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Abstract

We consider stationary and ergodic tessellations X = {�n}n≥1 in R
d , where X is observed

in a bounded and convex sampling window W� ⊂ R
d . It is assumed that the cells �n of X

possess random inner structures, examples of which include point patterns, fibre systems,
and tessellations. These inner cell structures are generated, both independently of each
other and independently of the tessellation X, by generic stationary random sets that are
related to a stationary random vector measure J0 acting on R

d . In particular, we study
the asymptotic behaviour of a multivariate random functional, which is determined both
by X and by the individual cell structures contained in W�, as W� ↑ R

d . It turns out that
this functional provides an unbiased estimator for the intensity vector associated with J0.
Furthermore, under natural restrictions, strong laws of large numbers and a multivariate
central limit theorem of the normalized functional are proven. Finally, we discuss in
detail some numerical examples and applications, for which the inner structures of the
cells of X are induced by iterated Poisson-type tessellations.
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1. Introduction

Let X = {�n}n≥1 be a stationary and ergodic tessellation in R
d . For each n ≥ 1, consider

a certain (d-dimensional) random vector α(�n), which is called an associated point of the cell
�n of X. It is well known that the tessellation X can be regarded as a stationary and ergodic
marked point process in R

d , written as a sum
∑

n≥1 δ[α(�n),�0
n] of Dirac measures δ[α(�n),�0

n],
where the shifted cells �0

n = �n − α(�n) contain the origin o ∈ R
d ; see, e.g. Section 6.1

of [21]. Furthermore, for each n ≥ 1, consider a vector Jn = (J
(1)
n , . . . , J

(m)
n )� of m ≥ 1

stationary random measures in R
d . Assume that the sequence (Jn)n≥1 is independent of X and

that it consists of independent, identically distributed copies of some generic random vector
measure J0 = (J

(1)
0 , . . . , J

(m)
0 )�.

For each n ≥ 1, the random measures J
(1)
n , . . . , J

(m)
n describe the inner structure of the

nth cell �n of the tessellation X. In particular, in the planar case d = 2, examples of such
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(a) A PLT/PVT-nesting (b) A PLT/PLT-nesting

Figure 1: The inner structure of the cells of X, induced by iterated tessellations.

random measures are the number of vertices and the number, or the total length, of the edges,
which are generated by some (component) tessellation Xn within the cell �n of the (initial)
tessellation X. Figure 1(a) shows the case where Xn is a so-called PLT/PVT-nesting, which
means that Poisson line tessellations (PLTs) iterated by Poisson–Voronoi tessellations (PVTs)
are inscribed into the cells of X. Similarly, in Figure 1(b), PLT/PLT-nestings inscribed into
the cells of X are shown. However, the random measures J

(1)
n , . . . , J

(m)
n need not necessarily

be induced by tessellations. Another type of example is shown in Figure 2, where the inner
structure of �n is determined by point processes.

Suppose that only a single realization of the tessellation X, as well as of the vector measures
J1, J2, . . . , is available. This realization is restricted to some (presumably large) sampling
window W�, and the support of Jn is observable only in �n ∩ W�, n ≥ 1. The region W� is
assumed to have the form W� = �W with scaling factor � > 0 (which has no upper bound) and
with a convex body W ⊂ R

d containing the closed ball b(o, r) centred at the origin and of fixed
radius r > 0. The main subject investigated in the present paper is the vector of cumulative
functionals Z� = (Z

(1)
� , . . . , Z

(m)
� )�, where the components Z

(i)
� of Z� are given by

Z(i)
� =

∑
n≥1

J (i)
n (�n ∩ W�) (1.1)

for each i = 1, . . . , m. As a first step, we determine the expectation vector E Z� and the covari-
ance matrix cov(Z�) of Z�, as well as the asymptotic covariance matrix K = lim�→∞ cov(Z̃�)

of the vector of normalized functionals

Z̃� =
(

Z
(1)
� − λ(1)|W�|√|W�| , . . . ,

Z
(m)
� − λ(m)|W�|√|W�|

)�
. (1.2)

Here, |B| denotes the d-dimensional Lebesgue measure of any bounded Borel set B ⊂ R
d and

λ(i) = E J
(i)
0 ([0, 1)d) is the intensity of the stationary random measure J

(i)
0 ; see Theorem 3.1,

below.
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(a) Poisson point process (b) Cluster point process

Figure 2: The inner structure of the cells of X, induced by point processes.

In the next step, under some mild integrability conditions, Theorem 4.2 yields the following
strong law of large numbers:

1

|W�|
∑
n≥1

J (i)
n (�n ∩ W�)

a.s.−−−→
�→∞ λ(i) for i = 1, . . . , m.

This shows that the vector Z�/|W�| is a strongly consistent (and unbiased) estimator for the
intensity vector (λ(1), . . . , λ(m))� of the stationary vector measure J0. (Note that ‘a.s.’ stands
for ‘almost surely’ or ‘almost sure’, depending on the context.) The proof of Theorem 4.2
relies on the ergodicity of the tessellation X = {�n}n≥1 and the conditional independence of
the random vectors J1(�1 ∩ W�), J2(�2 ∩ W�), . . . given the tessellation X. For this purpose,
we need some estimates which show that the contribution of those cells of X hitting the boundary
∂W� is asymptotically negligible as � → ∞; see Lemma 4.1, below.

In the third step, we derive the following multivariate central limit theorem:

Z̃�
d−−−→

�→∞ N(o, K), that is, lim
�→∞ sup

x∈Rm

|P(Z̃� ≤ x) − �K(x)| = 0,

where ‘
d−→’ means convergence in distribution and �K denotes the distribution function of

the (m-dimensional) Gaussian vector N(o, K) with zero-mean components and covariance
matrix K; see Theorem 5.1, below.

Our results can be applied to stochastic modelling and statistical analysis of complex network
structures. In [8], the so-called stochastic subscriber line model (SSLM) was described. This is
an example of a stochastic–geometric model of telecommunication networks. Figure 3 shows a
realization of the SSLM, in which the urban infrastructure along which the cable trench system is
built is represented by a random tessellation. Within each cell, subscribers are located according
to some point process, and line segments represent dead-end streets. Along the streets, 1-level
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Figure 3: A realization of the stochastic subscriber line model.

and 2-level network stations are displayed (the small and the large dots, respectively). Each
subscriber is connected along the road system to its closest (in the Euclidean sense) 2-level
station via 1-level stations.

In the context of the SSLM, our results provide a theoretical basis for the statistical analysis
of the morphological structure of spatial telecommunications data, and help fit appropriate
tessellation models.

Notice that there exist a number of papers investigating problems closely related to the
topics of our work. For example, in [10] a central limit theorem for a class of random measures
associated with germ-grain models was derived, while, in [1] and [18] central limit theorems
for Poisson–Voronoi and Poisson line tessellations in R

2 were respectively investigated. In [9],
normal approximations were given for some mean-value estimates of absolutely regular tessel-
lations. Asymptotic properties of estimators for the volume fraction and other specific intrinsic
volumes of stationary random sets were examined in, e.g. [3], [4], [14], and [20]. Simulation
studies on the typical cell of stationary tessellations can be found, e.g. in [13].

The present paper is organized as follows. In Section 2, a short introduction to basic,
general notions and notation of stochastic geometry is given. Section 3 is devoted to first-
and second-order moments for functionals of stationary random measures associated with the
cells of random tessellations. The strong law of large numbers and the multivariate central
limit theorem mentioned above are derived in Sections 4 and 5, respectively. Some numerical
examples are discussed in Section 6, where functionals are considered that describe several
intracellular structures of the cells of tessellations in R

2. Finally, in Section 7, an outlook on
directions for further research is given.

2. Basic notions and notation

In this section, the basic notation used in the present paper is introduced and a brief account
of some relevant notions of stochastic geometry is given. For a detailed discussion of the
subject, the reader is referred to the literature, for example [21] and [22].
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The abbreviations int B, ∂B, and Bc are used to denote the interior, the boundary, and
the complement of a set B ⊂ R

d , respectively. For arbitrary sets B, B ′ ∈ R
d , we will

consider the operations of translation: B + x = {y + x : y ∈ B} for x ∈ R
d ; reflection:

B̌ = −B = {−x : x ∈ B}; scaling: B� = {�x : x ∈ B} for any constant � ∈ [0, ∞);
and Minkowski-addition: B ⊕ B ′ = {x + x′ : x ∈ B, x′ ∈ B ′}. Furthermore, let b(x, r) =
{y ∈ R

d : ‖x − y‖ ≤ r} denote the ball of radius r ≥ 0 centred at x ∈ R
d , where ‖x − y‖ is

the length of the vector x − y.
By F , K , and C, the families of all closed sets, compact sets, and convex bodies (compact

and convex sets) in R
d are denoted, respectively. For any C ∈ C, the volume |C ⊕ b(o, r)| of

the so-called parallel set C ⊕ b(o, r) is given by Steiner’s formula

|C ⊕ b(o, r)| =
d∑

k=0

(
d

k

)
Mk(C)rk, r ≥ 0, (2.1)

where Mk(C), 0 ≤ k ≤ d , denotes the kth Minkowski-functional of the convex body C.
Note that, in particular, M0(C) = |C| and Md(C) = 1 − δ∅(C), where δ∅ denotes the Dirac
measure on the empty set. Clearly, for each � > 0 and for any convex body C ∈ C, the volume
|C�| equals �d |C|, and the diameter D(C�) of the scaled set C� is given by �D(C), where
D(C) = sup{‖x − y‖: x, y ∈ C}. Furthermore, for any C ∈ C, the following isodiametric
inequality holds (see, e.g. [11]):

Mk(C) ≤ ωd

(
D(C)

2

)d−k

, 0 ≤ k ≤ d, (2.2)

where ωd denotes the volume of the unit ball b(o, 1). Recall that a random closed set � in R
d is

a measurable mapping � : 	 → F from some probability space (	, A, P) into the measurable
space (F , B(F )), where B(F ) denotes the smallest σ -algebra of subsets of F that contains
all sets {F ∈ F : F ∩ K �= ∅} for any K ∈ K . In particular, the random closed set � is
called a random compact set or a random convex body if P(� ∈ K) = 1 or P(� ∈ C) = 1,
respectively.

A tessellation in R
d is a countable family τ = {Cn}n≥1 of convex bodies Cn ∈ C such that

int Cn �= ∅ for all n, int Cn∩ int Cm = ∅ for all n �= m,
⋃

n≥1 Cn = R
d , and

∑
n≥1 1{Cn∩K �=∅}

< ∞ for any K ∈ K (where 1{·} is an indicator function). Notice that the sets Cn, called the
cells of τ , are polytopes in R

d . The family of all tessellations in R
d is denoted by T . A

random tessellation X = {�n}n≥1 in R
d is a sequence of random convex bodies �n such

that P({�n}n≥1 ∈ T ) = 1. Notice that a random tessellation X can also be considered to
be a marked point process

∑
n≥1 δ[α(�n),�0

n], where α : C′ → R
d , with C′ = C \ {∅}, is a

measurable mapping such that α(C) ∈ C and α(C + x) = α(C) + x for any C ∈ C′ and
x ∈ R

d , and where �0
n = �n − α(�n) is the centred cell corresponding to �n, and contains

the origin. The point α(C) ∈ R
d is called the associated point of C and can be chosen, for

example, to be the lexicographically smallest point of C; see, e.g. [16] and [17].
Suppose that the marked point process

∑
n≥1 δ[α(�n),�0

n] is stationary with positive and finite

intensity λ = E card{n : α(�n) ∈ [0, 1)d}. By P 0 we denote the set of all convex polytopes
with their associated points at the origin. Then, the Palm mark distribution P 0 of X is given by

P 0(B) = λ−1 E card{n : α(�n) ∈ [0, 1)d , �0
n ∈ B}, B ∈ B(F ) ∩ P 0.
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Notice that a random polytope �∗ : 	 → P 0, whose distribution coincides with P 0, is called
the typical cell of X. Furthermore, it holds that

λ−1 =
∫

P 0
|C|P 0(dC), (2.3)

i.e. the mean volume E|�∗| = ∫
P 0 |C|P 0(dC) of the typical cell �∗ is equal to λ−1.

A (deterministic) iterated tessellation τ = {Cnν ∩ Cn : int Cnν ∩ int Cn �= ∅} in R
d consists

of an initial tessellation τ = {Cn}n≥1 in R
d and a sequence (τn)n≥1 of component tessellations

τn = {Cnν}ν≥1. Hence, in order to define the notion of a random iterated tessellation, we
can proceed as follows (see [12]). Let � be a random convex body in R

d , where int � �= ∅,
and let X = {�n}n≥1 be a random tessellation in R

d . Then, the mapping Y (· | �) : 	 →
N(F ′), defined by Y (B | �) = ∑

n≥1 δ�n∩�(B) 1{int �n∩ int ��=∅} for B ∈ B(F ′), where
F ′ = F \ {∅}, is a point process in C′. The space of all nonnegative and integer-valued
measures on B(F ′) is denoted by N(F ′), where each η ∈ N(F ′) can be represented by a
finite or countable sum of Dirac measures δF of sets F ∈ F ′, i.e. η(B) = ∑

n≥1 η({Fn})δFn(B)

for any B ∈ B(F ′), and η({F ∈ F : F ∩K �= ∅}) < ∞ for any K ∈ K . Notice that Y (· | �)

can be seen as one possible way of describing a random tessellation in �.
Furthermore, if X = {�n}n≥1 is an arbitrary random tessellation in R

d and if {Xn}n≥1
is a sequence of independent, identically distributed random tessellations Xn = {�nν}ν≥1
in R

d (also independent of X), then the mapping Y : 	 → N(F ′), defined by Y (B) =∑
n≥1 Yn(B | �n) and Yn(B | �n) = ∑

ν≥1 δ�nν∩�n(B) 1{int �nν∩ int �n �=∅} for B ∈ B(F ′), is
called the point-process representation of an iterated random tessellation (or the X/Xn-nesting)
in R

d with initial tessellation X and component tessellations X1, X2, . . . . Clearly, the point
process Y is stationary and isotropic, provided that the initial tessellation X and the component
tessellations X1, X2, . . . possess these properties. Moreover, Y is ergodic if X is ergodic.

3. The expectation vector and the covariance matrix

Let X = {�n}n≥1 be an arbitrary stationary and ergodic tessellation in R
d . Recall that

the tessellation X can be equivalently described as a stationary and ergodic marked point
process

∑
n≥1 δ[α(�n),�0

n], where �0
n = �n − α(�n) and α(�n) denotes the associated point

of �n. The intensity λ = E card{n : α(�n) ∈ [0, 1)d} is assumed to be positive and finite.
For each individual cell �n of X, we consider an m-dimensional vector Jn = (J

(1)
n , . . . , J

(m)
n )�

of stationary random measures in R
d , which together describe the inner structure of �n. We

assume that the sequence (Jn)n≥1 is independent of X and consists of independent, identically
distributed copies of a generic stationary random vector measure J0 = (J

(1)
0 , . . . , J

(m)
0 )�.

Throughout this paper, we assume that only a single realization of the tessellation X and
of the random vectors Jn(�n ∩ W�), n ≥ 1, can be observed in an (unboundedly increasing)
sampling window W� = �W ↑ R

d (as � ↑ ∞), where the convex body W satisfies the
inclusion b(o, r) ⊆ W ⊆ b(o, R) for some fixed 0 < r < R < ∞. To begin with, we
determine the expectation vector E Z� of the random vector Z� = (Z

(1)
� , . . . , Z

(m)
� )� defined

by (1.1). Then we derive conditions under which the covariance matrix cov(Z�) and the limit
lim�→∞ cov(Z̃�) exist, where Z̃� is the normalized vector of functionals, introduced in (1.2).

Theorem 3.1. If λ(i) = E J
(i)
0 ([0, 1)d) < ∞ for each i = 1, . . . , m, then

E Z� = |W�|(λ(1), . . . , λ(m))�. (3.1)
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Under the additional assumption that∫
P 0

E(J
(i)
0 (C))2P 0(dC) < ∞, i = 1, . . . , m, (3.2)

the covariance matrix cov(Z�) = (cov(Z
(i)
� , Z

(j)
� ))mi,j=1 exists with entries taking the form

cov(Z(i)
� , Z(j)

� ) = λ

∫
P 0

∫
Rd

cov(J
(i)
0 (C ∩ (W� −x)), J

(j)
0 (C ∩ (W� −x))) dxP 0(dC). (3.3)

Moreover, the asymptotic covariance matrix K = lim�→∞ cov(Z̃�) = (σ 2
ij )

m
i,j=1 exists, and

has entries

σ 2
ij = λ

∫
P 0

cov(J
(i)
0 (C), J

(j)
0 (C))P 0(dC), i, j = 1, . . . , m. (3.4)

Proof. In view of the independence of X and the sequence (Jn)n≥1 we may write, for any
i = 1, . . . , m, that

E Z(i)
� = E

(∑
n≥1

J (i)
n (�n ∩ W�)

)
= E

(∑
n≥1

EX(J
(i)
0 (�n ∩ W�))

)
,

where EX denotes the conditional expectation, given the tessellation X. By the stationarity of
J

(i)
0 , the expectation EX(J

(i)
0 (�n ∩ W�)) equals λ(i)|�n ∩ W�|. Since the interior of the cells

�n, n ≥ 1, fills the space R
d up to a set of Lebesgue measure 0, we have∑

n≥1

|�n ∩ W�| = |W�|,

which proves (3.1). To derive (3.3), we will first carry out the necessary calculations without
regard to the existence of the integrals and expectations involved, and after that we will check
their validity. Once more using the independence of X and the sequence (Jn)n≥1, and combining
these with (3.1), we get

cov(Z(i)
� , Z(j)

� ) = E

(∑
n≥1

EX(J
(i)
0 (�n ∩ W�)J

(j)
0 (�n ∩ W�))

)

+ E

( ∑
n,�≥1
n�=�

EX(J (i)
n (�n ∩ W�)J

(j)
� (�� ∩ W�))

)
− λ(i)λ(j)|W�|2.

The difference of the two expressions in the second line is

−E

(∑
n≥1

EX(J
(i)
0 (�n ∩ W�)) EX(J

(j)
0 (�n ∩ W�))

)
,

since, for n �= �, we have

EX(J (i)
n (�n ∩ W�)J

(j)
� (�� ∩ W�)) = EXJ (i)

n (�n ∩ W�) EX J
(j)
� (�� ∩ W�)
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by the assumed independence of J
(i)
n and J

(i)
� . Thus, denoting by covX the conditional

covariance given the tessellation X = {�n}n≥1, we find that

cov(Z(i)
� , Z(j)

� ) = E

(∑
n≥1

covX(J
(i)
0 (�n ∩ W�), J

(j)
0 (�n ∩ W�))

)
. (3.5)

Finally, writing �n = �0
n + α(�n) and applying Campbell’s theorem to the stationary marked

point process
∑

n≥1 δ[α(�n),�0
n], we get

cov(Z(i)
� , Z(j)

� ) = λ

∫
Rd

∫
P 0

cov(J
(i)
0 ((C + x) ∩ W�), J

(j)
0 ((C + x) ∩ W�))P 0(dC) dx

= λ

∫
P 0

∫
Rd

cov(J
(i)
0 (C ∩ (W� − x)), J

(j)
0 (C ∩ (W� − x))) dxP 0(dC),

where, in the second equality, we have used Fubini’s theorem and the invariance of cov(J
(i)
0 (A),

J
(j)
0 (B)) under diagonal shifts, i.e.

cov(J
(i)
0 (A + x), J

(j)
0 (B + x)) = cov(J

(i)
0 (A), J

(j)
0 (B))

for any A, B ∈ C and for any x ∈ R
d .

To complete the proof of (3.3), we justify the steps and changes of integration above by
showing that our integrability condition (3.2) ensures the existence of the second moment

E
∑
n≥1

(J (i)
n (�n ∩ W�))2 = λ

∫
P 0

∫
Rd

E(J
(i)
0 (C ∩ (W� − x)))2 dxP 0(dC)

for each i = 1, . . . , m. By Fubini’s theorem, we have∫
Rd

(J
(i)
0 (C ∩ (W� − x)))2 dx =

∫
C

∫
C

|(W� − y) ∩ (W� − z)|J (i)
0 (dy)J

(i)
0 (dz)

≤ |W�|(J (i)
0 (C))2 (3.6)

and, therefore, by means of (3.2),

E
∑
n≥1

(J (i)
n (�n ∩ W�))2 ≤ λ|W�|

∫
P 0

E(J
(i)
0 (C))2P 0(dC) < ∞

for i = 1, . . . , m. The existence of the other expressions can be demonstrated using the
Cauchy–Schwarz inequality, which proves (3.3). In order to show (3.4), notice that the
properties of the family of convex sets (W�)�>0 imply that

lim
�→∞

|(W� − y) ∩ (W� − z)|
|W�| = 1 for any fixed y, z ∈ R

d .

Hence, bounding the mixed second moments E(J
(i)
0 (C ∩ (W� − x))J

(j)
0 (C ∩ (W� − x))) from

above – quite similarly to as was done in (3.6) – and using the dominated convergence theorem,
we obtain

lim
�→∞

∫
Rd

E(J
(i)
0 (C ∩ (W� − x))J

(j)
0 (C ∩ (W� − x)))

|W�| dx = E(J
(i)
0 (C)J

(j)
0 (C))
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for any C ∈ P 0 and i, j = 1, . . . , m. The previous relation remains true for the first-order
moments resulting from the covariance formula (3.5). Thus, applying the theorems of Campbell
and Fubini to (3.5), together with the dominated convergence theorem, we finally obtain that

lim
�→∞

cov(Z
(i)
� , Z

(j)
� )

|W�|

= λ

∫
P 0

lim
�→∞

∫
Rd

cov(J
(i)
0 (C ∩ (W� − x)), J

(j)
0 (C ∩ (W� − x)))

|W�| dxP 0(dC)

for any i, j = 1, . . . , m, where the expression on the right-hand side coincides with σ 2
ij , as was

defined in (3.4).

Note that the second part of Theorem 3.1 implies that the asymptotic variance of the scalar
product t�Z̃� = ∑m

l=1 tlZ̃
(l)
� exists for any t = (t1, . . . , tm)� ∈ R

m; more precisely,

lim
�→∞ var(t�Z̃�) = t�Kt =

m∑
i,j=1

ti tj σ
2
ij , (3.7)

where K = (σ 2
ij )

m
i,j=1 is given by (3.4).

We conclude this section with a discussion of the integrability conditions in (3.2). Our aim
is to put separate conditions on the random measures J

(i)
0 and the typical cell �∗ of X, which

together imply (3.2).

Lemma 3.1. The inequalities

(λ(i))2E|�∗|2 ≤
∫

P 0
E(J

(i)
0 (C))2P 0(dC) ≤ E|�∗ ⊕ b(o,

√
d)|2 E(J

(i)
0 ([0, 1)d))2 (3.8)

hold for each i = 1, . . . , m. Consequently, (3.2) is satisfied whenever

E M2
k (�∗) < ∞ and E(J

(i)
0 ([0, 1)d))2 < ∞ (3.9)

for any k = 0, . . . , d − 1 and i = 1, . . . , m.

Proof. Taking into account the fact that E J
(i)
0 (C) = λ(i)|C|, the first inequality in (3.8) im-

mediately follows from Jensen’s inequality, namely (E J
(i)
0 (C))2 ≤ E(J

(i)
0 (C))2. The obvious

set-theoretic inclusions

C ⊆
⋃

{z∈Zd : C∩([0,1)d+z)�=∅}
([0, 1)d + z) ⊆ C ⊕ b(o,

√
d),

which are true for any subset C of R
d , and Steiner’s formula (2.1) imply that

card{z ∈ Z
d : C ∩ ([0, 1)d + z) �= ∅} ≤ |C ⊕ b(o,

√
d)| =

d∑
k=0

(
d

k

)
Mk(C)dk/2 (3.10)

for each C ∈ C. Thus, using the monotonicity and translation invariance of the set function
E(J

(i)
0 (·))2, and the elementary inequality (a1 + · · · + aN)2 ≤ N(a2

1 + · · · + a2
N), for any
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integer N > 0, we arrive at

E(J
(i)
0 (C))2 ≤ card{z ∈ Z

d
C}

∑
z∈Z

d
C

E(J
(i)
0 ([0, 1)d + z))2

≤ |C ⊕ b(o,
√

d)|2 E(J
(i)
0 ([0, 1)d))2,

where Z
d
C = {z ∈ Z

d : C ∩ ([0, 1)d + z) �= ∅}. This proves the second inequality in (3.8).
Furthermore, by (3.10), E|�∗ ⊕ b(o, d1/2)|2 < ∞ if the first integrability condition in (3.9) is
satisfied.

In some cases, it might not be possible to directly check whether or not the first integrability
condition in (3.9) is satisfied. This is due to the fact that it is sometimes difficult to determine
the second moment E M2

k (�∗) of the kth Minkowski-functional Mk(�
∗) of the typical cell �∗

of X. However, the isodiametric inequality (2.2) implies that E M2
k (�∗) < ∞ holds for each

k = 0, . . . , d − 1, provided that
E D2d(�∗) < ∞.

4. Laws of large numbers

Recall that the individual ergodic theorem applied to the (stationary and ergodic) marked
point process

∑
n≥1 δ[α(�n),�0

n] reads as follows (see [6, p. 339]): for any real-valued integrable

function h defined on the probability space (P 0, B(F ) ∩ P 0, P 0), we have

1

|W�|
∑
n≥1

1W�(α(�n))h(�0
n)

a.s.−−−→
�→∞ λ E h(�∗) = λ

∫
P 0

h(C)P 0(dC). (4.1)

However, in the context of this paper, as in many other statistical applications of the spatial
ergodic theorem (4.1), we have to consider spatial averages over cells of X = {�n}n≥1
that only partly belong to the sampling window W�. Such boundary effects are taken into
account in the following result, which asserts the strong consistency of a (not necessarily
unbiased) estimator for λ E g(�∗) in the case of a nonrandom, translation-invariant, and
isotonic functional on C.

Theorem 4.1. Let g : C → [0, ∞) be a B(F )-measurable, nonnegative set function such that
g(C) ≤ g(C′) for C ⊆ C′ and g(C) = g(C + x) for any C ∈ C and x ∈ Rd . If the typical
cell �∗ of X satisfies

E Dd(�∗) < ∞ and E g(�∗) < ∞,

then
1

|W�|
∑
n≥1

1{�n∩W� �=∅} g(�n ∩ W�)
a.s.−−−→

�→∞ λ E g(�∗). (4.2)

The proof of Theorem 4.1 is postponed to Section 4.2. Notice, however, that Theorem 4.1 is
not completely new. For instance, in the planar case d = 2, one can find it in [5] applied to some
particular functionals g(�n ∩W�) of the cells �n ∩W�, whereas we consider a general class of
isotonic and translation-invariant functionals g : C → [0, ∞). Furthermore, a straightforward
application of Theorem 4.1 to each of the particular functionals

g1(C) = E(J
(i)
0 (C)J

(j)
0 (C)) and g2(C) = |C|2, 1 ≤ i, j ≤ m, C ∈ C,

yields the following result.

https://doi.org/10.1239/aap/1113402398 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402398


Limit theorems for stationary tessellations SGSA • 35

Corollary 4.1. Let J0 = (J
(1)
0 , . . . , J

(m)
0 )� be a vector of stationary random measures on R

d ,
which are independent of X and satisfy both (3.2) (or (3.9)) and E Dd(�∗) < ∞. Then, for
any t = (t1, . . . , tm)� ∈ R

m,

1

|W�|
∑
n≥1

EX(t�J0(�n ∩ W�))2 a.s.−−−→
�→∞ λ E(t�J0(�

∗))2 (4.3)

and
1

|W�|
∑
n≥1

|�n ∩ W�|2 a.s.−−−→
�→∞ λ E|�∗|2. (4.4)

It transpires that the result of Theorem 4.1 remains true if the (nonrandom) functional
g : C → [0, ∞) is replaced by the stationary random measures J

(i)
n .

Theorem 4.2. Assume that E Dd(�∗) < ∞ and λ(i) = E J
(i)
0 ([0, 1)d) < ∞ for i = 1, . . . , m.

Then,
1

|W�|
∑
n≥1

J (i)
n (�n ∩ W�)

a.s.−−−→
�→∞ λ(i), i = 1, . . . , m. (4.5)

The proof of Theorem 4.2 will be given in Section 4.3, below. Notice that the limit λ(i)

in (4.5) corresponds to that of (4.2) because the stationarity of J
(i)
0 and (2.3) imply that

λ(i) = λ E J
(i)
0 (�∗), provided that J0 and �∗ are independent.

4.1. Cells hitting the boundary of the sampling window

The following lemma is essential for the proof of Theorem 4.1. However, it also seems to
be of interest in its own right: we show that the influence of those cells �n of X (appearing
on the left-hand side of (4.2)) that hit the boundary ∂W� becomes asymptotically negligible as
� → ∞. To do so, we define the families of events (A�)�>�0 and (B�)�>�0 by

A� =
⋂
n≥1

({(�0
n + α(�n)) ∩ W� = ∅} ∪ {α(�n) ∈ W�+q(�)}) (4.6)

and
B� =

⋂
n≥1

({(�0
n + α(�n)) ⊆ W�} ∪ {α(�n) /∈ W�−q(�)}), (4.7)

where �0 ≥ 0 is some constant and the function q : (�0, ∞) → (0, ∞) is such that q(�) < �

for each � > �0.

Lemma 4.1. Under the assumption that E Dd(�∗) < ∞, there exists a nondecreasing function
q : (�0, ∞) → (0, ∞) satisfying q(�) < � for � > �0, q(�) → ∞, and q(�)/� ↓ 0 as
� → ∞, such that

lim
�→∞ P

( ⋃
k≥�

Ac
k

)
= 0 and lim

�→∞ P

( ⋃
k≥�

Bc
k

)
= 0. (4.8)

Proof. To begin, we recall the well-known fact from analysis that the integrability of
Dd(�∗) implies the existence of a convex function H : [0, ∞) → [0, ∞), strictly increasing
on its support (x0, ∞) (for some x0 ≥ 0), such that H(x)/x is nondecreasing for x > 0,
limx→∞ H(x)/x = ∞, and E H(Dd(�∗)) < ∞ (see, e.g. Theorem II.22 of [7]). Furthermore,
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for some r > 0 such that b(o, r) ⊆ W , the value q(�) – greater than x
1/d
0 /r – is defined as the

unique solution of the equation

�d = H(rdqd(�)) for any � > 0. (4.9)

It is easily checked that the function � �→ q(�) possesses the properties required for � > �0 =
inf{x > 0 : H(rdqd(x)) > qd(x)} to hold. Note that b(o, r) ⊆ W implies that b(o, rq(�)) ⊆
Wq(�) and, by the convexity of W , that

W� ⊕ b(o, rq(�)) ⊆ W� ⊕ Wq(�) ⊆ W�+q(�).

Thus, for any C ∈ C with o ∈ C, we have D(C) > rq(�), provided that W c
�+q(�)∩(W� ⊕C) �=

∅. Together with the definition of A�, this yields that

P

( ⋃
k≥�

Ac
k

)
= P

( ⋃
n≥1

⋃
k≥�

{α(�n) ∈ W c
k+q(k) ∩ (Wk ⊕ �̌0

n)}
)

≤ P

( ⋃
n≥1

⋃
k≥�

({α(�n) ∈ Wk ⊕ b(o, D(�0
n))} ∩ {D(�0

n) > rq(k)})
)

= P

( ⋃
n≥1

⋃
k≥�

({α(�n) ∈ Wk ⊕ b(o, D(�0
n))} ∩ {rq(k) < D(�0

n) ≤ rq(k+1)})
)

.

(4.10)

The last equality follows from the fact that, for any two sequences of events {Ek}k≥� and
{E′

k}k≥� with Ek ⊆ Ek+1 and E′
k ⊇ E′

k+1 for k ≥ �, the identity⋃
k≥�

Ek ∩ E′
k =

⋃
k≥�

Ek ∩ (E′
k \ E′

k+1)

holds. Thus, the subadditivity of P, the inequality P(U ≥ 1) ≤ E|U | and Campbell’s theorem
for stationary marked point processes imply that

P

( ⋃
k≥�

Ac
k

)
≤

∑
k≥�

P

(∑
n≥1

1Wk⊕b(o,D(�0
n))(α(�n)) 1(rq(k),rq(k+1)](D(�0

n)) ≥ 1

)

≤
∑
k≥�

E

(∑
n≥1

1Wk⊕b(o,D(�0
n))(α(�n)) 1(rq(k),rq(k+1)](D(�0

n))

)

= λ
∑
k≥�

∫
P 0

|Wk ⊕ b(o, D(C))| 1(rq(k),rq(k+1)](D(C))P 0(dC).

Since Wk = kW ∈ C, we now are in a position to apply Steiner’s formula (2.1), which,
together with the homogeneity relation Ms(Wk) = kd−sMs(W) for the Minkowski-functionals
Ms (see, e.g. [11]) and the monotonicity of the function H(·), leads to

P

( ⋃
k≥�

Ac
k

)
≤ λ

∑
k≥�

d∑
s=0

(
d

s

)
kd−sMs(W) E(Ds(�∗) 1(rq(k),rq(k+1)](D(�∗)))

≤ λ
∑
k≥�

d∑
s=0

(
d

s

)
Ms(W)

kd−srsqs(k+1)

H(rdqd(k))
E(H(Dd(�∗)) 1(rq(k),rq(k+1)](D(�∗))).
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By (4.9), we have H(rdqd(k)) = kd and q(k + 1) ≤ k + 1 for all k ≥ � (with � large
enough) and, therefore,

kd−srsqs(k + 1)

H(rdqd(k))
≤

(
1 + 1

k

)s

rs ≤ 2srs for k ≥ �.

This yields

P

( ⋃
k≥�

Ac
k

)
≤ λ

d∑
s=0

(
d

s

)
(2r)sMs(W) E(H(Dd(�∗)) 1(rq(�),∞)(D(�∗))) −−−→

�→∞ 0.

To show the second assertion in (4.8) we first note that

P

( ⋃
k≥�

Bc
k

)
= P

( ⋃
n≥1

⋃
k≥�

{α(�n) ∈ Wk−q(k) ∩ (W c
k ⊕ �̌0

n)}
)

.

In analogy to the considerations above, one can show that, for any C ∈ C with o ∈ C, we have
D(C) > rq(�), provided that (W c

� ⊕ C) ∩ W�−q(�) �= ∅. Together with Wk−q(k) ⊆ Wk , this
implies that

P

( ⋃
k≥�

Bc
k

)
≤ P

( ⋃
n≥1

⋃
k≥�

({α(�n) ∈ Wk} ∩ {D(�0
n) > rq(k)})

)
.

Since the right-hand side of this inequality is no larger than the bound on the right-hand side
of (4.10), we immediately find that P(

⋃
k≥� Bc

k) → 0 as � → ∞.

4.2. Proof of Theorem 4.1

For notational simplicity, we let

�k = 1

|Wk|
∑
n≥1

1{(�0
n+α(�n))∩Wk �=∅} g((�0

n + α(�n)) ∩ Wk) for k ≥ �.

By rewriting the almost-sure convergence, the assertion of Theorem 4.1 is equivalent to

P
(

sup
k≥�

|�k − λ E g(�∗)| ≥ δ
)

= P

( ⋃
k≥�

{|�k − λ E g(�∗)| ≥ δ}
)

−−−→
�→∞ 0 (4.11)

for any δ > 0 (see, e.g. Lemma 6.8 of [19]). Furthermore,

P

( ⋃
k≥�

{|�k − λ E g(�∗)| ≥ δ}
)

≤ P

( ⋃
k≥�

({|�k − λ E g(�∗)| ≥ δ} ∩ Ak ∩ Bk)

)

+ P

( ⋃
k≥�

({|�k − λ E g(�∗)| ≥ δ} ∩ (Ak ∩ Bk)
c)

)

≤ P

( ⋃
k≥�

({�k ≥ λ E g(�∗) + δ} ∩ Ak)

)
+ P

( ⋃
k≥�

Ac
k

)

+ P

( ⋃
k≥�

({�k ≤ λ E g(�∗) − δ} ∩ Bk)

)
+ P

( ⋃
k≥�

Bc
k

)
,
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where the events Ak and Bk were defined in (4.6) and (4.7), respectively. Taking into account the
properties of the functional g : C → [0, ∞) on Ak (contained in the assertion of Theorem 4.1),
we can verify the inequality

�k ≤ 1

|Wk|
∑
n≥1

1Wk+q(k)
(α(�n))g(�0

n)

for each k ≥ � with � sufficiently large. Likewise, for k ≥ �, we have on Bk that

�k ≥ 1

|Wk|
∑
n≥1

1Wk−q(k)
(α(�n))g(�0

n).

Hence,

P

( ⋃
k≥�

({�k ≥ λ0 E g(�∗) + δ} ∩ Ak)

)
+ P

( ⋃
k≥�

({�k ≤ λ E g(�∗) − δ} ∩ Bk)

)

≤
∑

κ∈{−1,+1}
P

(
sup
k≥�

∣∣∣∣ 1

|Wk|
∑
n≥1

1Wk+κq(k)
(α(�n))g(�0

n) − λ E g(�∗)
∣∣∣∣ ≥ δ

)
.

However, this summation tends to 0 as � → ∞, since the spatial ergodic theorem (4.1) yields

1

|W�+κq(�)|
∑
n≥1

1W�+κq(k)
(α(�n))g(�0

n)
a.s.−−−→

�→∞ λ E g(�∗)

and the asymptotic behaviour of q(�) as � → ∞ implies that

|W�+κq(�)|
|W�| =

(
1 + κ

q(�)

�

)d

−−−→
�→∞ 1,

for κ = ±1. Finally, Lemma 4.1 confirms the validity of (4.11).

4.3. Proof of Theorem 4.2

By Lemma 4.1 and the arguments of the foregoing proof of Theorem 4.1, one can show that
(4.5) is equivalent to

1

|W�|
∑
n≥1

1W�(α(�n))J
(i)
n (�n)

a.s.−−−→
�→∞ λ(i), for i = 1, . . . , m.

Furthermore, a simple application of (4.1) to the function h(C) = |C| for C ∈ P 0 yields

1

|W�|
∑
n≥1

1W�(α(�n))|�n| a.s.−−−→
�→∞ λ E|�∗| = 1,

where the equality follows from (2.3). Thus, (4.5) is equivalent to

SN/|WN | a.s.−−−−→
N→∞ 0,

where SN = U1 + · · · + UN is a partial sum with

Uk =
∑
n≥1

1Wk\Wk−1(α(�n))(J
(i)
n (�n) − λ(i)|�n|), k = 1, 2, . . . .

Here and below, the index i = 1, . . . , m is fixed.
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In order to prove that SN/|WN | a.s.−−→ 0 as N → ∞, it is necessary and sufficient to show
that, for any given δ, η > 0, there exists an integer �0 = �0(δ, η) such that

P

(
sup
k≥�

|Sk|
|Wk| ≥ δ

)
≤ η for any � ≥ �0. (4.12)

For ε > 0 (chosen below as a function of δ and η) and ak = |Wk|, we introduce the truncated
random variables

U
(ε)
k =

∑
n≥1

1Wk\Wk−1(α(�n))(J
(i)
n (�n) − λ(i)|�n|) 1{|J (i)

n (�n)−λ(i)|�n||≤ε(ak∨a�)}

and their partial sums S
(ε)
k = U

(ε)
1 +· · ·+U

(ε)
k , for k ≥ 1. Note that the random variables U

(ε)
k

are conditionally independent, given the tessellation X = {�n}n≥1. Since S
(ε)
k (ω) = Sk(ω) for

any k ≥ 1 and for ω ∈ 	, whenever

ω ∈ Aε,�(X) =
⋂
k≥1

⋂
{n : α(�n)∈Wk\Wk−1}

{|J (i)
n (�n) − λ(i)|�n|| ≤ ε(ak ∨ a�)},

it follows by a standard estimate that, for any fixed δ > 0,

∣∣∣∣P
(

sup
k≥�

|Sk|
ak

≥ δ

)
− P

(
sup
k≥�

|S(ε)
k |
ak

≥ δ

)∣∣∣∣ ≤ P(Ac
ε,�(X)). (4.13)

Using Campbell’s theorem, a straightforward computation reveals that

P(Ac
ε,�(X)) ≤

∑
k≥1

P

( ∑
n≥1

1Wk\Wk−1(α(�n)) 1{|J (i)
n (�n)−λ(i)|�n||>ε(ak∨a�)} ≥ 1

)

≤ λa� P(V > εa�) + λ
∑
k>�

(ak − ak−1) P(V > εak)

≤ λ

ε
E(V 1{V >εa�}),

where, for fixed i, V denotes the nonnegative random variable |J (i)
0 (�∗) − λ(i)|�∗|| with

E V < ∞. Thus, P(Ac
ε,�(X)) → 0 as � → ∞. Furthermore, we have

P

(
sup
k≥�

|S(ε)
k |
ak

≥ δ

)
≤ E

(
PX

(
sup
k≥�

|S(ε)
k − EX S

(ε)
k |

ak

≥ δ

2

))
+ E

(
PX

(
sup
k≥�

|EX S
(ε)
k |

ak

≥ δ

2

))
,

(4.14)
where PX denotes the conditional probability, given the tessellation X.

To estimate the first term on the right-hand side of (4.14), we make use of the well-
known Hájek–Rényi inequality, which reads as follows (see, e.g. Theorem 2.5 of [19]): for
(conditionally) independent mean-zero random variables V1, V2, . . . with finite variances, and
positive constants c1, c2, . . . satisfying c1 ≥ c2 ≥ · · · , the inequality

PX

(
max

�≤k≤L
ck|V1 + · · · + Vk| ≥ x

)
≤ 1

x2

(
c2
�

�∑
k=1

EX V 2
k +

L∑
k=�+1

c2
k EX V 2

k

)
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holds for any x > 0 and 1 ≤ � ≤ L. Applying this inequality to the conditionally independent
random variables Vk = U

(ε)
k − EX U

(ε)
k (having conditional mean 0) with ck = 1/ak , k ≥ �,

gives

P

(
sup
k≥�

|S(ε)
k − EX S

(ε)
k |

ak

≥ δ

2

)
≤ 4

δ2

E varX(S
(ε)
� )

a2
�

+ 4

δ2

∑
k>�

E varX(U
(ε)
k )

a2
k

. (4.15)

Since, given the tessellation X = {�n}n≥1, the random variables J
(i)
n (�n) − λ(i)|�n|, n ≥ 1,

are mutually independent with mean 0, it is clear that

varX(S
(ε)
� ) ≤

∑
n≥1

1W�
(α(�n)) EX((J

(i)
0 (�n) − λ(i)|�n|)2 1{|J (i)

0 (�n)−λ(i)|�n||≤εa�})

and, for k > �, that

varX(U
(ε)
k ) ≤

∑
n≥1

1Wk\Wk−1(α(�n)) EX((J
(i)
0 (�n) − λ(i)|�n|)2 1{|J (i)

0 (�n)−λ(i)|�n||≤εak}).

Applying Campbell’s theorem again, and using the facts that ak ≤ ak+1 and a2
k ≥ akak−1 for

k ≥ 1, we find (after a series of elementary rearrangements) that

E varX(S
(ε)
� )

a2
�

+
∑
k>�

E varX(U
(ε)
k )

a2
k

≤ λ

a�

E(V 2 1{V ≤εa�}) + λ
∑
k>�

ak − ak−1

ak−1ak

E(V 2 1{V ≤εak})

≤ λε E V + λε
a�+1

a�

E(V 1{V ≤εa�+1}) + λε
∑
k>�

ak+1

ak

E(V 1{εak<V ≤εak+1})

≤ λε

(
1 + a�+1

a�

)
E V ≤ ηδ2

12

for any � ≥ 1, provided that we set ε = ηδ2/12(1 + 2d)λ E V . Thus, the right-hand side of
(4.15) does not exceed 1

3η for � ≥ 1. Further, since EX(J
(i)
n (�n) − λ(i)|�n|) = 0, one can

easily show that |EX S
(ε)
k | ≤ Z

(ε)
k,� for any k ≥ �, where

Z
(ε)
k,� =

∑
n≥1

1Wk
(α(�n)) EX|J (i)

0 (�n) − λ(i)|�n|| 1{|J (i)
0 (�n)−λ(i)|�n||>εa�} .

With the above choice of ε > 0, take �1 = �1(δ, η) to be the smallest integer such that
λ E V 1{V >εa�1 } ≤ 1

3 (δ ∧ η). This implies that max�≥�1 P(Ac
ε,�(X)) ≤ 1

3η and, for � ≥ �1,
that

P

(
sup
k≥�

|EX S
(ε)
k |

ak

≥ δ

2

)
≤ P

(
sup
k≥�

Z
(ε)
k,�1

ak

≥ δ

2

)

≤ P

(
sup
k≥�

|Z(ε)
k,�1

− akλ E V 1{V >εa�1 } |
ak

≥ δ

6

)
. (4.16)
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However, since the ergodic theorem (4.1) implies that (Z
(ε)
N,�1

/aN)
a.s.−−→ λ E V 1{V >εa�1 } as

N → ∞, there exists an integer �0 = �0(δ, η) (larger than �1) such that the right-hand side of
(4.16) becomes smaller than 1

3η for any � ≥ �0. Together with the other estimates above, and
combined with (4.13), (4.14), (4.15), this yields (4.12).

5. A multivariate central limit theorem

In this section, we prove a central limit theorem that asserts the asymptotic normality of the
normalized random vector Z̃� = (Z̃

(1)
� , . . . , Z̃

(m)
� )�, defined in (1.2), as � → ∞.

Theorem 5.1. Suppose that the conditions (3.2) (or (3.9)) and E Dd(�∗) < ∞ are satisfied.
Furthermore, assume that the asymptotic covariance matrix K = (σ 2

ij )
m
i,j=1 is distinct from the

null matrix, i.e. max1≤i≤m σ 2
ii > 0. Then,

lim
�→∞ sup

x∈Rm

|P(Z̃� ≤ x) − �K(x)| = 0, (5.1)

where, recall, �K denotes the distribution function of the (m-dimensional) mean-zero
Gaussian vector N(o, K) with covariance matrix K .

To make the proof of Theorem 5.1 more transparent, we first collect some preliminary results
in Section 5.1 and postpone the main part of the proof to Section 5.2.

In the particular case d = 2, the isodiametric inequality (2.2) implies that the second moment
of the perimeter M1(�

∗) of �∗ exists if and only if the second moment of the diameter of �∗
exists. Therefore, in this case, E D2(�∗) < ∞ and E|�∗|2 < ∞ are the only conditions on the
typical cell �∗ of X that are needed to show (5.1).

5.1. Some auxiliary results

For any fixed vector t = (t1, . . . , tm)� ∈ R
m and any ε > 0, define σ 2(t) = t�Kt (which

is greater than or equal to 0) and the event

E�(t, ε) = {|B2
�(t, X) − σ 2(t)|W�|| < ε|W�|},

where

B2
�(t, X) =

∑
n≥1

EX

( m∑
i=1

ti (J
(i)
0 (�n ∩ W�) − λ(i)|�n ∩ W�|)

)2

.

Lemma 5.1. Under the conditions of Theorem 5.1, for any t ∈ R
m and ε > 0,

lim
�→∞ P(Ec

�(t, ε)) = 0. (5.2)

Proof. Using the fact that EX(J
(i)
0 (�n ∩ W�)) = λ(i)|�n ∩ W�| for i = 1, . . . , m, it is clear

that the identity

EX

( m∑
i=1

ti (J
(i)
0 (Cn�) − λ(i)|Cn�|)

)2

= EX

( m∑
i=1

tiJ
(i)
0 (Cn�)

)2

− |Cn�|2
( m∑

i=1

tiλ
(i)

)2

holds for any cell �n ∈ X, where Cn� = �n ∩ W�. Thus, by the relations (4.3) and (4.4) of
Corollary 4.1,

B2
�(t, X)

|W�|
a.s.−−−→

�→∞ λ E

( m∑
i=1

tiJ
(i)
0 (�∗)

)2

− λ

( m∑
i=1

tiλ
(i)

)2

E|�∗|2 =
m∑

i,j=1

ti tj σ
2
ij , (5.3)
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where σ 2
ij = λ(E J

(i)
0 (�∗)J (j)

0 (�∗)−λ(i)λ(j) E|�∗|2) for i, j = 1, . . . , m. But these quantities
coincide with the entries of the matrix K , as defined in (3.4). In other words, the ratio
B2

�(t, X)/|W�| converges almost surely to σ 2(t) as � → ∞. This implies convergence in
probability, which is assertion (5.2) of the lemma.

In this, and the subsequent, section, we use the abbreviation

g(t, J0, C) = t�J0(C) − t�λ0|C| =
m∑

i=1

ti (J
(i)
0 (C) − λ(i)|C|) (5.4)

for any t ∈ R
m and C ∈ C, where λ0 = (λ(1), . . . , λ(m))�.

Lemma 5.2. Under condition (3.2) of Theorem 3.1, for any δ > 0,

1

|W�| E

(∑
n≥1

EX(g2(t, J0, �n ∩ W�) 1{|g(t,J0,�n∩W�)|≥δ|W�|1/2})
)

−−−→
�→∞ 0. (5.5)

Proof. Since g(t, J0, C)
d= g(t, J0, C + x) for any C ∈ C and x ∈ R

d (where ‘
d=’ denotes

equality in distribution), by means of the theorems of Campbell and Fubini, we find that

E

(∑
n≥1

EX(g2(t, J0, �n ∩ W�) 1{|g(t,J0,�n∩W�)|≥δ|W�|1/2})
)

= λ

∫
P 0

∫
Rd

E(g2(t, J0, C ∩ (W� − x)) 1{|g(t,J0,C∩(W�−x))|≥δ|W�|1/2}) dxP 0(dC).

By the definition of g(t, J0, C) introduced in (5.4), it is clear that

|g(t, J0, C ∩ (W� − x))| ≤ ‖t‖
( m∑

i=1

J
(i)
0 (C) + ‖λ0‖|C|

)

and that

g2(t, J0, C ∩ (W� − x)) ≤ 2‖t‖2
( m∑

i=1

(J
(i)
0 (C ∩ (W� − x)))2 + ‖λ0‖2|C ∩ (W� − x)|2

)
.

Together with (3.6), this yields the inequality

∫
Rd

g2(t, J0, C ∩ (W� − x)) dx ≤ 2‖t‖2|W�|
( m∑

i=1

(J
(i)
0 (C))2 + ‖λ0‖2|C|2

)
.

Thus, in summary, the above estimates show that the left-hand side of (5.5) is bounded by
the product of 2λ‖t‖2 and

∫
P 0

E

( m∑
i=1

((J
(i)
0 (C))2 + ‖λ0‖2|C|2) 1{‖t‖(∑m

i=1 J
(i)
0 (C)+‖λ0‖|C|)≥δ|W�|1/2}

)
P 0(dC).

By the integrability conditions (3.2), the latter expression converges to 0 as � → ∞.
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Finally, in order to prove Theorem 5.1, we need the following generalization of the well-
known Berry–Esseen inequality for independent random variables.

Lemma 5.3. For independent mean-zero random variables U1, U2, . . . with finite variances,
there exist absolute constants a1, a2 > 0 such that, for any ε ∈ (0, 1) and n ∈ N,

sup
x∈R

∣∣∣∣P
( n∑

i=1

Ui ≤ xBn

)
− �(x)

∣∣∣∣ ≤ a1ε + a2

B2
n

n∑
i=1

E U2
i 1{|Ui |≥εBn},

where B2
n = ∑n

i=1 E U2
i and � denotes the standard normal distribution function on R.

Notice that Lemma 5.3 can be easily obtained from Theorem 5.6 of [19] if, in the latter theorem,
we put Xi = Ui/Bn and consider the function g : R → [0, ∞) with

g(x) =

⎧⎪⎨
⎪⎩

ε if |x| < ε,

|x| if ε ≤ |x| < 1,

1 if |x| ≥ 1.

5.2. Proof of Theorem 5.1

Recall that t�Z̃� = ∑m
i=1 ti Z̃

(i)
� and σ 2(t) = t�Kt for t = (t1, . . . , tm)� ∈ R

m. The well-
known Cramér–Wold device states that the m-variate central limit theorem (5.1) is equivalent
to

lim
�→∞ sup

x∈R

∣∣∣∣P(t�Z̃� ≤ x) − �

(
x

σ(t)

)∣∣∣∣ = 0 (5.6)

for all t ∈ R
m with σ 2(t) > 0, and that, in probability, t�Z̃� → 0 as � → ∞ if σ 2(t) = 0.

The latter holds since E(t�Z̃�)2 → σ 2(t) as � → ∞, by (3.7). Thus, let t ∈ R
m be fixed

such that σ 2(t) > 0. Since the random vector measures Jn = (J
(1)
n , . . . , J

(m)
n )� are mutually

independent and also independent of the tessellation X = {�n}n≥1, we may write

P(t�Z̃� ≤ x) = E

(
PX

(∑
n≥1

t�(Jn(�n ∩ W�) − λ0|�n ∩ W�|) ≤ x
√|W�|

))
.

Lemma 5.3, with the notation introduced in Section 5.1, yields the estimate

sup
x∈R

∣∣∣∣PX

(∑
n≥1

t�(Jn(�n ∩ W�) − λ0|�n ∩ W�|) ≤ x
√|W�|

)
− �

(
x

√|W�|
B�(t, X)

)∣∣∣∣
≤ a1ε + a2

B2
�(t, X)

∑
n≥1

EX(g2(t, J0, �n ∩ W�) 1{|g(t,J0,�n∩W�)|≥εB�(t,X)}),

where ε ∈ (0, 1) can be chosen to be arbitrarily small, as long as ε ≤ 3
4σ 2(t). Furthermore,

(5.3) and the inequality ∣∣∣∣B
2
�(t, X)

|W�| − σ 2(t)

∣∣∣∣ ≤ ε ≤ 3
4σ 2(t)

imply that √|W�|
B�(t, X)

≤ 2

σ(t)
and

∣∣∣∣
√|W�|

B�(t, X)
− 1

σ(t)

∣∣∣∣ ≤ 2ε

σ 3(t)
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for all � > 0 sufficiently large. The mean value theorem, together with maxx∈R �′(x) =
2π−1/2, yields ∣∣∣∣�

(
x

√|W�|
B�(t, X)

)
− �

(
x

σ(t)

)∣∣∣∣ ≤ |x|√
2π

∣∣∣∣
√|W�|

B�(t, X)
− 1

σ(t)

∣∣∣∣.
From the estimates derived above, it is clear that∣∣∣∣P(t�Z̃� ≤ x) − �

(
x

σ(t)

)∣∣∣∣ ≤ P(Ec
�(t, ε)) + E

(
1E�(t,ε)

∣∣∣∣�
(

x

√|W�|
B�(t, X)

)
− �

(
x

σ(t)

)∣∣∣∣
)

+ E

(
1E�(t,ε)

∣∣∣∣PX

(∑
n≥1

t�(Jn(�n∩W�)−λ|�n∩W�|)≤x
√|W�|

)
−�

(
x

√|W�|
B�(t, X)

)∣∣∣∣
)

≤ P(Ec
�(t, ε)) + 2ε|x|√

2πσ 3(t)
+ a1ε

+ 4a2

σ 2(t)|W�|E

(∑
n≥1

EX(g2(t, J0, �n ∩ W�) 1{|g(t,J0,�n∩W�)|≥εσ (t)|W�|1/2/2})
)

.

Since, by Chebyshev’s inequality, we have∣∣∣∣P(t�Z̃� ≤ x) − �

(
x

σ(t)

)∣∣∣∣ ≤ ε max{E(t�Z̃�)2, σ 2(t)}

for |x| ≥ ε−1/2, we conclude, from (3.7), Lemma 5.1, and Lemma 5.2, that

lim sup
�→∞

sup
x∈R

∣∣∣∣P(t�Z̃� ≤ x) − �

(
x

σ(t)

)∣∣∣∣ ≤ a1ε +
√

2ε√
πσ 3(t)

+ εσ 2(t)

for any sufficiently small ε > 0. This proves (5.6).

6. Numerical examples

In this section, we assume that d = 2 and present some numerical results regarding the
asymptotic covariance matrix K as well as the asymptotic distribution of certain functionals.
Related numerical results for superpositions of Poisson–Voronoi tessellations can be found,
e.g. in [2].

6.1. Poisson nestings

The (initial) tessellation X is chosen to be either a Poisson line tessellation or a Poisson–
Voronoi tessellation, with, in both cases, intensity λ = 0.01. The inner structure of the cells
�n of X is assumed to be induced by (component) tessellations Xn, where one of four possible
Poisson nesting types X

(1)
n , . . . , X

(4)
n is chosen; see Table 1. In each case, Xn can be described

by two parameters γ1 > 0 and γ2 > 0 (where γ2 is the intensity of the nested tessellation).
We concentrate on the case m = 2, i.e. Jn = (J

(1)
n , J

(2)
n )�. Here, J

(1)
n counts the nodes of the

component tessellation Xn and J
(2)
n measures the lengths of the edges of Xn. Given a nesting

type, in order to calculate γ1 and γ2, we assume that the vector (λ(1), λ(2))� is the same for all
four possibilities. We then obtain the system of equations

λ(1) = g
(j)
1 (γ

(j)
1 , γ

(j)
2 ), λ(2) = g

(j)
2 (γ

(j)
1 , γ

(j)
2 ) (6.1)
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Table 1: Choices of Poisson nesting types for Xn.

j Type of X
(j)
n

1 PLT/PVT
2 PLT/PLT
3 PVT/PLT
4 PVT/PVT

Table 2: The intensities of X
(1)
n , X

(2)
n , and X

(3)
n for (λ(1), λ(2))� = (0.004, 0.1)�.

Type of X
(j)
n γ1 γ2

PLT/PVT (X(1)
n ) 0.0857086 0.0000511

PLT/PLT (X(2)
n ) 0.0848829 0.0151171

PVT/PLT (X(3)
n ) 0.0000511 0.0857086

for j = 1, . . . , 4. The following formulae, (6.2) to (6.5), explicitly show the system of equations
for X

(1)
n , . . . , X

(4)
n , respectively (see, e.g. [12]):

λ(1) = 2γ
(1)
2 + (γ

(1)
1 )2

π
+ 8

π
γ

(1)
1

√
γ

(1)
2 , λ(2) = γ

(1)
1 + 2

√
γ

(1)
2 ; (6.2)

λ(1) = (γ
(2)
1 )2

π
+ (γ

(2)
2 )2

π
+ 4

π
γ

(2)
1 γ

(2)
2 , λ(2) = γ

(2)
1 + γ

(2)
2 ; (6.3)

λ(1) = 2γ
(3)
1 + (γ

(3)
2 )2

π
+ 8

π
γ

(3)
2

√
γ

(3)
1 , λ(2) = γ

(3)
2 + 2

√
γ

(3)
1 ; (6.4)

λ(1) = 2γ
(4)
1 + 2γ

(4)
2 + 16

π

√
γ

(4)
1 γ

(4)
2 , λ(2) = 2

√
γ

(4)
1 + 2

√
γ

(4)
2 . (6.5)

Note that it is difficult, but not impossible, to find values for the intensities λ(1) and λ(2) such
that (6.2) to (6.5) simultaneously have positive solutions γ

(j)
1 and γ

(j)
2 for each j = 1, . . . , 4.

As Table 2 shows, we consider the cases j = 1, 2, 3 only, and present representative results for
λ(1) = 0.004 and λ(2) = 0.1.

In the above examples, the integrability conditions of (3.9) (see also the remark after
Theorem 5.1) are obviously satisfied whenever

E D4(�∗) < ∞ and E(J
(i)
0 ([0, 1)2))2 < ∞, i = 1, 2. (6.6)

The first statement in (6.6) is true because the diameter of the typical cell �∗ has an exponentially
bounded tail, both for Poisson–Voronoi tessellations and for Poisson line tessellations (see,
e.g. [13]). Since the random measures J

(i)
0 are induced by the Poisson-type nestings displayed

in Table 1, the second-order properties of Poisson line and Poisson–Voronoi tessellations imply
that the second statement is also true.

6.2. Computation of asymptotic covariance matrices

For each of n1 realizations ξ∗ of the typical cell �∗ of X, we consider n2 realizations of
X

(1)
n , X(2)

n , and X
(3)
n , where the respective intensities are chosen according to Table 2. Hence, a
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Table 3: The asymptotic covariance matrix K if X is a PLT or a PVT with, in both cases, λ = 0.01.

Nesting type X is a PLT X is a PVT

X
(1)
n

(
0.0122837 0.1171656
0.1171656 1.6270537

) (
0.0090550 0.0711104
0.0711104 0.9873148

)

X
(2)
n

(
0.0128533 0.1220669
0.1220669 1.6841176

) (
0.0090969 0.0711946
0.0711946 0.9913954

)

X
(3)
n

(
0.0125047 0.1137313
0.1137313 1.6069373

) (
0.0093042 0.0701055
0.0701055 0.9832765

)

covariance estimator based on the n2 measured values of J
(1)
n (ξ∗) and J

(2)
n (ξ∗) can be calculated

by using the standard approach SUV = [1/(n − 1)](∑n
i=1 UiVi−nU V ), where (U1, . . . , Un)

�
and (V1, . . . , Vn)

� denote two vectors of sample variables and where U and V are the sample
means of these vectors, i.e. U = (1/n)

∑n
i=1 Ui and V = (1/n)

∑n
i=1 Vi , respectively. Finally,

the sample mean of the n1 estimates of covariances is multiplied by λ in order to get an estimate
of K . Table 3 shows K for n1 = n2 = 100 000 when X is either a PLT or a PVT.

Clearly, the estimated covariance between J
(1)
n (�∗) and J

(2)
n (�∗) seems to depend strongly

on the type of X, while the choice of Xn given a certain X does not make much difference to
the values.

These calculations were performed using packages from the GeoStoch JAVA™ library
(http://www.geostoch.de; see also [15]). Further numerical calculations, based on the central
limit theorem given in Theorem 5.1, show that the statement of asymptotic normality of the
distribution of (Z̃

(1)
� , Z̃

(2)
� )� is justified quite well, even in the case of a (relatively small)

quadratic sampling window W� of area |W�| = 2002.

7. Conclusion

In this paper, we considered a (normalized) m-dimensional vector of functionals Z̃�, the com-
ponents of which describe the inner structure of the cells of a stationary and ergodic tessellation
X. We have shown that, under certain conditions, the distribution function of Z̃� converges
uniformly to the (m-dimensional) multivariate normal distribution N(o, K) if the sampling
window W� grows unboundedly as � → ∞. We determined the asymptotic covariance matrix
K and presented laws of large numbers, which provide unbiased and consistent estimators for
the intensities λ(1), . . . , λ(m) of the stationary random measures J

(1)
0 , . . . , J

(m)
0 .

There are several interesting directions for further research. In particular, the vector of
functionals J

(1)
n , . . . , J

(m)
n can be generalized such that each component J

(i)
n of this vector is

a functional defined on the k-facets (0 ≤ k ≤ d) of the cell �n of X. For example, if d = 2,
then T-crossings induced by the intersection of the edges of a component tessellation Xn with
the edges of the initial tessellation X can be analysed.

Another interesting problem is the derivation of an unbiased and consistent estimator for the
asymptotic covariance matrix K = lim�→∞ cov Z̃�. Such an estimator is needed if one wants
to construct asymptotic hypothesis tests for the intensities λ(1), . . . , λ(m) (of J

(1)
0 , . . . , J

(m)
0 )

based on the central limit theorem stated in Theorem 5.1.
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