lemma 4.1 now tells us that #/A~'x € R(u’)
holds. We now assume that #’A~'x € R(x). This means that (#/A~'x)~x =
u=7h € R and by the rationality of B we would have /A~ € R. This contra-
dicts & ¢ R(u?). Thus we have u’A~x € R(u?) — R(x).

LeMMa 4.3. Let x € Hx and let R € H such that R is rational. Let
1<j<p—1land |R(x)| =|Rw?)|. Let k € R(u’) — R(x). Then

(i) & € Hy,
(ii) 'k € R(x),
Gii) B x € Hz\J (u=7C).
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Proof. By Lemma 4.2, h — u/h~'x is a 1-1 map of R(x) — R(x’) into
R(u%) — R(x). Since |R(x)| = |R(x’)|, this map must be onto R(u’) — R(x).
Thus there exists # € R(x) — R(u?) such that

k= uhx.
Because of Lemma 4.1 we may conclude from %2 ¢ R(u?) that &z ¢ Hx. Thus
k = u'h~'x € Hx holds. Moreover, u=k = h~'x € R(x) holds since (h~x)~lx =
h € R. By Lemma 4.1, & € R;\J (u’C) holds since & ¢ R(u’). Therefore
E~'x = u~h belongs to H ; unless 2 € C, in which case we have k~x € u=’C.

LEMMA 4.4. Let x € Sx, 1 <j<p —1,and k € Sw?). Then k~'x € S holds
whenever any one of the following four conditions are satisfied:
(i) & ¢ Hy,
(ii) u=*% ¢ S(x) for some i such that 1 <1 < p — 1,
(i) & ¢ H,\J (),
(iv) k7x ¢ Hzand p # 2.

Proof. 8 is rational and |S(x)| = |[S(u?)|fori =1,...,p — 1 by Lemma 2.1,
If =x ¢ .S we have kB € S(u?) — S(x). Thus £ € Hy by Lemma 4.3 and

EeSw?) — Skx) by Lemma 4.1 for 2 =1,...,p — 1. Thus we have by
Lemma 4.3 that
(i) k € Hy,
Gi) wk € Sk),i=1,...,p—1,
Gil) B € H, U (=C),i=1,...,p — 1.
If p is odd we cannot have k~x € u~iC for all ¢ =1,...,p — 1 and we

conclude that k=x € H ,.

Remark. Lemma 4.4 allows us to conclude that certain elements £~ !x lie in S.
This will enable us to determine S and in the case S = H we will be able to
get information about the structure of H from .S.

LEMMA 4.5. Let ¢ € Cy, the set of elements d € C for which some element a’%d
belongs to S, where (¢, p) = 1. Then

(1) SXI = AX Cl,
@y Sr = 4rGe i b2,
Syl_uc= (zély— {u})Clc lfp = 2.

Proof. Since Ax = tr(a) and for d € Cy, trad = tra trd, it is immediate
from the definition of C; that Sx! = Ax C..

For d € Cy, (s,p) =1, 0 <A <a—1 we have & = a'=" d ¢ S(u’) by
Lemma 4.1, and x = ac € Sx. Moreover,

A A
Ex = (a'=d)"tac = a*?'d 'c.

If p #20r\ #a — 1, Lemma 4.4 impliesa®d~1¢c € S. If p =2, \ = a — 1,
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we have a* d=1¢ € uC. But C; = {d-1|d € C,} since S is rational. Thus we
have
SYIQAYc;[C ifp#Z

and Syt D Ay —u)Cic in any case.

Now let yd € Syt — UC,y € 4,d € C. By Lemmas 4.1 and 4.4, y~lad~c € S
holds. This is clearly an element of 4x C. Hence from the definition of C; we
conclude that d~'¢, and hence dc¢™!, belongs to C; and d belongs to Cic. Thus
Syl — UCZ (Ay — U)Cic. If p = 2, this completes the demonstration that

Syl — UC = (4y — u)Cyc.

If p# 2, letyd € U'CNS,sayy =u’,d € C. Then if u? # u?, u? € U*, we
have u*9d € S since § is rational. Thus we have #/~%d-! € S and u'd € S(u).
By Lemma 4.4 we have that (#’d)~lac € S. We conclude, as before, since this
is an element of 4xC, that d~'c and dc! are in C; and d is in C; ¢. Thus we
have U*C NS C U*C, c. This completes the demonstration, in the case p 5 2,
that Sy! = 4y Cic.

LeMmMA 4.6. Cy is a subgroup of C.
Proof. Cy is non-empty by Lemma 2.2. We consider two cases.

Case 1. p % 2. Let ¢,d € C;.. We have a’%, ad € Sx', and (ad) la%
ad~'c ¢ H . We conclude by Lemmas 4.4 and 4.5 that d~'c € C;.

Case 2. p = 2. The additional hypothesis a > 3 allows us to conclude in
this case that a¢? ¢ U, and Lemma 4.5(ii) tells us that a?C; ¢ C Sy' — uC =
Ay — u)Crd for ¢,d € C;. We conclude that Cy ¢ = C1d = C?, C1d? = Ci?
for d € Cy, and |Ci] = |C:¥|. But C; C C;3? since d~! € C; holds for d € Cy;
thus C; = C;® and C;2 = (C:?)% C.? is therefore a subgroup of C containing
|Ci| elements. Since C is a p-complement and we are considering the case
p =2, we conclude from |C;| = |C:?| and the rationality of S that Ci? =
{d}ld € Cy} = Ch.

LEMMA 4.7. S — C = A*Cyif p #2.8' — UC = (A* — u)C, if p = 2.
Proof. See Lemmas 4.5 and 4.6.

LEMMA 4.8. Let 1 5 b € B such that Sx° is non-empty. Then
(i) Sy’ = -PXbey
(i) S¥® 2 PyCy,

—1
Gil) [S” N P Gy > L 1P G,

where C, is the set of elements of C which occur as p'-part of some element of Sx°.

Proof. Let x € Px? C,, say x = a®b’c, where (s, p) = (¢, p) =1, ¢ € C,. By
the definition of C,, some element a®b’ must lie in .S with (¢, p) = (,p) =1

https://doi.org/10.4153/CJM-1965-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-047-9

488 RONALD D. BERCOV

and since S is rational, there is an element a%’% € Sy. If g = swe havex € S.
If g € Ut, we have by Lemma 4.1 that x = a*%%%c € S. Ifa**c 4 - U
we have a™* € S(u) by Lemma 4.7, and

(@=5"a%%) =x ¢ Hz\J (UC).

We conclude by Lemma 4.4 that x € S. Thus in any case we have x € S and
Px® C, C© Sx’ But, by the definition of C,, no elements outside Px® C, can
belong to Sx°.

Now let ¥ € Py® Cy. By what we have just shown, y~la ¢ Sx® holds, and by
Lemma 4.7, ¢ € S holds. Moreover, (y~la)a=! ¢ H ;U (UC) since b # 1 and
y € Hy. Thus again by Lemma 4.4 we have y € S and Py’ C, © Sy

Now let z € P,® C,. Again we have z7'a € Sy’ and for z = (g7%¢)"a ¢ S
we have by Lemma 4.4 that the p — 1l elementsu’s~laliein S(a) forz =1, ...,
p — 1. This means that the elements #% must lie in S and they clearly lie in
P,° C,since b # 1.

Thus with each z € P,°C, — S,* we associate the p — 1 elements of Ufz
which must belong to .S ;% It follows that

1S2NPLC| > p—;—l P Cyl.

LEmMA 4.9. If Sx® is non-empty, then C, = C.

Proof. Letc € C1,d € Cyp.a7?c € Sxholds if p £ 2anda2¢ € Sy — uC if
p = 2. Moreover, a—'bd € Sx” holds by Lemma 4.8. Thus since

(a=2%)"1(a1bd) = abc~'d € Hy,

we have by Lemma 4.4 that abc—'d € S holds. Thus we have ¢~'d € C, for all
¢ ¢ Ciand Cid C C,.

Similarly, for ¢,d € C, we have a=%bc € Sx” if p # 2, a=3bc € Sy if p = 2,
and a—1bd € Sx? in either case.

Again by Lemma 4.4 we have, since (a=2b¢)"'a~'bd = ac~'d € Hx and

(a=3%bc)~"'a='bd = a%~'d € Hy — uC

if p =2, thatacd € Sif p # 2,and a%cd € Sif p = 2.

In either case, we have by Lemma 4.7 that ¢~'d € C; and ¢ € C;d; hence
C, C Cid. 1t follows that C, = C; d for all d € C,. We again consider two
cases.

Casel. p &% 2. By Lemmas 4.8 and 4.4 we again have a=2b~2d~!,a"6"'d € Sx°
and (¢ 20~2d')"L(a'b~d) = abd® € Sx. We therefore have d? ¢ C, = C, d,
d € Cy,and C, = C1d = Ch.

Case2.p = 2. Ford € Cy,wehaved=' € C, = C1d,and d? € C;. Since C, is

a subgroup of order prime to 2, it follows thatd € C,and C, = C;d = C,.
We now introduce further notation which we use for the remainder of the
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paper. We denote by B; the set of & € B for which Sx® is non-empty, and we
put K = .4Bl Cl.

LemMma 4.10.
(i) Kx = Sx;
(ii) K}'QSY 'lfp#2,
Ky —uC < Sy ifp =2
i) KN S| > 2= K, for 1 = b€ By,

P
Proof. See Lemmas 4.8 and 4.9.

LemMa £.11. Let 1 K g < p*—1,c € Cr,and if p = 2, let p>~t ¥ q. Then
(i) S(a%) C K,
(i) |S(a%)| = |K| — 2|K — S|.

Proof. [S]* = [Sx]? + 25x[Sy + Szl + [Sy + S2]% Clearly the contribution
to |S(a)| comes only from the first two terms. Since £#~'a € K holds for & € K,
and Sy lies entirely inside K, we see that the full contribution to [S(a)| comes
from [K]%; thus S(a) € K. Now it follows from Lemma 4.10 that all elements
h of K — S lie outside of Ky and satisfy A~'a € Kx € S. This means that
|S(a)| is as small as possible since & € .S does not belong to S(a) precisely when
k~'a ¢ S holds, and as many elements of K /M .S as possible have this property,
namely one for every element of K — S. We therefore have that
|S(a)] = K| — 2|K — §|. It is easy to see that the contribution of [K — S]? to
|S(a%)| is at least |K| — 2|K — S| since k7! a’c¢ belongs to K for all 2 ¢ K.
But |S(a)! = |S(a? ¢)|. This completes the proof.

LemmaA 4.12. Let 1 5 b € By, such that Py® is empty. Then
1Sz M K| > §[K 2.
Proof. By Lemma 4.10 we have

|52 N K| > B K.
We assume that p = 2, and |S;* M K| = }|K %, since if not, there is nothing
to prove. Since Py’ is empty, we must have [(d)| = 2271,

By Lemma 4.11 we have for ¢ = 2, 6, and z € K ;® that z and ¢~% cannot
both lie outside of K since |S(a?)| would then be too large. Thus with each
2 € K,» —.S we have associated two elements, a2z and a5z, of K,°MNS.
It follows that

IK22M S| > K2 > 3K,

LemMmA 4.13. K s a subgroup of H.

Proof. K = AB,; Cy, where 4 and C, are subgroups of H. It suffices to show
that B, is a subgroup of H. We have 1 € B and since S* = S*!, it follows that
b~lisin By for b € B;. Now let 1 3 by, b € B;. We shall show that 6;7! b, € B,
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holds. If Py® is non-empty, we have a?b; € S by Lemmas 4.8 and 4.9 and
(a?b))"tx € S for x € Sy by Lemmas 4.1 and 4.4. Since ab; € Sy also holds
(again by Lemmas 4.8 and 4.9), we have by Lemmas 4.1 and 4.4 that
(aPby)~"'ab, = a'Pby71b; lies in S; hence b,7'd, is in Bj.

If Pyt is empty, we have by Lemma 4.12 that at least one pair {z, z7!u}
from K ;°* must belong to S. Then {z% z=*u*} C .S will hold for (s,|H|) =1
and for an appropriate such s we get an element z° = a%; ¢ € S(u*), where
g = 0 (mod p), ¢ € Ci. By an argument similar to the one just given we get
abg c € SX, Z—'Sabzc = alkqb1_1b2 € S, and bl_lbg € Bl.

LemMmA 4.14. K* C S.

Proof. Assume the contrary. Let 1 £ £ € K — .S. k must belong to Ky U K ,
since Kx C S, and to some S, 7 > 2. Since (S;) = H by Theorem 1, S, has an
element x € Hyx. By Lemma 2.1, we have [S(x)| = |S(k)|. As before we have

[S]2 = [KX]2 + 2KX[SY + SZ] + [SY + Szlz-
Since x ¢ Ky, the first term does not contribute to [S(x)| (because K is a
subgroup). Since x € Hy, the third term does not contribute. Thus
IS(x)| = 2|Kx M S)|. Let # € Kx M S(x). Then 2~'x € S — K holds since
x ¢ K.

Ifa?h € Kx M S(x) held, we would have a=%~'x € S — K. Hence a’ hx~! ¢
S — K and h~'x € S(a%, which cannot happen by Lemma 4.11 unless a? = 1
(or a? = u if p = 2) since then S(a?) C K holds. It follows for # € Ky M S(x)
that a’h € Kx — S(x) for ¢ =jp=tandj=1,...,p — 1if p 5 2, and for
qg =2, 6if p = 2. Thus only one of p elements of Ky can belong to S(x) if
p # 2 and one of three elements if p = 2, since a*k; = abh, cannot occur for
hi, hs € Kx M S(x) by Lemma 4.4 if « = 3 and by the above argument if
a # 3. In any case we have

[S()] < 2|Kx N S(x)| < 2.3|Kx| < |Kxl.
Now for 2 € Ky, ik € Kx holds since £ € Ky \U K ,. Thus Kx C S(k) and

|Kx| < |S(k)] =|S(x)|, contradicting the above inequality. Thus our assump-
tion £ € S;, ¢ > 2 is wrong and we conclude that K* C S.

LeEmMA 4.15. Let h € H' — S. Then |S(h)| < 2.

Proof. Let h € S;, +>2. As above, let x € (S;)x. We again have
|S(x)| = |S(B)| and |S(x)| = 2|/Kx N S(x)|. Let ki, ks € Kx M S(x). Then
ki lx, ko lx € S— Ksincex ¢ K. Thus (k;'x)"! € S — K holds and k; k,™!
has non-zero coefficient in [S — K]% Clearly [K#]* = |K#-1 + [|K#| — 1]K?.
By Lemma 4.11 we have |S(a)] = |K| — 2 and if k; 5 ks, the coefficient of
ki kst in [K#]? is |K| — 2. Thus since we have a further contribution to
ki ko' from [S — K%, we have a contradiction to |S(a)| = |S(k; k21)| unless
k1 = ks Thus [Kx N Skx)| <1 and |SK)| = [Sx)| = 2|Kx N Skx)| < 2.

LEmMMA 4.16. Let b € S, h* # 1. Then h* € S.
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Proof. |Sh)| =|S(@)| > |K| —2 > |4] —2 > 6. Thus we may choose
x,y € S(h) with x ¢ {vy, y"'h}. Then

{e=h y7th, y7L 7t © Sty —th).

We have |[S(x~Yy~'k)| > 2 unless x~! = y~'k and y~! = x~% in which case
x~! = x~'h?, contradicting A% £ 1. Moreover, x~'y~'4 # 1 since x was assumed
different from y—'4. Thus we may conclude by Lemma 4.15 that x~y~% € S.
Since {x~1, y~Y, A=Y, x~ 1y 1k} C S(x"'y~!) we have by Lemma 4.15 that
x~ly=l = lorx~ly~! € S. If xy~! € Swe havexy € S (because S is rational)
and {x, &, xy, y"h} C S(xh). By Lemma 4.15 we conclude that x% € .S unless
xh = 1. If x"y=t =1, we have x& = y~'h € S. In any case we have xh € S
unless x2 = 1. By a similar argument we conclude that yz € S unless y4 = 1.
If xk and yk are both different from 1, we have {%, xk, x~'%, v, y~1h} C S(h?);
thus 4% € S by Lemma 4.15. If xh =1 we have A2 = x~'h € S; and if yh =1
we have h? = y~th € S.

LEMMA 4.17. Let b € S. Then (h) C S.

Proof. If |(h)| = 2, there is nothing to prove. If [(h)] = 3, see Lemma 4.16.
If {(h)| = 4, wehave h? € Sby Lemma 4.16 and #* = A~! € S by the rationality
of S.

We now assume that |{(%)| > 5. Then we have 4%, k* € S by Lemma 4.16, and
h® € S by Lemma 4.15, since {#, h2, k¢, i~} C S(h?).

We now proceed by induction. We assume that 2° € S for 7 =1,...,m,
where 4 < m < |[(h)| — 1. Then {&, k™, h?, k™ 1} C S(E™t1) and A"t € S by
Lemma 4.15.

LEmMA 4.18. Let b € S, and let M be a subgroup of H maximal with respect to
being contained in S\J {1} and containing h. Then M* = S(h) U {h}.

Proof. That such an M exists follows from Lemma 4.17. Clearly since
M C S\U {1} is a subgroup and & € M, we have M* C S(h) \U {h}. Suppose
there exists x € S(#) — M. Then x4 € S(h) — M. By Lemma 4.17 we have
(x), (x7h)Y © S. We claim that ((x)M)* C S.

Let j < [{x)|, ¥ € M, x%y 5% 1. If x’ € M, we have x7y € M* C S. Suppose
now that 7 ¢ M. If y € (x) we have x’y € (x)! € S. Thus we may assume
that ¥y ¢ (x). If y = ™, we have x~'h € S; bence xh~! = xy € S. If y == b1,
we have hy € M* C S, {x,y,xh7', hy} € S(xy) and |{x,y, hy}| = 3 since
h # 1 and x ¢ M. Moreover, xy # 1 since x ¢ M. Hence we have xy € S by
Lemma 4.15. Now {x7, v, xy, -1} C S(x’y) and |{x’, y, xy}| = 3 since x = 1
and y ¢ (x). We conclude by Lemma 4.15 that x’y € S; thus ((x)M)* C S,
contradicting the maximality of 3. We therefore have S(k) € M*; thus
Sh) \J {h} € M* U {h} = M*.

Lemma 4.19. Let x, b, k € .S such that x € (S(h) \J {h}) N (Sk) U {k}).
Then S(h) J {h} = S(k) U {k}.
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Proof. By Lemma 4.18 we have S(h) U {h} = Skx) U {x} = S() U {&].
LeMMA 4.20. K is @ maximal subgroup in S'\U {1}.

Proof. Let M be a maximal subgroup in S\U {1} containing K. Since
a € K, we have |S(a)| > |M| — 2. By Lemma 4.11 we have |S(a)| < |[K| — 2.
It follows that KX = M.

LEMMA 4.21. Let K = Hy, ..., H, be a complete set of maximal subgroups in
S\ {1}. Then |H)| = |[H;| > 2fori,j=1,...,e.

Proof. By Lemma 4.18 for & € H;, k € H;, we have H, = S(h) \U |k} and
H; =Sk)\J {k}. h ¢ SCh), k ¢ S(k) since 1 ¢ S. Thus |H| = |[Sh)| +1 =
IS®)| + 1 = |H,| and |H,| = |K| > |4] > 8.

LeEMMA 4.22. Let K = Hy,...,H, as above. Then H =H; X ... X H,.

Proof. (S) = H,...H, =H by Theorem 1. H,N\H; =1 for i #j by
Lemma 4.19. 2 € H can be written in the form

h=h...h, h; € H,, i=1,...,e

We say that 2 € H has ‘“length” ¢ if the number of z; ¥ 1 in some such
representation of % is ¢. It suffices to show that no element of length one has
length greater than one as well. Suppose the contrary and choose j > 1 minimal
such that % of length one is also of length j. We have § = H\f 4+ ... 4+ H7.
Since |H,| = |H,| for4,j = 1,..., e we have that in

e
SP=> E@H'+ > Hyt..Hf+ Y HS'H,...H,
=1 11<12...<ij
each element of S has the same coefficient in the first term. Because of the
minimality of j, each element of S has the same coefficient in the third term as
well (since the elements of .S are precisely the elements of length one). In the
second term % occurs with non-zero coefficient. Since [S]7 is a linear combination
of the S;, @ and % have the same coefficient in [S]?. Thus @ must also be of length
j, say @ = x1...x; where x; # 1 for ¢ =1,...,7 and each x; is from a
different H,. Since Sy = Kx = (Hy)x, a is notin H, ... H, since all elements
of Hy...H, are of the form a%bc. Thus some x;, say x,, is in H;. Then
ax; ' =x1...x;1. If x; # a, we have ax;7! € § written as an element of
length j — 1, contradicting the minimality of j unless j = 2. If j = 2, we have
ax;' = x1; but x; and x; come from different H,. If ¢ = x,, we have
¥1...%;1 =1 and j # 2 since x; # 1. Now x7!) = x1...%x;» is a word of
length one and j — 2, contradicting the minimality of j unless 7 = 3, in which
case xy~! = x;, which cannot occur. This completes the proof of Lemma 4.22.

THEOREM B. G is doubly transitive unless H = Hy X ... X H, where e > 1
and |Hy| = |H;| > 2 fori,j =1,...,e
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Proof. Let Hy,...,H, be as in Lemmas 4.21 and 4.22. If ¢ > 1, there is
nothing to prove. If ¢ = 1, we have S = H,¥ = Hf. This means that » = 1 in
the notation of Theorem 2, and Hypothesis 6 of Theorem A is satisfied. Thus
G is doubly transitive.
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