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W-constraints for the total descendant potential

of a simple singularity

Bojko Bakalov and Todor Milanov

Abstract

Simple, or Kleinian, singularities are classified by Dynkin diagrams of type ADE. Let
g be the corresponding finite-dimensional Lie algebra, and W its Weyl group. The set
of g-invariants in the basic representation of the affine Kac–Moody algebra ĝ is known
as a W-algebra and is a subalgebra of the Heisenberg vertex algebra F . Using period
integrals, we construct an analytic continuation of the twisted representation of F . Our
construction yields a global object, which may be called a W -twisted representation
of F . Our main result is that the total descendant potential of the singularity, introduced
by Givental, is a highest-weight vector for the W-algebra.

1. Introduction

1.1 Motivation from Gromov–Witten theory

Recall that the Gromov–Witten (GW) invariants of a projective manifoldX consist of correlators

〈τk1(v1), . . . , τkn(vn)〉g,n,d (1.1)

where v1, . . . , vn ∈H∗(X; C) are cohomology classes and the enumerative meaning of the
correlator is the following. Let C1, . . . , Cn be n cycles in X in a sufficiently generic position that
are Poincaré dual to v1, . . . , vn, respectively. Then the GW invariant (1.1) counts the number
of genus-g, degree-d holomorphic curves in X that are tangent (in an appropriate sense) to the
cycles Ci with multiplicities ki. For the precise definition we refer to [Beh97, Kon95, LT98, Wit91].
After Givental [Giv01b], we organize the GW invariants in a generating series DX called the total
descendant potential ofX and defined as follows. Choose a basis {vi}Ni=1 of the vector (super)space
H =H∗(X; C) and let tk =

∑N
i=1 t

i
kvi ∈H. Then

DX(t) = exp
(∑
g,n,d

Qd

n!
~g−1

∑
k1,...,kn>0

〈τk1(tk1), . . . , τkn(tkn)〉g,n,d
)
,

where t = (t0, t1, . . .) = (tik) and the definition of the correlator is extended multi-linearly in its
arguments. The function DX is interpreted as a formal power series in the variables tik with
coefficients formal Laurent series in ~ whose coefficients are elements of the Novikov ring C[Q].

When X is a point and hence d= 0, the potential Dpt (also known as the partition function of
pure gravity) is a generating function for certain intersection numbers on the Deligne–Mumford
moduli space of Riemann surfaces Mg,n. It was conjectured by Witten [Wit91] and proved by
Kontsevich [Kon92] that Dpt is a tau-function for the KdV hierarchy of soliton equations. (We
refer to [Dic03, vM94] for excellent introductions to soliton equations.) In addition, Dpt satisfies

Received 15 March 2012, accepted in final form 14 August 2012, published online 7 February 2013.
2010 Mathematics Subject Classification 53D45 (primary), 17B69, 32S30, 81R10 (secondary).
Keywords: Frobenius manifold, simple singularity, total descendant potential, vertex algebra, W-algebra.
This journal is c© Foundation Compositio Mathematica 2013.

https://doi.org/10.1112/S0010437X12000668 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X12000668


W-constraints for simple singularities

one more constraint called the string equation, which together with the KdV hierarchy determines
uniquely Dpt (see [Wit91]). It was observed in [DVV91, FKN91, KS91] that the tau-function
of KdV satisfying the string equation is characterized as the unique solution of LnDpt = 0 for
n>−1, where Ln are certain differential operators representing the Virasoro algebra. This means
that Dpt is a highest-weight vector for the Virasoro algebra and in addition satisfies the string
equation L−1Dpt = 0.

One of the fundamental open questions in Gromov–Witten theory is the Virasoro conjecture
suggested by Katz and the physicists Eguchi, Hori, Xiong, and Jinzenji (see [DZ99, EHX97,
EJX98]), which says that DX satisfies Virasoro constraints similar to the constraints for Dpt

for a certain representation of the Virasoro algebra. The equation LnDX = 0 has a simple
combinatorial meaning: it gives a rule for simplifying the correlators (1.1) when v1 = 1 and
k1 = n+ 1.

A natural question is whether the results for X = pt can be generalized for any projective
manifold X. In particular, is there an integrable hierarchy that together with the Virasoro
constraints will uniquely characterize the GW invariants of X? Alternatively, are there other
combinatorial rules that will allow us to simplify the correlator (1.1) for any cohomology class v1,
not only for v1 = 1 (cf. [DVV91, Goe91])? A representation-theoretic interpretation of such rules
is that DX is a highest-weight vector for an algebra containing the Virasoro algebra. Answering
these questions in general is a very difficult problem. However, there is a class of manifolds
for which the problem can be formulated entirely in the language of differential equations and
representation theory.

1.2 Semi-simple Frobenius manifolds and Givental’s formula

Let us denote by (· , ·) the Poincaré pairing on H =H∗(X; C). For simplicity of the exposition,
we will assume that all non-zero cohomology classes are of even degree only; otherwise one has
to view H as a vector superspace (see [KM94]). The genus-0 GW invariants of X allow H to
be endowed with a commutative associative product •t parameterized by t ∈H, known as the
quantum cup product [KM94, RT95].

Assuming the basis {vi}Ni=1 of H is homogeneous, we also introduce the Euler vector field
on H:

E =
N∑
i=1

(1− di)ti
∂

∂ti
+

N∑
i=1

ρi
∂

∂ti
,

where di = (1/2) deg vi, and ρi and ti are the coordinates respectively of c1(TX) and t relative
to the basis {vi}Ni=1. The Poincaré pairing and the quantum multiplication •t are homogeneous
of degrees respectively 2−D and 1 with respect to E, where D = dimC X.

One of the key facts in GW theory is that the following system of differential equations is
compatible:

z∂tiJ(t, z) = vi •t J(t, z), 1 6 i6N, (1.2)
(z∂z + E)J(t, z) = θJ(t, z), (1.3)

where θ is the Hodge grading operator defined by θ(vi) = (D/2− di)vi.
The quantum multiplication is called semi-simple if there are local coordinates ui onH, known

as canonical coordinates, in which both the Poincaré pairing and the multiplication assume a
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diagonal form:

∂/∂ui •t ∂/∂uj = δij∂/∂u
j , (∂/∂ui, ∂/∂uj) = δij/∆j

for some non-zero functions ∆j . Examples of manifolds with semi-simple quantum cohomology
include Grassmannians and Fano toric manifolds. It was conjectured by Givental [Giv01a] and
proved by Teleman [Tel12] that if the quantum multiplication is semi-simple, then DX is given
by a formula of the following type:

DX(t) = Ĝt

N∏
i=1

Dpt(ti), (1.4)

where the variables ti are the coordinates of t with respect to the basis
√

∆i ∂/∂u
i and Ĝt is

a certain differential operator defined only in terms of the canonical coordinates and certain
solutions of the differential equations (1.2) and (1.3) (see § 5 below). Givental’s formula (1.4)
implies that DX can be reconstructed only from genus-0 GW invariants and the higher-genus
theory of the point.

Motivated by GW theory, Dubrovin introduced the notion of a Frobenius manifold
(see [Dub96, Man99]). Locally, this is defined as follows. Let H be a vector space whose
tangent spaces TtH are Frobenius algebras with identity 1, i.e., there exist a non-degenerate
bilinear pairing (· , ·)t and a commutative associative multiplication •t such that (v •t w1, w2)t =
(w1, v •t w2)t. Assume also that the pairing is flat and homogeneous (of degree 2−D) with
respect to an Euler vector field E. We say that the Frobenius algebras form a Frobenius structure
of conformal dimension D if the system of equations (1.2), (1.3) is compatible. The notion of semi-
simplicity still makes sense in such an abstract setting. Therefore, following Givental [Giv01a],
we use formula (1.4) to define the total descendant potential of the semi-simple Frobenius
manifold.

By the results of Givental [Giv01b], the Virasoro conjecture holds in the semi-simple case.
The construction of integrable hierarchies in the setting of semi-simple Frobenius manifolds
was investigated in [Dub96, DZ98, DZ05, Get02] using the bi-Hamiltonian formalism. The
methods of Dubrovin and Zhang are quite remarkable. They have recently confirmed that
such an integrable hierarchy exists, provided that a certain conjecture about polynomiality
of the Poisson brackets holds (see [DZ05]). This conjecture was partially proved by Buryak–
Posthuma–Shadrin [BPS12a, BPS12b] (the polynomiality of the second bracket is still an
open problem). Another approach is to derive Hirota’s bilinear equations for the tau-function;
see [FGM10, Giv03, GM05, Mil06, Mil08, MT08, MT11, OP06].

1.3 Spin curves and the generalized Witten conjecture
Recall from [JKV01, Wit93] that the moduli space of h-spin curves consists of Riemann surfaces
C equipped with marked points and a line bundle L together with an isomorphism between L⊗h

and the canonical bundle KC(D), where D is a divisor supported at the marked points. Different
choices ofD parameterize connected components of the moduli space. Witten conjectured [Wit93]
(see also [JKV01]) that the total descendant potential for h-spin curves is a τ -function for the
hth Gelfand–Dickey hierarchy. This function is uniquely characterized as the solution that also
satisfies the string equation.

Witten’s conjecture can be formulated also in the language of vertex algebras. Let Wh be
the Zamolodchikov–Fateev–Lukyanov W-algebra (see § 2.4 below). According to Adler and van
Moerbeke [AvM92] there is a unique τ -function for the hth Gelfand–Dickey hierarchy solving the
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string equation. This unique solution is characterized as a highest-weight vector for the vertex
algebra Wh (see also [BM08, Giv03]).

On the other hand, the space of miniversal deformations of an Ah−1-singularity can be
equipped with a semi-simple Frobenius structure (see [ST08] and § 4.3 below). Givental proved
that the corresponding total descendant potential (1.4) is a solution of the hth Gelfand–Dickey
hierarchy satisfying the string equation (see [Giv03]). Therefore, the proof of Witten’s conjecture
was reduced to verifying that the total descendant potential of h-spin invariants coincides with
Givental’s function. This was done first by Faber–Shadrin–Zvonkine [FSZ10] (now there is a
more general approach due to Teleman [Tel12]).

Following a suggestion by Witten, Fan–Jarvis–Ruan [FJR08] generalized the notion of
h-spin invariants. They introduced the moduli space of Riemann surfaces equipped with orbifold
line bundles satisfying certain algebraic relations, corresponding to a certain class of weighted-
homogeneous polynomials. In particular, choosing f(x) = xh reproduces the h-spin invariants. If
the polynomial has an isolated critical point of type XN =AN , DN , E6, E7 or E8 (these are the
so-called simple singularities; see § 4.2 below) the total descendant potential of FJRW-invariants
coincides with the total descendant potential of the corresponding singularity.

It was proved by Frenkel–Givental–Milanov [FGM10, GM05] that the total descendant
potential DXN of a simple singularity is a τ -function for the Kac–Wakimoto hierarchy of type
XN in the principal realization (see [KW89]). In the present paper, we will show that DXN
satisfies suitable W-constraints.

1.4 Main result

The Virasoro algebra is a Lie algebra, but the W-algebras are not because they involve
nonlinearities. Instead, they are vertex algebras (see [Bor86, FB01, FLM88, Kac96, LL04] and
§ 2 below). Informally, a vertex algebra is a vector space V endowed with products a(n)b ∈ V for
all a, b ∈ V and n ∈ Z. An important example is the Heisenberg vertex algebra (or Fock space)
F associated to any vector space h equipped with a symmetric bilinear form. We let h be the
Cartan subalgebra of a finite-dimensional simple Lie algebra g of type XN (X =A, D, E), and
denote by R the root system.

Following [FF90, FF96, FKRW95], we introduce the W-algebra WXN as the subalgebra of
F given by the intersection of the kernels of the so-called screening operators eα(0) (α ∈R).
Equivalently, WXN is the space of g-invariants in the basic representation of the affine Kac–
Moody algebra ĝ, first considered by Frenkel [Fre85]. In particular, WXN contains certain
Casimirs, the first of which corresponds to the Virasoro algebra. It is also important that WXN

is invariant under the action of the Weyl group W .

Let σ ∈W be a Coxeter element. Then the principal realization of the basic representation of
ĝ admits the structure of a σ-twisted representation of F (see [LW78, Kac90, KKLW81] and § 3.4
below). We show that the total descendant potential DXN of a simple singularity of type XN

lies in a certain completion of this representation. When restricted to WXN , this representation
becomes untwisted, and it gives rise to products a(n)DXN for every a ∈WXN and n ∈ Z. Our
main result is the following theorem.

Theorem 1.1. The total descendant potential DXN (X =A, D, E) of a simple singularity
satisfies the WXN -constraints a(n)DXN = 0 for all a ∈WXN , n> 0.
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Since WAN coincides with WN+1, the above constraints were previously known for type
AN (see [AvM92, BM08, Giv03]). It was shown by Adler and van Moerbeke [AvM92] that the
W-constraints determine the formal power series DAN uniquely. We conjecture that this is true
for all simple singularities. For type DN , we have an explicit form of the W-constraints, so we
expect that one can prove the uniqueness directly as in [AvM92]. It is conceivable that the
W-constraints can be derived from the Kac–Wakimoto hierarchy and the string equation, but
we only know how to do this for type AN (cf. [AvM92, KS91, vdL96]). It will also be interesting
to find a matrix model for DXN generalizing the Kontsevich model from [AvM92, Kon92]
(cf. [DV02, KMMMP93, Kos92]).

One may try to define the vertex algebra WXN for any isolated singularity by taking R to
be the set of vanishing cycles (see § 4.1 below). It is easy to see that the Virasoro vertex algebra
W2 is always contained in WXN . One of the problems, however, is to determine whether WXN is
larger than W2, and to suitably modify the definition of WXN so that it is. This will be pursued
in a future work.

Let M be a twisted module over a vertex algebra V (see [Don94, FFR91] and § 3.1 below).
Then for every a ∈ V , there is a formal power series Y (a, λ) whose coefficients are linear operators
on M . The main idea of the present paper is to construct globally defined operator-valued
functions X(a, λ) whose Laurent series expansions at λ=∞ coincide with Y (a, λ). They have
the form

X(a, λ) =
∑
K

I(K)
a (λ)eK , a ∈ V, (1.5)

where {eK} is some (graded) basis of EndM and the coefficients I(K)
a (λ) are multivalued analytic

functions in λ on the extended complex plane CP1 = C ∪ {∞} having a finite order pole at finitely
many points ui ∈ CP1. The composition of such series and the corresponding operator product
expansion (in the form of Proposition 3.2 below) make sense only locally near each singular point
ui, using the formal (λ− ui)-adic topology. In other words, the nth product of twisted fields a
priori is defined only locally near each singular point. In our case, however, these local nth
products turn out to be global objects: there is a series of the type (1.5) such that its Laurent
series expansions at each singular point agree with the given ones.

The above idea is realized here for the Heisenberg vertex algebra F , giving rise to what may be
called a W -twisted representation. It has the property that the monodromy operator associated
to a big loop around 0 is given by the action of a Coxeter element σ ∈W , while the monodromy
around the other singular points λ= ui is given by simple reflections from W . The construction
looks very natural, and it would be interesting to find other examples as well. It is also interesting
to compare our approach to other geometric approaches such as [BD04, FS04, MSV99].

1.5 Organization of the paper

The size of the paper has increased substantially as we tried to make the text accessible to
a wider audience. We have included several sections with background material, as well as an
extensive list of references (complete only to the best of our knowledge).

Section 2 reviews standard material in the theory of vertex algebras. The main goal is to
introduce the notion of a W-algebra and to construct explicit elements in the W-algebra (see
Proposition 2.3, which is probably new).

In § 3, we give background material on twisted representations of vertex algebras. We prove
a formula for the operator product expansion (see Proposition 3.2), which may be used instead
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of the Borcherds identity in the definition of a twisted representation. This formula is used later
in an essential way in order to extend analytically the twisted fields.

In § 4, we introduce the main object of our study, the Frobenius manifold structure on the
space of miniversal deformations of a germ of a holomorphic function with an isolated critical
point. We also recall two important operator series: the calibration St and the formal asymptotical
operator Rt, which are used to construct Givental’s quantization operator (see (1.4)). Finally,
we introduce the period integrals, which are an important ingredient in our construction.

In § 5, we present Givental’s quantization formalism and the definitions of the total descendant
and the total ancestor potentials. In particular, we recall how the quantized operators Ŝt and R̂t
act on formal power series.

Section 6 contains the construction of the global twisted operators X(a, λ) for all a in
the Heisenberg vertex algebra F (see (1.5)). For a ∈ h⊂F , they are defined using period
integrals. All other operators X(a, λ) are obtained from the generating ones (with a ∈ h) in
terms of normally ordered products and propagators, analogously to the Wick formula from
conformal field theory. The operators X(a, λ) possess remarkable properties. Their monodromy
is determined by the action of the Weyl group on F . Their Laurent series expansions at λ=∞
give a σ-twisted representation of F , while their expansions at the other critical points λ= ui give
twisted representations of certain subalgebras of F . The operators X(a, λ) also have nice
conjugation properties with respect to Ŝt and R̂t.

We leave the proof of the properties of the propagators for § 7. There we show that the
Laurent expansions of the propagators near ∞ and near the critical points λ= ui agree, i.e.,
they can be obtained from each other by means of analytic continuation. This is precisely the
place where we have to use that the singularity is simple. Our argument relies on the fact that
the monodromy group is a finite reflection group and is a quotient of the Artin–Brieskorn braid
group by the normal subgroup generated by the squares of the generators (see Lemma 7.3).

In § 8 we prove Theorem 1.1. We first express the W-constraints as the condition that the
Laurent expansions of X(a, λ)DXN at λ=∞ have no negative powers of λ for a ∈WXN ⊂F . We
deduce this from the regularity at each of the critical points λ= ui, where the statement reduces
to the case of an A1-singularity, due to the properties of X(a, λ). Then the W-constraints for
DXN are reduced to a verification of the Virasoro constraints for DA1 =Dpt, which are known
to be true.

2. Vertex algebras and W-algebras

The notion of a vertex algebra introduced by Borcherds [Bor86] provides a rigorous algebraic
description of two-dimensional chiral conformal field theory (see e.g. [BPZ84, DMS97, God89]).
In this section, we briefly recall the definition and several important examples; for more details,
see [FB01, FLM88, Kac96, LL04].

2.1 Affine Lie algebras
Let g be a finite-dimensional Lie algebra equipped with a symmetric invariant bilinear form
(·|·), normalized so that the square length of a long root is 2 in the case when g is simple. For
g = slN+1 this gives (a|b) = tr(ab). The affine Lie algebra ĝ = g[t, t−1]⊕ CK has the Lie brackets

[am, bn] = [a, b]m+n +mδm,−n(a|b)K, am = atm, (2.1)

and K is central (see [Kac90]).
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Recall that the generalized Verma module M(Λ0) = Indĝ
g[t]⊕CK C is defined by letting g[t]

act trivially on C and K act as 1. Then K acts as the identity on the whole M(Λ0), so the
level is 1. The unique irreducible quotient V (Λ0) of M(Λ0) is known as the basic representation
(see [Kac90]). Both V (Λ0) and M(Λ0) are highest-weight representations with highest-weight
vectors the image of 1 ∈ C, which we will denote by 1. Moreover, due to [FZ92], they both have
the structure of a vertex algebra.

2.2 Vertex algebras
A vertex algebra [Bor86, FB01, FLM88, Kac96, LL04] is a vector space V (space of states)
with a distinguished vector 1 ∈ V (vacuum vector), together with a linear map (state-field
correspondence)

Y (·, ζ)· : V ⊗ V → V ((ζ)) := V [[ζ]][ζ−1]. (2.2)
Thus, for every state a ∈ V , we have the field Y (a, ζ) : V → V ((ζ)). This field can be viewed as
a formal power series from (End V )[[ζ, ζ−1]], which involves only finitely many negative powers
of ζ when applied to any vector. The coefficients in front of powers of ζ in this expansion are
known as the modes of a:

Y (a, ζ) =
∑
n∈Z

a(n)ζ
−n−1, a(n) ∈ End V. (2.3)

As usual, the formal residue Resζ of a formal power series is defined as the coefficient of ζ−1.
Then

a(n) = Resζ ζnY (a, ζ). (2.4)

The vacuum vector 1 plays the role of an identity in the sense that

a(−1)1 = 1(−1)a= a, a(n)1 = 0, n> 0.

In particular, Y (a, ζ)1 ∈ V [[ζ]] is regular at ζ = 0, and its value at ζ = 0 is equal to a.
The main axiom for a vertex algebra is the following Borcherds identity (also called Jacobi
identity [FLM88]) satisfied by the modes:

∞∑
j=0

(−1)j
(
n

j

)
(a(m+n−j)(b(k+j)c)− (−1)nb(k+n−j)(a(m+j)c))

=
∞∑
j=0

(
m

j

)
(a(n+j)b)(k+m−j)c, (2.5)

where a, b, c ∈ V . Observe that the above sums are finite, because a(n)b= 0 for sufficiently large n.
We say that a vertex algebra V is (strongly) generated by a subset S ⊂ V if V is linearly

spanned by the vacuum 1 and all elements of the form

a1(n1) · · · ar(nr)1 where r > 1, ai ∈ S, ni < 0.

2.3 Lattice vertex algebras
Let Q be an (even) integral lattice with a symmetric nondegenerate bilinear form (·|·). We
denote by h = C⊗Z Q the corresponding complex vector space considered as an abelian Lie
algebra. The affine Lie algebra ĥ = h[t, t−1]⊕ CK is called the Heisenberg algebra. Its irreducible
highest-weight representation

F :=M(Λ0)∼= S(h[t−1]t−1)
is known as the (bosonic) Fock space.
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Following [Bor86, FK80], we consider a certain 2-cocycle ε :Q×Q→{±1} such that

ε(α, α) = (−1)|α|
2(|α|2+1)/2, |α|2 := (α|α), α ∈Q, (2.6)

and the algebra Cε[Q] with a basis {eα}α∈Q and multiplication

eαeβ = ε(α, β)eα+β.

Such a 2-cocycle ε is unique up to equivalence, and can be chosen to be bimultiplicative.
The lattice vertex algebra [Bor86, FB01, FLM88, Kac96, LL04] is the tensor product

VQ = F ⊗ Cε[Q], where the vacuum vector is 1⊗ e0. We let the Heisenberg algebra act on VQ so
that

ane
β = δn,0(a|β)eβ, n> 0, a ∈ h, an = atn.

The state-field correspondence on VQ is uniquely determined by the generating fields:

Y (a−11, ζ) =
∑
n∈Z

anζ
−n−1, a ∈ h, (2.7)

Y (eα, ζ) = eαζα0 exp
(∑
n<0

αn
ζ−n

−n

)
exp
(∑
n>0

αn
ζ−n

−n

)
, (2.8)

where ζα0eβ = ζ(α|β)eβ.
Notice that F ⊂ VQ is a vertex subalgebra, which we call the Heisenberg vertex algebra. The

map h→F given by a 7→ a−11 is injective. From now on, we will slightly abuse the notation and
identify a ∈ h with a−11 ∈ F ; then a(n) = an for all n ∈ Z.

2.4 The vertex algebra WXN

Let g be a finite-dimensional simple Lie algebra of type XN (X =A, D, E). We denote by R
and Q the set of roots and the root lattice, respectively. Following [FF96], we defineWXN as the
intersection of the Fock space F ⊂ VQ and the kernels of all screening operators

eα(0) = Resζ Y (eα, ζ), α ∈R.

In a vertex algebra, any zero mode acts as a derivation of the products a(n)b defined by (2.3), and
the kernel of a derivation is a vertex subalgebra (see e.g. [Kac96]). Thus, WXN ⊂F is a vertex
subalgebra. The vertex algebras WXN are examples of nonlinear extensions of the Virasoro
algebra known as W-algebras (see [BS95, DK06, FL88, FF90, FF96, FB01, FKRW95, FKW92,
Zam85] and the references therein).

The algebra WXN contains the Virasoro element

ω =
1
2

N∑
i=1

vi(−1)vi ∈WXN ⊂F ,

where {vi} and {vi} are bases of h dual with respect to (·|·). The modes Ln = ω(n+1) satisfy
the commutation relations of the Virasoro algebra with central charge N (see e.g. [Kac96]). The
operator L0 provides a grading of VQ such that deg an =−n and deg eα = |α|2/2 for a ∈ h, α ∈Q.

It was proved in [FF96, FKRW95] that the vertex algebra WXN is freely generated by N
elements of degrees m1 + 1, . . . , mN + 1, where mk are the exponents of g. This means that
WXN has a PBW-type basis (see [DK06] for more on freely generated vertex algebras). For
convenience, the exponents of type ADE are listed in Table 1 in § 4.2 below.
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Remark 2.1. In the case g = slN+1, the vertex algebra WAN coincides with the Zamolodchikov–
Fateev–Lukyanov algebraWN+1 introduced in [FL88, Zam85], for central chargeN . In particular,
WA1 =W2 is the Virasoro vertex algebra with central charge 1 (cf. [FZ92]).

The Frenkel–Kac construction of the basic representation V (Λ0) can be interpreted as an
isomorphism of vertex algebras V (Λ0)∼= VQ (see [FK80, Kac90, Kac96, Seg81]). The Lie algebra
g is realized in VQ as the zero modes a(0) = a0 for a ∈ h and eα(0) for α ∈R. Hence, WXN can
be identified with the space of g-invariants in the basic representation of ĝ, first considered by
Frenkel [Fre85]. In particular, all elements of WXN are fixed by the Weyl group W of g.

Example 2.2. For every d> 1 we have [Fre85]:

ωd :=
N∑
i=1

vi(−d)vi −
∑
α∈R

eα(−d)e
−α ∈WXN . (2.9)

Note that deg ωd = d+ 1, and ω1 is a scalar multiple of ω by the Sugawara construction (see
e.g. [Kac96]).

Another way to construct elements of WXN is provided by the next result, which seems new.

Proposition 2.3. Suppose that λ0 ∈ h is such that (λ0|α) = 0,±1 for all α ∈R. Then

νd :=
∑

λ∈Wλ0

eλ(−d)e
−λ ∈WXN . (2.10)

Proof. It suffices to check that eα(0)ν
d = 0 for all α ∈R. Since eα(0) is a derivation, we have

eα(0)ν
d =

∑
λ∈Wλ0

(eα(0)e
λ)(−d)e

−λ +
∑

λ∈Wλ0

eλ(−d)(e
α

(0)e
−λ).

By (2.8),

eα(0)e
λ = Resζ Y (eα, ζ)eλ = Resζ ε(α, λ)ζ(α|λ) exp

(∑
n<0

αn
ζ−n

−n

)
eλ+α

is zero for (α|λ) > 0 and is equal to ε(α, λ)eλ+α when (α|λ) =−1. Now if (α|λ) =−1 for some
λ= wλ0, then (α| − rαλ) = (α| − λ− α) =−1 as well. Due to (2.6) and bimultiplicativity,

ε(α,−rαλ) = ε(α, λ+ α) = ε(α, λ)ε(α, α) =−ε(α, λ).

Therefore, the terms with eλ(−d)e
−λ and erαλ(−d)e

−rαλ cancel. 2

Example 2.4. The roots of type AN can be realized as vi − vj where {vi} is an orthonormal
basis for RN+1. The Weyl group W = SN+1 acts by permutations on v1, . . . , vN+1. Then λ0 = v1

satisfies the condition of Proposition 2.3, and

νd =
N+1∑
i=1

evi (−d)e
−vi mod (v1 + · · ·+ vN+1) ∈WAN .

Note that the fields Y (e±vi , ζ) are the so-called charged free fermions (see e.g. [Kac96]). It follows
from the results of [Fre85, FKRW95] that the elements νd (1 6 d6N) generate WAN .

Example 2.5. The roots of type DN can be realized as ±vi ± vj , where {vi} is an orthonormal
basis for RN . The Weyl group acts on v1, . . . , vN by permutations and an even number of sign
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changes. Then λ0 = v1 works and

νd =
N∑
i=1

evi (−d)e
−vi +

N∑
i=1

e−vi (−d)e
vi ∈WDN .

It is not hard to check that we also have

πN := v1(−1) · · · vN−1(−1)vN ∈WDN .

Due to [KWY98, Theorem 14.2], WDN is generated by πN and νd (d> 1).

Example 2.6. The root system of type EN (N = 6, 7) can be realized in terms of an orthonormal
basis {vi} for RN+1 (see e.g. [Kac90, ch. 6]). Then λ0 = v1 + v2 satisfies the condition of
Proposition 2.3. In the case of E8 such an element λ0 does not exist.

3. Twisted representations of vertex algebras

In this section, we review the notion of a twisted representation of a vertex algebra, and we
derive several properties of twisted representations. We also discuss twisted representations of
the W-algebras WXN .

3.1 Definition of twisted representation

Let V be a vertex algebra, as in § 2.2. A representation (or module) of V is a vector space M
endowed with a linear map Y (·, ζ)· : V ⊗M →M((ζ)) (cf. (2.2), (2.3)) such that the Borcherds
identity (2.5) holds for a, b ∈ V , c ∈M (see [FB01, LL04]).

Now let σ be an automorphism of V of a finite order h. Then σ is diagonalizable. In the
definition of a σ-twisted representation M of V [Don94, FFR91], the image of the above map Y
is allowed to have nonintegral (rational) powers of ζ. More precisely,

Y (a, ζ) =
∑

n∈p+Z
a(n)ζ

−n−1 if σa= e−2π
√
−1pa, p ∈ 1

h
Z, (3.1)

where a(n) ∈ EndM . Equivalently, the monodromy around ζ = 0 is given by the action of σ:

Y (σa, ζ) = Y (a, e2π
√
−1ζ), a ∈ V. (3.2)

The Borcherds identity (2.5) satisfied by the modes remains the same in the twisted case.

The above notion of a twisted representation axiomatizes the properties of the so-called
‘twisted vertex operators’ [FLM87, KP85, Lep85, Lep88], which were used in the construction of
the ‘moonshine module’ vertex algebra in [FLM88]. When restricted to the σ-invariant subalgebra
V σ ⊂ V (known as an orbifold ; see [DVVV89, DLM00, KT97] among many other works), a
σ-twisted representation for V becomes untwisted for V σ.

3.2 Consequences of the Borcherds identity

For a rational function f(ζ1, ζ2) with poles only at ζ1 = 0, ζ2 = 0 or ζ1 = ζ2, we denote by
ιζ1,ζ2 (respectively, ιζ2,ζ1) its expansion in the domain |ζ1|> |ζ2|> 0 (respectively, |ζ2|> |ζ1|> 0).
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Explicitly, we have

ιζ1,ζ2ζ
n
12 =

∞∑
j=0

(
n

j

)
ζn−j1 (−ζ2)j ,

ιζ2,ζ1ζ
n
12 =

∞∑
j=0

(
n

j

)
ζj1(−ζ2)n−j where ζ12 = ζ1 − ζ2.

(3.3)

In particular,

δ(ζ1, ζ2) := (ιζ1,ζ2 − ιζ2,ζ1)ζ−1
12 =

∑
j∈Z

ζ−j−1
1 ζj2 (3.4)

is the formal delta-function (see e.g. [Kac96, LL04]).
The Borcherds identity (2.5) can be stated equivalently as follows (see [BK04, Don94, DL96,

FFR91]).

Lemma 3.1. The Borcherds identity (2.5) for a σ-twisted representation M of a vertex algebra
V is equivalent to:

Resζ12 Y (Y (a, ζ12)b, ζ2)cιζ2,ζ12f(ζ1, ζ2)ζp1
= Resζ1 Y (a, ζ1)Y (b, ζ2)cιζ1,ζ2f(ζ1, ζ2)ζp1 − Resζ1 Y (b, ζ2)Y (a, ζ1)cιζ2,ζ1f(ζ1, ζ2)ζp1 (3.5)

for a, b ∈ V , c ∈M such that σa= e−2π
√
−1pa, and every rational function f(ζ1, ζ2) with poles

only at ζ1 = 0, ζ2 = 0 or ζ1 = ζ2.

Assume that σa= e−2π
√
−1pa and σb= e−2π

√
−1qb with p, q ∈ (1/h)Z. Let Nab be a non-

negative integer such that a(n)b= 0 for all n>Nab. Then setting f(ζ1, ζ2) = ζm
′

1 ζNab12 in (3.5) for
all m′ ∈ Z, we obtain the locality property [DL93, Li96]

ζNab12 Y (a, ζ1)Y (b, ζ2) = ζNab12 Y (b, ζ2)Y (a, ζ1). (3.6)

An important consequence of (3.6) is that for every c ∈M

ζNab12 Y (a, ζ1)Y (b, ζ2)c ∈ ζ−p1 ζ−q2 M((ζ1, ζ2)).

The elements of this space have the powers of both ζ1 and ζ2 bounded from below. Therefore,
it makes sense to set ζ1 = ζ2 in such a series, and the result is an element of ζ−p−q2 M((ζ2)). The
same is true if we first differentiate the series.

Proposition 3.2. Let V be a vertex algebra, σ an automorphism of V , and M a σ-twisted
representation of V . Then

1
k!
∂kζ1(ζN12 Y (a, ζ1)Y (b, ζ2)c)|ζ1=ζ2 = Y (a(N−1−k)b, ζ2)c (3.7)

for all a, b ∈ V , c ∈M , k > 0, and sufficiently large N , where ζ12 = ζ1 − ζ2. We can take N =Nab

where Nab is such that (3.6) holds.

Proof. Without loss of generality, we can suppose again that σa= e−2π
√
−1pa with p ∈ (1/h)Z;

then (3.1) holds. Using properties of the formal delta function (3.4) and the formal residue (2.4),
we find that the left-hand side of (3.7) is equal to

L : =
1
k!

Resζ1 ζ
p
1ζ
−p
2 δ(ζ1, ζ2)∂kζ1(ζNab12 Y (a, ζ1)Y (b, ζ2)c)

=
1
k!

Resζ1(−∂ζ1)k(ζp1ζ
−p
2 δ(ζ1, ζ2))ζNab12 Y (a, ζ1)Y (b, ζ2)c.
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By the Leibniz rule and (3.4), we have

1
k!

(−∂ζ1)k(ζp1ζ
−p
2 δ(ζ1, ζ2)) =

k∑
i=0

(−1)i
(
p

i

)
ζp−i1 ζ−p2 (ιζ1,ζ2 − ιζ2,ζ1)ζ−1−k+i

12 .

Then Borcherds identity (3.5), combined with locality (3.6), gives that

L=
k∑
i=0

(−1)i
(
p

i

)
Resζ12 Y (Y (a, ζ12)b, ζ2)cιζ2,ζ12ζ

p−i
1 ζ−p2 ζNab−1−k+i

12 .

Writing explicitly the expansion of ζ1 = ζ2 + ζ12 as in (3.3), and using (2.4), we obtain

L=
k∑
i=0

∞∑
j=0

(−1)i
(
p

i

)(
p− i
j

)
ζ−i−j2 Y (a(Nab−1−k+i+j)b, ζ2)c.

Notice that the sum over j can be truncated at j = k − i, because a(n)b= 0 for n>Nab. Setting
m= i+ j, we get

L=
k∑

m=0

m∑
i=0

(−1)i
(
p

i

)(
p− i
m− i

)
ζ−m2 Y (a(Nab−1−k+m)b, ζ2)c.

Now observe that
m∑
i=0

(−1)i
(
p

i

)(
p− i
m− i

)
=
(
p

m

) m∑
i=0

(−1)i
(
m

i

)
= δm,0,

completing the proof. 2

Remark 3.3. By reversing the above proof, one can show that, conversely, the product
identity (3.7) and locality (3.6) imply the Borcherds identity (3.5). Therefore, they can replace
the Borcherds identity in the definition of twisted representation.

Remark 3.4. The above proof simplifies significantly in the case of an untwisted representation
M , as then p= 0. In the untwisted case, formula (3.7) first appeared in [BN06, BK06] for vertex
algebras and generalized vertex algebras, respectively. It provides a rigorous interpretation of
the operator product expansion in conformal field theory (cf. [DMS97, God89]).

The following easy consequence of (3.7) will be useful later.

Corollary 3.5. Assume that a, b ∈ V and c ∈M are such that Y (a, ζ)c and Y (b, ζ)c have no
negative powers of ζ. Then the same is true for all Y (a(k)b, ζ)c, k ∈ Z.

Proof. By locality (3.6), the product ζNab12 Y (a, ζ1)Y (b, ζ2) has no negative powers of ζ1 and ζ2.
Then use (3.7). 2

3.3 Twisted Heisenberg algebra

Let h be a finite-dimensional vector space equipped with a symmetric nondegenerate bilinear form
(·|·), as in § 2.3. Then we have the Heisenberg algebra ĥ and its highest-weight representation,
the Fock space F , which has the structure of a vertex algebra. Every automorphism σ of h

preserving the bilinear form induces automorphisms of ĥ and F , which will be denoted again as
σ. As before, assume that σ has a finite order h.
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The action of σ can be extended to h[t1/h, t−1/h]⊕ CK by letting

σ(atm) = σ(a)e2π
√
−1mtm, σ(K) =K, a ∈ h, m ∈ 1

h
Z.

The σ-twisted Heisenberg algebra ĥσ is defined as the set of all σ-invariant elements (see
e.g. [FLM87, KP85, Lep85]). In other words, ĥσ is spanned over C by K and the elements
am = atm such that σa= e−2π

√
−1ma. This is a Lie algebra with bracket (cf. (2.1))

[am, bn] =mδm,−n(a|b)K, a, b ∈ h, m, n ∈ 1
h

Z.

Let ĥ
+

σ (respectively, ĥ
−
σ ) be the subalgebra of ĥσ spanned by all elements am with m> 0

(respectively, m< 0). Elements of ĥ
+

σ are called annihilation operators, while elements of ĥ
−
σ

creation operators.
The σ-twisted Fock space is defined as the generalized Verma module

Fσ := Indĥσ

ĥ
+
σ⊕CK

C∼= S(ĥ
−
σ ), (3.8)

where ĥ
+

σ acts on C trivially and K acts as the identity operator. It is an irreducible highest-
weight representation of ĥσ. Moreover, Fσ has the structure of a σ-twisted representation of the
vertex algebra F (see [DL96, FFR91, FLM88]). This structure can be described as follows. We
let Y (1, ζ) be the identity operator and

Y (a, ζ) =
∑

n∈p+Z
anζ

−n−1, a ∈ h, σa= e−2π
√
−1pa, (3.9)

where p ∈ (1/h)Z (cf. (3.1)). These satisfy the locality property (3.6) because

[Y (a, ζ1), Y (b, ζ2)] = (a|b)∂ζ2(ζ−p1 ζp2δ(ζ1, ζ2)). (3.10)

The action of Y on other elements of F is then determined by applying several times the product
formula (3.7).

3.4 Twisted representations of lattice vertex algebras
Now let V = VQ where Q is a root lattice of type XN (X =A, D, E), and let σ be a Coxeter
element of the corresponding Weyl group (see e.g. [Bou02]). Such an element is a product of
simple reflections σ = rα1 · · · rαN where {α1, . . . , αN} is a basis of simple roots and rα(β) =
β − (α|β)α. All Coxeter elements are conjugate to each other; their order is the Coxeter number h.
The element σ is diagonalizable on h with eigenvalues e 2π

√
−1mk/h where mk are the exponents

of g (see Table 1 in § 4.2 below). In particular, σ has no fixed points in h.

Example 3.6. For type AN , one Coxeter element acts as the cyclic permutation v1 7→ v2 7→ · · · 7→
vN+1 7→ v1, in the notation of Example 2.4. For type DN , in the notation of Example 2.5, one
Coxeter element acts as v1 7→ v2 7→ · · · 7→ vN−1 7→ −v1, vN 7→ −vN .

For α, β ∈Q, we define

ε(α, β) = (−1)L(α,β), L(α, β) := ((1− σ)−1α|β).

The bilinear form L(· , ·) is known in singularity theory as the Seifert form, and is integer valued
(see e.g. [AGV88, Ebe07]). The bilinearity of L implies that ε is bimutiplicative and so it is a 2-
cocycle. Using the σ-invariance of (·|·), one easily checks that |α|2 = 2L(α, α), which implies (2.6).
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Observe that ε is σ-invariant:

ε(σα, σβ) = ε(α, β), α, β ∈Q.

Then σ can be lifted to an automorphism of VQ of order h:

σ(am) = σ(a)m, σ(eα) = eσα, a ∈ h, α ∈Q.

Under the above simplifying assumptions, the σ-twisted Fock space Fσ defined in (3.8) can
be endowed with the structure of a σ-twisted representation of VQ (see [BK04, Don94, DL96,
KP85, Lep85]). We define Y (a, ζ) as before (see (3.9)), and we let

Y (eα, ζ) = Uα ζ
−|α|2/2 : exp

( ∑
n∈(1/h)Z\{0}

αn
ζ−n

−n

)
:, (3.11)

where Uα are certain nonzero complex numbers. As usual, the colons denote normal ordering,
which means that we put all annihilation operators (αn for n > 0) to the right of all creation
operators (αn for n < 0).

The scalars Uα satisfy

UαUβ = ε(α, β)B−1
α,βUα+β,

where

Bα,β := h−(α|β)
h−1∏
k=1

(1− e2π
√
−1k/h)(σkα|β).

We will also need that the product Y (eα, ζ1)Y (e−α, ζ2) on Fσ is given by (see e.g. [BK04])

(−1)|α|
2(|α|2+1)/2ζ

−|α|2/2
1 ζ

−|α|2/2
2 ιζ1,ζ2fα(ζ1, ζ2)Eα(ζ1, ζ2), (3.12)

where

fα(ζ1, ζ2) =Bα,α

h−1∏
k=0

(ζ1/h
1 − e2π

√
−1k/hζ

1/h
2 )−(σkα|α),

and

Eα(ζ1, ζ2) = : exp
( ∑
n∈(1/h)Z\{0}

αn
n

(ζ−n2 − ζ−n1 )
)

:.

3.5 Twisted representations of WXN

We will now use the product formula (3.7) to compute the explicit action on Fσ of the elements
of WXN given by (2.9) and (2.10). Introduce the Faà di Bruno polynomials (see [Dic03, § 6A]):

Sn(α, ζ) =
1
n!

(∂ζ + α(ζ))n1 where α(ζ) = Y (α, ζ), α ∈ h.

More explicitly,

Sn(α, ζ) = :Sn

(
α(ζ),

1
2!
∂ζα(ζ),

1
3!
∂2
ζα(ζ), . . .

)
:,

where

Sn(x1, x2, x3, . . .) =
∑

i1+2i2+3i3+···=n
is∈Z>0

xi11
i1!

xi22
i2!

xi33
i3!
· · ·
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are the elementary Schur polynomials. When acting on the σ-twisted Fock space Fσ, the
coefficients of Sn(α, ζ) in front of powers of ζ are represented by differential operators.

Lemma 3.7. For every d> 1 and α ∈ h such that |α|2 ∈ Z, we have

Y (eα(−d)e
−α, ζ) = (−1)|α|

2(|α|2+1)/2

|α|2−1+d∑
k=0

cαk ζ
−kS|α|2−1+d−k(α, ζ)

when acting on Fσ, where cαk is the coefficient in front of (x− 1)k in the Taylor expansion of

Bα,αx
−|α|2/2

h−1∏
k=1

(x1/h − e2π
√
−1k/h)((1−σk)α|α)

around x= 1. In particular, cα0 = 1 and cαk = c−αk = cσαk .

Proof. We will apply (3.7) for a= eα, b= e−α and c ∈ Fσ. First, we observe that by (2.8)

Y (eα, ζ)e−α = ε(α,−α)ζ−|α|
2

exp
(∑
n<0

αn
ζ−n

−n

)
1,

so we can take Nab = |α|2. Then on Fσ the product Y (eα, ζ1)Y (e−α, ζ2) is given by (3.12); and

ζ
|α|2
12 ιζ1,ζ2fα(ζ1, ζ2) =Bα,α

h−1∏
k=1

(ζ1/h
1 − e2π

√
−1k/hζ

1/h
2 )((1−σk)α|α)

is well defined for ζ1 = ζ2. Now the proof follows from the fact that
1
n!
∂nζ1Eα(ζ1, ζ2)

∣∣
ζ1=ζ2

= Sn(α, ζ2)

(see e.g. [Dic03, Kac96]). 2

Lemma 3.8. Let a, b ∈ h be such that σa= e−2π
√
−1pa with p ∈ (1/h)Z, 0< p < 1. Then for every

d> 1, we have

Y (a(−d)b, ζ) =
1

(d− 1)!
:(∂d−1

ζ a(ζ))b(ζ):− d
(
−p+ 1
d+ 1

)
(a|b)ζ−d−1

when acting on Fσ, where a(ζ) = Y (a, ζ).

Proof. We will apply (3.7) with Nab = 2. It follows from (3.10), (3.9) and (3.4) that

a(ζ1)b(ζ2) = :a(ζ1)b(ζ2): + (a|b)∂ζ2ιζ1,ζ2(ζ−p1 ζp2ζ
−1
12 ). (3.13)

The rest of the proof is straightforward, using (3.7). 2

4. Singularities: root systems and Frobenius structures

The marvelous interrelations between singularities and root systems were uncovered in the works
of Klein, Du Val, Brieskorn, Looijenga, Arnold, Slodowy, Saito and others [Arn75, Bri71, Loo75,
Sai85, Slo80]. We will review only the material needed for the rest of the paper, referring
to [AGV88, Ebe07, Her02] for more details. Our main goal is to introduce the Frobenius structure
on the space of miniversal deformations of a germ of a holomorphic function with an isolated
critical point. We also introduce the period integrals, which are an important ingredient in our
construction.
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4.1 Milnor fibration
Let f : (C2l+1, 0)→ (C, 0) be the germ of a holomorphic function with an isolated critical point
of multiplicity N . Denote by

H = C[[x0, . . . , x2l]]/〈∂x0f, . . . , ∂x2l
f〉

the local algebra of the critical point; then dimH =N .

Definition 4.1. A miniversal deformation of f is a germ of a holomorphic function F :
(CN × C2l+1, 0)→ (C, 0) satisfying the following two properties.

(1) The function F is a deformation of f , i.e., F (0, x) = f(x).

(2) The partial derivatives ∂F/∂ti (1 6 i6N) project to a basis in the local algebra

OCN ,0[[x0, . . . , x2l]]/〈∂x0F, . . . , ∂x2l
F 〉.

Here we denote by t= (t1, . . . , tN ) and x= (x0, . . . , x2l) the standard coordinates on CN and
C2l+1 respectively, and OCN ,0 is the algebra of germs at 0 of holomorphic functions on CN .

We fix a representative of the holomorphic germ F , which we denote again by F , with a
domain X constructed as follows. Let

B2l+1
ρ ⊂ C2l+1, B =BN

η ⊂ CN , B1
δ ⊂ C

be balls with centers at 0 and radii ρ, η, and δ, respectively. We set

S =B ×B1
δ ⊂ CN × C, X = (B ×B2l+1

ρ ) ∩ φ−1(S)⊂ CN × C2l+1,

where

φ :B ×B2l+1
ρ →B × C, (t, x) 7→ (t, F (t, x)).

This map induces a map φ :X → S and we denote by Xs or Xt,λ the fiber

Xs =Xt,λ = {(t, x) ∈X | F (t, x) = λ}, s= (t, λ) ∈ S.

The number ρ is chosen so small that for all r, 0< r 6 ρ, the fiber X0,0 intersects transversely the
boundary ∂B2l+1

r of the ball with radius r. Then we choose the numbers η and δ small enough
so that for all s ∈ S the fiber Xs intersects transversely the boundary ∂B2l+1

ρ . Finally, we can
assume without loss of generality that the critical values of F are contained in a disk B1

δ0
with

radius δ0 < 1< δ.
Let Σ be the discriminant of the map φ, i.e., the set of all points s ∈ S such that the fiber

Xs is singular. Put

S′ = S\Σ⊂ CN × C, X ′ = φ−1(S′)⊂X ⊂ CN × C2l+1.

Then the map φ :X ′→ S′ is a smooth fibration, called the Milnor fibration. In particular, all
smooth fibers are diffeomorphic to X0,1. The middle homology group of the smooth fiber,
equipped with the bilinear form (·|·) equal to (−1)l times the intersection form, is known as
the Milnor lattice Q=H2l(X0,1; Z).

For a generic point s ∈ Σ, the singularity of the fiber Xs is Morse. Thus, every choice of a
path from (0, 1) to s avoiding Σ leads to a group homomorphism Q→H2l(Xs; Z). The kernel
of this homomorphism is a free Z-module of rank 1. A generator α ∈Q of the kernel is called
a vanishing cycle if (α|α) = 2. We denote by R the set of all vanishing cycles for all possible
choices of s ∈ Σ and paths from (0, 1) to s.
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X1

X0

Xs
XsX0

X1

1

0

s

Figure 1. Milnor fibration.

The fundamental group π1(S′) of the base of the Milnor fibration acts on the homology
of the smooth fiber Q=H2l(X0,1; Z) preserving the intersection form. The image of π1(S′) in
AutQ will be called the monodromy group and denoted by W . The Picard–Lefschetz formula
tells us that the monodromy associated to a small loop around a generic point s ∈ Σ is given by
the reflection rα, where α ∈R is a cycle vanishing over s and rα(β) = β − (α|β)α. Furthermore,
W is generated by the reflections rα (α ∈R). The so-called classical monodromy σ ∈W is the
monodromy transformation corresponding to a big loop around Σ.

4.2 Simple singularities

The simple singularities are labeled by ADE Dynkin diagrams. In this case, we can take f(x)
to be a polynomial in three variables, as in Table 1. For further reference, we have also listed
the Coxeter number h and the exponents m1 6 · · ·6mN of the corresponding Lie algebra (see
e.g. [Bou02]).

For a simple singularity of type XN (X =A, D, E), the Milnor lattice Q is isomorphic to a
root lattice of type XN , while the set R of vanishing cycles is a root system of type XN . The
monodromy group W coincides with the Weyl group, and the classical monodromy is a Coxeter
element σ ∈W .

4.3 Frobenius structure

Let TB be the sheaf of holomorphic vector fields on B. Condition (2) in Definition 4.1 implies
that the map

∂/∂ti 7→ ∂F/∂ti mod 〈∂x0F, . . . , ∂x2l
F 〉 (1 6 i6N)
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Table 1. Simple singularities.

Type f(x) Exponents h

AN xN+1
0 + x2

1 + x2
2 1, 2, . . . , N N + 1

DN xN−1
0 + x0x

2
1 + x2

2 1, 3, . . . , 2N − 3, N − 1 2N − 2

E6 x4
0 + x3

1 + x2
2 1, 4, 5, 7, 8, 11 12

E7 x3
0x1 + x3

1 + x2
2 1, 5, 7, 9, 11, 13, 17 18

E8 x5
0 + x3

1 + x2
2 1, 7, 11, 13, 17, 19, 23, 29 30

induces an isomorphism between TB and p∗OC , where p :X →B is the natural projection
(t, x) 7→ t and

OC :=OX/〈∂x0F, . . . , ∂x2l
F 〉

is the structure sheaf of the critical set of F . In particular, since OC is an algebra, the sheaf
TB is equipped with an associative commutative multiplication, which will be denoted by •. It
induces a product •t on the tangent space of every point t ∈B. The class of the function F in
OC defines a vector field E ∈ TB, called the Euler vector field.

Given a holomorphic volume form ω on (C2l+1, 0), possibly depending on t ∈B, we can equip
p∗OC with the so-called residue pairing :

(ψ1(t, x), ψ2(t, x)) :=
(

1
2πi

)2l+1 ∫
Γε

ψ1(t, x) ψ2(t, x)
∂x0F · · · ∂x2l

F
ω,

where the integration cycle Γε is supported on |∂x0F |= · · ·= |∂x2l
F |= ε. In particular, since

TB ∼= p∗OC , we get that the residue pairing induces a non-degenerate complex bilinear form ( , )
on TB.

For t ∈B and z ∈ C∗, let Bt,z be a semi-infinite cycle in C2l+1 of the following type:

Bt,z ∈ lim
ρ→∞

H2l+1(C2l+1, {Re z−1F (t, x)<−ρ}; C)∼= CN .

The above homology groups form a vector bundle on B × C∗ equipped naturally with a Gauss–
Manin connection, and B = Bt,z may be viewed as a flat section. According to Saito’s theory of
primitive forms [Sai82, Sai89] there exists a form ω, called primitive, such that the oscillatory
integrals (dB is the de Rham differential on B)

JB(t, z) := (2πz)−l−
1
2 (zdB)

∫
Bt,z

ez
−1F (t,x)ω ∈ T ∗B

are horizontal sections for the following connection:

∇∂/∂ti = ∇L.C.
∂/∂ti − z

−1(∂ti•t), 1 6 i6N (4.1)

∇∂/∂z = ∂z − z−1θ + z−2E •t. (4.2)

Here ∇L.C. is the Levi-Civita connection associated with the residue pairing and

θ :=∇L.C.E −
(

1− d

2

)
Id,

where d is some complex number.
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In particular, this means that the residue pairing and the multiplication • form a Frobenius
structure on B of conformal dimension d with identity 1 and Euler vector field E. For the
definition of a Frobenius structure we refer to [Dub96, Man99] (see also § 1.2).

Example 4.2. For simple singularities, the standard volume form

ω = dx0 ∧ dx1 ∧ · · · ∧ dx2l

is the only primitive form, up to a constant factor.

Assume that a primitive form ω is chosen. Note that the flatness of the Gauss–Manin
connection implies that the residue pairing is flat. Denote by (τ1, . . . , τN ) a coordinate system
on B that is flat with respect to the residue metric, and write ∂i for the vector field ∂/∂τ i. We
can further modify the flat coordinate system so that the Euler field is the sum of a constant
and linear fields:

E =
N∑
i=1

(1− di)τ i∂i +
N∑
i=1

ρi∂i.

The constant part represents the class of f in H, and the spectrum of degrees d1, . . . , dN ranges
from 0 to d. Note that in the flat coordinates τ i the operator θ (called sometimes the Hodge
grading operator) assumes diagonal form:

θ(∂i) =
(
d

2
− di

)
∂i, 1 6 i6N.

4.4 Period integrals

Given a middle homology class α ∈H2l(X0,1; C), we denote by αt,λ its parallel transport to the
Milnor fiber Xt,λ. Let d−1ω be any 2l-form whose differential is ω. We can integrate d−1ω over
αt,λ and obtain multivalued functions of λ and t ramified around the discriminant in S (over
which the Milnor fibers become singular).

Definition 4.3. To α ∈ h =H2l(X0,1; C), we associate the period vectors I(k)
α (t, λ) ∈H (k ∈ Z)

defined by

(I(k)
α (t, λ), ∂i) :=−(2π)−l∂l+kλ ∂i

∫
αt,λ

d−1ω, 1 6 i6N. (4.3)

Note that this definition is consistent with the operation of stabilization of singularities.
Namely, adding the squares of two new variables does not change the right-hand side, since it
is offset by an extra differentiation (2π)−1∂λ. In particular, this defines the period vector for a
negative value of k >−l with l as large as one wishes. Note that, by definition, we have

∂λI
(k)
α (t, λ) = I(k+1)

α (t, λ), α ∈ h, k ∈ Z.

The following lemma is due to Givental [Giv01a].

Lemma 4.4. The period vectors (4.3) satisfy the differential equations

∂iI
(k) = −∂i •t (∂λI(k)), 1 6 i6N, (4.4)

(λ− E•t)∂λI(k) = (θ − k − 1
2)I(k). (4.5)

858

https://doi.org/10.1112/S0010437X12000668 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000668


W-constraints for simple singularities

Using equation (4.5), we analytically extend the period vectors to all |λ|> δ. It follows
from (4.4) that the period vectors have the symmetry

I(k)
α (t, λ) = I(k)

α (t− λ1, 0), (4.6)

where t 7→ t− λ1 denotes the time-λ translation in the direction of the flat vector field 1 obtained
from 1 ∈H. (The latter represents identity elements for all the products •t.)

An important consequence of Lemma 4.4 is the following formula due to Saito [Sai82].

Corollary 4.5. For all α, β ∈H2l(X0,1; C), we have

(α|β) =−(I(0)
α (t, 0), E •t I(0)

β (t, 0)).

Proof. According to Lemma 4.4, the right-hand side is independent of t. It is also monodromy
invariant, therefore, up to a constant it must coincide with the intersection pairing. It remains
only to verify that the proportionality coefficient is 1, which may be reduced to the case of an
A1-singularity by letting t approach a generic point on the discriminant. 2

Now we will compute explicitly the period integrals I
(k)
α (0, λ) in the case of simple

singularities. In this case, we may choose l = 1 and we can assign uniquely a degree χi to
xi, so that the polynomial f(x) is weighted homogeneous of degree 1 (see Table 1 in § 4.2).
Furthermore, we can fix the flat coordinates in such a way that if we set deg τ i = 1− di then
F (t, x) is still weighted homogeneous of degree 1. In particular, the polynomials ∂iF (t, x) are
weighted homogeneous of degree di.

Then the integral (4.3) for k = t= 0 assumes the form

(I(0)
α (0, λ), ∂i) = λsi〈vi, α〉, (4.7)

where

si = di −
d

2
− 1

2
, d=

2l∑
i=0

(1− 2χi) = 1− 2
h
,

and vi are some constant sections of the middle cohomology bundle (see (4.8) below).
By definition, the analytic continuation in λ along a counter-clockwise loop around λ= 0 is

equivalent to the parallel transport of α along that loop, i.e.,

e2π
√
−1siλsi〈vi, α〉= λsi〈vi, σ(α)〉.

We obtain that vi are eigenvectors of the classical monodromy σ, which according to Corollary 4.5
satisfy the following orthogonality relations:

σ(vi) = e−2π
√
−1 sivi, (vi|vj) = (∂i, ∂j).

In particular, si =−mi/h, where mi are the exponents of the corresponding simple Lie algebra.
In other words, the period mapping

∂i 7→ vi := (2π)−l
(
∂lλ

∫
∂iF

ω

dF

)∣∣∣∣
(t,λ)=(0,1)

(4.8)

is an isomorphism between the space of flat vector fields and h∗, i.e.,

Γ(B, TB)∇ ∼= H2l(X0,1; C),

which identifies the residue pairing with the intersection pairing.
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4.5 Stationary phase asymptotic and calibration
Let ui(t) (1 6 i6N) be the critical values of F (t, ·). For a generic t, they form a local coordinate
system on B in which the Frobenius multiplication and the residue pairing are diagonal. Namely,

∂/∂ui •t ∂/∂uj = δij∂/∂uj , (∂/∂ui, ∂/∂uj) = δij/∆i,

where ∆i is the Hessian of F with respect to the volume form ω at the critical point corresponding
to the critical value ui. Therefore, the Frobenius structure is semi-simple.

We denote by Ψt the following linear isomorphism

Ψt : CN → TtB, ei 7→
√

∆i∂/∂ui,

where {e1, . . . , eN} is the standard basis for CN . Let Ut be the diagonal matrix with entries
u1(t), . . . , uN (t).

According to Givental [Giv01a], the system of differential equations (cf. (4.1), (4.2))

z∂iJ(t, z) = ∂i •t J(t, z), 1 6 i6N, (4.9)
z∂zJ(t, z) = (θ − z−1E•t)J(t, z) (4.10)

has a unique formal asymptotic solution of the form ΨtRt(z)eUt/z, where

Rt(z) = 1 +R1(t)z +R2(t)z2 + · · ·,

and Rk(t) are linear operators on CN uniquely determined from the differential equations
(4.9) and (4.10).

Introduce the formal series

fα(t, λ, z) =
∑
k∈Z

I(k)
α (t, λ)(−z)k, α ∈ h. (4.11)

Then (4.4) and (4.5) imply:

∂ifα(t, λ, z) = −∂i •t (∂λfα(t, λ, z)), 1 6 i6N, (4.12)
λ∂λfα(t, λ, z) = (−z∂z − z−1E •t +θ − 1

2)fα(t, λ, z). (4.13)

The following result is due to Givental [Giv03].

Proposition 4.6. Let t ∈B be generic and β be a vanishing cycle vanishing over the point
(t, ui(t)) ∈ Σ. Then for all λ near ui(t), we have

fβ(t, λ, z) = ΨtRt(z)
∑
k∈Z

(−z∂λ)k
2ei√

2(λ− ui(t))
.

One can think of the connection operator in (4.1) as an isomonodromic family of connection
operators ∇t over C\{0}, parameterized by t ∈B. We introduce a gauge transformation St(z) of
the form

St(z) = 1 + S1(t)z−1 + S2(t)z−2 + · · ·, Sk(t) ∈ EndH (4.14)

that satisfies the differential equations (4.9) and conjugates ∇t and ∇0:

∇t = St∇0S−1
t , ∇0 = ∂z − z−1θ + z−2ρ,

where ρ= E•0 is the constant part of the Euler vector field. In general, such a gauge
transformation is not uniquely determined. However, it is not hard to see that if we impose
the initial condition St(z)|t=0 = 1 then such a gauge transformation exists and is unique.
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Proposition 4.7. We have St(z) fα(0, λ, z) = fα(t, λ, z) for λ in a neighborhood of ∞.

Proof. This follows from the differential equations (4.9), (4.12). 2

5. Symplectic loop space formalism

The goal of this section is to introduce Givental’s quantization formalism (see [Giv01b]) and use
it to define the higher genus potentials in singularity theory. We continue using the notation
of § 4.

5.1 Symplectic structure and quantization

As in § 4, let H be the space of flat vector fields on B. The space H :=H((z−1)) of formal Laurent
series in z−1 with coefficients in H is equipped with the following symplectic form:

Ω(φ1, φ2) := Resz (φ1(−z), φ2(z)), φ1, φ2 ∈H,

where, as before, ( , ) denotes the residue pairing on H and the formal residue Resz gives the
coefficient in front of z−1.

Let {∂i}Ni=1 and {∂i}Ni=1 be dual bases of H with respect to the residue pairing. Then

Ω(∂i(−z)−k−1, ∂jz
l) = δijδkl.

Hence, a Darboux coordinate system is provided by the linear functions qik, pk,i on H given by:

qik = Ω(∂i(−z)−k−1, ·), pk,i = Ω(·, ∂izk).

In other words,

φ(z) =
∞∑
k=0

N∑
i=1

qik(φ)∂izk +
∞∑
k=0

N∑
i=1

pk,i(φ)∂i(−z)−k−1, φ ∈H.

The first of the above sums will be denoted φ(z)+ and the second φ(z)−.

The quantization of linear functions on H is given by the rules:

q̂k
i = ~−1/2qik, p̂k,i = ~1/2 ∂

∂qik
.

Here and further on, ~ is a formal variable. We will denote by C~ the field C((~1/2)).

Every φ(z) ∈H gives rise to the linear function Ω(φ, ·) on H, so we can define the
quantization φ̂. Explicitly,

φ̂=−~1/2
∞∑
k=0

N∑
i=1

qik(φ)
∂

∂qik
+ ~−1/2

∞∑
k=0

N∑
i=1

pk,i(φ)qik. (5.1)

The above formula makes sense also for φ(z) ∈H[[z, z−1]] if we interpret φ̂ as a formal differential
operator in the variables qik with coefficients in C~.

Lemma 5.1. For all φ1, φ2 ∈H, we have [φ̂1, φ̂2] = Ω(φ1, φ2).

Proof. It is enough to check this for the basis vectors ∂i(−z)−k−1, ∂izk, in which case it is true
by definition. 2
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5.2 Quantization of quadratic Hamiltonians
It is known that both series St(z) and

Rt(z) := ΨtRt(z)Ψ−1
t

(see § 4.5) are symplectic transformations. Moreover, they both have the form eA(z), where A(z)
is an infinitesimal symplectic transformation.

A linear operator A(z) on H :=H((z−1)) is infinitesimal symplectic if and only if the map
φ ∈H 7→Aφ ∈H is a Hamiltonian vector field with a Hamiltonian given by the quadratic function
hA(φ) = 1

2Ω(Aφ, φ). By definition, the quantization of eA(z) is given by the differential operator
eĥA , where the quadratic Hamiltonians are quantized according to the following rules:

(pk,ipl,j )̂ = ~
∂2

∂qik∂q
j
l

, (pk,iq
j
l )̂ = (qjl pk,i)̂ = qjl

∂

∂qik
, (qikq

j
l )̂ =

1
~
qikq

j
l .

5.3 Total descendant potential
Let us make the following convention. Given a vector

q(z) =
∞∑
k=0

qkz
k ∈H[z], qk =

N∑
i=1

qik∂i ∈H,

its coefficients give rise to a vector sequence q0, q1, . . . . By definition, a formal function on H[z],
defined in the formal neighborhood of a given point c(z) ∈H[z], is a formal power series in
q0 − c0, q1 − c1, . . . . Note that every operator acting on H[z] continuously in the appropriate
formal sense induces an operator acting on formal functions.

Example 5.2. The Witten–Kontsevich tau-function is the following generating series:

Dpt(~;Q(z)) = exp
(∑
g,n

1
n!

~g−1

∫
Mg,n

n∏
i=1

(Q(ψi) + ψi)
)
, (5.2)

where Q0, Q1, . . . are formal variables, and ψi (1 6 i6 n) are the first Chern classes of the
cotangent line bundles on Mg,n (see [Kon92, Wit91]). It is interpreted as a formal function of
Q(z) =

∑∞
k=0 Qkz

k ∈ C[z], defined in the formal neighborhood of −z. In other words, Dpt is a
formal power series in Q0, Q1 + 1, Q2, Q3, . . . with coefficients in C((~)).

Let t ∈B be a semi-simple point, so that the critical values ui(t) (1 6 i6N) of F (t, ·) form a
coordinate system. Recall also the flat coordinates τ = (τ1(t), . . . , τN (t)) of t. We now introduce
the main object of our study.

Definition 5.3. The total descendant potential of a singularity of type XN is the following
formal function on H[z] defined in the formal neighborhood of τ − 1z:

DXN (q(z)) = eF
(1)(t)Ŝ−1

t Ψ̂tR̂te
Ût/z

N∏
i=1

Dpt(~∆i;
√

∆iQ
i(z)), (5.3)

where the factor F (1)(t) (called the genus-1 potential) is chosen so that it makes the formula
independent of t.

As we discussed in § 1.2, equation (5.3) is Givental’s formula, which we now take as a
definition. Let us examine more carefully the quantized action of the operators in this formula.
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5.4 The action of the asymptotical operator

The operator Ût/z is known to annihilate the Witten–Kontsevich tau-function. Therefore, eÛt/z

is redundant and it can be dropped from the formula. By definition, Ψ̂t is the following change
of variables:

q(z) = Ψt

N∑
i=1

Qi(z)ei, i.e.,
√

∆iQ
i
k =

N∑
j=1

(∂jui) q
j
k.

Put R̂t = Ψ̂tR̂tΨ̂−1
t and

iq(z) =
∞∑
k=0

N∑
j=1

qjk(∂jui)z
k.

Then the total descendant potential assumes the form:

DXN (q(z)) = eF
(1)(t)Ŝ−1

t At(q(z)), (5.4)

where

At(q(z)) = R̂t
N∏
i=1

Dpt(~∆i; iq(z)) ∈ C~[[q0, q1 + 1, q2 . . . ]] (5.5)

is the so-called total ancestor potential of the singularity. As before, C~ := C((~1/2)).
The action of the operator R̂t on formal functions, whenever it makes sense, is given as

follows.

Lemma 5.4 (Givental [Giv01b]). We have

R̂t F (q) = (e(~/2)V ∂2
F (q))|q7→R−1

t q,

where V ∂2 is the quadratic differential operator

V ∂2 =
∞∑

k,l=0

N∑
i,j=1

(∂i, Vkl∂j)
∂2

∂qik∂q
j
l

whose coefficients Vkl are given by

∞∑
k,l=0

(−1)k+lVkl(t)zkwl =
TRt(z)Rt(w)− 1

z + w

and TRt(z) denotes the transpose of Rt(z).

The substitution q 7→ R−1
t q can be written more explicitly as follows:

q0 7→ q0, q1 7→R1(t)q0 + q1, q2 7→R2(t)q0 +R1(t)q1 + q2, . . .

where

R−1
t (z) = 1 +R1(t)z +R2(t)z2 + · · ·.

Note that this substitution is not a well-defined operation on the space of formal functions. This
complication, however, is offset by a certain property of the Witten–Kontsevich tau-function,
which we will now explain.
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By definition, an asymptotical function is a formal function of the type:

A(q) = exp
( ∞∑
g=0

F (g)(q)~g−1

)
.

Such a function is called tame if the following (3g − 3 + r)-jet constraints are satisfied:

∂rF (g)

∂qi1k1 · · · ∂q
ir
kr

∣∣∣∣
q=0

= 0 if k1 + · · ·+ kr > 3g − 3 + r.

The Witten–Kontsevich tau-function (up to the shift q1 7→ q1 + 1) is tame for dimensional
reasons, since dimMg,r = 3g − 3 + r.

Due to Givental [Giv01b], the action of the operator R̂t on tame functions is well defined.
Moreover, the resulting series is also a tame asymptotical function. In particular, the total
ancestor potential At is a tame asymptotical function.

5.5 The action of the calibration
The quantized symplectic transformation Ŝ−1

t acts on formal functions as follows.

Lemma 5.5 (Givental [Giv01b]). We have

Ŝ−1
t F (q) = e(1/2~)Wq2

F ((Stq)+), (5.6)

where Wq2 is the quadratic form

Wq2 =
∞∑

k,l=0

(Wklql, qk)

whose coefficients are defined by

∞∑
k,l=0

Wkl(t)z−kw−l =
TSt(z)St(w)− 1
z−1 + w−1

.

The + sign in (5.6) means truncation of all negative powers of z, i.e., in F (q) we have to
substitute (cf. (4.14)):

qk 7→ qk + S1(t)qk+1 + S2(t)qk+2 + · · ·, k = 0, 1, 2, . . . .

This operation is well defined on the space of formal power series.

Lemma 5.6. We have an isomorphism

Ŝ−1
t : C~[[q0, q1 + 1, q2, . . .]]→ C~[[q0 − τ, q1 + 1, q2, . . .]].

Proof. We only need to check that S1(t)1 = τ(t), which can be proved as follows. Since St(z)
satisfies the differential equations z∂iSt = ∂i •t St, by comparing the coefficients in front of z0,
we get ∂i(S1(t)1) = ∂i. Hence, S1(t)1 = τ up to additive constants. But the constants must be 0
because S1(0) = 0, since St(z)|t=0 = 1. 2

6. Analytic continuation of the vertex algebra representation

In this section, we construct an analytic continuation of the representation of the vertex algebra F
on the twisted Fock space. More precisely, we will construct formal differential operators Xt(a, λ)
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for a ∈ F , whose coefficients are multivalued analytic functions of (t, λ) ∈ (B × C)\Σ branching
along the discriminant Σ. These operators possess remarkable properties and will be crucial for
the proof of our main theorem.

6.1 Twisted Fock space
As in § 4.2, consider a simple singularity of type XN (X =A, D, E) with a Milnor lattice
Q=H2l(X0,1; Z). Then Q is a root lattice of type XN and the set R⊂Q of vanishing cycles
is the corresponding root system. The bilinear form (·|·), equal to (−1)l times the intersection
form, is such that |α|2 = (α|α) = 2 for α ∈R. The monodromy group W coincides with the Weyl
group, and the classical monodromy is a Coxeter element σ ∈W .

Let {vj}Nj=1 be a basis for h = C⊗Z Q=H2l(X0,1; C) consisting of eigenvectors of σ:

σ(vj) = e2π
√
−1mj/hvj , j = 1, . . . , N

(see Table 1 in § 4.2). Since (·|·) is W -invariant, we have (vi|vj) = 0 unless mi +mj = h, which
holds for i+ j =N + 1. Hence, the dual basis {vj}Nj=1 can be chosen vj = vN+1−j .

The σ-twisted Heisenberg algebra ĥσ from § 3.3 has a basis {K, vj(k−mj/h)}k∈Z,16j6N . Its
irreducible highest-weight representation, the σ-twisted Fock space Fσ, can be identified with
the space of polynomials in vj(−k−mj/h) where k = 0, 1, . . . and 1 6 j 6N . We will slightly modify
this representation. Introduce

F~ := C~ ⊗C Fσ ∼= C~[q] where q = {qjk}
j=1,...,N
k=0,1,2,.... (6.1)

Then ĥσ acts on F~ as follows:

vj(−k−mj/h) =
~−1/2 qjk
(mj/h)k

,

vj(k+mj/h) = (mj/h)k+1 ~1/2 ∂

∂qjk
,

(6.2)

for k = 0, 1, 2, . . . and 1 6 j 6N , where

(x)k := x(x+ 1) · · · (x+ k − 1), (x)0 := 1.

As in § 3.3, F~ is a σ-twisted representation of the vertex algebra F , with generating fields
given by (3.9):

Y (vj , ζ) =
∑
k∈Z

vj(k+mj/h)ζ
−k−1−mj/h. (6.3)

6.2 Period representation
For α ∈ h, we let

Xt(α, λ) = ∂λf̂α(t, λ) = ∂λf̂α(t, λ)+ + ∂λf̂α(t, λ)−

be the quantization of ∂λfα(t, λ, z) (see (4.11) and § 5.1). More explicitly, due to (5.1), we have:

∂λf̂α(t, λ)+ =
∞∑
k=0

N∑
i=1

(−1)k+1(I(k+1)
α (t, λ), ∂i)~1/2 ∂

∂qik
, (6.4)

∂λf̂α(t, λ)− =
∞∑
k=0

N∑
i=1

(I(−k)
α (t, λ), ∂i)~−1/2qik, (6.5)
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where {∂i} and {∂i} are dual bases for H with respect to the residue pairing ( , ). Using the
period isomorphism (4.8), we may further arrange, by changing the basis of flat vector fields if
necessary, that ∂i = vi and ∂i = vi. By (4.7), we get that near λ=∞

(I(k+1)

vj
(0, λ), ∂i) = δij∂

k+1
λ λ−mj/h = δij(−1)k+1(mj/h)k+1λ

−k−1−mj/h

and

(I(−k)
vj (0, λ), ∂i) = δij∂

−k
λ λ−1+mj/h =

δijλ
k−1+mj/h

(mj/h)k

for all k > 0. Comparing with (6.2), (6.3), we obtain the following.

Lemma 6.1. For α ∈ h and λ close to ∞, X0(α, λ) coincides with Y (α, λ) acting on F~.

As a consequence, the coefficients of the Laurent expansions near λ=∞ of X0(α, λ) for α ∈ h

satisfy the commutation relations of the σ-twisted Heisenberg algebra ĥσ. On the other hand,
by Lemma 5.1, we have

[Xt(α, λ), Xt(β, µ)] = Ω(∂λfα(t, λ, z), ∂µfβ(t, µ, z)).

Since fα(t, λ, z) = St(z)fα(0, λ, z) and St(z) is a symplectic transformation, the above Lie bracket
is independent of t. Let us denote by Y∞t (α, λ) the Laurent series expansion of Xt(α, λ) near
λ=∞.

Corollary 6.2. For all t ∈B, the operator series Y∞t (α, λ) generate a σ-twisted representation
of the vertex algebra F on F~.

Our next goal is to express the operator series Y∞t (a, λ), a ∈ F in terms of normally ordered
products of the generating fields and certain functions, which we call propagators.

6.3 Propagators and normally ordered product
We define the normally ordered product of formal differential operators D1, . . . , Dr in q by
putting all partial derivatives to the right of all variables, and we use the notation :D1 · · ·Dr:.
By definition, :D1 · · ·Dr: remains the same if we permute the factors.

In order to define the propagators, let us look at the identity

Y∞t (α, µ)Y∞t (β, λ) = :Y∞t (α, µ)Y∞t (β, λ): + P∞α,β(t, µ, λ),

where α, β ∈ h and P∞α,β(t, µ, λ) is the Laurent expansion at λ=∞ and µ=∞ of the following
series

[∂µf̂α(t, µ)+, ∂λf̂β(t, λ)−] =
∞∑
k=0

(−1)k+1(I(k+1)
α (t, µ), I(−k)

β (t, λ)). (6.6)

Note that the above series is convergent in the formal µ−1-adic topology.
Since Y∞t (α, µ) and Y∞t (β, λ) satisfy the commutation relations of the σ-twisted Heisenberg

algebra (cf. (3.10)), we have

(µ− λ)2P∞α,β(t, µ, λ) ∈ C~((λ−1, µ−1)).

This implies that

P∞α,β(t, µ, λ) = ιµ,λ

(
(α|β)(µ− λ)−2 +

∞∑
k=0

P∞,kα,β (t, λ)(µ− λ)k
)
,
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where ιµ,λ denotes the expansion for |µ|> |λ| (cf. (3.3)) and P∞,kα,β (t, λ) are some formal Laurent
series in λ−1. The next result is reminiscent of the well-known Wick formula (see e.g. [Kac96,
Theorem 3.3]).

Proposition 6.3. For a ∈ F of the form

a= α1
(−k1−1) · · · α

r
(−kr−1)1, r > 1, αi ∈ h, ki > 0,

we have

Y∞t (a, λ) =
∑
J

( ∏
(i,j)∈J

∂
(kj)
λ P∞,ki

αi,αj
(t, λ)

)
:
(∏
l∈J ′

∂
(kl)
λ Y∞t (αl, λ)

)
:, (6.7)

where the sum is over all collections J of disjoint ordered pairs (i1, j1), . . . , (is, js) ⊂ {1, . . . , r}
such that i1 < · · ·< is and il < jl for all l, and J ′ = {1, . . . , r}\{i1, . . . , is, j1, . . . , js}.

In the above formula, J = ∅ is allowed, an empty product is considered equal to 1, and here
and further on we use the divided-powers notation ∂

(k)
λ := ∂kλ/k!.

Proof. Let us prove the proposition only for r = 2. The general case follows easily by induction
on r. Put α1 := α, α2 := β, k1 := k, and k2 := 0. By Proposition 3.2, we have for v ∈ F~

Y∞t (α(−k−1)β, λ)v = ∂(k+2)
µ ((µ− λ)2 Y∞t (α, µ)Y∞t (β, λ)v)|µ=λ.

Using the expansion of P∞α,β in the powers of µ− λ, we get

:(∂(k)
λ Y∞t (α, λ))Y∞t (β, λ):v + P∞,kα,β (t, λ)v,

as claimed. 2

Let Fα1,...,αr(t, λ) be a multivalued analytic function of (t, λ) ∈ (B × C)\Σ depending on
α1, . . . , αr ∈ h, i.e., this is a function holomorphic in a neighborhood of some reference point,
say (0, 1), which can be extended analytically along any path C ⊂ (B × C)\Σ.

Definition 6.4. We say that a multivalued analytic function Fα1,...,αr(t, λ) has monodromy W
if its analytic continuation along a loop C is Fwα1,...,wαr(t, λ) where w ∈W is the monodromy
operator induced by C (see § 4.1).

Note that by definition Xt(α, λ), α ∈ h, is a formal differential operator whose coefficients are
multivalued analytic functions with monodromy W . We will prove in § 7 the following theorem.

Theorem 6.5. For all α, β ∈ h the Laurent series P∞,kα,β (t, λ) are convergent and give rise to

multivalued analytic functions P kα,β(t, λ) with monodromy W .

We will show in § 7 that, in fact, the series

Pα,β(t, λ; ξ) = (α|β)ξ−2 + P 0
α,β(t, λ)ξ0 + P 1

α,β(t, λ)ξ1 + · · · (6.8)

is convergent for sufficiently small |ξ|> 0, but this will not be needed here. We call Pα,β(t, λ; ξ)
the propagator from α to β.

Example 6.6. For α, β ∈ h such that σ(α) = e−2π
√
−1pα (p ∈ (1/h)Z), we have

[∂µf̂α(0, µ)+, ∂λf̂β(0, λ)−] = (α|β)∂λιµ,λ
λpµ−p

µ− λ
= (α|β)

∞∑
k=0

(p+ k)λp+k−1µ−p−k−1. (6.9)
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This follows from Lemma 6.1 and (3.13) or, alternatively, from (6.6) and (4.7). For |µ|> |λ|> 0,
the above series converges to a multivalued analytic function of (λ, µ) with a pole of order at
most 2 at µ= λ.

Let us denote by ιλ the Laurent expansion near λ=∞. Formula (6.7) and Theorem 6.5 imply
that

Y∞t (a, λ) = ιλXt(a, λ), a ∈ F , (6.10)

where Xt(a, λ) is a formal differential operator in q whose coefficients are polynomial expressions
of the periods and the propagators. Namely, assuming the same notation and conventions as
in Proposition 6.3, we have

Xt(a, λ) =
∑
J

( ∏
(i,j)∈J

∂
(kj)
λ P ki

αi,αj
(t, λ)

)
:
(∏
l∈J ′

∂
(kl)
λ Xt(αl, λ)

)
:. (6.11)

Remark 6.7. The operators Xt(a, λ) can be defined for all a ∈ VQ, but this will not be needed
here. In particular, Xt(a, λ) for a ∈ h and a= eα (α ∈R) provide a realization of the basic
representation of the affine Kac–Moody algebra ĝ (cf. [FGM10]). The operators Xt(eα, λ) are
defined in terms of the so-called vertex operators (cf. (3.11)):

Γα(t, λ) = : exp f̂α(t, λ): = exp(f̂α(t, λ)−) exp(f̂α(t, λ)+). (6.12)

6.4 Behavior near a critical point
Our next goal is to understand the behavior of Xt(a, λ) near a generic point (t, ui(t)) on the
discriminant. We will write u= ui(t) for short, and will fix a cycle β ∈ h vanishing over (t, u).
Denote by ιλ−u the operation of Laurent expansion near λ= u, and let

Y u
t (a, λ) := ιλ−uXt(a, λ), a ∈ F .

The following properties of the propagators will be proved in § 7 below.

Theorem 6.8. The following statements hold.

(a) If (α′|β) = (α′′|β) = 0, then the Taylor coefficients P kα′,α′′(t, λ) of the propagator are
analytic near λ= u.

(b) There exists ri(t)> 0 such that for all α ∈ h the Laurent expansion of Pα,β(t, λ; µ− λ)
in the domain ri(t)> |µ− u|> |λ− u|> 0 is equal to

∞∑
k=0

(−1)k+1(ιµ−uI(k+1)
α (t, µ), ιλ−uI

(−k)
β (t, λ)). (6.13)

Let Fβ ⊂F be the vertex subalgebra generated by β. Then

Fβ ∼= C[β−1, β−2, β−3, . . .] (6.14)

is just the Fock space for the Heisenberg algebra Ĉβ. Similarly, let

F⊥β = {a ∈ F | β(n)a= 0, n> 0} (6.15)

be the Fock space for the Heisenberg algebra (̂Cβ)⊥, which is a subalgebra of F commuting with
Fβ. Note that we have an isomorphism

F⊥β ⊗Fβ ∼= F , a⊗ b 7→ a(−1)b. (6.16)
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Recall that, by the Picard–Lefschetz formula (see § 4.1), the monodromy operator associated to
a small loop around (t, u) is the reflection rβ ∈W .

Theorem 6.9. The following statements hold.

(a) For a ∈ F⊥β , the coefficients of Xt(a, λ) are holomorphic functions of (t, λ) in a
neighborhood of (t, u).

(b) The map b ∈ Fβ 7→ Y u
t (b, λ) is an rβ-twisted representation of the vertex algebra Fβ

on F~.

(c) For a ∈ F⊥β , b ∈ Fβ, we have

Y u
t (a(−1)b, λ) = Y u

t (a, λ)Y u
t (b, λ).

Proof. (a) If α ∈ h is such that (α|β) = 0, the coefficients of Xt(α, λ) are invariant with respect
to the local monodromy rβ, so they must be holomorphic functions of (t, λ) in a neighborhood
of (t, u). The statement for a ∈ F then follows from the definition (6.11) of Xt(a, λ) and
Theorem 6.8(a).

(b) Note that

[Y u
t (β, µ), Y u

t (β, λ)] = ιµ−uιλ−uΩ(∂µfA1(u, µ, z), ∂λfA1(u, λ, z)),

where we used Lemma 5.1 and Proposition 4.6 and we denoted by

fA1(u, λ, z) =±2
∑
k∈Z

(−z∂λ)k(2(λ− u))−1/2 (6.17)

the period series for an A1-singularity. It follows that the coefficients of Y u
t (β, λ) satisfy the

rβ-twisted Heisenberg relations. Let us denote by

b 7→ Ỹ u
t (b, λ), b ∈ Fβ

the rβ-twisted representation generated by Y u
t (β, λ). By the same argument as in the proof of

Proposition 6.3, we can express Ỹ u
t (b, λ) in terms of the generating fields Y u

t (β, λ) and some
propagators P u,kβ,β (t, λ). According to Theorem 6.8(b), we have

P u,kβ,β (t, λ) = ιλ−uP
k
β,β(t, λ),

which implies that

Ỹ u
t (b, λ) = ιλ−uXt(b, λ) = Y u

t (b, λ).

(c) We can assume that

a = α1
(−k1−1) · · · α

r
(−kr−1)1, r > 1, αi ∈ (Cβ)⊥, ki > 0,

b = β(−m1−1) · · · β(−mp−1)1, p> 1, mi > 0.

Then, by (6.16),

a(−1)b= α1
(−k1−1) · · · α

r
(−kr−1)β(−m1−1) · · · β(−mp−1)1.

Using (6.11), one can express Y u
t (a, λ), Y u

t (b, λ) and Y u
t (a(−1)b, λ) in terms of normally ordered

products and propagators.
Then to compute Y u

t (a, λ)Y u
t (b, λ), it is enough to compute all products of the type

AJ ′(λ)BJ ′′(λ), where

AJ ′(λ) = :
(∏
i∈J ′

∂
(ki)
λ Y u

t (αi, λ)
)

:, BJ ′′(λ) = :
(∏
j∈J ′′

∂
(mj)
λ Y u

t (β, λ)
)

:
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for

J ′ ⊂ {1, . . . , r}, J ′′ ⊂ {1, . . . , p}.

The product AJ ′(λ)BJ ′′(λ) is computed using the Wick formula (see e.g. [Kac96, Theorem 3.3])
and Theorem 6.8(b):

AJ ′(λ)BJ ′′(λ) =
∑
I

( ∏
(i,j)∈I

∂
(mj)
λ ιλ−uP

ki
αi,β

(t, λ)
)
CI(λ).

Here the sum is over all collections I of disjoint ordered pairs (i, j) such that i ∈ J ′, j ∈ J ′′, and

CI(λ) = :
(∏
l∈I′

∂
(kl)
λ Y u

t (αl, λ)
∏
n∈I′′

∂
(mn)
λ Y u

t (β, λ)
)

:,

where

I ′ = J ′\{i | (i, j) ∈ I}, I ′′ = J ′′\{j | (i, j) ∈ I}.

It is not hard to see that the combinatorics of the Wick formula and formula (6.11) produce
exactly the identity we claim. 2

Remark 6.10. It is not true that the Laurent expansions of all Xt(a, λ) near λ= u give a twisted
representation of F . Indeed, for α, α′ ∈ h such that (α|β) = (α′|β) = 0, the Laurent expansions
of Xt(α, λ) and Xt(α′, λ) have only non-negative powers of λ− u. Thus, they cannot satisfy the
commutation relations of the Heisenberg algebra (cf. (3.10)).

6.5 Action on tame vectors
So far we have considered the action of Xt(a, λ) on elements of F~, i.e., on polynomials in q
(see (6.1)). Now we want to consider a certain completion of F~. Note that for an arbitrary formal
power series v ∈ C~[[q]], the series Xt(a, λ)v has divergent coefficients in general. We claim that
if v is a tame asymptotical function (cf. § 5.4), then Xt(a, λ)v is a formal power series whose
coefficients are formal Laurent series in ~1/2 with coefficients that are finite linear combinations
of the coefficients of Xt(a, λ).

Using the natural multi-index notations, we can write

v(~, q) =
∑
g,I

v
(g)
I ~g−1qI , I = {ilk}

l=1,...,N
k=0,1,2,.... (6.18)

By definition, v is tame if 3g − 3 + `(I)< `z(I) implies that v(g)
I = 0, where

`(I) :=
∞∑
k=0

N∑
l=1

ilk, `z(I) :=
∞∑
k=0

N∑
l=1

k ilk.

If we write

Xt(a, λ) =
∑
I,J

~(`(J)−`(I))/2aI,J(t, λ)qI∂Jq , (6.19)

then Xt(a, λ)v is a formal series of the type (6.18) whose coefficients ṽ(g)
I are given by∑

I′,I′′:I′+I′′=I

(∑
J

CI
′,I′′

J aI′,J(t, λ)v(g′′)
I′′+J

)
,
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where

g′′ + 1
2(`(J)− `(I ′)) = g

and the precise values of the combinatorial coefficients CI
′,I′′

J ∈ Z are irrelevant. The first sum
is always finite for a fixed I, while in the second one the non-zero terms are parameterized by J
such that

3g′′ − 3 + `(I ′′) + `(J) > `z(I ′′) + `z(J),

i.e.,
1
2`(J) + `z(J) 6 3g − 3 + 3

2`(I
′) + `(I ′′)− `z(I ′′).

For fixed g and I, there are only finitely many J satisfying the above inequality, which proves
our claim.

Finally, let us point out that the formal composition of two operators Xt(a, µ) and Xt(b, λ)
is a formal differential operator whose coefficient in front of ~(`(J)−`(I))/2qI∂Jq is∑

I′+I′′=I

∑
J ′+J ′′=J

(∑
K

CI
′,I′′,J ′,J ′′

K aI′,J ′+K(t, µ)bI′′+K,J ′′(t, λ)
)

(6.20)

for some CI
′,I′′,J ′,J ′′

K ∈ Z. The first two sums are always finite for fixed I and J . However, the
sum over K is infinite and so the product can be defined only if the series is convergent in an
appropriate sense. As we saw in §§ 6.3 and 6.4, this can be done if we use the Laurent series
expansions at ∞ or u= ui(t).

Indeed, near ∞, the sum over K in (6.20) is convergent in the µ−1-adic topology, since
aI,J(t, µ)→ 0 uniformly as J →∞. This is because I(k)

α (t, µ)→ 0 as k→+∞.
Similarly, we will say that b ∈ F is singular at λ= u if bI,J(t, λ)→ 0 uniformly in the

(λ− u)-adic topology as I →∞. Then (6.20) is convergent in the (λ− u)-adic topology. By
Theorem 6.9(a) and Proposition 4.6, α ∈ h⊂F is singular at λ= u if and only if α ∈ Cβ, where
β is a cycle vanishing over (t, u). It follows from (6.11) and Theorem 6.8(b) that all b ∈ Fβ are
singular at λ= u.

6.6 Intertwining operators
Recall that the calibration operator St of the singularity gives an isomorphism between two
different completions of the Fock space F~ = C~[q] (see § 5.5):

Ŝ−1
t : C~[[q0, q1 + 1, q2, . . .]]→ C~[[q0 − τ, q1 + 1, q2, . . .]].

Using the operator series

Y (a, λ) = ιλX0(a, λ) = Y∞0 (a, λ), a ∈ F ,

we put the structure of a σ-twisted F-module on the completion C~[[q0 − τ, q1 + 1, q2 . . . ]]. The
other completion is equipped with the structure of a σ-twisted F-module via the operator series
Y∞t (a, λ), a ∈ F .

Lemma 6.11. The map Ŝt is a homomorphism of σ-twisted F-modules, i.e.,

Y∞t (a, λ) = Ŝt Y (a, λ) Ŝ−1
t , a ∈ F .

Proof. Using Lemma 5.5 and Proposition 4.7, we see that the above equation holds for all
a= α ∈ h⊂F . Therefore, due to the construction via the Wick formula (see Proposition 6.3), it
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is enough to compare the propagators. The propagator of ŜtY (α, µ)Ŝ−1
t and ŜtY (β, λ)Ŝ−1

t is

∂λ∂µΩ((St(z)fα(0, µ, z))+, (St(z)fβ(0, λ, z))−).

By Proposition 4.7, this is precisely P∞α,β(t, µ, λ). 2

Now let F tame
~ be the space of tame series in C~[[q0, q1 + 1, q2, . . .]], as defined in §§ 5.4

and 6.5. Then the asymptotical operator Ψ̂tR̂t gives an injection (see § 5.4)

Ψ̂tR̂t : C~[[Q0, Q1 + (1, . . . , 1), Q2, . . .]]tame→F tame
~ . (6.21)

Let us assume that t ∈B is generic, λ is close to one of the critical values u := ui(t), and β is a
cycle vanishing over (t, u). By Theorem 6.9(b), the space F tame

~ of tame vectors is an rβ-twisted
Fβ-module.

On the other hand, applying our construction from § 6.2 in the case of an A1-singularity, we
get that the operator series

Y A1
u (β, λ) = fA1(u, λ, z)̂

(see (6.17)) induces the structure of an rβ-twisted Fβ-module on the space C~[[Qi0, Q
i
1 + 1,

Qi2, . . .]]
tame.

Lemma 6.12. The operator (6.21) is a homomorphism of rβ-twisted Fβ-modules, i.e.,

Ψ̂tR̂tY
A1
u (b, λ) = Y u

t (b, λ)Ψ̂tR̂t, b ∈ Fβ.

Proof. Due to Lemma 5.4 and Proposition 4.7, the above identity holds for b= β, which is
the generator of Fβ. According to the Wick formula (see Proposition 6.3), it is enough to
compare the propagators of the two modules. The propagator of Ψ̂tR̂tY

A1
u (β, µ)(Ψ̂tR̂t)−1 and

Ψ̂tR̂tY
A1
u (β, λ)(Ψ̂tR̂t)−1 is

∂λ∂µΩ((ΨtRt(z)fA1(u, µ, z))+, (ΨtRt(z)fA1(u, λ, z))−).

But

ΨtRt(z)fA1(u, λ, z) = fβ(t, λ, z)

thanks to Proposition 4.6. 2

7. Analytic continuation of the propagators

The goal of this section is to prove Theorems 6.5 and 6.8. The idea is to express the phase
factors via certain integrals. The latter were already used in [FGM10], but we need to establish
some further properties, which will allow us to extend analytically the phase factors and the
corresponding propagators.

7.1 Integral representation of the phase factors
Let us denote by

Γ∞α (t, λ) = ιλΓα(t, λ), α ∈Q,

the Laurent series expansion at λ=∞ of the vertex operators (6.12). Due to Lemma 5.1, the
product of two vertex operators is given by

Γ∞α (t, µ)Γ∞β (t, λ) =B∞α,β(t, µ, λ):Γ∞α (t, µ)Γ∞β (t, λ):, (7.1)
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where

B∞α,β(t, µ, λ) = ιµιλ exp Ω(fα(t, µ, z)+, fβ(t, λ, z)−)

is the so-called phase factor. Then, by definition (see (6.6)),

P∞α,β(t, µ, λ) = ∂µ∂λ log B∞α,β(t, µ, λ).

The goal in this section will be to prove Theorem 6.5. In fact, we will prove a slightly stronger
statement, namely that the phase factors are multivalued analytic functions with monodromy W .

We will make use of line integrals in B, whose integrands are 1-forms defined in terms of the
period vectors I(k)

α (t, λ). It is convenient to embed B ⊂B × C, t 7→ (t, 0) and restrict the Milnor
fibration and the corresponding middle homology bundle to B. The restriction of the discriminant
Σ⊂B × C to B will be called again the discriminant and its complement in B will be denoted
by B′. In particular, the period vectors

I(k)
α (t, λ) = I(k)

α (t− λ1, 0) (7.2)

may be singular only at points (t, λ) such that t− λ1 belongs to the discriminant.
Using the differential equations from Lemma 4.4, we get

dBΩ(fα(t, µ, z)+, fβ(t, λ, z)−) = I(0)
α (t, µ) •t I(0)

β (t, λ), (7.3)

where dB denotes the de Rham differential on B. Motivated by this identity, let us consider the
following family of improper integrals depending on parameters t, λ, and ξ:

Bα,β(t, λ; ξ) = lim
ε→0

exp
(∫ t−λ1

−ε1
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

)
, (7.4)

where the integration is along a path C : [0, 1]→B, such that the strip

Cξ : [0, 1]× [0, 1]→B, Cξ(s1, s2) = C(s1)− s2ξ1

does not intersect the discriminant. A path C with this property will be called a ξ-path. The
integrand is a multivalued 1-form. In order to specify its values along the strip Cξ, it is enough
to assume that the integration path passes through a reference point, say −1 ∈B, where the
branches of the periods are fixed in advance. Note that for given (t, λ) /∈ Σ, the integral in (7.4)
is well defined for all sufficiently small ξ.

Using the translation invariance of the periods (see (7.2)) and the fact that fβ(t, λ, z)−
vanishes at t= λ1, we get

B∞α,β(t, µ, λ) = ιλιµ,λ Bα,β(t, λ; µ− λ), (7.5)

where ιµ,λ is the Laurent series expansion in the region |µ|> |λ| � 0. In particular, the limit
in (7.4) exists. Indeed, let us split the integration path in (7.4) into two parts (see parts I and
II in Figure 2 below): ∫ −λ1

−ε1
+
∫ t−λ1

−λ1
.

The second integral depends holomorphically on λ and ξ, because the integration path and
the corresponding ξ-strip do not intersect the discriminant, which means that the integrand is
analytic.

The first integral is by (7.3) the logarithm of the phase factor for the product of Γ∞α (0, µ)
and Γ∞β (0, λ), where µ= λ+ ξ. Recall from Remark 6.7 that these vertex operators provide the
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principal realization of the affine Lie algebra (see [FGM10]). It is an easy exercise to compute
these phase factors explicitly (see e.g. [BK04, FGM10] and § 3.4). The answer is

B∞α,β(0, µ, λ) =
h−1∏
k=0

(µ1/h − e2π
√
−1k/hλ1/h)(σkα|β). (7.6)

As in the proof of Lemma 3.7, one can see that for µ= λ+ ξ the above function has the form

ξ(α|β)(1 + · · · ), (7.7)

where the dots stand for some function that depends analytically on ξ.
Now to prove Theorem 6.5, it is enough to set

Pα,β(t, λ; µ− λ) = ∂λ∂µ log Bα,β(t, λ; µ− λ);

then the integral (7.4) provides an analytic continuation in (t, λ) along any path avoiding the
discriminant, while formula (7.7) implies that the propagator has the required expansion (6.8).
It remains only to prove that the phase factors have monodromy W , i.e., if C ⊂B is a closed
loop based at t− λ1 (avoiding the discriminant) and w ∈W is the corresponding monodromy
transformation (on vanishing homology) then the analytic continuation of Bα,β(t, λ; ξ) along C
is the same as Bwα,wβ(t, λ; ξ).

Lemma 7.1. Assume that Bα,β(t, λ; ξ) is invariant under the analytic continuation along any
loop C such that the corresponding monodromy transformation w leaves both α and β invariant.
Then Bα,β(t, λ; ξ) has monodromy W .

Proof. Let w ∈W be any monodromy transformation. We may assume that the path in the
definition of the phase factor (7.4) passes through a point t0 − λ01 such that λ0 is sufficiently
large. Then

Bα,β(t, λ; ξ) =AC2(Bα,β(t0, λ0; ξ)),

where C2 is the portion of the path from t0 − λ01 to t− λ1 and AC2 denotes analytic
continuation along C2. If C0 is a loop based at t0 − λ01 such that the corresponding monodromy
transformation is w, then

AC0(Bα,β(t0, λ0; ξ)) =Bwα,wβ(t0, λ0; ξ), (7.8)

because both sides are given by an integral whose Laurent series expansion ιλ0ιµ0,λ0 with
µ0 = ξ + λ0 is B∞wα,wβ(t0, µ0, λ0).

Now let C1 be a loop based at t− λ1 whose monodromy transformation is w; then

AC1(Bα,β(t, λ; ξ))
Bwα,wβ(t, λ; ξ)

=
AC1◦C2(Bα,β(t0, λ0; ξ))
AC2(Bwα,wβ(t0, λ0; ξ))

.

Using (7.8), we get that the above ratio is precisely

exp
(∮

C
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

)
=
AC(Bα,β(t0, λ0; ξ))
Bα,β(t0, λ0; ξ)

,

where

C = C−1
0 ◦ C−1

2 ◦ C1 ◦ C2.

Both α and β are fixed by the monodromy transformation along C; hence the above ratio is
equal to 1. 2
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Therefore, we need to prove that the phase factors satisfy the condition in Lemma 7.1.
The proof follows essentially the ideas of Givental [Giv03] and consists of two steps, which are
formulated in the next two lemmas.

Lemma 7.2. If C is a small ξ-loop that goes twice around a generic point on the discriminant,
then ∮

C
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

is an integer multiple of 2π
√
−1.

Proof. For homotopy reasons, we may assume that C lies on the complex line through the generic
point t0 on the discriminant parallel to C1. Then the integral can be written as∮

C
(I(0)
α (t0, ξ − u), I(0)

β (t0,−u)) du, (7.9)

where u= ui(t) is the critical value that gives locally near t0 the equation of the discriminant:
u(t) = 0.

If α is invariant with respect to the local monodromy around t0, then I
(0)
α (t′, ξ) is analytic

for all t′ sufficiently close to t0 and the integral vanishes identically. The same also applies
to β. Decomposing α and β into invariant and anti-invariant cycles with respect to the local
monodromy, we get

α= α′ + (α|γ)γ/2, β = β′ + (β|γ)γ/2,

where γ is the cycle vanishing over t0. Since only the anti-invariant parts contribute to the
integral, we may assume that α= β = γ are vanishing over t0 and will have to prove that
the integral is an integer multiple of 8π

√
−1.

In this case, the period I
(0)
β (t0, ξ − u) has the following expansion:

I
(0)
β (t0, ξ − u) = Ψt0

∞∑
k=0

Rk(t0)∂−kξ I
(0)
A1

(u, ξ)ei

(see § 4.5), where

I
(0)
A1

(u, ξ) =
±2√

2(ξ − u)

is the period of A1-singularity. Substituting this expansion in formula (7.9) and using that Ψt0

is an isometry, we obtain
∞∑

k,l=0

∮
C

(Rk(t0)(−∂u)−kI(0)
A1

(u, ξ), Rl(t0)(−∂u)−lI(0)
A1

(u, 0)) du.

Since Rt0(z) is a symplectic transformation, we have∑
k+l=n

(−1)k TRl(t0)Rk(t0) = δn,0.

Using integration by parts, we find that only the terms with k = l = 0 contribute to the integral,
i.e., we get ∮

C
(I(0)
A1

(u, ξ), I(0)
A1

(u, 0)) du.
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The argument is in fact slightly more subtle, because Rt(z) is in general a divergent power
series. The integral operator

∑
k>n Rk(t0)(−∂u)−k, however, when applied to the period I(0)

A1
(u, ξ)

produces a convergent series and increases the order of the zero at u= ξ by n. Therefore, by
induction on n we see that modulo the term with k = l = 0 the remaining part of the integrand
has an infinite order of vanishing at u= ξ, so it must be 0.

It remains only to compute the integral∮
C

2√
(ξ − u)(−u)

du,

where C is a closed contour going twice around u= 0 and u= ξ. The integral is easily seen to
be ±8π

√
−1, which completes the proof. 2

Lemma 7.3. Assume that C is a ξ-loop in B′ such that the cycles α and β are invariant under
the parallel transport along C. Then∮

C
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

is an integer multiple of 2π
√
−1.

Proof. Since the monodromy group is a finite reflection group, any monodromy transformation
w that fixes α and β can be written as a composition of reflections with respect to hyperplanes
containing both α and β (see [Bou02, ch. V, § 3.3, Proposition 2]). On the other hand,
the monodromy group is the quotient of the Artin–Brieskorn braid group π1(B′) by the
normal subgroup generated by the loops going twice around generic points on the discriminant
(see [AGV88, Ebe07]).

It follows that our path C is homotopic to the composition of several paths C ′i along which
α and β are invariant, and several paths C ′′j that are simple loops going twice around generic
points on the discriminant. Clearly, we may choose C ′i and C ′′j to be ξ-loops.

The integral over C can be written as a sum of integrals over the loops C ′i and C ′′j . Since
both periods are invariant along C ′i, they must be holomorphic in a disk containing C ′i, which
implies that the integrals along C ′i vanish. By Lemma 7.2, the integrals along C ′′j contribute only
integer multiples of 2π

√
−1, which completes the proof. 2

7.2 The phase factors near a critical value

Let us assume now that t0 ∈B is a generic point on the discriminant and that the phase factor
Bα,β(t, λ; µ− λ) is analytically extended along some path for (t, λ, µ) such that t− λ1 is close
to t0 and β coincides with the cycle vanishing over t0. The critical values (u1(t), . . . , uN (t)) of
F (t, ·) form a coordinate system for t near t0 and the local equation of the discriminant has the
form {ui(t) = 0} for some i.

Introduce the notation

Γuiα (t, λ) = ιλ−uiΓα(t, λ), α ∈Q.

The vertex operator product (7.1) is well defined in the (λ− ui)-adic topology, and we have

Γuiα (t, µ)Γuiβ (t, λ) =Bui
α,β(t, µ, λ):Γuiα (t, µ)Γuiβ (t, λ):,
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where the phase factor can be identified (for the same reason we used to derive (7.5)) with the
Laurent series expansion

ιλ−uiιµ−ui,λ−uiB̃α,β(t, λ; µ− λ).

Here

B̃α,β(t, λ; ξ) = lim
ε→0

exp
(∫ t−λ1

t0−ε1
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

)
, (7.10)

where the integration is along a ξ-path C such that β vanishes as t′→ t0, and the limit is along
a straight segment such that the line segment [λ+ ε, µ+ ε] does not intersect 0 as ε moves
toward 0. Such a path exists provided ξ := µ− λ is sufficiently small.

Theorem 7.4. For every α ∈Q and every cycle β vanishing over t0, we have

Bα,β(t, λ; ξ) = cα,βB̃α,β(t, λ; ξ),

where cα,β is a constant independent of t, λ and µ.

Note that Theorem 7.4 implies Theorem 6.8(b), because after taking log of both sides of the
above identity and differentiating ∂λ∂µ, the left-hand side becomes the analytic continuation
of the propagator Pα,β(t, λ; µ− λ) while the Laurent series expansion of the right-hand side
is (6.13). The proof of Theorem 6.8(a) was already obtained in the previous subsection. Indeed,
if α′ and α′′ are cycles invariant with respect to the local monodromy, then the periods I(0)

α′ (t′, ξ)
and I(0)

α′′ (t
′, 0) are analytic for all t′ in a neighborhood of t0, which implies that the integral (7.4)

is analytic in (t, λ).
Let us denote the ratio Bα,β(t, λ; ξ)/B̃α,β(t, λ; ξ) by

fα,β(t0, ξ) := lim
(ε′,ε′′)→0

exp
(∫ t0−ε′′1

−ε′1
I(0)
α (t′, ξ) •t′ I

(0)
β (t′, 0)

)
. (7.11)

We will prove that fα,β(t0, ξ) is analytic in a neighborhood of ξ = 0 and is locally constant with
respect to t0. Finally, we will check that the function is homogeneous of degree 0, so it must be
a constant independent of ξ.

7.3 Analyticity at ξ = 0
Let us fix the following notation. The space of miniversal deformations will be presented as
B =BN−1 × C, where C is the coordinate line through 1, the so called primitive direction,
and BN−1 is the (N − 1)-dimensional space spanned by the remaining coordinate axes. Given
t ∈B, we put ′t ∈BN−1 for the projection of t on the first factor. Let us point out that
ui(t) = ui(′t) + tN , therefore the points on the discriminant are precisely the points of the form
t0 = ′t0 − ui(′t0)1 for some critical value ui.

Assume now that ′t0 ∈BN−1 is generic, so that the corresponding critical values are pairwise
distinct. Note that the radius of convergence of the Laurent series expansion near λ= ui(′t0) of
the period I

(0)
α (′t0, λ), viewed as a function of λ only, is

ρi := ρi(′t0) := min
j
|uj(′t0)− ui(′t0)|.

Let us put xi := ρi/2− ui(′t0) and fix ′t0 + xi1 as a local reference point in the corresponding
disk of convergence D(ui(′t0), ρi). Here we have used the following notation:

D(u, r) = {′t0 + (x− u)1 | |x|< r}.
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III and IV

I

II

III
IV

0

1

Figure 2. Integration path.

Given a positive number ρ= ρ(′t0) we construct the following sets of disks (see Figure 2):

D(ui(′t0), ρ), 1 6 i6N (7.12)

and

D(xi, ρ), 1 6 i6N. (7.13)

We pick ρ > 0 such that the disks (7.12) and (7.13) are pairwise disjoint and such that D(xi, ρ)
is contained in the domain of convergence D(ui(′t0), ρi). For example, if we set

ρ(′t0) = min
16i6N

ρi/4,

then all these requirements are satisfied.

Lemma 7.5. Let t0 = ′t0 − ui(′t0)1 be a generic point on the discriminant. Then fα,β(t0, ξ)
extends analytically inside the disk |ξ|< ρ.

Proof. Let us split the integration path in (7.11) into four pieces (see Figure 2):∫ −λ01

−ε′1
+
∫ t0−λ01

−λ01
+
∫ t0+(ρi/2)1

t0−λ01
+
∫ t0−ε′′1

t0+(ρi/2)1
, (7.14)

where λ0 can be chosen as large as we wish. The first two integrals were already analyzed at the
end of § 7.1. Namely, their contribution after passing to the limit ε′→ 0 is

log Bα,β(t0, λ0; ξ) = (α|β) log ξ + · · · , (7.15)

where the dots stand for some function that depends analytically on ξ.
Note that in the third integral the path can be deformed homotopically so that it does not

intersect the disks (7.12). In this case, the distance between a point t′ on the integration path
and a point ′t0 − uj(′t0)1 (1 6 j 6N) is more than ρ. The singularities of the period I(0)(t′, ξ)
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are precisely at the points

t′ − ξ1 = ′t0 − uj(′t0)1, 1 6 j 6N,

which means that as long as |ξ|< ρ the period will be analytic in ξ. In other words, the third
integral is analytic for |ξ|< ρ.

It remains only to analyze the last integral. Let us make the substitution

t′ = t0 + x1⇒ ui(t′) = x;

then the integral becomes ∫ −ε′′
ρi/2

(I(0)
α (t0, ξ − x), I(0)

β (t0,−x)) dx.

Since the integration path and the corresponding ξ-strip (for |ξ|< ρ) are entirely in the disk of
convergence, we can compute the above integral via its Laurent series expansion

I
(0)
β (t0, ξ − x) =

±2√
2(ξ − x)

(
ei +

∞∑
m=1

am(t0)(2(ξ − x))m
)
,

where (see Proposition 4.6)

am(t0) =
±2Ψt0Rm(t0)ei

(2m− 1)!!
, m> 0. (7.16)

Let us decompose α= α′ + (α|β)β/2, where α′ is invariant with respect to the local monodromy.
Then I

(0)
α′ (t′, ξ) is analytic in ξ, which implies that its contribution to the integral is analytic,

i.e., we may replace α by (α|β)β/2.
Multiplying out the Laurent series and integrating term by term we get

(α|β)
∫ −ε′′
ρi/2

dx√
(ξ − x)(−x)

+O(ξ) log(
√
ξ + ε′′ +

√
ε′′),

up to terms that depend analytically on ξ or have order O(
√
ε′′). The second term must vanish,

because if we let ε′′ go twice around 0, then according to Lemma 7.2 our integral should change
by a constant, while the second term changes by a function proportional to ξ. Of course, we can
check the vanishing directly (by using (7.16)), but then we would have to repeat the proof of
Lemma 7.2. The first integral is straightforward to compute, namely it is

−2(α|β) log(
√
ξ − x+

√
−x)|ε′′ρi/2 =−2(α|β) log(

√
ξ + ε′′ +

√
ε′′) + · · · ,

where the dots indicate a function analytic in the disk |ξ|< ρ. Passing to the limit we see that our
integral up to analytic terms is −(α|β) log ξ. This singularity cancels, up to an integer multiple
of 2π

√
−1, with the singularity (7.15) of the first two integrals (7.14). Finally, note that if ε′ or

ε′′ makes a small loop around 0, then the integral gains an integer multiple of ±2π
√
−1. This

proves that the limit (ε′, ε′′)→ 0 exists and it depends analytically on ξ as claimed. 2

Lemma 7.6. The function fα,β(t0, ξ) is locally constant with respect to t0.

Proof. Let us take a small neighborhood U of t0 in B; then uj = uj(t), 1 6 j 6N are local
coordinates in U and the local equation of the discriminant in these coordinates is given by ui = 0.
In other words, the critical values (u1, . . . , ûi, . . . , uN ) are local coordinates on the discriminant
near t0. In the integral representation (7.14) only the last two integrals depend on t0, so let us
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look at them more carefully. We have an improper integral on the complex plane with N − 1
punctures:

C\{u1(t0), . . . , ûi(t0), . . . , uN (t0)}, C≡ {t0} × C.

For homotopy reasons, we may think that varying t0 along the discriminant is equivalent to
still integrating along the same path but changing the positions of the punctures uj(t0), j 6= i.
However, thanks to Lemma 7.3 the integral does not depend on the position of the punctures. 2

7.4 Proof of Theorem 7.4
In order to prove that fα,β is a constant, let us see how the integral changes under rescaling ξ 7→ cξ,
where c is a positive constant sufficiently close to 1. Recall that the flat coordinates were assigned
degrees 1− di = deg(τi), where di is the weighted-homogeneous degree of the corresponding
polynomial ∂if (see § 4). It follows that the structure constants Ckij(τ) of the Frobenius
multiplication, defined by

∂i •τ ∂j =
N∑
k=1

Ckij(τ)∂k

are homogeneous of degree di + dj − dk.
Let us look at the integrand of fα,β(ξ),

I
(0)
β (t, ξ) •t I(0)

β (t, 0) =
N∑

i,j,k=1

(I(0)
β (t, ξ), ∂k)Ckij(τ)(I(0)

β (t, 0), dτj) dτi.

Since the periods satisfy the homogeneity equation (cf. (4.4), (4.5)):

(λ∂λ + E)I(0)
β (t, λ) = (θ − 1/2)I(0)

β (t, λ)

and

θ(∂k) = (d/2− dk)∂k, θ(dτj) = (dj − d/2)dτj , T θ =−θ,

we see that (I(0)
β (t, ξ), ∂k) and (I(0)

β (t, 0), dτj) are homogeneous of degrees dk − (d+ 1)/2 and
−dj + (d− 1)/2, respectively. It follows that the degree of the integrand is

dk − (d+ 1)/2 + di + dj − dk − dj + (d− 1)/2 + (1− di) = 0.

This means that our function fα,β(ξ) is homogeneous of degree 0, i.e., fα,β(cξ) = fα,β(ξ) for all c
sufficiently close to 1. Therefore, only the constant term in the Taylor series expansion of fα,β(ξ)
at ξ = 0 could be non-zero. This completes the proof of Theorem 7.4.

8. W-constraints

In this section we prove our main result, Theorem 1.1. The proof consists of several simple steps.

8.1 Reduction to analyticity at the critical values
Recall that for each t ∈B, the operator series Y∞t (a, λ) defined in § 6.2 provide a σ-twisted
representation of the vertex algebra F on the twisted Fock space F~. Let us complete F~ with
respect to the formal topology near q =−1z, i.e., define

F~ = C~[[q0, q1 + 1, q2, . . .]].
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Then the action of Y∞t (a, λ) on elements of F~ still makes sense, since the operator series are
given by the Wick formula (6.7) and the periods I(n)

α (t, λ)→ 0 in the formal λ−1-adic topology
as n→∞.

By definition, the total descendant potential is an element of yet another completion of the
twisted Fock space, namely

DXN ∈ C~[[q0 − τ, q1 + 1, q2, . . .]] = Ŝ−1
t F~

(see (5.4), (5.5) and Lemma 5.6). The latter is equipped with the structure of a σ-twisted F-
module via the operator series

Y (a, λ) := Y∞0 (a, λ), a ∈ F .

If a ∈WXN , then due to the σ-invariance, Y (a, λ) has only integral powers of λ. Theorem 1.1 is
equivalent to the statement that Y (a, λ)DXN has no negative powers of λ for all a ∈WXN .

Let us assume that a ∈WXN , t ∈B is generic and |λ| is sufficiently large, so that the Laurent
series expansions are convergent. By Lemma 6.11, we have

Y (a, λ)Ŝ−1
t = Ŝ−1

t Y∞t (a, λ),

which together with (5.4) gives

Y (a, λ)DXN = eF
(1)(t)Ŝ−1

t Y∞t (a, λ)At,

where At is the ancestor potential (5.5). Thus, Y (a, λ)DXN has no negative powers of λ if and
only if Y∞t (a, λ)At has the same property.

Since At is tame, the coefficients of Xt(a, λ)At are polynomial expressions in the coefficients
of Xt(a, λ), i.e., Y∞t (a, λ)At is the Laurent series expansion of Xt(a, λ)At at λ=∞. We want
to show that all coefficients of the series Xt(a, λ)At are polynomials in λ. Since Xt(a, λ)At is
monodromy invariant and has singularities only at the critical values, this is equivalent to the
condition that Xt(a, λ)At does not have poles at the critical values λ= ui(t) for 1 6 i6N.

8.2 Reduction to the case of Virasoro constraints of an A1-singularity
For a ∈WXN , we analytically continue Xt(a, λ) to a neighborhood of λ= ui(t). The vanishing
cycle over the point (t, ui(t)) ∈ Σ will be denoted by β.

Recall that Fβ ⊂F is the subalgebra generated by β, and F⊥β is the subalgebra generated by
all α ∈ h such that (α|β) = 0 (see (6.14), (6.15)). Then, according to (6.16), for every a ∈ F we
can write

a=
∑
k

ak(−1)b
k, ak ∈ F⊥β , bk ∈ Fβ.

Lemma 8.1. Assume that a ∈ F is written as above with linearly independent ak. Then
eβ(0)a= 0 if and only if all bk lie in the Virasoro vertex algebra generated by ωβ := β(−1)β/4.

Proof. Since eβ(0) is a derivation of the (−1)st product and eβ(0)a
k = 0, we see that eβ(0)a= 0

if and only if eβ(0)b
k = 0 for all k. This means that bk lie in the WA1-algebra corresponding to

the lattice Zβ, which is just the Virasoro vertex algebra (cf. Remark 2.1). 2

By Theorem 6.9(a) and (c), the operators Xt(ak, λ) are regular at λ= ui and

Y ui
t (a, λ)At =

∑
k

Y ui
t (ak, λ) Y ui

t (bk, λ)At,
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where Y ui
t (a, λ) denotes the Laurent series expansion at λ= ui of Xt(a, λ). If we prove that

Y ui
t (bk, λ)At does not have a pole at λ= ui, then the above expression does not have a pole

either.
Due to Lemma 6.12,

Y ui
t (b, λ)Ψ̂tR̂t = Ψ̂tR̂tY

A1
ui (b, λ), b ∈ Fβ,

where the operator series Y A1
ui (b, λ) provide an rβ-twisted representation of the vertex algebra

Fβ on F tame
~ (see the discussion before Lemma 6.12). Then (5.5) implies that for b ∈ Fβ,

Y ui
t (b, λ)At(q) = R̂tY A1

ui (b, λ)
N∏
j=1

Dpt(~∆j ; jq),

where Y A1
ui (b, λ) is acting on the ith factor in the product.

When b is in the Virasoro vertex algebra generated by ωβ, the operators Y A1
ui (b, λ) give an

untwisted representation. By Corollary 3.5, the regularity of Y A1
ui (b, λ) at λ= ui follows from

the regularity of the generating field Y A1
ui (ωβ, λ). Therefore, we only need to verify that the

Virasoro constraints for an A1-singularity coincide with the usual Virasoro constraints for the
Witten–Kontsevich tau-function Dpt.

8.3 Virasoro constraints for an A1-singularity

Let us assume now that F (t, x) = x2/2 + t is the miniversal deformation of an A1-singularity.
Then the period has the form

I
(0)
β (t, λ) =

2√
2(λ− t)

,

where the vanishing cycle over the point (t, λ) ∈B × C is the 0-dimensional cycle

β = [x+(t, λ)]− [x−(t, λ)], x±(t, λ) =±
√

2(λ− t).

From here we find for k > 0

(−1)k+1I
(k+1)
β (t, λ) = (−∂λ)k+1I

(0)
β (t, λ) = 2−k−

1
2 (2k + 1)!!(λ− t)−k−

3
2 ,

I
(−k)
β (t, λ) = (∂λ)−kI(0)

β (t, λ) =
2k+ 1

2

(2k − 1)!!
(λ− t)k−

1
2 ,

where (−1)!! := 1. After quantization (see (6.4), (6.5)), we obtain the differential operator

Xt(β, λ) = ∂λf̂β(t, λ) =
∑
n:odd

Jn(λ− t)−(n/2)−1,

where for k = 0, 1, 2, . . .

J2k+1 = 2−k−
1
2 (2k + 1)!!~1/2 ∂

∂qk
, J−2k−1 =

2k+ 1
2

(2k − 1)!!
~−1/2qk.

The formula for the propagator (6.6), (6.13) assumes the form

Pβ,β(t, λ; µ− λ) =
∞∑
k=0

(2k + 1)(µ− t)−k−
3
2 (λ− t)k−

1
2

= −2ιµ−t,λ−t∂µ((µ− λ)−1(µ− t)1/2(λ− t)−1/2).
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On the other hand, we have

Xt(ωβ, λ) = 1
4Xt(β(−1)β, λ) = 1

4 :Xt(β, λ)Xt(β, λ): + 1
4P

0
β,β(t, λ).

After a short computation, we find P 0
β,β(t, λ) = (λ− t)−2/4, which implies

Xt(ωβ, λ) =
∑
m∈Z

Lm(λ− t)−m−2,

where the Virasoro operators are

Lm =
1
16
δm,0 +

1
4

∑
k∈Z

:J2(k+m)+1J−2k−1:.

For example, the first few operators are as follows:

L−1 =
1
2~
q0

2 +
∞∑
k=0

qk+1
∂

∂qk
,

L0 =
1
16

+
1
2

∞∑
k=0

(2k + 1)qk
∂

∂qk
,

L1 =
~
8
∂2

∂q0
2 +

1
4

∞∑
k=0

(2k + 3)(2k + 1)qk
∂

∂qk+1
,

L2 =
3~
8

∂2

∂q0∂q1
+

1
8

∞∑
k=0

(2k + 5)(2k + 3)(2k + 1)qk
∂

∂qk+2
.

After setting ~ = 1, these become precisely the Virasoro operators that characterize the Witten–
Kontsevich tau-function (see [Wit92]).

Finally, let us point out that the total descendant potential is obtained from a product of
formal power series that are obtained from the Witten–Kontsevich tau-function by rescaling:

Dpt(~, q) 7→ Dpt(~∆i, q
√

∆i).

Since the above Virasoro operators are invariant under such a rescaling, the rescaled potentials
still satisfy the same Virasoro constraints.

This completes the proof of Theorem 1.1.
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