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Abstract
A spread-out lattice animal is a finite connected set of edges in {{x, y} ⊂Z

d : 0< ‖x− y‖ ≤ L}. A lattice tree
is a lattice animal with no loops. The best estimate on the critical point pc so far was achieved by Penrose
(J. Stat. Phys. 77, 3–15, 1994) : pc = 1/e+O(L−2d/7 log L) for both models for all d≥ 1. In this paper,
we show that pc = 1/e+ CL−d +O(L−d−1) for all d > 8, where the model-dependent constant C has the
random-walk representation

CLT =
∞∑
n=2

n+ 1
2e

U∗n(o), CLA = CLT − 1
2e2

∞∑
n=3

U∗n(o),

where U∗n is the n-fold convolution of the uniform distribution on the d-dimensional ball {x ∈Rd :
‖x‖ ≤ 1}. The proof is based on a novel use of the lace expansion for the 2-point function and detailed
analysis of the 1-point function at a certain value of p that is designed to make the analysis extremely
simple.
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1. Introduction and the main result
Given an L ∈N, we consider spread-out lattice animals A= (VA, EA), where the vertex set VA is
a finite subset of Zd and any pair of vertices in VA are connected by a path of spread-out edges
EA ⊂ {{x, y} : 0< ‖x− y‖ ≤ L}; ‖ · ‖ is an arbitrary fixed norm on R

d. A lattice tree is a lattice
animal with no loops. Both models are statistical-mechanical models for branched polymers.

To investigate their statistical properties, we consider the following generating functions. Let

�= {x ∈Zd : 0< ‖x‖ ≤ L}, D(x)= 1
|�|1{x∈�}, (1.1)

where 1E is the indicator function of E, being 1 or 0 depending on whether or not E is true. The
functionDwill be used as a transition probability of the underlying randomwalk. Then, we define
the weight function for a tree T as

Wp(T)=
∏
{x,y}∈ET

pD(x− y)=
(

p
|�|

)|ET |
, (1.2)

C© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S096354832300038X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300038X
https://orcid.org/0000-0003-2273-4497
https://orcid.org/0000-0003-0943-7842
mailto:noe0717kawa@gmail.com
https://doi.org/10.1017/S096354832300038X


Combinatorics, Probability and Computing 239

Figure 1. A sample T of To. Removal of all edges {o, yj} ∈ ET leaves disjoint subtrees Rj rooted at yj: VT \ {o} =⋃j VRj and
ET \⋃j{{o, yj}} =

⋃
j ERj .

Figure 2. A sample tree in To,x . Removal of the backbone edges (in blue) yields disjoint subtrees {Rj}, called ribs. In this
example, R1, R3 and R6 are single-vertex trees.

and similarly for a lattice animal A as Wp(A). For a finite set X⊂Z
d, we denote by TX (resp.,

AX) the set of lattice trees T with X⊂VT (resp., lattice animals A with X⊂VA); if X consists of a
vertex or two, we simply write, e.g., To (for X= {o}; see Fig. 1) or To,x (for X= {o, x}; see Fig. 2).
The generating functions we want to investigate are the 1-point and 2-point functions, defined
respectively as

gp =
∑
T∈To

Wp(T), τp(x)=
∑

T∈To,x
Wp(T), (1.3)

for lattice trees, and similarly defined for lattice animals. The susceptibility χp is the sum of the
2-point function, defined as

χp =
∑
x∈Zd

τp(x)=
∑
x∈Zd

∑
T∈To

1{x∈VT}Wp(T)=
∑
T∈To
|VT |Wp(T), (1.4)

for lattice trees, and similarly for lattice animals. It has been known (see [18] and references
therein) that there is a model-dependent critical point pc such that χp is finite if and only if p< pc
and diverges as p ↑ pc. The goal of this paper is to reveal the asymptotics of pc as L ↑∞ for both
models.

The best estimate so far on pc for the spread-out model was achieved by Penrose [23]. He
investigated the growth constant, which is defined by the n ↑∞ limit of the nth root of the
number tn = 1

n
∑

T∈To 1{|VT | = n} of n-vertex unrooted lattice trees. Since {tn}n∈N is a super-
multiplicative sequence, i.e., tn+m ≥ tn tm (see, e.g., [16]), limn↑∞ t1/nn exists and is asymptotically
e|�| +O(|�|5/7 log |�|) as |�| ↑∞ [23]. Since |ET | = |VT | − 1 for each lattice tree, we can
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rewrite χp as

χp
(1.4)=

∞∑
n=1

n
∑
T∈To

1{|VT |=n}Wp(T)=
∞∑
n=1

n2
(

p
|�|

)n−1
tn. (1.5)

Therefore, for large |�|,

pc = lim
n↑∞

(
n2

|�|n−1 tn
)−1/n

= |�|
e|�| +O(|�|5/7 log |�|) =

1
e
+O(|�|−2/7 log |�|), (1.6)

which is true for all dimensions d≥ 1. Penrose also claimed in [23, Section 3.1] that pc for lattice
animals obeys the same bound, due to the result of Klarner [15].

A weaker estimate, pc = 1/e+ o(1) as L ↑∞ for all d bigger than the critical dimension dc = 8,
was obtained byMiranda and Slade [20]. In fact, their main concern was to obtain 1/d expansions
of pc for the nearest-neighbor models. In [19, 21], they showed that,

pc = 1
e
+ 3

2e
|�|−1 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
115
24e
|�|−2 + o(|�|−2) [lattice trees],

(
115
24e
− 1

2e2

)
|�|−2 + o(|�|−2) [lattice animals],

(1.7)

as |�| = 2d ↑∞. The proof is based on the lace expansion for the 2-point function τp(x) and
an expansion for the 1-point function gp based on inclusion-exclusion. Notice that the model-
dependence appears only from the O(|�|−2) term. This is due to unit squares that are in gp for
lattice animals, but not in gp for lattice trees. The lace expansion has been successful in showing
mean-field critical behaviour in high dimensions for various models, including lattice trees and
lattice animals for d > 8 (e.g., [6, 8, 10]). The other models are self-avoiding walk for d > 4 (e.g.,
[2, 6, 9]), percolation for d > 6 (e.g., [6, 7]), oriented percolation and the contact process for the
spatial dimension d > 4 (e.g., [22, 24]), and the Ising and ϕ4 models for d > 4 (e.g., [1, 25–27]).

For the nearest-neighbor lattice trees and lattice animals, in particular, Hara and Slade [6, 8,
10] show mean-field behaviour for both models in dimensions higher than an unspecified num-
ber bigger than 8. In contrast, Fitzner and van der Hofstad [5] prove that d > 16 is enough for
lattice trees, and d > 17 for lattice animals to exhibit mean-field behaviour. The proof is based on
the so-called non-backtracking lace expansion (NoBLE) that is different from the standard lace
expansion by Hara and Slade.

In [12], van der Hofstad and the second-named author of the current paper applied the lace
expansion to the spread-out models [defined by D in equation (1.1)] of self-avoiding walk, per-
colation, oriented percolation and the contact process, and showed that, for all d bigger than the
respective critical dimension dc,

pc = 1+ CL−d +O(L−d−1), (1.8)

as L ↑∞, where 1 is the mean-field value, and the model-dependent constant C has the following
random-walk representation:

C=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=2

U∗n(o) [self-avoiding walk, the contact process],

1
2

∞∑
n=2

U∗2n(o) [oriented percolation],

U∗2(o)+
∞∑
n=3

n+ 1
2

U∗n(o) [percolation],

(1.9)
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where U∗n is the n-fold convolution in R
d of the uniform probability distribution U on {x ∈

R
d : ‖x‖ ≤ 1}. For example, if ‖x‖ = ‖x‖∞ := maxj |xj|, then, for all n ∈N,

U(x)= 1{‖x‖∞≤1}
2d

, U∗(n+1)(x)=
∫
Rd

U∗n(y)U(x− y) ddy. (1.10)

These quantities are the spread-out limit of the underlying random walk generated by D [12,
Section 4]. For example, for d > 4,

∞∑
n=2

n+ 1
2

D∗n(o)= L−d
∞∑
n=2

n+ 1
2

U∗n(o)+O(L−d−1), (1.11)

where we have used the same notation ∗ to represent convolutions on Z
d as well. The error term

O(L−d−1) is due to Riemann-sum approximation.
We want to achieve a similar result for lattice trees and lattice animals, i.e., a random-walk

representation for the difference between pc and its mean-field value 1/e, and see how the model-
dependence arises in it. In the rest of the paper, we will show the following:

Theorem 1.1. For both lattice trees and lattice animals with d > 8 and L ↑∞,

pc = 1
e
+ CL−d +O(L−d−1), (1.12)

where the model-dependent constant C has the following random-walk representation:

CLT =
∞∑
n=2

n+ 1
2e

U∗n(o), CLA = CLT − 1
2e2

∞∑
n=3

U∗n(o), (1.13)

The difference in pc already shows up in the first error term of order L−d for the spread-out
models, while it appears in (1.7) from the second error term of order d−2 for the nearest-neighbor
models, as mentioned earlier. This is due to closed loops of length bigger than 2 in gp for lattice
animals. The smallest among such loops for the spread-out model is of length 3 and of order L−d,
while that for the nearest-neighbor model is of length 4 and of order d−2 (see Lemma 4.1 below).
Identifying coefficients of the higher-order terms for the spread-out models may need more work
since they are absorbed in the error term O(L−d−1) in (1.12), which is inherent in Riemann-sum
approximation, just as mentioned below (1.11).

The proof of the above theorem is based on the lace expansion for the 2-point function and
detailed analysis of the 1-point function, similarly to the previous work byMiranda and Slade [21].
The key to our analysis is to introduce a new base point p1 defined in (2.1) below, as p1gp1 = 1. It
is to estimate various generating functions in terms of massless random walks. For the spread-out
models of self-avoiding walk, percolation, oriented percolation and the contact process, van der
Hofstad and Sakai [12] use the base point p1 = 1, because of the unity of the 1-point function for
those models. Since the analysis in terms of the underlying random walks is very simple, we do
not have to know in detail the lace expansion; the exception is in Lemma 2.1 below, where we
investigate the first lace-expansion coefficient π̂ (1)

p to prove pc − p1 =O(L−2d). However, the basic
facts (summarized in Proposition 2.2 below) and aminimum definition about the lace-expansion
coefficients should be enough to read the proof, which we hope makes this paper more accessible
to wider audience.

Our method can be applied to the nearest-neighbor models as well to identify the coefficient
of (2d)−1, as we can use the same method (i.e., Lemma 2.1 below) to conclude pc − p1 =O(d−2),
but this limits the accuracy our method can achieve. Therefore, to identify the higher-order coeffi-
cients, we may need investigate the lace-expansion coefficients at pc more carefully as in Miranda
and Slade [21].
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The rest of the paper is organized as follows. In Section 2, we show that pc is close (up to order
L−2d) to p1 that satisfies the identity p1gp1 = 1, which is heavily used in the analysis in Sections 3
and 4. Section 3 is devoted to evaluating gp1 for lattice trees. The 1-point function is split into two
parts, G and H, which are investigated in Sections 3.1 and 3.2, respectively. Finally, in Section 4,
we demonstrate how to evaluate the difference between lattice trees and lattice animals.

2. Results due to the lace expansion
In this section, we approximate pc by p1 that is defined for both models by the identity

p1gp1 = 1. (2.1)
From now on, we frequently use

β = L−d. (2.2)

Lemma 2.1. For both lattice trees and lattice animals with d > 8 and L ↑∞,
0< pc − p1 =O(β2). (2.3)

The key to the proof is the following collection of the lace-expansion results [6, 17], in which
we use

hp(x)=

⎧⎪⎨
⎪⎩
0 [lattice trees],

(1− δo,x)
∑
A∈Ao

1{o⇐⇒x}Wp(A) [lattice animals], (2.4)

where o⇐⇒ xmeans that (o= x or) there is at least one pair of edge-disjoint paths from o to x in
an animal A. Let ĥp denote the sum of hp(x) over x ∈Zd:

ĥp =
∑
x∈Zd

hp(x). (2.5)

Proposition 2.2 ([6, 17]). For both lattice trees and lattice animals with d > 8, there is a model-
dependent L0 <∞ such that, for all L≥ L0, the following holds for all p≤ pc:

1. The 1-point function is bounded away from zero and infinity. In fact,
1≤ gp ≤ 4. (2.6)

2. There are nonnegative lace-expansion coefficients π
(n)
p (x), n ∈N, such that

∃K <∞, ∀x ∈Zd, π (n)
p (x)≤ KL−6(Kβ)n−1

(‖x‖ ∨ L)2d−6 , (2.7)

and that, by defining πp(x)=∑n∈N (−1)nπ (n)
p (x), the recursion equation

τp(x)= gpδo,x + hp(x)+ πp(x)

+
∑
u,v

(
gpδo,u + hp(u)+ πp(u)

)
pD(v− u) τp(x− v) (2.8)

holds for all x ∈Zd.

Consequently, there is a K′ <∞ such that

∀x �= o, τpc (x)≤
K ′L−2

(‖x‖ ∨ L)d−2 , χp �
p↑pc

(pc − p)−1/2, (2.9)
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where the latter means χp/(pc − p)−1/2 is bounded away from 0 and∞ as p ↑ pc, and

pc = 1
gpc + ĥpc + π̂pc

=
(
gpc +

∑
x �=o

hpc (x)+
∑
x

πpc (x)
)−1

. (2.10)

The above results for lattice trees are proven in [17] by following the same line of proof as in [6]
and using the convolution bounds in [4, Lemma 3.2] instead of the weaker ones in [6, Proposition
1.7]. The same strategy applies to lattice animals, and we refrain from showing details.

Consequently, for any p≤ pc,

π̂ (n)
p =

∑
x∈Zd

π (n)
p (x)

(2.7)≤ K(Kβ)n−1
( ∑

x:‖x‖≤L
L−2d +

∑
x:‖x‖>L

L−6

‖x‖2d−6
)
=O(β)n. (2.11)

Moreover, by subadditivity (i.e., forgetting edge-disjointness among paths from o to x),

ĥp ≤
∑
x �=o

τp(x)2
(2.9)≤ (K ′L−2)2

( ∑
x:‖x‖≤L

L2(2−d) +
∑

x:‖x‖>L
‖x‖2(2−d)

)
=O(β). (2.12)

The identity (2.10) is obtained by summing (2.8) over x ∈Zd, solving the resulting equation for
χp and then using the fact that χp diverges as p ↑ pc. Substituting (2.11)–(2.12) to (2.10) yields1

pc = 1
gpc

(
1+ ĥpc − π̂

(1)
pc

gpc
+O(β2)

)−1
= 1

gpc

(
1+ π̂

(1)
pc − ĥpc
gpc

)
+O(β2), (2.14)

which is the starting point of the analysis.

Proof of Lemma 2.1. First we show p1 < pc. Since pgp is increasing in p with p1gp1 = 1, it suf-
fices to show pcgpc > 1. By (2.6) and (2.14), it then suffices to show that π̂

(1)
pc − ĥpc is bounded

from below by β times a positive constant for large L. Here, and only here, we use the actual
definition of the lace-expansion coefficient π̂

(1)
p (see, e.g., [8]). We can easily check that π̂

(1)
p

for both models is larger than the sum of triangles consisting only of three distinct edges:
π̂

(1)
p ≥ |�|(|�| − 1)(p/|�|)3, which is enough for lattice trees because ĥp ≡ 0. For lattice animals,

we show below ĥp ≤ 1
4 π̂

(1)
p +O(β2) for p≤ pc in high dimensions d > 8. The aforementioned

sufficient condition for pcgpc > 1 is now verified.
Next we show pc − p1 =O(β2) for lattice animals by induction. The same induction also works

for lattice trees withA= T and ĥpc ≡ 0. Let {	n}n∈N be the following increasing sequence bounded
above by 2:

	1 = 1, 	j+1 = 1+ 	j

2
[j ∈N]. (2.15)

Since pc =O(1) (see, e.g., (1.6) or [6, Proposition 2.2]) and p1gp1 = pc(gpc + ĥpc + π̂pc )= 1, we
have

0< 1− p1
pc
= 1− gpc + ĥpc + π̂pc

gp1
=− gpc − gp1

gp1︸ ︷︷ ︸
≥0

− ĥpc + π̂pc
gp1

, (2.16)

which is bounded above by−π̂pc/gp1 =O(β) [due to (2.11)], confirming pc − p1 =O(β	1 ).

1In [17], Liang investigated π̂
(1)
pc in (2.14) for lattice trees and showed that, for all d > 8, pcgpc rather than pc exhibits

pcgpc = 1+ β

e

∞∑
n=2

(
n+ 1
2

)
U∗n(o)+O(β/L) as L ↑∞. (2.13)

This may be a bit of surprise, as the coefficient of β is much larger than that in (1.12)–(1.13).

https://doi.org/10.1017/S096354832300038X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300038X


244 N. Kawamoto and A. Sakai

Now we suppose pc − p1 =O(β	j). Notice that gpc − gp1 can be rewritten as

gpc − gp1 =
∑
A∈Ao

(
1−

(p1
pc

)|EA|)
Wpc (A)=

(
1− p1

pc

) ∑
A∈Ao

|EA|−1∑
n=0

(p1
pc

)n
Wpc (A)

︸ ︷︷ ︸
=:F

(2.16)=
(
−gpc − gp1

gp1
− ĥpc + π̂pc

gp1

)
F. (2.17)

Solving this for gpc − gp1 yields

gpc − gp1 =−
ĥpc + π̂pc
gp1 + F

F, (2.18)

which is bounded above by −π̂pc =O(β) [due to (2.11)] for both models. By substituting (2.18)
to (2.16), we obtain

pc − p1 = pc

(
1
gp1

ĥpc + π̂pc
gp1 + F

F− ĥpc + π̂pc
gp1

)
=−pc ĥpc + π̂pc

gp1 + F

(2.11)= pc
π̂

(1)
pc − ĥpc
gp1 + F

+O(β2). (2.19)

Recall the definition of F in (2.17). Since (p1/pc)nWpc (A)= (pc/p1)|EA|−nWp1 (A), which is also
true for lattice trees, we have

F=
∑
A∈Ao

|EA|∑
n=1

(pc
p1

)n
Wp1 (A)

p1<pc≥
∑
A∈Ao

|EA|Wp1 (A)
|VA|≤2|EA|≥ χp1

2
. (2.20)

By (2.19) and (2.20), we can estimate pc − p1 as

pc − p1 = pc
π̂

(1)
pc − ĥpc

gp1F−1 + 1
F−1 +O(β2)=O(β)χ−1p +O(β2)

=O(β)(pc − p1)
1
2 +O(β2), (2.21)

where, for the last inequality, we use χp1 � (pc − p1)−1/2 for both models in dimensions d > 8.
Applying the inductive hypothesis pc − p1 =O(β	j) to (2.21), we obtain pc − p1 =O(β	j+1 ), which
completes the induction. Since limj↑∞ 	j = 2, this proves pc − p1 =O(β2), as required. �
Proof of ĥp ≤ 1

4 π̂
(1)
p +O(β2) for lattice animals. First we recall that

ĥp =
∑
x �=o

∑
A∈Ao

(
p
|�|

)|EA|
1{o⇐⇒x}. (2.22)

We split the sum into two depending on whether or not there are distinct vertices y, z ∈VA such
that o←→ y, y←→ x, o←→ z, z←→ x and y←→ z occur in A edge-disjointly, i.e., those con-
nections occur in distinct sets of EA. (We note that, if y= o, for example, then we should interpret
this as o←→ x, o⇐⇒ z and z←→ x occurring edge-disjointly.) Intuitively,

⋃
y,z∈VA
(y �=z)

o x

y

z

.
(2.23)
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Figure 3. Schematic representations of the three terms in (2.25). The black line segments are pivotal for o⇐⇒ x in A.
Removal of those edges results in the animals {Aj}3j=1 or {Aj}4j=1 that are mutually avoiding, as indicated by the red arrows.
The vertices in� are ordered in an arbitrary way (counter-clockwise in the above 2-dimensional figures).

Using submultiplicativity and the x-space bound in (2.9), we can show that the contribution
from this case is O(β2). On the other hand, if there are no such vertices y, z ∈VA, i.e.,

o x \
⋃

y,z∈VA
(y �=z)

o x

y

z

,
(2.24)

then there are exactly two edge-disjoint connections between o and x, with two pivotal edges from
o, say {o, u}, {o, u′}, and two from x, say {v, x}, {v′, x}, one of which may coincide with either {o, u}
or {o, u′}, for the double connection o⇐⇒ x in A. Suppose that there is order among vertices
in �. If u ∈� is earlier than u′ ∈� in this order, we write u≺ u′. Let �(x)= {v ∈V : v− x ∈�}.
Then, the contribution to ĥp from (2.24) is bounded above by (see Fig. 3)

∑
x �=o

∑
A1∈Ao
A2∈Ax

Wp(A1)Wp(A2)

(
1{x∈�}

p
|�|

∑
u∈�
(x≺u)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3)

+ 1{x∈�} p
|�|

∑
u∈�
(u≺x)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3)

+
∑

u,u′∈�
(u≺u′)

∑
v,v′∈�(x)
(v �=v′)

(
p
|�|

)4 ∑
A3∈Au,v
A4∈Au′ ,v′

Wp(A3)Wp(A4)

)∏
i�=j
1{VAi∩VAj=∅}. (2.25)

Since � is symmetric with respect to the underlying lattice symmetry, the first and second terms
are the same. Due to the same reason, the third term remains unchanged when the restriction
u≺ u′ is replaced by u′ ≺ u. Therefore, (2.25) equals

∑
x �=o

∑
A1∈Ao
A2∈Ax

Wp(A1)Wp(A2)

(
1{x∈�}

p
|�|

∑
u∈�
(u �=x)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3)

+ 1
2
∑

u,u′∈�
(u �=u′)

∑
v,v′∈�(x)
(v �=v′)

(
p
|�|

)4 ∑
A3∈Au,v
A4∈Au′ ,v′

Wp(A3)Wp(A4)

)∏
i�=j
1{VAi∩VAj=∅}. (2.26)
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Figure 4. Schematic representation of π (1)
p (x). The sequence of edges ω1, . . . ,ω|ω| joined by the animals B0, . . . , B|ω| form

the backbone from o to x in A. The terminal animals B0 and B|ω| share a vertex [due to 1B0∩B|ω| �=∅ in (2.27)], otherwise those
animals are mutually avoiding [due to the product of indicators in (2.27)]. Each animal Bj contains a double connection
between ωj and ωj+1.

Now we compare (2.26) with π̂
(1)
p for lattice animals, which is defined as (see Fig. 4)

π̂ (1)
p =

∑
x

∑
ω={(ωi,ωi)}|ω|i=1

(|ω|≥1)

(
p
|�|

)|ω| |ω|∏
j=0

∑
Bj∈Aωj ,ωj+1

Wp(Bj) 1{ωj⇐⇒ωj+1 in Bj}

× 1{B0∩B|ω| �=∅}
∏

0≤k<l≤|ω|
((k,l)�=(0,|ω|))

1{Bk∩Bl=∅}, (2.27)

where we have abused the notationω0 = o and ω|ω|+1 = x. This can be bounded below by restrict-
ing the sum over ω to those satisfyingω1 = o andω|ω| = x (so thatAω0,ω1 =Ao andAω|ω|,ω|ω|+1 =
Ax) and then by restricting the sum over B0 ∈Ao to B0 = {o} (so that 1{B0∩B|ω| �=∅} = 1{o∈B|ω|}) or
restricting the sum over B|ω| ∈Ax to B|ω| = {x} (so that 1{B0∩B|ω| �=∅} = 1{x∈B0}):

o x

ω1 ω2 ω|ω|

B|ω|
∪

o x

ω1 ω2 ω|ω|

B0

. (2.28)

Those two terms are basically the same. Splitting the sum over ω into two depending on
whether |ω| = 1 (so that ω= {ω1}, where ω1 = (o, x)) or |ω| ≥ 2 and then, for the latter, by
summing over the animals B1, . . . , B|ω|−1 (to form an animal A3 ∈Aω1,ω|ω|), we obtain

π̂ (1)
p ≥2

∑
x �=o

∑
B∈Ao,x

Wp(B)

(
1{(o,x)/∈EB}1{x∈�}

p
|�|

+
∑
u∈�
(u �=x)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3) 1{VB∩VA3=∅}

)
. (2.29)

We further bound this below by restricting the sum over B ∈Ao,x to smaller animals
B= (VB, EB) with either

(i) VB =VA1 ∪VA2 , EB = EA1 ∪ {(o, x)} ∪ EA2 for some A1 ∈Ao, A2 ∈Ax (as in the left and
middle figures of Fig. 3), or

(ii) VB =VA1 ∪VA2 ∪VA4 , EB = EA1 ∪ {(o, u′)} ∪ EA4 ∪ {(v′, x)} ∪ EA2 for someA1 ∈Ao,A2 ∈
Ax, u′ ∈�, v′ ∈�(x), A4 ∈Au′,v′ (as in the right figure of Fig. 3).
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The contribution from (i) to the right-hand side of (2.29) is

2
∑
x �=o

∑
A1∈Ao
A2∈Ax

Wp(A1)Wp(A2)1{x∈�}
p
|�|

∑
u∈�
(u �=x)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3)
∏
i�=j
1{VAi∩VAj=∅},

(2.30)

while the contribution from (ii) is

2
∑
x �=o

∑
A1∈Ao
A2∈Ax

Wp(A1)Wp(A2)

(
1{x∈�}

p
|�|

∑
u∈�
(u �=x)

∑
v∈�(x)
(v �=o)

(
p
|�|

)2 ∑
A3∈Au,v

Wp(A3)

+
∑

u,u′∈�
(u �=u′)

∑
v,v′∈�(x)
(v �=v′)

(
p
|�|

)4 ∑
A3∈Au,v
A4∈Au′ ,v′

Wp(A3)Wp(A4)

)∏
i�=j
1{VAi∩VAj=∅}. (2.31)

Notice that the sum of (2.30) and (2.31) is four times as large as (2.26). This completes the proof
of ĥp ≤ 1

4 π̂
(1)
p +O(β2). �

3. Detailed analysis of the 1-point function for lattice trees
To complete the proof of Theorem 1.1, it remains to investigate p1 = 1/gp1 (due to (2.1) and
Lemma 2.1). In this section, we concentrate our attention to lattice trees and show the following:

Lemma 3.1. For lattice trees with d > 8 and L ↑∞,

gp1 = e
(
1−

∞∑
n=2

n+ 1
2

D∗n(o)
)
+O(β2). (3.1)

Consequently,

p1 = 1
e
+
∞∑
n=2

n+ 1
2e

D∗n(o)+O(β2). (3.2)

To prove Lemma 3.1, we first rewrite gp1 by identifying the connected neighbours Y of the
origin as

gp1 =
∑
T∈To

(
p1
|�|

)|ET |

= 1+
∑
Y⊂�
(|Y|≥1)

∑
T∈TY∪{o}

(
p1
|�|

)|ET |

= 1+
∑
Y⊂�
(|Y|≥1)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∏
u,v∈Y
(u �=v)

1{VRu∩VRv=∅}, (3.3)

where, and from now on,
∑

Y⊂� is the sum over sets Y of distinct vertices of � (we recall that o is
not included in �) and
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Figure 5. Intuitive explanation of (3.5). The double-headed arrows on the left (= gp1 ) represents mutual avoidance among
subtrees. In the first term on the right (= G), those subtrees are independently summed over Ty \ To, y ∈ Y , where Y is the set
of connected neighbours of the origin. In the second term on the right (= H), there is at least one pair of subtrees that share
vertices.

∏
y∈Y

∑
Ry∈Ty\To

(p1/|�|)|ERy | =
∑

Ry1∈Ty1\To
(p1/|�|)|ERy1 | · · ·

∑
Ryn∈Tyn\To

(p1/|�|)|ERyn | (3.4)

for Y = {y1, . . . , yn}. By convention,∏u �=v 1{VRu∩VRv=∅} is regarded as 1 when |Y| = 1. Let (see
Fig. 5)

gp1 =G−H, (3.5)

where

G= 1+
∑
Y⊂�
(|Y|≥1)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy |
, (3.6)

H =
∑
Y⊂�
(|Y|≥2)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy |(
1−

∏
u,v∈Y
(u �=v)

1{VRu∩VRv=∅}
)
. (3.7)

We investigate those G and H in Sections 3.1 and 3.2, respectively (cf., Lemmas 3.2 and 3.4
below).

3.1 Detailed analysis of G
From now on, we frequently use

S≥t(x)=
∞∑
n=t

D∗n(x), (3.8)

where D∗0(x)= δo,x by convention. The following is what we are going to show in this section:

Lemma 3.2. For lattice trees with d > 8 and L ↑∞,

G= e
(
1− 1

2
D∗2(o)− S≥2(o)

)
+O(β2). (3.9)
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Proof. Since p1gp1 = 1, we can rewrite G as

G= 1+
∑
Y⊂�
(|Y|≥1)

(
p1
|�|

)|Y|∏
y∈Y

( ∑
Ry∈Ty

(
p1
|�|

)|ERy |
︸ ︷︷ ︸

gp1

−
∑

Ry∈To,y

(
p1
|�|

)|ERy |
︸ ︷︷ ︸

τp1 (y)

)

= 1+
∑
Y⊂�
(|Y|≥1)

(
1
|�|

)|Y|∏
y∈Y

(
1− τp1 (y)

gp1

)
. (3.10)

If we replace
∏

y∈Y (1− τp1 (y)/gp1 ) by 1, then we obtain

G0 := 1+
∑
Y⊂�
(|Y|≥1)

(
1
|�|

)|Y|
=
(
1+ 1
|�|

)|�|
. (3.11)

Since k log (1+ 1/k)= 1− 1/(2k)+O(k−2) as k ↑∞, and since |�|−1 =D∗2(o), we obtain

G0 = e
(
1− 1

2|�|
)
+O(|�|−2)= e

(
1− 1

2
D∗2(o)

)
+O(β2). (3.12)

Next we consider the remainder, which is

G−G0 =
∑
Y⊂�
(|Y|≥1)

(
1
|�|

)|Y|(∏
y∈Y

(
1− τp1 (y)

gp1

)
− 1

)

=
∑
Y⊂�
(|Y|≥1)

(
1
|�|

)|Y| ∑
Z⊂Y

(|Z|≥1)

∏
y∈Z

−τp1 (y)
gp1

. (3.13)

Changing the order of sums yields

G−G0 =
∑
Z⊂�
(|Z|≥1)

∏
y∈Z

−τp1 (y)
gp1

(
1
|�|

)|Z| ∑
Z⊂Y⊂�

(
1
|�|

)|Y\Z|

=
∑
Z⊂�
(|Z|≥1)

∏
y∈Z

−τp1 (y)D(y)
gp1

(
1+ 1
|�|

)|�\Z|

=G1 +G2, (3.14)
where

G1 =
∑
Z⊂�
(|Z|=1)

∏
y∈Z

−τp1 (y)D(y)
gp1

(
1+ 1
|�|

)|�\Z|
= −(τp1 ∗D)(o)

gp1
G0

(1+ 1/|�|) , (3.15)

G2 =
∑
Z⊂�
(|Z|≥2)

∏
y∈Z

−τp1 (y)D(y)
gp1

(
1+ 1
|�|

)|�\Z|
. (3.16)

We have made use of reflection symmetry in (3.14)–(3.16), such as τp(−y)= τp(y) and D(−y)=
D(y); we will frequently the symmetry without mentioning each time. To estimate G1 and G2, we
use the following lemma, which will be proven after the proof of Lemma 3.2 is completed. �

https://doi.org/10.1017/S096354832300038X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300038X


250 N. Kawamoto and A. Sakai

Lemma 3.3. For any d > 2 and x �= o, the lattice tree 2-point function satisfies

0≤ S≥1(x)− τp1 (x)
gp1
≤
∑

y,z∈Zd

(y �=z)

S∗2≥0(z− y) S≥0(y) S≥1(z− y) S≥0(x− z). (3.17)

Remark. The right-hand side of (3.17) is diagrammatically represented by

∑
y,z∈Zd

(y �=z)

S∗2
≥0(z − y) S≥0(y) S≥1(z − y) S≥0(x − z) =

o x, (3.18)

where an unslashed (resp., slashed) line represents S≥0 (resp., S≥1) and an unlabelled vertex is
summed over Zd. Due to translation invariance, we can change the order of terms in (3.17) for
a given x �= o. Then (3.18) is also equal to

∑
y∈Zd

(y �=x)

S∗2
≥0(y) S∗2

≥0(x − y) S≥1(x − y) =
o x

.
(3.19)

These diagrammatic representations will be used in the proof of Lemma 3.4 below.

First we estimate G2. By the first inequality in (3.17) and the heat-kernel bound (see, e.g.,
[3, (1.6)]):

‖D∗n‖∞ =O(β)n−d/2 [n ∈N], (3.20)

we can show

(τp1 ∗D)(o)
gp1

≤ sup
x∈�

τp1 (x)
gp1
≤ sup

x∈�
S≥1(x)≤

∞∑
n=1
‖D∗n‖∞ d>2= O(β). (3.21)

Therefore,

|G2| ≤G0

|�|∑
n=2

∑
Z⊂�
(|Z|=n)

∏
y∈Z

τp1 (y)D(y)
gp1

≤G0

∞∑
n=2

( (τp1 ∗D)(o)
gp1

)n
=O(β2). (3.22)

Next we estimate G1 in (3.15). By using (3.17), we have

0≤ S≥2(o)− (τp1 ∗D)(o)
gp1

=
∑
x∈Zd

D(x)
(
S≥1(x)− τp1 (x)

gp1

)
(3.17)≤

∑
x∈Zd

D(x)
∑

y,z∈Zd

(y �=z)

S∗2≥0(z− y) S≥0(y) S≥1(z− y) S≥0(x− z)

≤
∑

y,z∈Zd

(y �=z)

S∗2≥0(z− y) S≥0(y) S≥1(z− y) S≥1(z)

≤ sup
w �=o

S∗2≥0(w)
(
S≥0 ∗ S∗2≥1

)
(o). (3.23)
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By the heat-kernel bound (3.20), we can estimate each term as

S∗2≥0(w)=
∞∑

s,t=0
D∗(s+t)(w)

w �=o≤
∞∑
n=1

(n+ 1)D∗n(w) d>4= O(β), (3.24)

(
S≥0 ∗ S∗2≥1

)
(o)=

∞∑
s=0

∞∑
t,u=1

D∗(s+t+u)(o)=
∞∑
n=2

(
n
2

)
D∗n(o) d>6= O(β), (3.25)

so that

0≤ S≥2(o)− (τp1 ∗D)(o)
gp1

=O(β2). (3.26)

Therefore, by (3.12),

G1 = (− S≥2(o)︸ ︷︷ ︸
(3.21)= O(β)

+O(β2))
(
e− e

2
D∗2(o)︸ ︷︷ ︸

(3.20)= O(β)

+O(β2)
)

=−eS≥2(o)+O(β2). (3.27)

Summarizing (3.12), (3.14), (3.22) and (3.27), we complete the proof of Lemma 3.2.

Proof of Lemma 3.3. First we recall

τp1 (x)
gp1
= 1

gp1

∑
T∈To,x

(
p1
|�|

)|ET |
. (3.28)

Since a tree T ∈ To,x can be divided into a unique path ω= (ω0,ω1, . . . ,ω|ω|) from ω0 = o to
ω|ω| = x, called a backbone, and disjoint subtrees Rj ∈ Tωj , called ribs (see Fig. 2), we can rewrite
the above expression as

τp1 (x)
gp1
= 1

gp1

∑
ω:o→x

(
p1
|�|

)|ω| |ω|∏
j=0

∑
Rj∈Tωj

(
p1
|�|

)|ERj |∏
s<t
1{VRs∩VRt=∅}. (3.29)

If we replace the indicator
∏

s<t 1{VRs∩VRt=∅} by 1, then we obtain

1
gp1

∑
ω:o→x

(
p1
|�|

)|ω| |ω|∏
j=0

∑
Rj∈Tωj

(
p1
|�|

)|ERj |
︸ ︷︷ ︸

gp1

(2.1)=
∑

ω:o→x

(
1
|�|

)|ω|
x �=o= S≥1(x). (3.30)

Next we consider the remainder. Since 1−∏n
j=1 aj ≤

∑n
j=1 (1− aj) as long as 0≤ aj ≤ 1 for

all j, we can bound the remainder as

S≥1(x)− τp1 (x)
gp1
= 1

gp1

∑
ω:o→x

(
p1
|�|

)|ω| |ω|∏
j=0

∑
Rj∈Tωj

(
p1
|�|

)|ERj |(
1−

∏
s<t
1{VRs∩VRt=∅}

)

≤ 1
gp1

∑
ω:o→x

(
p1
|�|

)|ω| |ω|∏
j=0

∑
Rj∈Tωj

(
p1
|�|

)|ERj |∑
s<t
1{VRs∩VRt �=∅}. (3.31)
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If VRs ∩VRt �=∅, then there must be a w ∈Zd that is shared by those two ribs. Therefore, the
remainder is further bounded above as

S≥1(x)− τp1 (x)
gp1
≤ 1

gp1

∑
ω:o→x

(
p1
|�|

)|ω|∑
s<t

∏
j�=s,t

∑
Rj∈Tωj

(
p1
|�|

)|ERj |
︸ ︷︷ ︸

g|ω|−1p1

×
∑
w∈Zd

∑
Rs∈Tωs ,w

(
p1
|�|

)|ERs |
︸ ︷︷ ︸

τp1 (w−ωs)

∑
Rt∈Tωt ,w

(
p1
|�|

)|ERt |
︸ ︷︷ ︸

τp1 (ωt−w)

= 1
g2p1

∑
ω:o→x

(
1
|�|

)|ω|∑
s<t

∑
w∈Zd

τp1 (w−ωs) τp1 (ωt −w)

=
∑

y,z∈Zd

(y �=z)

τ ∗2p1 (z− y)
g2p1

∑
ω:o→y→z→x

(
1
|�|

)|ω|

=
∑

y,z∈Zd

(y �=z)

τ ∗2p1 (z− y)
g2p1

S≥0(y) S≥1(z− y) S≥0(x− z). (3.32)

The proof of (3.17) is completed by applying (3.29)–(3.30) to (τp1/gp1 )∗2 in the above
bound. �

3.2 Detailed analysis of H
To complete the proof of Lemma 3.1, it suffices to show the following:

Lemma 3.4. For lattice trees with d > 8 and L ↑∞,

H = e
∞∑
n=3

n− 1
2

D∗n(o)+O(β2). (3.33)

Proof. Recall the definition (3.7) of H:

H =
∑
Y⊂�
(|Y|≥2)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy |(
1−

∏
u,v∈Y
(u �=v)

1{VRu∩VRv=∅}
)
. (3.34)

First we split the indicator 1−∏u �=v 1{VRu∩VRv=∅} in (3.7) by introducing order among pairs of
distinct vertices in �, called bonds. If a bond b is earlier than another bond b′ in that order, we
denote it by b< b′. Then we have
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1−
∏
{u,v}⊂Y

1{VRu∩VRv=∅}

=
∑
{u,v}⊂Y

1{VRu∩VRv �=∅}
∏

{u′,v′}⊂Y
({u′,v′}<{u,v})

1{VR
u′ ∩VR

v′ =∅}

=
∑
{u,v}⊂Y

1{VRu∩VRv �=∅} −
∑
{u,v}⊂Y

1{VRu∩VRv �=∅}
(
1−

∏
{u′,v′}⊂Y

({u′,v′}<{u,v})

1{VR
u′ ∩VR

v′ =∅}
)
, (3.35)

where the second sum on the right is zero when |Y| = 2. Let H1 be the contribution from the first
sum on the right:

H1 =
∑
Y⊂�
(|Y|≥2)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
{u,v}⊂Y

1{VRu∩VRv �=∅}. (3.36)

We will later show [after the derivation of (3.33); see (3.54)] that

H2 := H1 −H =O(β2). (3.37)

Next we investigate H1. Let H′1 be the contribution from the case of |Y| = 2:

H′1 =
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
Ru∈Tu\To
Rv∈Tv\To

(
p1
|�|

)|ERu |+|ERv |
1{VRu∩VRv �=∅}. (3.38)

By subadditivity, we already know that H′1 =O(β) for d > 4. By changing the order of sums, we
can rewrite H1 −H′1 as

H1 −H′1 =
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
{u,v}⊂Y

1{VRu∩VRv �=∅}

=
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
Ru∈Tu\To
Rv∈Tv\To

(
p1
|�|

)|ERu |+|ERv |
1{VRu∩VRv �=∅}

︸ ︷︷ ︸
H′1

×
∑

Y′⊂�\{u,v}
(|Y′|≥1)

(
p1
|�|

)|Y′| ∏
y′∈Y′

∑
R
y′∈Ty′ \To

(
p1
|�|

)|ER
y′ |

︸ ︷︷ ︸
gp1−τp1 (y

′)

. (3.39)

Similarly to the proof of Lemma 3.2, we can show that the last line is estimated as
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∑
Y′⊂�\{u,v}
(|Y′|≥1)

(
1
|�|

)|Y′| ∏
y′∈Y′

(
1− τp1 (y′)

gp1

)

=
(
1+ 1
|�|

)|�|−2
− 1+

∑
Y′⊂�\{u,v}
(|Y′|≥1)

(
1
|�|

)|Y′|( ∏
y′∈Y′

(
1− τp1 (y′)

gp1

)
− 1

)

= e− 1+O(β). (3.40)

Therefore,

H1 −H′1 =H′1
(
e− 1+O(β)

)
, (3.41)

or equivalently

H1 = eH′1 +O(β2). (3.42)

Next we investigate H′1. To do so, we first rewrite 1{VRu∩VRv �=∅} in (3.38) by introducing order
among vertices in Z

d. For a vertex set V and an element x ∈V , we denote by V<x the set of
vertices in V that are earlier than x in that order. By identifying the earliest element x among VRu
that is also in VRv (so that V<x

Ru ∩VRv =∅), we can rewrite 1{VRu∩VRv �=∅} as

1{VRu∩VRv �=∅} =
∑
x∈VRu

1{x∈VRv } 1{V<x
Ru ∩VRv=∅}

=
∑
x∈Zd

1{x∈VRu∩VRv } −
∑

x∈VRu∩VRv

(
1− 1{V<x

Ru ∩VRv=∅}
)
. (3.43)

Let H′1′ be the contribution from the first sum in the last line:

H′1′ =
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
x∈Zd

∑
Ru∈Tu,x\To
Rv∈Tv,x\To

(
p1
|�|

)|ERu |+|ERv |

=
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
x∈Zd

(
τp1 (u− x)− τ (3)

p1 (o, u, x)
)(

τp1 (v− x)− τ (3)
p1 (o, v, x)

)
(2.1)=

∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

(
τp1 (u− x)

gp1
− τ

(3)
p1 (o, u, x)

gp1

)(
τp1 (v− x)

gp1
− τ

(3)
p1 (o, v, x)

gp1

)
, (3.44)

where τ
(3)
p (o, u, x) is a 3-point function, defined as

τ (3)
p (o, u, x)=

∑
T∈To,u,x

Wp(T). (3.45)

We will later show that

H′2′ := H1
′′ −H1

′ =O(β2). (3.46)
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Finally we investigate H′1′. The dominant contribution to H′1′ comes from the product of
2-point functions:

H′1′′ :=
∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

τp1 (u− x)
gp1

τp1 (v− x)
gp1

= 2
∑
{u,v}⊂�

(
1
|�|

)2 τp1 (u− v)
gp1

+
∑
{u,v}⊂�

(
1
|�|

)2 ∑
x �=u,v

τp1 (u− x)
gp1

τp1 (v− x)
gp1

, (3.47)

where we have used the identity τp(o)= gp. We will later show that the other contribution to H′1′
which involves 3-point functions is estimated as

H′2′′ := H′1′ −H′1′′ =O(β2). (3.48)

By Lemma 3.3, the first term in (3.47) is estimated as

2
∑

{u,v}⊂Λ

(
1

|Λ|
)2

τp1(u − v)

gp1

=
∑

u,v∈Λ
(u �=v)

(
1

|Λ|
)2

S≥1(u − v) +
∑

u,v∈Λ
(u �=v)

(
1

|Λ|
)2 (

τp1(u − v)

gp1

− S≥1(u − v)

)

= S≥3(o) − 1

|Λ|S≥1(o)︸ ︷︷ ︸
O(β2) for d>2

+
∑

u,v∈Λ
(u �=v)

(
1

|Λ|
)2 (

τp1(u − v)

gp1

− S≥1(u − v)

)

︸ ︷︷ ︸
(3.17)−(3.18)

≤ o

(3.49)

where a gap next to the origin in the last diagram represents 1/|�|. By translation invariance and
(3.24)–(3.25), the last term is bounded above by

o =

o

=
∑
y∈Zd

y �=o

o

y︸︷︷︸
≤‖S∗2

≥1‖∞

o

y

≤ ‖S∗2
≥1‖∞(S∗2

≥0 ∗ S≥1)(o) = O(β2).

(3.50)

Similarly, the second term in (3.47) is estimated as

∑
{u,v}⊂Λ

(
1

|Λ|
)2 ∑

x �=u,v

τp1(u − x)

gp1

τp1(v − x)

gp1

=
1

2
S∗2
≥2(o) −

1

2|Λ|S
∗2
≥1(o)︸ ︷︷ ︸

O(β2) for d>4

+
1

2

∑
u,v∈Λ
u �=v

(
1

|Λ|
)2 ∑

x �=u,v

(
τp1(u − x)

gp1

τp1(v − x)

gp1

− S≥1(u − x)S≥1(v − x)

)
︸ ︷︷ ︸

≤ 2
v

x
u

+
v

x u

.

(3.51)
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By Lemma 3.3, (3.19) and the translation invariance, the last term of (3.51) is bounded above by

o

+
1

2
o =

∑
y∈Zd

y �=o

o

y︸ ︷︷ ︸
≤‖S∗3

≥1‖∞

o

y

+
1

2

∑
y,z∈Zd

y,z �=o

y

z︸ ︷︷ ︸
≤‖S∗2

≥0∗S∗2
≥1‖∞

o

y

z

≤ ‖S∗3
≥1‖∞(S∗2

≥0 ∗ S≥1)(o)︸ ︷︷ ︸
O(β2) for d>6

+
1

2
‖S∗2

≥0 ∗ S∗2
≥1‖∞(S∗2

≥0 ∗ S≥1)(o)
2︸ ︷︷ ︸

O(β3) for d>8

= O(β2).

(3.52)

Therefore,

H′1′′ = S≥3(o)+ 1
2
S∗2≥2(o)+O(β2)=

∞∑
n=3

D∗n(o)+ 1
2

∞∑
n,m=2

D∗(n+m)(o)+O(β2)

=
∞∑
n=3

n− 1
2

D∗n(o)+O(β2). (3.53)

Summarizing all the above estimates, we arrive at

H (3.37)= H1 +O(β2) (3.42)= eH′1 +O(β2) (3.46)= eH′1′ +O(β2) (3.48)= eH′1′′ +O(β2)

(3.53)= e
∞∑
n=3

n− 1
2

D∗n(o)+O(β2), (3.54)

as required. It remains to show (3.37), (3.46) and (3.48). �
Proof of (3.37): boundingH2. First we recall thatH2 is the contribution from the second sum on
the right of (3.35):

H2 =
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
{u,v}⊂Y

1{VRu∩VRv �=∅}

×
(
1−

∏
{u′,v′}⊂Y

({u′,v′}<{u,v})

1{VR
u′ ∩VR

v′ =∅}
)
, (3.55)

which is nonnegative. Since we get an upper bound

1−
∏

{u′,v′}⊂Y
({u′,v′}<{u,v})

1{VR
u′ ∩VR

v′ =∅}
≤

∑
{u′,v′}⊂Y

({u′,v′}<{u,v})

1{VR
u′ ∩VR

v′ �=∅}
(3.56)
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Figure 6. Schematic representation of H2,4.

in a same manner as (3.35), we can bound H2 as

H2 ≤
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
{u,v}⊂Y
{u′,v′}⊂Y

({u′,v′}<{u,v})

1{VRu∩VRv �=∅} 1{VR
u′ ∩VR

v′ �=∅}

= 1
2
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
{u,v}⊂Y
{u′,v′}⊂Y

({u′,v′}�={u,v})

1{VRu ∩VRv �=∅} 1{VR
u′ ∩VR

v′ �=∅}
.

(3.57)

Since {u, v} �= {u′, v′}, the union {u, v} ∪ {u′, v′} consists of either three or four distinct vertices.
We denote the contribution from the former byH2,3, and that from the latter byH2,4 and then we
obtain

H2 ≤ 1
2
(H2,3 +H2,4). (3.58)

First we investigate H2,4, which is bounded as (see Fig. 6)

H2,4 =
∑
Y⊂�
(|Y|≥4)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
u,v,u′,v′∈Y
(distinct)

1{VRu∩VRv �=∅}1{VR
u′ ∩VR

v′ �=∅}

=
∑

u,v,u′,v′∈�
(distinct)

(
p1
|�|

)4 ∑
Ru∈Tu\To
Rv∈Tv\To
R
u′∈Tu′ \To

R
v′∈Tv′ \To

(
p1
|�|

)|ERu |+|ERv |+|ER
u′ |+|ERv′ |

1{VRu∩VRv �=∅}1{VR
u′ ∩VR

v′ �=∅}

×
(
1+

∑
Y′⊂�\{u,v,u′,v′}

(|Y′|≥1)

(
p1
|�|

)|Y′| ∏
y∈Y′

∑
Ry∈Ty\To

(
p1
|�|

)|ERy |
︸ ︷︷ ︸

gp1−τp1 (y)

)
. (3.59)
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Figure 7. Schematic representation of H2,3.

By (2.1) (i.e., p1gp1 = 1), the last line is equal to

1+
∑

Y′⊂�\{u,v,u′,v′}
(|Y′|≥1)

(
1
|�|

)|Y′|
=
(
1+ 1
|�|

)|�|−4
= e+O(β). (3.60)

Then, by ignoring the constraint that {u, v} and {u′, v′} are disjoint pairs and using the trivial
inequality 1{VRu∩VRv �=∅} ≤

∑
x 1{x∈VRu∩VRv } as well as the relation Tu,x \ To ⊂ Tu,x, H2,4 is further

bounded above as

H2,4 ≤
(
e+O(β)

)( ∑
{u,v}⊂�

(
p1
|�|

)2 ∑
Ru∈Tu\To
Rv∈Tv\To

(
p1
|�|

)|ERu |+|ERv |
1{VRu∩VRv �=∅}

)2

≤ (e+O(β)
)( ∑
{u,v}⊂�

(
p1
|�|

)2 ∑
x∈Zd

∑
Ru∈Tu,x
Rv∈Tv,x

(
p1
|�|

)|ERu |+|ERv |
︸ ︷︷ ︸

τp1 (u−x) τp1 (v−x)

)2

(2.1)= (
e+O(β)

)( ∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

τp1 (u− x)
gp1

τp1 (v− x)
gp1

)2

. (3.61)

Finally, by using τp1 (u− x)/gp1 ≤ S≥1(u− x) for x �= u [cf., the first inequality in (3.17)] and
τp(o)= gp for x= u, we arrive at

H2,4 ≤
(
e+O(β)

)( ∑
u,v∈�

(
1
|�|

)2
S∗2≥0(u− v)

)2

≤ (e+O(β)
)
S∗2≥1(o)2

d>4= O(β2). (3.62)

Next we investigate H2,3, which is bounded in a similar way to (3.61) as (see Fig. 7)
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H2,3 =
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y|∏
y∈Y

∑
Ry∈Ty\To

(
p1
|�|

)|ERy | ∑
u,v,v′∈Y
(distinct)

1{VRu∩VRv �=∅} 1{VRu∩VR
v′ �=∅}

≤ (e+O(β)
) ∑
u,v,v′∈�
(distinct)

(
p1
|�|

)3 ∑
x,x′∈Zd

∑
Ru∈Tu,x,x′
Rv∈Tv,x

R
v′∈Tv′ ,x′

(
p1
|�|

)|ERu |+|ERv |+|ER
v′ |

= (e+O(β)
)
g2p1

∑
u,v,v′∈�
(distinct)

(
1
|�|

)3 ∑
x,x′∈Zd

τ
(3)
p1 (u, x, x′)

g3p1

τp1 (v− x)
gp1

τp1 (v′ − x′)
gp1

. (3.63)

Due to submultiplicativity, we can bound τ
(3)
p (u, x, x′) as

τ (3)
p (u, x, x′)≤

∑
y∈Zd

τp(u− y) τp(x− y) τp(x′ − y). (3.64)

Then, by using τp1 (u− x)/gp1 ≤ S≥1(u− x) for x �= u and τp(o)= gp for x= u, we can bound the
sum in (3.63) as

∑
u,v,v′∈�
(distinct)

(
1
|�|

)3 ∑
y,x,x′∈Zd

τp1 (u− y)
gp1

τp1 (x− y)
gp1

τp1 (x′ − y)
gp1

τp1 (v− x)
gp1

τp1 (v′ − x′)
gp1

≤
∑

y,x,x′∈Zd

S≥0(x− y) S≥0(x′ − y)
∑

u,v,v′∈�

(
1
|�|

)3
S≥0(u− y) S≥0(v− x) S≥0(v′ − x′)

︸ ︷︷ ︸
S≥1(y) S≥1(x) S≥1(x′)

=
∑
y∈Zd

(S≥0 ∗ S≥1)(y)2 S≥1(y)

≤ ‖S≥0 ∗ S≥1‖∞ (S≥0 ∗ S∗2≥1)(o) d>6= O(β2). (3.65)

This together with (3.58) and (3.62) implies

H2 ≤ 1
2
(H2,3 +H2,4)=O(β2), (3.66)

as required. �
Proof of (3.46): bounding H′2′. First we recall that H′2′ is the contribution to H′1 from the second
sum on the right of (3.43):

H′2′ =
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
x∈Zd

∑
Ru∈Tu,x\To
Rv∈Tv,x\To

(
p1
|�|

)|ERu |+|ERv |(
1− 1{V<x

Ru ∩VRv=∅}
)
. (3.67)

Notice that

1− 1{V<x
Ru ∩VRv=∅} ≤

∑
x′∈Zd\{x}

1{x′∈VRu∩VRv }. (3.68)
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Figure 8. Schematic representation of the bound on H′2 ′ due to (3.68).

By the inclusion relation Tu,x,x′ \ To ⊂ Tu,x,x′ and using (3.64), (2.1) and (3.17), we can bound H′2′
as (see Fig. 8)

H′2′ ≤
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
x,x′∈Zd

(x �=x′)

∑
Ru∈Tu,x,x′
Rv∈Tv,x,x′

(
p1
|�|

)|ERu |+|ERv |

︸ ︷︷ ︸
τ
(3)
p1 (u,x,x′) τ (3)p1 (v,x,x′)

≤ g4p1
∑

x,x′,y,y′∈Zd

(x �=x′)

τp1 (y− x)
gp1

τp1 (y− x′)
gp1

τp1 (y′ − x)
gp1

τp1 (y′ − x′)
gp1

× 1
2
∑
u,v∈�

(
1
|�|

)2 τp1 (u− y)
gp1

τp1 (v− y′)
gp1

≤ g4p1
2

∑
x,x′,y,y′∈Zd

(x �=x′)

S≥0(y− x) S≥0(y− x′) S≥0(y′ − x) S≥0(y′ − x′) S≥1(y) S≥1(y′). (3.69)

Shifting the variables by −x′ and changing the variables x− x′, y− x′, y′ − x′ to the new ones
w, z, z′, respectively, we can rewrite the above sum as∑

w,z,z′∈Zd
(w �=o)

S≥0(z−w) S≥0(z) S≥0(z′ −w) S≥0(z′)
∑
x′∈Zd

S≥1(z+ x′) S≥1(z′ + x′)

︸ ︷︷ ︸
S∗2≥1(z−z′)

, (3.70)

which is bounded above by

‖S∗2≥1‖∞
∑
w �=o

S∗2≥0(w)2 = ‖S∗2≥1‖∞
∑
w �=o

( ∞∑
n=1

(n+ 1)D∗n(w)
)2

≤ ‖S∗2≥1‖∞
∞∑
t=2

D∗t(o)
t−1∑
n=1

(n+ 1)(t− n+ 1)

︸ ︷︷ ︸
O(t3)

d>8= O(β2), (3.71)

as required. �
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Proof of (3.48): boundingH′2′′. First we recall thatH′2′′ is the contribution toH′1′ which involves
3-point functions [cf., (3.44)]:

H′2′′ =
∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

τ
(3)
p1 (o, u, x)

gp1

(
τ
(3)
p1 (o, v, x)

gp1
− 2

τp1 (v− x)
gp1

)
. (3.72)

By (2.1), (3.64) and (3.17), we can readily conclude that

|H′2′′| ≤
g2p1
2

∑
u,v∈�

(
1
|�|

)2 ∑
x,y∈Zd

τp1 (y)
gp1

τp1 (y− u)
gp1

τp1 (y− x)
gp1

×
(
g2p1

∑
z∈Zd

τp1 (z)
gp1

τp1 (z− v)
gp1

τp1 (z− x)
gp1

+ 2
τp1 (v− x)

gp1

)

≤ g2p1
∑

x,y∈Zd

S≥0(y) S≥1(y) S≥0(y− x)

×
(g2p1

2
∑
z∈Zd

S≥0(z) S≥1(z) S≥0(z− x)+ S≥1(x)
)

= g2p1
∑
y∈Zd

S≥0(y) S≥1(y)
(g2p1

2
∑
z∈Zd

S≥0(z) S≥1(z) S∗2≥0(y− z)+ (S≥0 ∗ S≥1)(y)
)

≤ g2p1 (S≥0 ∗ S≥1)(o)︸ ︷︷ ︸
O(β) for d>4

(g2p1
2
(S≥0 ∗ S≥1)(o) ‖S∗2≥0‖∞︸ ︷︷ ︸

O(1) for d>4

+ ‖S≥0 ∗ S≥1‖∞︸ ︷︷ ︸
O(β) for d>4

)

=O(β2), (3.73)

as required. �

4. Difference between lattice trees and lattice animals
Finally we prove Theorem 1.1 for lattice animals. Recall that, by Lemma 2.1, it suffices to
investigate p1 = 1/gp1 [cf., (2.1)]. The following is the key lemma:

Lemma 4.1. For lattice animals with d > 8 and L ↑∞,

gp1 = e
(
1−

∞∑
n=2

n+ 1
2

D∗n(o)
)
+ 1

2
S≥3(o)+O(β2). (4.1)

Consequently,

p1 = 1
e
+
∞∑
n=2

n+ 1
2e

D∗n(o)− 1
2e2

S≥3(o)+O(β2). (4.2)

Proof. As a first step, we want a similar decomposition to (3.3) for lattice animals. To do so, we
identify the connected neighbours Y of the origin, just as done in (3.3). Then, we introduce �(Y),
which is the set of all partitions of Y . For example, if Y = {1, 2, 3}, then
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�(Y)=
{
{Y}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1}, {2}, {3}}}. (4.3)

For a partition γ ∈ �(Y), we denote by |γ | the number of sets in γ , so that γ = {γj}|γ |j=1. We can
rewrite gp1 as

gp1 = 1+
∑
Y⊂�
(|Y|≥1)

(
p1
|�|

)|Y| ∑
γ∈�(Y)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}. (4.4)

The contribution from the maximum partition γ̄ = {{y}}y∈Y (i.e., |γ̄ | = |Y|) is equal to (3.3) (with
T replaced by A) and can be decomposed into G and H as in (3.5) (with Ry regarded as animals
instead of trees). Let I be the contribution from the remaining partitions γ ∈ �(Y) with |γ |< |Y|,
which is zero for lattice trees:

I = gp1 − (G−H)

=
∑
Y⊂�
(|Y|≥2)

(
p1
|�|

)|Y| ∑
γ∈�(Y)
(|γ |<|Y|)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}. (4.5)

To evaluate G,H and I for lattice animals, we cannot apply Lemma 3.3, which is a powerful
tool for lattice trees to identify the coefficients of β as well as to estimate the error terms of O(β2).
For the latter purpose for lattice animals, we will use the infrared bound (2.9) (and monotonicity
in p, i.e., τp1 ≤ τpc ); for the former purpose, we will use the following bounds that correspond to
(3.26), (3.49) and (3.51), respectively:

Lemma 4.2. For lattice animals with d > 8 and L ↑∞,∣∣∣∣∑
u∈�

1
|�|

τp1 (u)
gp1
− S≥2(o)

∣∣∣∣=O(β2), (4.6)

∣∣∣∣ ∑
{u,v}⊂�

(
1
|�|

)2 τp1 (u− v)
gp1

− 1
2
S≥3(o)

∣∣∣∣=O(β2), (4.7)

∣∣∣∣ ∑
{u,v}⊂�

(
1
|�|

)2 ∑
x �=u,v

τp1 (u− x)
gp1

τp1 (x− v)
gp1

− 1
2
S∗2≥2(o)

∣∣∣∣=O(β2). (4.8)

We will prove Lemma 4.2 after the proof of Lemma 4.1 is completed.
Now we resume the proof of Lemma 4.1 assuming the bounds in Lemma 4.2. First we recall

G=G0 +G1 +G2 [cf., (3.14)], where G0 is independent of the models and estimated as (3.12);
G1 is defined as (3.15) and here we use (4.6) to show (3.27); G2 is defined as (3.16) and obeys
the same bound as (3.22). As a result, Lemma 3.2 also holds for lattice animals. Similarly, we can
show H = e(H′1′′ +H′2′′ −H′2′ −H2)+O(β2) [cf., (3.37), (3.42), (3.46) and (3.48)], where H′1′′ is
defined in (3.47) and here we use (4.7)–(4.8) to show (3.53); H2 is bounded by H2,3 +H2,4, and
H2,3 and H2,4 are further bounded as (3.59)–(3.61) and (3.63)–(3.65) (with T replaced byA), and
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Figure 9. Schematic representation of the dominant contribution to I′1.

here we use the infrared bound (2.9) and the convolution bound on power functions [4, Lemma
3.2(i)] to show H2 =O(β2), such as

∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

τp1 (u− x) τp1 (v− x)

≤
∑
{u,v}⊂�

(
1
|�|

)2 ∑
x∈Zd

O(L−2)
(‖u− x‖ ∨ L)d−2

O(L−2)
(‖v− x‖ ∨ L)d−2

≤
∑
{u,v}⊂�

(
1
|�|

)2 O(L−4)
(‖u− v‖ ∨ L)d−4 =O(β2). (4.9)

Similarly we can show that H′2′ and H′2′′ are both O(β2) by using the infrared bound and the
convolution bound, instead of bounding τp1/gp1 by S≥0 or S≥1, just as done for lattice trees. As a
result, Lemma 3.4 also holds for lattice animals.

Next we investigate I, which is unique for lattice animals. Let I1 be the contribution from γ ∈
�(Y) with |γ | = |Y| − 1, i.e., consisting of a pair {u, v} and |Y| − 2 singletons {y}y∈Y\{u,v}:

I1 =
∑
Y⊂�
(|Y|≥2)

(
p1
|�|

)|Y| ∑
{u,v}⊂Y

∑
R∈Au,v\Ao

(
p1
|�|

)|ER| ∏
y∈Y\{u,v}

∑
Ry∈Ay\Ao

(
p1
|�|

)|ERy |

×
∏

y∈Y\{u,v}
1{VR∩VRy=∅}

∏
y,z∈Y\{u,v}

(y �=z)

1{VRy∩VRz=∅}, (4.10)

where an empty product is regarded as 1. The dominant contribution to I1, denoted I′1, comes
from when the last line is replaced by 1. By the tree-graph inequality (3.64), which is also true for
lattice animals due to subadditivity, and then using the infrared bound (2.9), it is estimated as (see
Fig. 9)
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Figure 10. Schematic representation of the bound on (4.12).

I′1 =
∑
{u,v}⊂�

(
p1
|�|

)2(
τp1 (u− v)− τ (3)

p1 (o, u, v)
) ∑
Y′⊂�\{u,v}

(
1
|�|

)|Y′| ∏
y∈Y′

(
1− τp1 (y)

gp1

)
︸ ︷︷ ︸

e+O(β)

= p1
(
e+O(β)

)︸ ︷︷ ︸
1+O(β)

∑
{u,v}⊂�

(
1
|�|

)2(τp1 (u− v)
gp1

− τ
(3)
p1 (o, u, v)

gp1

)

=
∑
{u,v}⊂�

(
1
|�|

)2 τp1 (u− v)
gp1

+O(β2)

(4.7)= 1
2
S≥3(o)+O(β2). (4.11)

On the other hand, by using 1− ab≤ (1− a)+ (1− b) for any a, b ∈ {0, 1}, we can bound the
difference I′1 − I1 (≥ 0) as

I′1 − I1 ≤
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
R∈Au,v\Ao

(
p1
|�|

)|ER| ∑
Y′⊂�\{u,v}

(
p1
|�|

)|Y′| ∏
y∈Y′

∑
Ry∈Ay\Ao

(
p1
|�|

)|ERy |

×
(
1−

∏
y∈Y′

1{VR∩VRy=∅} + 1−
∏

y,z∈Y′
(y �=z)

1{VRy∩VRz=∅}
)

≤
∑
{u,v}⊂�

(
p1
|�|

)2 ∑
R∈Au,v\Ao

(
p1
|�|

)|ER| ∑
Y′⊂�\{u,v}

(
p1
|�|

)|Y′| ∏
y∈Y′

∑
Ry∈Ay\Ao

(
p1
|�|

)|ERy |

×
(∑

y∈Y′
1{VR∩VRy �=∅} +

∑
y,z∈Y′
(y �=z)

1{VRy∩VRz �=∅}
)
. (4.12)

This is O(β2), as the contribution from the former (resp., latter) sum in the last line can be
estimated in a similar way to showing H2,3 =O(β2) (resp., H2,4 =O(β2)); see Fig. 10.

As a result,

I1 = 1
2
S≥3(o)+O(β2). (4.13)
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Finally we estimate the difference I − I1:

I − I1 =
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y| ∑
γ∈�(Y)

(|γ |≤|Y|−2)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}. (4.14)

Since |γ | ≤ |Y| − 2, there are two possibilities: (i) there is a set in γ which includes at least three
distinct neighbours of the origin, or (ii) there are at least two disjoint sets in γ both of which
include exactly two distinct neighbours of the origin. Therefore,

I − I1 ≤
∑
Y⊂�
(|Y|≥3)

(
p1
|�|

)|Y| ∑
γ∈�(Y)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}

×
(
1{∃j, |γj|≥3} + 1{∃i�=j, |γi|=|γj|=2}

)
= I3 + I2, (4.15)

where I3 and I2 are the contributions from 1{∃j, |γj|≥3} and 1{∃i�=j, |γi|=|γj|=2}, respectively.
For I2, we split the set Y of neighbours of the origin into U, V and Y ′ = Y \ (U ∪V), where

U ∩V =∅ and |U| = |V| = 2. Partially ignoring the avoidance constraint among animals, we can
bound I2 as

I2 ≤
∑
U⊂�
(|U|=2)

(
p1
|�|

)2 ∑
R∈AU\Ao

(
p1
|�|

)|ER| ∑
V⊂�\U
(|V|=2)

(
p1
|�|

)2 ∑
R′∈AV\Ao

(
p1
|�|

)|E
R′ |

×
∑

Y′⊂�\(U∪V)

(
p1
|�|

)|Y′| ∑
γ∈�(Y′)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}. (4.16)

Notice that the second line is almost identical to gp1 ; the only difference is the domain of
summation over Y ′, and therefore it is bounded above by gp1 . Since p1gp1 = 1, we obtain

I2 ≤ gp1

( ∑
{u,v}⊂�

(
p1
|�|

)2 ∑
R∈Au,v

(
p1
|�|

)|ER|
︸ ︷︷ ︸

τp1 (u−v)

)2
(4.7)≤ p1

(
1
2
S≥3(o)+O(β2)

)2
=O(β2). (4.17)

For I3, we split the set Y into X and Y ′ = Y \ X, where X includes at least 3 distinct vertices
x, y, z ∈�. Again, by partially ignoring the avoidance constraint among animals, we can bound
I3 as

I3 ≤
∑

{x,y,z}⊂�

∑
X⊂�

(X�x,y,z)

(
p1
|�|

)|X| ∑
R∈AX\Ao

(
p1
|�|

)|ER|

×
∑

Y′⊂�\X

(
p1
|�|

)|Y′| ∑
γ∈�(Y′)

|γ |∏
j=1

∑
Rj∈Aγj\Ao

(
p1
|�|

)|ERj |∏
i<j
1{VRi∩VRj=∅}. (4.18)
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Notice again that the second line is bounded above by gp1 . Using the relationAX \Ao ⊂Ax,y,z and
splitting X into {x, y, z} and X′ = X \ {x, y, z}, we obtain

I3 ≤ gp1
∑

{x,y,z}⊂�

(
p1
|�|

)3 ∑
R∈Ax,y,z

(
p1
|�|

)|ER|
︸ ︷︷ ︸

τ
(3)
p1 (x,y,z)

∑
X′⊂�\{x,y,z}

(
p1
|�|

)|X′|
︸ ︷︷ ︸

≤ (1+p1/|�|)|�|

. (4.19)

By the tree-graph inequality (3.64), we can show that

∑
{x,y,z}⊂�

(
p1
|�|

)3
τ (3)
p1 (x, y, z)

≤
∑

{x,y,z}⊂�

(
1
|�|

)3 ∑
w∈Zd

τp1 (x−w)
gp1

τp1 (y−w)
gp1

τp1 (z−w)
gp1

=
∑

{x,y,z}⊂�

(
1
|�|

)3( ∑
w �=x,y,z

τp1 (x−w)
gp1

τp1 (y−w)
gp1

τp1 (z−w)
gp1

+ 3
gp1

τp1 (x− z)
gp1

τp1 (y− z)
gp1

)

≤ 3
gp1

(
‖D ∗ τp1‖∞ + ‖D‖∞︸ ︷︷ ︸

O(β) (∵(2.9))

) ∑
{x,y}⊂�

(
1
|�|

)2 ∑
w �=x,y

τp1 (x−w)
gp1

τp1 (y−w)
gp1︸ ︷︷ ︸

O(β) (∵(4.8))

, (4.20)

hence I3 =O(β2). This completes the proof of I = 1
2S≥3(o)+O(β2), hence the proof of Lemma

4.1.

Proof of Lemma 4.2. First we prove (4.6). By the inverse Fourier transform, we have the rewrite

∑
u∈�

1
|�|

τp1 (u)
gp1
=
(
D ∗ τp1 (u)

gp1

)
(o)=

∫
[−π ,π]d

D̂(k)
τ̂p1 (k)
gp1

ddk
(2π)d

. (4.21)

Notice that the Fourier transform of the recursion equation (2.8) yields

τ̂p(k)= gp + ĥp(k)+ π̂p(k)
1− (gp + ĥp(k)+ π̂p(k))pD̂(k)

. (4.22)

We use this identity at p1 = 1/gp1 . Let

H(x)= hp1 (x)+ πp1 (x)
gp1

. (4.23)

Thanks to the symmetry, the Fourier transform Ĥ(k) is real. Moreover, by (2.11)–(2.12), we can
show that, for d > 8 and L� 1, |Ĥ(k)| =O(β) uniformly in k. Then, we can rewrite τ̂p1 (k)/gp1 as

τ̂p1 (k)
gp1
= 1+ Ĥ(k)

1− (1+ Ĥ(k))D̂(k)

= 1
1− D̂(k)

+ Ĥ(k)
1− D̂(k)

1
1− (1+ Ĥ(k))D̂(k)︸ ︷︷ ︸

=:F̂(k)

. (4.24)
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Applying this to (4.21) yields the main term S≥2(o) as

∑
u∈�

1
|�|

τp1 (u)
gp1
=
∫
[−π ,π]d

D̂(k)
1− D̂(k)

ddk
(2π)d︸ ︷︷ ︸

S≥1(o) (=S≥2(o))

+
∫
[−π ,π]d

D̂(k)Ĥ(k)
1− D̂(k)

F̂(k)
ddk
(2π)d

. (4.25)

It remains to show that the second term on the right is O(β2). To do so, we want an effec-
tive bound on F̂(k). We will show at the end of the proof that, for d > 8 and L� 1, there is an
L-independent constant C <∞ such that

0< F̂(k)≤ C
1− D̂(k)

, (4.26)

uniformly in k. However, this results in a weaker bound than (4.6), because
∫ |D̂(k)|

(1−D̂(k))2
ddk
(2π)d =

O(β1/2). Instead, we first rewrite F̂(k) as

F̂(k)= 1
1− D̂(k)

+ D̂(k)Ĥ(k)
1− D̂(k)

F̂(k). (4.27)

Then, the second term on the right of (4.25) equals∫
[−π ,π]d

D̂(k)Ĥ(k)
(1− D̂(k))2

ddk
(2π)d︸ ︷︷ ︸

(D∗S∗2≥0∗H)(o)

+
∫
[−π ,π]d

(
D̂(k)Ĥ(k)
1− D̂(k)

)2
F̂(k)

ddk
(2π)d

. (4.28)

Notice that, due to the identity (4.27), we have D̂(k)2 in the numerator of the second integrand
in (4.28). The first term is readily bounded by ‖D ∗ S∗2≥0‖∞Ĥ(0)=O(β2). For the second term, we
use |Ĥ(k)| =O(β) and (4.26) to obtain that∫

[−π ,π]d

(
D̂(k)Ĥ(k)
1− D̂(k)

)2
F̂(k)

ddk
(2π)d

≤O(β2)
∫
[−π ,π]d

D̂(k)2

(1− D̂(k))3
ddk
(2π)d︸ ︷︷ ︸

(D∗2∗S∗3≥0)(o)

=O(β3). (4.29)

This completes the proof of (4.6).
We can also prove (4.7)–(4.8) in a similar manner by assuming (4.26). Hence we here prove

only (4.7). By the inverse Fourier transform, we can rewrite the sum in (4.7) as

∑
{u,v}⊂�

(
1
|�|

)2 τp1 (u− v)
gp1

= 1
2

(
D∗2 ∗ τp1

gp1

)
(o)− 1

2
D∗2(o)

= 1
2

∫
[−π ,π]d

D̂(k)2
τ̂p1 (k)
gp1

ddk
(2π)d

− 1
2
D∗2(o). (4.30)

Then, by the identity (4.24), we can extract the main term 1
2S≥3(o) as

1
2

∫
[−π ,π]d

D̂(k)2

1− D̂(k)
ddk
(2π)d

− 1
2
D∗2(o)︸ ︷︷ ︸

1
2 S≥3(o)

+ 1
2

∫
[−π ,π]d

D̂(k)2Ĥ(k)
1− D̂(k)

F̂(k)
ddk
(2π)d

. (4.31)
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Similarly to (4.29), the second term is bounded as∣∣∣∣12
∫
[−π ,π]d

D̂(k)2Ĥ(k)
1− D̂(k)

F̂(k)
ddk
(2π)d

∣∣∣∣ (4.26)≤ O(β)
∫
[−π ,π]d

D̂(k)2

(1− D̂(k))2
ddk
(2π)d︸ ︷︷ ︸

(D∗2∗S∗2≥0)(o)

=O(β2), (4.32)

hence the completion of the proof of (4.7).
Finally we prove the inequality (4.26), for ‖k‖ ≥ 1

L and ‖k‖ ≤ 1
L separately. We begin with the

former case. It is known (cf., e.g., [12]) that ourD satisfies [14, Assumption D]; in particular, there
is an L-independent constant η ∈ (0, 1) such that

−1+ η
∀k≤ D̂(k)

‖k‖≥ 1
L≤ 1− η. (4.33)

Since |Ĥ(k)| =O(β), we obtain that, for L� 1,

−1+ η

2
∀k≤ (

1+ Ĥ(k)
)
D̂(k)

‖k‖≥ 1
L≤ 1− η

2
, (4.34)

hence

0<
1

2− η/2
∀k≤ F̂(k)

‖k‖≥ 1
L≤ 2

η

∀k≤ 2
η

2− η

1− D̂(k)
. (4.35)

It remains to show that F̂(k) is bounded above by a multiple of (1− D̂(k))−1 uniformly in
‖k‖ ≤ 1

L . We note that

F̂(k)−1 = 1− (1+ Ĥ(0)
)+ (1+ Ĥ(0)

)(
1− D̂(k)

)+ (Ĥ(0)− Ĥ(k)
)
D̂(k)

=−Ĥ(0)+
(
1+ Ĥ(0)+ Ĥ(0)− Ĥ(k)

1− D̂(k)
D̂(k)

)(
1− D̂(k)

)
. (4.36)

Since −Ĥ(0) is bounded below by a positive multiple of β (as explained in the beginning of the
proof of Lemma 2.1), ignoring this term yields a lower bound on F̂(k)−1. Moreover, since |k · x| ≤
‖k‖‖x‖ ≤ 1 for x ∈� and ‖k‖ ≤ 1

L , and since 1− cos t≥ 2
π2 t2 for |t| ≤ 1, there is a c> 0 such that

1− D̂(k)=
∑
x∈�

1− cos (k · x)
|�| ≥ 2

π2

∑
x∈�

(k · x)2
|�| =

2‖k‖2
dπ2

∑
x∈�

‖x‖2
|�|︸ ︷︷ ︸

≥cL2

. (4.37)

On the other hand, by 1− cos t≤ 1
2 t

2 for any t and using the x-space bounds (2.7) and (2.12), we
have

|Ĥ(0)− Ĥ(k)| ≤
∑
x

(k · x)2
2
|H(x)| ≤ ‖k‖

2

2d
∑
x
‖x‖2|H(x)|

︸ ︷︷ ︸
O(L2β)

. (4.38)

Therefore, by taking L sufficiently large, F̂(k)−1 is bounded below by a positive multiple of
1− D̂(k), uniformly in ‖k‖ ≤ 1

L . Combined with (4.35), this completes the proof of the inequality
(4.26), hence the completion of the proof of Lemma 4.2. �
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