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COMPACTIFICATIONS AND QUOTIENT LATTICES
OF WALLMAN BASES

ELIZA WAJCH

We improve the intuition and some ideas of G. D. Faulkner and M. C. Vipera
presented in the article "Remainders of compactifications and their relation to a
quotient lattice of the topology" [Proc. Amer. Math. Soc. 122 (1994)] in connec-
tion with the question about internal conditions for locally compact spaces X and
Y under which /3X \ X = f)Y \ Y or, more generally, under which the remainders
of compactifications of X belong to the collection of the remainders of compacti-
fications of Y. We point out the reason why the quotient lattice of the topology
considered by Faulkner and Vipera cannot lead to a satisfactory answer to the
above question. We replace their lattice by the qoutient lattice of a new equiva-
lence relation on a Wallman base in order to describe a method of constructing a
Wallman-type compactification which allows us to deduce more complete solutions
to the problems investigated by Faulkner and Vipera.

0. INTRODUCTION

All topological spaces considered below will be locally compact and HausdorfF. The
word "space" will be used to refer to such, a topological space, unless otherwise specified.

For a space X, the symbol K.(X) will denote the lattice of all compactifications of
X, while TZ(X) will stand for the collection of all remainders of X, that is, TZ(X) —
{aX \ X : aX £ )C(X)} if we do not distinguish between homeomorphic spaces.

Although it is generally known that non-homeomorphic spaces can have homeo-
morphic remainders of their Cech-Stone compactifications, the nature of such spaces is
not well understood. For instance, how to compare such a trivial space as the space N
of positive integers with a pseudocompact non-normal space A = /3E \ (/?N \ N) (see
[10, 6P])? But the reason for which /3N\ N = /3A \ A must surely be hidden somewhere
in the internal structures of the topologies of N and A.

The question of when a space K can be homeomorphic to /3X \ X is also non-
trivial. Let us mention that, for instance, the statement "every Parovicenko space of
weight 2W is homeomorphic to /3N\N" is equivalent to the continuum hypothesis (see
[8]). Furthermore, by Magill's theorem (see [6, 7.2]), the inclusion TZ(X) C ~R{Y)
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116 E. Wajch [2]

holds if and only if 0X \ X = K for some K 6 Tl(Y). This turns our attention to the
question about internal conditions for X and Y under which TZ(X) C H(Y). Since
one of the most familiar methods of constructing a compactification of a space is to
add to the space as new points some ultrafilters in certain lattices of sets associated
with the space, the theory of lattices and Boolean algebras very often offers an efficient
tool for the study of compactifications (see for example [11]). Such an approach to the
above problems on remainders is presented by Faulkner and Vipera in [9]. Namely, the
authors of [9] consider the lattice of equivalence classes of the relation on the topology
of X which identifies all open sets A and B such that the symmetric difference AAB
is relatively compact. In terms of this lattice, they obtain some sufficient conditions
for X and Y to have /3X \ X £* (3Y \ Y or 1l(X) C H{Y). However, to get internal
conditions under which a given space K is homeomorphic to f3X \ X, Faulkner and
Vipera must keep their considerations within the limits of the class of normal spaces X
having the property that every non-relatively compact subset of X contains a closed
non-compact set (see [9, condition (C), p.936]). Some other results of [9] also require
the assumption of normality.

In the present paper we shall observe that, according to the theory of Wallman-type
compactifications, one should not be surprised that the relation introduced by Faulkner
and Vipera frequently restricts its applications only to normal spaces. We shall give
a number of examples illustrating the reason for which the quotient lattice considered
in [9] cannot lead to more satisfactory solutions of the basic problems on remainders
posed in [9]. Since /3X is always a Wallman-type compactification with respect to
the collection of all zero-sets of X, it is necessary to have a much deeper look at the
structure of a Wallman-type compactification in order to find answers to the problems
investigated by Faulkner and Vipera. Therefore, we shall propose a new equivalence
relation on a Wallman base which has a wider range of applicability than the relation
of Faulkner and Vipera. The quotient lattice of our relation will allow us to give some
answers to the following questions:

(1) Given a compact space K and a Wallman base C for a space X, what are
necessary and sufficient internal conditions for K and X to have K homeomorphic to
the remainder of the Wallman compactification of X which arises from C ?

(2) Given Wallman bases C and V for spaces X and Y, respectively, under what
internal conditions for X and Y do the Wallman compactifications arising from C and
T> have homeomorphic remainders?

(3) What internal conditions for spaces X and Y guarantee that TZ(X) C TZ(Y)7

Moreover, we shall apply our lattices to the .ES'.ff-compactifications introduced in

[5].

The algebra of continuous real functions defined on X will be denoted by C(X).
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[3] Compactifications and quotient lattices 117

For aX £ 1C(X), let Ca{X) = {f £ C(-^) : / is continuously extendable over
aX}, Za(X) = {f-HO) : f 6 Ca(X)}, Ka{X) = {>yX £ K{X) : 7X < aX}
and Ka{X) = {-yX \ X : jX £ ICa(X)}. As usual, we denote Zp{X) by Z{X). The
collection of all clopen subsets of X will be denoted by CO(X).

Basic facts concerning lattices can be found, for example in [1] or [13, Chapter 2].

1. PRELIMINARY REMARKS

Recall that a Wallman base V for a space X is a base for the closed sets of X which
is stable under finite unions and finite intersections and has the following properties:

(i) Q,XeV;
(ii) ilAeV and x e X\A, then there exists B £T> such that x £ B C X\A;
(iii) ii A,B £ V and An B = 0, then there exist C,D £ V such that

AC X\C QDQX\B.

The Wallman compactification arising from T> is the space w-pX of P-ultrafilters on
X (see [13, Section 4.4] or [6, Section 8]).

In what follows, we assume that V is a closed base for a space X such that
0,X 6 "D and the collection T> is stable under finite unions and finite intersections. For
A,B £ V, write A ~ B if and only if the symmetric difference AAB does not contain
non-compact members of V, and write A~kB if and only if the set AAB is relatively
compact in X. The relation ~ j , was considered in [9], but on the collection of all open
sets of X. The relation ~ does not seem to have appeared in the literature.

PROPOSITION 1 . 1 . Both ~ and ~ j , are equiva/ence relations on T>.

PROOF: It is evident that ~jt is an equivalence relation, but the transitivity of
~ is not clear. We shall give below a direct proof of this fact, although one can also
deduce it from properties of Wallman extensions (see Proposition 1.5).

Take any A,B,C,D £ V such that A ~ B, B ~ C and D C A AC. Then
D n A n B £ V and DnAC\BCB\C, so D n A n B is compact. Let U be a
relatively compact open subset of X such that D fl A fl B C U. Since V is stable
under finite intersections, it follows from the compactness of D fl A PI B that there
exists a set E £ V such that {D n A) \ U C E and En DO An B = 0. Then
DnAnE C AAB; therefore DnAnE is compact. This implies that DnA is compact
because D D A = (D l~l A n cljc U) U (D n A H E). Similarly, D f l C i s compact, too.
Hence D is compact, which shows that A ~ C. u

Using similar arguments to those above, one can check that finite unions and finite
intersections are compatible with both the relations ~ and ~fc. We shall denote by [D]
(respectively, by [Z)]jt) the equivalence class of ~ (respectively, of ~fc) which contains
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D £ T>. The quotient set LCD) of ~ will become a lattice if we put

[A] A [B] = [A n B] and [A] V [B] = [AU B\.

Let SCD) be the set of all ultrafilters in LCD). For [A] £ LCD), put

H[A] = {a £ SCD) : [A] £ a}.

The collection {-ff[-A] : [A] £ LCD)} forms a base for the closed sets of a topology on
SCD). Under that topology SCD) is a Ti-compact space. In the same way, we can
convert the quotient set LkCD) of ~fc into a lattice, and the set 5jfc(2?) of ultrafilters
in Lk(T>) into a T\-compact space.

Let us observe that the mapping [A]/, —> [A] establishes a lattice homomorphism
of LkCD) onto LCD); however, in general, the lattices Lk(V) and LCD) need not be
isomorphic. Indeed, if T> is the collection of all closed sets of [0,u;i), then LCD) consists
of exactly two elements, while Lk{D) has at least three distinct elements (see [9, p.936]).
More examples will be given in Sections 2 and 3.

Even if the lattices LCD) and LkCD) are not isomorphic, we do have the following

PROPOSITION 1 . 2 . The spaces SCD) and Sj.(Z>) are homeomorphic.

P R O O F : For a e SkCD), define h(a) = {[A] : [A]k £ a}. Since A ~ 0 if and
only if j4~jt0, it is easy to check that h is a one-to-one mapping of SkCD) onto SCD);
furthermore, h{H[A]k) = H[A] for any [A]k £ LkCD). Consequently, h is a homeo-
morphism. U

LEMMA 1 . 3 . If A,B £V and (A n B) ~ 0, tien there exists Ai £ T> such that
Ai n B = 0 and A ~ Ai. The relation ~ can be replaced by ~ j . .

PROOF: Since AnB is compact and X is locally compact, there exist a relatively
compact open set U C X and a set C £ V, such that An B C U, A\U C C and
C n AnB = 0. To complete the proof, it suffices to put Ai= AnC. D

PROPOSITION 1 . 4 . It V is a Waiiman base for X, then the space SCD) is

Hausdorff.

PROOF: Take any a,b £ SCD) such that a ^ b. It follows from Lemma 1.3 that

there exist disjoint sets A, B £ T> such that [A] £ a and [B] £ b. Since the base V

is Wallman, one can find sets C,D £ V such that A C X\C C D C X\B. Then

a € SCD) \ H[C], b £ SCD) \ H[D] and (5(2?) \ H[C\) n (5(2?) \ H[D]) = 0, which
shows that SCD) is Hausdorff. D

PROPOSITION 1 . 5 . Let V be a Wallman base for X and let K = w-pX \ X.

Then, for any D1,D2 £ V, we have K H cl £>i = K D cl £>2 if and only if [D{\ = [D2]

where the closure is taken in w-pX.
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[5] Compactifications and quotient lattices 119

PROOF: Suppose that [Di] ^ [D2] • There exists a non-compact C G V such
that C C D1AD2. We may assume that A = C fl D\ is non-compact. Obviously,
cl A n cl D2 = 0 and there exists p G K f~l cl A. Then p £ K HclDi and p g cl D2,
which proves that if K n cl Di = A" D cl £>2 , then [ A ] = [D2].

Suppose now that p 6 (K ("1 cl£>i) \ cl£>2 • There exists £ e P such that p G c l £
and c l £ n c lD 2 = 0- Put B = E f~l Z?i. Then p G c l # and B C D j A Z ^ . Clearly,
B ET> and 5 is non-compact; hence [£>i] ̂  [X>2], which completes the proof. U

In order to prove the main result of Section 2, we shall make use of the following
version of the Taimanov extension theorem (see [15] and [18, Lemma 2.5]):

THEOREM 1 . 6 . (Taimanov) Let X be a dense subspace of a topological space
T and let f be a continuous mapping of X into a compact Hausdorff space Y. Then f
is continuously extendable over T it and only if there exists a base T for the closed sets
of Y which is stable under finite intersections and has the property that CIT / - 1 (-A) D
cly f~1(B) = 0 for each pair A, B of disjoint members of T.

2. A CONSTRUCTION OF WALLMAN-TYPE COMPACTIFICATIONS

In the sequel, we shall assume that every closed base for a space Y contains 0 and
Y.

Suppose that T> is a Wallman base for a space X. Let K be a compact space and
let C be a base for the closed sets of K which is stable under finite unions and finite
intersections. Suppose that we are given a lattice isomorphism i/> : C —> L(V) Denote
by X Ll-^K the disjoint union X U K equipped with the topology having the collection

T = {C U D : C G C and D G V>(C)}

as a base for the closed sets.

THEOREM 2 . 1 . Tie space Y = X U ,̂ K is a Hausdorff compactification of X
equivalent to w-pX; necessarily w-pX \ X = K.

PROOF: Obviously, X and K are subspaces of Y. To show that Y is Hausdorff,
consider any pair pi ,p2 of distinct points of Y. Suppose first that pi ,p2 G K. There
exist disjoint sets Ci,C2 G C such that pi G Cj for i = 1,2. Then i>{Ci) A^(C2) = [0];
hence, in view of Lemma 1.3, there exist disjoint sets Ai,A2 £ P such that Ai G i/>(Ci)
for i = 1,2. Since the base V is Wallman, there are sets B, G V such that B1UB2 = X
and AiHBi = 0 for i = 1,2. Then V"1([5i])UV'"1([^2]) = K and V^d-Bi]) HC; = 0
for i = 1,2. Put Vi = Y \ (^([Bi])) U (£,•) for i = 1,2. Then Pi G Vt for i = 1,2
and the sets Vi, V2 are disjoint and open in Y.

Suppose now that p\ G X and p2 G K. Take a relatively compact open neigh-
bourhood U of pi in X. There exist disjoint sets Di,D2 £T> such that pi G D\ C U
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and X \ U C D2 ; further, we can choose sets Ex,E2 £ T> such that E\ U E2 = X and
Ei fl Di = 0 for i = 1,2. Put W{ = Y \ (^{[Ei]) U Et) for t = 1,2. Obviously,
the sets W î, VF2 are disjoint and open in Y, and px £ Wi. Since E2 C U, we have
[£2] = [0]. Hence ^ ^ ( [ i ^ ] ) = 0 and, in consequence, p2 &W2.

Let px,p2 £ X. There exist sets F1,F2 &T> such that FxUF2 = X and p, £ X\F{

for i = 1,2. The proof that Y is Hausdorff will be completed if we consider the
neighbourhoods Y\ (ip~1{[Fi\) U Fj) of pi for i = 1,2. Now, we are going to show that
X is dense in Y.

Let p e K, C £ C, D e V(C) and p £ C. There is E £ C such that p £ E
and E D C = 0. Then V(-E) A ^(C) = [0]. By Lemma 1.3, there is A £ rj>{E) such
that AH D = 0. If A were empty, then £ = ^"^([.A]) would be empty, too. Therefore
A ^ 0 because £ ^ 0. Since ,4 C Y \ (C U Z>), we have that X is dense in Y.

We shall show that Y is compact. To this end, take a centred subfamily Ti. of
T and suppose, for a contradiction, that f] H = 0. The space K being compact,

Hen n
there exists a finite subfamily {Hi,.. .,Hn} of H such that f| {Hi H K) = 0. Then

n n i=l
f\tj}{Hif\K) - [$}. This implies that the set B - f| (Hi l~l X) is compact. The

i=l i=l

collection W being centred, it follows from the compactness of B that B D f] H ^ 0,
Hew

which is absurd. The contradiction shows that Y is compact. Hence F £ /C(X). Since
both the collections T and {cl^ j r D : D £ T>} are stable under finite intersections
and serve as closed bases for Y and w-pX, respectively, by Theorem 1.6, to prove that
the compactifications Y and w-pX of X are equivalent, it is enough to check that
cly Dx n cly D2 = 0 whenever Di, D2 £ P and Di H £>2 = 0 •

Consider any pair D\,D2 of disjoint members of T>. There exist sets A\,A2 £ T>
such that Ax U A2 = X and Dt fi A< = 0 for i = 1,2. Take any p G K. As
A" = ^ " ^ [ ^ i ] ) U i;-1{[A2\), we may assume that p £ V " 1 ^ ] ) - But ^{[Dx]) H
^{[Ax]) = 0; hence p £V = Y\ ( ^ ( [ .D i ] ) U Z?i) . Since the set V is open in Y
and does not meet Dx, we have p ^ cly Dx • Therefore cly Dx D cly D2 = 0, which
concludes the proof of Theorem 2.1. D

Let us observe that, in view of Proposition 1.5, by assigning to any [D] £ L{T>) the
set {w-pX \ X) PI dwvx D, we establish a lattice isomorphism between the lattice L{T>)
and the closed base {{wpX \ X) (~l c l ^ j t D : D £ T>\ for w-pX \ X. Therefore, wj>X
is always of the form X U^ K for suitably chosen K and if). Our next theorem gives an
exact description of wpX in terms of L{V). Accordingly, Theorem 2.1 and Theorem
2.2 taken together can be regarded as a new method of constructing WaUman-type
compactifications of locally compact spaces.

THEOREM 2 . 2 . Let C = {H[A} : A £ T>} where H[A] = {a £ S{V) : [A] £ a}.
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[7] Compactifications and quotient lattices 121

Clearly, the base C for the closed sets of 5(23) is stable under finite unions and finite
intersections. For A G V, let i/i(H[A]) = [A]. Then ip is a lattice isomorphism of C
onto L{V). In consequence, w-pX = X U^ 5(2?) and w-pX \ X = 5(2?).

PROOF: We must check that ij) is well-defined. To this end, suppose that A,B£T>
and [-4] ^ [B]. There exists a non-compact C € T> such that C C AAB. We may
assume that CnA is non-compact. There exists an ultrafilter a in L(T>) which contains
[C H A]. Then a 6 H[A] \ H[B], so that H[A) ^ H[B]. This implies that V> is a well-
defined mapping of C onto 2/(2?). Now, it is easily seen that if> : C —> L(T>) is a lattice
isomorphism. The proof will be completed if we apply Proposition 1.4 and Theorem
2.1. D

REMARKS. Let us note that if we consider the relation ~* on the collection T>c =
{X \ D : D £ 2)}, then the space M(VC) of maximal ideals of the quotient lattice
Lk{T>c) of equivalence classes of ~ j . in T>c is homeomorphic to S(V). In the light
of Theorem 2.2, wvX \ X = M(VC); this gives an extension of [9, Theorem 2.8]. Of
course, if there exists a lattice isomorphism between Lk{T>) and a closed base for 5(2?),
using such an isomorphism and replacing ~ by ~ t , w e can construct w-pX in a similar
way as in Theorem 2.1. Unfortunately, £*(2?) need not be isomorphic to any closed
base for w-pX \ X. Even if X is normal and V is the collection of all closed sets of
X , to guarantee the existence of an isomorphism between Lk (2?) and a closed base
for w-pX \ X, the authors of [9] had to assume some additional condition (C) which
played only a technical role in their paper (see [9, pp. 936-937]). Therefore, contrary
to ~ , the relation ~ i does not give a sufficiently deep insight into the structure of
w-pX. Among other things, the relation ~ t does not lead to internal necessary and
sufficient conditions for a compact space K and a space X to have ftX\X = K (see [9,
Proposition 2.5]). However, if we replace ~ t by ~ , we can get the following immediate
consequences of Theorems 2.1 and 2.2:

THEOREM 2 . 3 . A compact space K is homeomorphic to tupX \X if and only if
K has a base for the closed sets which is stable under finite unions and finite intersections
and which is lattice isomorphic to L(T>).

COROLLARY 2 . 4 . A compact space K is the remainder of the Cech-Stone com-
pactification of X if and only if K has a base for the closed sets which is stable under
finite unions and finite intersections and which is lattice isomorphic to L(Z(X)).

If one would like to make use of Theorem 2.3 in order to check whether a given
compact space K is the remainder of w-pX or not, it might be difficult to judge which
one of the closed bases for K could be isomorphic to HT>). We shall show that
this problem can be overcome when we deal with compactifications of pseudocompact
spaces or with compactifications having zero-dimensional remainders. Let us recall the
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following result brought out in [18, Corollary 3.4]:

THEOREM 2 . 5 . A Tychonoff space X is pseudocompact if and only if every
compactification aX of X is the Walhnan-type compactification which arises from the
Wallman base Za{X).

LEMMA 2 . 6 . If aX is a compactification of a pseudocompact space X, then

Z(aX \ X) = {{aX \ X) n c U Z : Z £ Za(X)}.

PROOF: Consider any / £ C(aX). Put A = / - ' ( O j n f a J \ X) and Z = / ^
X. Suppose for a contradiction that y £ A and y ^ clax Z. There exists g £ C(aX)
such that g{y) = 0 and cla X Z C g-^l). Then 0 ^ ^ ( O ) D /^ (O) QaX\X, which
contradicts the fact that X is pseudocompact (see [10, 61]). Hence A = (aX \ X) D
daXZ. D

THEOREM 2 . 7 . Let aX be a compactification of a pseudocompact space X.
Then a compact space K is homeomorphic to aX \ X if and only if Z{K) is lattice
isomorphic to L(Za(X)).

PROOF: The result follows from Theorems 2.5 and 2.3, Proposition 1.5 and Lemma
2.6. D

The assumption of pseudocompactness cannot be omitted in Theorem 2.7. For
instance, if X is Lindelof, then Za(X) = Z(X) for any aX £ K.{X) (see [18]).

The following example shows that the lattice L(Za(X)) cannot be replaced by
Lk(Za(X)) in Theorem 2.7.

EXAMPLE 2.8: For a maximal almost disjoint family 1Z of subsets of the set N of
positive integers, let NL)7£ denote the set-theoretic union of N and 1Z equipped with the
following well-known topology: the points of N are isolated, while a neighbourhood base
for a point X £ 71 is the collection {{A}U(A \ F) : F is a finite subset of N} (see [10, 51]
and [16]). Suppose that V : Lk(Z(N\JH)) -> L(Z(NU1I)) is a lattice isomorphism.
Obviously, U £ Z(NUK) and [R]k ^ [NUft]*; hence i>([R]k) ^ [NUft]. Let
A £ r/>([Tl]k) • There exists a non-compact B £ Z(N U 11) such that B C (N U 11) \ A.
Since ^([A]) A ^{[B]) = [0]t, according to Lemma 1.3, there exists C £ ^([B])
such that CniZ = 0. Then C is an infinite subset of N. It follows from the maximality
of H that T f̂lcl ( 7 ^ 9 , which is absurd because C is closed in NU7£. The contradiction
proves that the lattices Lk{Z(N U ft)) and L(Z(N U H)) are non-isomorphic.

Let us pass to compactifications having zero-dimensional remainders.

Recall that a ?r-open (or 7-open in the terminology of [7]) set of X is an open set
U C X such that h&x U is compact. Denote by II(X) the collection of the closures
of 7r-open subsets of X. It is well known that if a Hausdorff space Y is rimcompact,
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[9] Compactifications and quotient lattices 123

then II(Y) is a Wallman base for Y and the Wallman compactification of Y with
respect to H(Y) is equivalent to the Freudenthal compactification <j>Y of Y (see [12,
p.273]; we refer the reader to [7] for more information about d>Y). It is easily seen
that if A £ II{X) then cljr (X \ A) £ H(X), and A D c l* {X \ A) is compact. This
implies that [cl* {X \ A)} is the complement of [A] in L(JI(X)). Accordingly, the
lattice L(II(X)) is complemented.

DEFINITION: A Wallman base V for a space X will be called:

(i) complemented if the lattice L(V) is complemented;
(ii) n-complemented if T> C II(X) and cljt (X \ A) E~D whenever A ET>.

Note that T> is complemented if and only if IJ(T>) is a Boolean algebra.

2 . 9 . LEMMA. If T> is a. complemented Wallman base for a space X, then

CO(wvX \X) = {{wvX \ X) H cl A : A £ V}

where the closure is taken in w-pX.

PROOF: Let Y - wvX and K = Y \ X. Consider any C £ CO(K). The sets C
and K\C being compact, there exist A,B E V such that C C cly A, K \ C C cly B
and cly A n cly JB = 0. This implies that C - K n cly A. On the other hand, if
D.EV, then there exists E € V such that [D] A [£] = [0] and [D] V [E] = [X]. It
follows from Proposition 1.5 that K f~l cly D n cly E - 0 and K C cly £» U cly E; thus
if n cly D G CO(iiQ. •

PROPOSITION 2 . 1 0 . For a compactification a l of a space X, the following

conditions are equivaient:

(i) aX \ X is zero-dimensional;
(ii) there exists a w-complemented WaUman base T> for X such that aX =

wvX;
(iii) there exists a complemented Wallman base V for X such that aX =

PROOF: It is fairly easy to deduce from the proof of [12, Theorem 5] that (i) =>
(ii). Implication (ii) => (iii) is obvious. That (iii) => (i) follows from Lemma 2.9. D

THEOREM 2 . 1 1 . Let V be a complemented Wallman base for a space X. Then
a compact space K is homeomorphic to w-pX \ X if and only if C0(K) is lattice
isomorphic to L(T)).

PROOF: The result is an immediate consequence of Proposition 1.5, Lemma 2.9
and Theorem 2.3. D

The lattice L(V) cannot be replaced by Lk(V) in Theorem 2.11.
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EXAMPLE 2.12: Let us come back to the space NU7J considered in Example
2.8. It is easily seen that the collection V = {{H C\A)UB:A,Be 27(N U ft)} is a
complemented Wallman base for NU1Z such that tou(N WR) = <j>(N U 11). Using similar
arguments to those in Example 2.8, one can check that the lattices L(T>) and Lk[TX) are
not isomorphic. Accordingly, Lk{T>) cannot be lattice isomorphic to CO(^(NU7£) \
(N U 11)) . Note that the base V is not 7r-complemented.

PROPOSITION 2 . 1 3 . If V is a n-complemented Wallman base for a space X,
then the relations ~ and ~ j . coincide on D.

PROOF: Let Y = wj>X and K = w-pX \ X. Consider any A,B £ T>. Obviously,
if A~kB, then A ~ B. Assume that A ~ B and suppose for a contradiction that
A \ B is not relatively compact in X. If C — A f) clx (X \B), then C f] B is compact
because X \ B is 7T-open. This, together with the fact that C £ V, implies that
K n cly C n cly B = 0. Clearly, K D cly C ^ 0 because A \ B C C. Therefore,
K PI cly A ^ K fl cly B, which contradicts Proposition 1.5. Hence A~kB. D

COROLLARY 2 . 1 4 . Let T> be a ir-complemented Wallman base for a space X.
Then a compact space K is homeomorphic to w-pX \ X if and only if C0(K) is lattice
isomorphic to Lk{T>)-

COROLLARY 2 . 1 5 . Let K be a compact space. Then K ^4>X\X if and only
if C0(K) ^ L(n(X)); of course, Lk{E{X)) = L(II(X)).

REMARKS. Denote by S(X) the collection of all complemented elements of the quo-
tient lattice of the relation ~fc on the topology of X. (See [9, p.932].) Faulkner and
Vipera showed in [9, Proposition 3.2] that there exists a natural isomorphism between
CO(<j>X \ X) and £{X); however, their route to this isomorphism seems somewhat
obscure for the form of the natural isomorphism was not described explicitly. Let us
observe that, in view of [9, Proposition 1.1], [V] € £{X) if and only if V is 7r-open.
Therefore, with Proposition 1.5, Lemma 2.9 and Proposition 2.13 in hand, it is readily
seen that, by assigning to any [V] £ £{X) the set (<j)X \ X)flcl^^ V, one establishes the
most natural isomorphism between £{X) and CO((f>X \ X). Evidently, the mapping
[V] —» [clx V] is a lattice isomorphism of £{X) onto L(II(X)).

Let us mention that the arguments of our next section are sufficient to deduce [9,
Proposition 3.4].

3. CONDITIONS UNDER WHICH Ha{X) c 1Z^(Y)

In connection with [9, Theorem 2.1], let us observe that one can easily infer from the
proof of [6, Theorem 5.27] that, for compactifications aX and jY of locally compact
spaces X and Y, the inclusion 1la(X) C 1Z~,(Y) holds if and only if aX \ X £ K-,(Y);
furthermore, if aX \ X = 7K \ Y, then Ha(X) = K~,{Y) and there exists a lattice
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isomorphism F : ICa(X) —> )C^(Y) such that T(rX) \ Y = T X \ X for every T X £
/Ca(X). Therefore, the problem of when there exists £y £ K,^{Y) with a X \ X ^ £ y \ F
is equivalent to the problem of when there exists a map r of ICa(X) to lCy(Y) which
preserves the natural order and has the property that, for every TX £ )Ca(X), T{TX)
has the same remainder as TX .

The following theorem can be regarded as a generalisation of [9, Theorem 2.4]:

THEOREM 3 . 1 . Let C,T> be Wallman bases for spaces X and Y, respectively.
If L{C) = L{V) or Lk{C) = Lk(V), then wcX \ X = wvY \ Y and, consequently

PROOF: In the light of Proposition 1.2, both the conditions L(C) = L(D) and
Lk(C) = Lk(V) imply that S(C) = S{V); thus, the proof will be completed if we use
Theorem 2.2. D

COROLLARY 3 . 2 . If L(Z(X)) ^ L(Z{Y)) or Lk(Z(X)) ^ Lk{Z{Y)), then
(3X\X ^/3Y\Y and, consequently 1l{X) = Tl{Y).

It may happen that 1Z(X) = "R,{Y) but (3X\X and (3Y\Y are non-homeomorphic
(see [9, p.931]). It may also happen that @X \ X =* @Y \ Y but neither L(Z(X)) ^
L(Z(Y)) nor Lk(Z(X)) S Lk(Z(Y)).

EXAMPLE 3.3: If X = (/?N \ N) x [O.wj), then f3X \ X ^ /3N \ N. It follows
from [19, 1.1 and 2.1] that, for every Z £ Z(X), there exist a < wi, A e Z(X) and
B £ Z(/3N\N), such that A C (/3N\N) x [0,a] and Z = A U (B x [a.wx)). This
implies that Lk{Z(X)) = L(Z(X)). Obviously, Lk(Z{N)) = L(Z(N)). In view of
Theorem 2.7, L(Z(X)) S Z(/3N \ N). It is evident that X(Z(N)) S CO(/3N \ N) (see
Corollary 2.15). The lattices Z(0N \ N) and C0(/3N \ N) are not isomorphic because
/?N\N contains non-P-points (see [6,4.35]). Hence, the lattices L(Z(X)) and L(Z(N))
cannot be isomorphic.

PROPOSITION 3 . 4 . Let aX and jY be compactifications of pseudocompact
spaces X and Y. Then OLX \X S 7 F \Y if and only if L{Za{X)) S

PROOF: Clearly, if aX \ X ^ -yY \ Y, then Z(aX \ X) ^ Z(7F \ Y); therefore,
the result follows from Theorem 2.7 and Theorem 3.1. D

PROPOSITION 3 . 5 . Let C andV be complemented WaJIman bases for spaces
X and Y, respectively. Then wcX \ X S wvY \ Y if and only if L{C) ^ L(V).

PROOF: It is enough to use Theorem 2.11 and Theorem 3.1.

Clearly, the relation ~ can be replaced by ~i neither in Proposition 3.4 nor in
Proposition 3.5.

Our next theorem is, in a sense, related to [9, Theorem 2.1]; however, it seems
difficult to adopt the proof of [9, Theorem 2.1] to our needs. Therefore we shall give
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quite different arguments.

THEOREM 3 . 6 . Let C and V be Walhnan bases for spaces X and Y, respec-

tively. Suppose that there exists a lattice homomorphism ij) : L(C) —> L(T>) such that:

(I)

Then TZWc{X)CTlW7)(Y).

PROOF: According to Theorem 2.2 and to the proof of Magill's theorem (see [6,
7.2]), it suffices to show that S(C) is a continuous image of S{V). In order to find a
map F : S{V) -> S{C), define f(d) = {[A] £ L(C) : ip([A}) £ d} for d £ S(V). One
readily verifies that f{d) is a filter in L{C). Suppose for a contradiction that there
exist B1,B2 £ C such that [Bi] A[B2] = [0] but [Bi] A [A] ^ [0] ^ [B2] A [A] for each
[A] € f(d). By Lemma 1.3, we may assume that B1C\B2 = 0 . Take C1,C2 £ C such
that # i C X \ Ci C C2 C X \ B2 • Since d is an ultrafilter and ^([Ci]) V ̂ ([C2]) = [V] ,
without loss of generality, we may suppose that ^([Ci]) G d. Then \C\\ £ f(d), which
is absurd because [Ci] A [Bi] = [0]. The contradiction proves that f(d) cannot be
contained in two different ultrafilters in L(C). Denote by F(d) the unique ultrafilter
in L(C) which contains f(d). In this way, we define a map F : S{V) -> S(C). If
c G 5(C), then {^([^]) : [A] £ c} is a filter base in L(V). It is easy to check that if
d is an ultrafilter in L(V) that contains {V"([^]) : [A] € c}, then F(d) = c. Hence
F(S(V)) •= S(C). We shall show that F is continuous. To this end, consider any
d £ S(V) and Ao £ C, such that F(d) g H[A0] (see Section 1). By Lemma 1.3,
there exists Ai £ C such that [Ai] € F(d) and ^40 n Ax = 0 . Choose sets £ 0 , ^ i £ C
such that i 0 C J f \ £ 0 C J 5 1 C ^ \ i 1 . Clearly, [E^ £ F(d). This implies that
VKt-Ei]) ^ >̂ s o that the set U = {a £ S(X>) : ^([25i]) ^ a} is an open neighbourhood
of d in S{V). Take any a £ U. Since a is an ultrafilter and il>{[E0}) Vi/)([£i]) = [Y],
we have V"([-Eo]) £ a. Then [Eo] £ F(o), which gives that [Ao] $ F(a). Therefore,
F(U) C 5(C) \ fl'IAo] and hence the map F is continuous. D

Note that the homomorphism i/} of Theorem 3.6 is an injection. Indeed; if, for
instance, C C A\B where A,B,C € C, and C is non-compact, then i/>([C])Atl>([B]) —

[0], while ^([C]) A i>([A]) t [0]; hence +([A]) ?+([B]).

Of course, an analogous version of Theorem 3.6 for the relation ~jt also holds.

Let us observe that [9, Theorem 2.1], cannot lead to internal necessary and suffi-
cient conditions for pseudocompact spaces X and Y to have TZ(X) C TZ(Y). However,
with Theorem 3.6 in hand, we can easily deduce such conditions. Namely, we can
establish the following

THEOREM 3 . 7 . Let aX and fY be compa.ctiEca.Uons of pseudocompact spaces
X and Y. Then lZa{X) C TZ^(Y) it and oniy il there exists a lattice homomorphism
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V> : L(Za(X)) -> L(Z^(Y)) satisfying conditions (I) and (II) of Theorem 3.6.

PROOF: Suppose that 1la{X) C Hy(Y). There exists SY € K.^{Y) such that
aX \ X = SY \Y = K. Let q : jY —> SY be the natural quotient map witnessing
that SY ^ •yY. It follows from Proposition 1.5, Theorem 2.5 and Lemma 2.6 that,
for each [A] <E L{Za{X)), the collection V([4) = {B £ Z7(Y) : (7F \ Y) n cl7y £ =
g " 1 ^ n clQx A)} is a member of £ (Z 7 (y ) ) . It is easy to verify that V> : L(Za{X)) ->•
L(Z^(Y)) is a lattice homomorphism which satisfies conditions (/) and ( / / ) of Theorem
3.6. To conclude the proof, it is enough to use Theorem 2.5 and Theorem 3.6. u

THEOREM 3 . 8 . Let C and V be complemented Wallman bases for spaces X
and Y, respectively. Then TZWc(X) C TZWT)(Y) if and only if there exists a lattice
homomorphism rj> : L(C) —* L{T>) which satisfies conditions (I) and (II) of Theorem
3.6.

PROOF: Suppose that SY £ £Wv(Y) is such that wcX \X = SY\Y = K. Let
q : WT)Y —y SY be the natural quotient map showing that SY ^ WT>Y . By virtue of
Proposition 1.5 and Lemma 2.9, we can define a lattice homomorphism ij) : L(C) —*
L(V) such that (wvY \ Y) D c l ^ y B = q~x{K (~1 c\w<.x A) for any [A] € L(C) and
B £ ij}([A}). The homomorphism if) satisfies conditions (J) and ( / / ) of Theorem 3.6,
which, along with Theorem 3.6, completes the proof. u

Let us mention that, in view of Theorem 2.11 and Proposition 2.13, [9, Proposition

3.4] is an immediate consequence of Theorem 3.8.

The following problem seems interesting:

PROBLEM. Suppose we are given two spaces X and Y such that L(Z(X)) = L(Z(Y)).
What topological properties of X are shared by Y?

Of course, we can pose analogous questions for the relation ~A , as well as for other
Wallman bases. However, for instance, if L(II(X)) = L(II(Y)), the spaces X and
Y can be quite different. Indeed, according to Proposition 3.5, we have L(II(N)) =
L{U(Y)) for every space Y with /3Y \ Y S /?N \ N.

Almost compactness (see [10, 6J]) is one of those properties which are preserved
under lattice isomorphisms, that is, if a space X has exactly one compactification and
L(Z(X)) = L(Z(Y)), then the space Y has exactly one compactification, too.

Denote by T>x and Vy the collections of all closed subsets of spaces X and Y,
respectively. Faulkner and Vipera proved in [9, Corollary 2.7] that if X is a normal
space which satisfies condition (C) (that is, in which every non-relatively compact set
contains a closed non-compact subset), then Lk(T>x) — •tt(^'y) implies the normality
of Y. It is worth noticing that condition (C) is unnecessary in [9, Corollary 2.7];
furthermore, [9, Corollary 2.7] has a simple direct proof which does not require any
references to [9, Theorem 2.4] nor to [9, Proposition 2.5-2.6]. Namely, we can state the
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following

PROPOSITION 3 . 9 . H Lk{T>x) = Lk(DY) and X is a normal space, then the
space Y is also normal.

PROOF: Suppose that i/> : Lk{T>x) —• •£*('Z?y) is a lattice isomorphism. To show
that Y is normal, take a pair Ai,A2 of disjoint closed subsets of Y. By Lemma 1.3,
there exist B{ £ V'~1([-^i]*) such that 2?i n B2 = 0. Since X is normal, we can find
sets Ci,C2 G Vx such that Bx C X \ C\ C C2 Q X \ B2. By Lemma 1.3, there exist
Di G 1>([Ci]k) such that Ai n Di = 0 for t = 1,2. The set £> = Y \ (£»x U D2) being
relatively compact, there exists a relatively compact open set U C Y such that cly D C
U. Then Ui = Y\ (Di U cly D) and U2 = Y\D2 are disjoint open neighbourhoods of
Ai \ U and A2, respectively. Since U is relatively compact, there exist disjoint open
sets VUV2 C Y such that Ax DclyU C Vx and A2 C V2. Then FFi = Ui U Fx and
^ 2 = ^2 1"! V2 are disjoint open neighbourhoods of A\ and A2 , respectively. D

4. REMARKS ON .ESU-COMPACTIFICATIONS

According to [5], a compactification aX of a non-compact space X is an ESH-
compactification if and only if there exists a base C for the closed sets of K — aX \ X
which is stable under finite intersections and has the property that there exists a map
77 of C to the collection of closed sets of X satisfying the following conditions:

(El) 77(0) is compact in X;
(E2) X \ r](C) is not relatively compact in X for every C e C \ {K};
(E3) for any Ci,C2 £ C, tf{Ci n C2)A(r](Ci) nrj(C2)) is relatively compact in

X;
(E4) if Ci ,C2 € C and intif(Ci) U i n t * ^ ) = K, then X \ (T/(CI) U •n(C2))

is relatively compact in X.

THEOREM 4 . 1 . If V is a. Walhnan base for a non-compact space X such that
Lk(T>) = L(V), then w-pX is an ESH-compactification.

PROOF: Consider the base C = {(w-pX \X)n c l , , , ^ D : D £ V} for the closed
sets of w-pX \ X. It follows from Proposition 1.5 that if Lk{V) = L(V), then there
exists a lattice isomorphism ij> : C —> Lk{T>). For each C £ C, pick an arbitrary
T/(C) G V'(C). The map 77 : C -* V satisfies conditions (E1)-(E4). D

The authors of [5] posed the following question:

Q. If X is a non-compact locally compact space, must @X be an ESH- compactifi-
cation?

Caterino, Faulkner, Vipera and the referee of [5] gave a positive answer to the
above question for a paracompact or realcompact X. Evidently, the Cech-Stone com-

https://doi.org/10.1017/S0004972700015124 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015124


[15] Compactifications and quotient lattices 129

pactification of a non-compact space X with Lk{Z(X)) = L(Z(X)) is an ESH-

compactification. We shall show that Lk(Z(X)) = L(Z(X)) for every strongly isocom-

pact space X. Since the class of strongly isocompact spaces contains all paracompact

and all realcompact spaces, our partial solution of (Q) is better than the answer to (Q)

given in [5, Theorems 6 and 7].

Let us recall that a subset A of a space X is relatively pseudocompact in X if

every function / 6 C(X) is bounded on A (see [2, 3]). A Tychonoff space X is strongly

isocompact (or hyperisocompact) if and only if every relatively pseudocompact closed

subset of X is compact (see [3, Proposition 3.0] and [2, p.81]). We refer the reader

to [4] and [17] for examples of spaces that are strongly isocompact but are neither

realcompact nor paracompact. We mention that, for instance, every normal weakly

[wi,oo)r - refutable space is strongly isocompact.

LEMMA 4 . 2 . If a space X is strongly isocompact, then the relations ~ and ~*

coincide on Z(X).

PROOF: It is enough to check that if A,B £ Z(X) and A \ B is not relatively

compact, then there exists a non-compact Z £ Z(X) such that Z C A \ B.

The space X being strongly isocompact, the set S = c\x {A \ B) cannot be rela-

tively pseudocompact. By [2, Proposition 2.6], there exists p £ (cl^x S)\vX. Mimick-

ing the proof of [14, Lemma 1.2], take a non-negative function / £ C(/3X) such that

p £ / - 1 (0) C /3X \X. Let g = 1 / / . We can find a discrete collection of closed intervals

[anj&n] in K with bn / oo such that g~1([an,bn}) H (A\B) contains a non-void set
oo

Zn £ Z(X). Then Z — \J Zn is a non-compact zero-set contained in A \ B. U
n=l

As an immediate consequence of Theorem 4.1 and Lemma 4.2, we get the following

PROPOSITION 4 . 3 . If a non-compact space X is strongly isocompact, then
f)X is an ESH-compactih"cation of X.

One should not expect that if /3X is an .ES.ff-coinpactin'cation, then Lk{Z(X)) =

L(Z(X)). Indeed; by [16, Theorem 2.1], there exists a maximal almost disjoint family

TZ in N such that /?(N U 11) \ (N U Tl) is zero-dimensional. It follows from [5, Theorem

4] or from Propositions 2.10 and 2.13 that /3(N U 7£) is an -ESZT-compactification;

however, as we have shown in Example 2.8, the lattices Lk(Z(N U ft)) and L(Z(N U 71))

are non-isomorphic.

Finally, let us note that, in view of Propositions 2.10, 2.13 and 4.3, Theorem 4.1 is

a common generalisation of [5, Theorems 4, 6 and 7].
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