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ADJUNCTION AND INVERSION OF ADJUNCTION

OSAMU FUJINO and KENTA HASHIZUME

Abstract. We establish adjunction and inversion of adjunction for log

canonical centers of arbitrary codimension in full generality.

§1. Introduction

Throughout this paper, we work over C, the complex number filed. We establish the

following adjunction and inversion of adjunction for log canonical centers of arbitrary

codimension.

Theorem 1.1. Let X be a normal variety, and let Δ be an effective R-divisor on X such

that KX +Δ is R-Cartier. Let W be a log canonical center of (X,Δ), and let ν : Z →W be

the normalization of W. Then we have the adjunction formula

ν∗(KX +Δ) =KZ +BZ +MZ

with the following properties:

(A) (X,Δ) is log canonical in a neighborhood of W if and only if (Z,BZ +MZ) is an NQC

generalized log canonical pair. Here the abbreviation “NQC” stands for “nef Q-Cartier

combinations”.

(B) (X,Δ) is log canonical in a neighborhood of W and W is a minimal log canonical center

of (X,Δ) if and only if (Z,BZ +MZ) is an NQC generalized Kawamata log terminal

pair.

For the definition of NQC generalized log canonical pairs and NQC generalized Kawamata

log terminal pairs, see [13, §2].
For the formulation of adjunction and inversion of adjunction for log canonical centers of

arbitrary codimension in full generality, the notion of b-divisors, which was first introduced

by Shokurov, is very useful. In fact, the R-divisors BZ and MZ in Theorem 1.1 are the

traces of certain R-b-divisors B and M on Z, respectively. The precise version of Theorem

1.1 is the following.

Theorem 1.2 (Adjunction and inversion of adjunction). Let X be a normal variety,

and let Δ be an effective R-divisor on X such that KX +Δ is R-Cartier. Let W be a log

canonical center of (X,Δ), and let ν : Z →W be the normalization of W. Then there exist

a b-potentially nef R-b-divisor M and an R-b-divisor B on Z such that BZ is effective with

ν∗(KX +Δ) =KZ +MZ +BZ .
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120 O. FUJINO AND K. HASHIZUME

More precisely, there exists a projective birational morphism p : Z ′ → Z from a smooth

quasi-projective variety Z ′ such that:

(i) M=MZ′ and MZ′ is a potentially nef R-divisor on Z ′.

(ii) K+B=KZ′ +BZ′ .

(iii) SuppBZ′ is a simple normal crossing divisor on Z ′.

(iv) ν ◦p
(
B>1

Z′
)
=W ∩Nlc(X,Δ) holds set-theoretically, where Nlc(X,Δ) denotes the non-lc

locus of (X,Δ).

(v) ν ◦ p
(
B≥1

Z′

)
= W ∩

(
Nlc(X,Δ)∪

⋃
W �⊂W † W †

)
, where W † runs over log canonical

centers of (X,Δ) which do not contain W, holds set-theoretically.

Hence, (Z,BZ +MZ) is generalized log canonical, that is, B>1
Z′ = 0, if and only if (X,Δ)

is log canonical in a neighborhood of W. Moreover, (Z,BZ +MZ) is generalized Kawamata

log terminal, that is, B≥1
Z′ = 0, if and only if (X,Δ) is log canonical in a neighborhood of W

and W is a minimal log canonical center of (X,Δ). We note that MZ′ is semi-ample when

dimW = 1. We also note that if KX +Δ is Q-Cartier, then B and M become Q-b-divisors

by construction.

In this paper, the R-b-divisors B and M in Theorem 1.2 are defined by using the notion

of basic R-slc-trivial fibrations. Here, we explain an alternative definition of B and M for

the reader’s convenience. For the details of Definition 1.3, see [11, §5] and [10, Def. 2.1].

Definition 1.3 (see [11, §5], [10, Def. 2.1], and Remark 6.1). Let (X,Δ), W, and

ν : Z →W be as in Theorem 1.2. For any higher birational model ρ : Z̃ → Z, we consider

all prime divisors T over X such that a(T,X,Δ) = −1 and the center of T on X is W.

We take a log resolution f : Y →X of (X,Δ) so that T is a prime divisor on Y and the

induced map fT : T ��� Z̃ is a morphism. We put ΔT = (ΔY −T )|T , where ΔY is defined

by KY +ΔY = f∗(KX +Δ). For any prime divisor P on Z̃, we define a real number αP,T

by

αP,T = sup{λ ∈ R |(T,ΔT +λf∗
TP ) is sub log canonical over the generic point of P}.

Then the trace BZ̃ of B on Z̃ is defined as

BZ̃ =
∑
P

(1− inf
T
αP,T )P,

where P runs over prime divisors on Z̃ and T runs over prime divisors over X such that

a(T,X,Δ)=−1 and the center of T on X is W. When W is a prime divisor on X, T is the

strict transform of W on Y. In this case, we can easily check that BZ̃ = (fT )∗ΔT holds. We

consider the R-line bundle L on X associated with KX +Δ. We fix an R-Cartier R-divisor

DZ̃ on Z̃ whose associated R-line bundle is ρ∗ν∗(L|W ). Then the trace MZ̃ of M on Z̃ is

defined as

MZ̃ =DZ̃ −KZ̃ −BZ̃ .

We simply write

ρ∗ν∗(KX +Δ) =KZ̃ +BZ̃ +MZ̃

if there is no danger of confusion (see also Remark 6.1).
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As we saw in Definition 1.3, the R-b-divisor B on Z depends only on the singularities

of (X,Δ) near W. Conversely, Theorem 1.2(ii)–(v) implies that B remembers properties of

the singularities of (X,Δ) near W. If we put BZ =BZ and MZ =MZ , then Theorem 1.1

directly follows from Theorem 1.2. Our new formulation of adjunction and inversion of

adjunction includes some classical results as special cases. The following corollary is the case

of dimW = dimX−1, which recovers the classical adjunction and inversion of adjunction.

Corollary 1.4 (Classical adjunction and inversion of adjunction). In Theorem 1.1,

we further assume that dimW = dimX−1, that is, W is a prime divisor on X. Then MZ

and BZ become zero and Shokurov’s different, respectively. Then (A) recovers Kawakita’s

inversion of adjunction on log canonicity. By (B), we have that (X,Δ) is purely log terminal

in a neighborhood of W if and only if (Z,BZ) is Kawamata log terminal.

We know that we have already had many related results. We only make some remarks

on [3], [12].

Remark 1.5 (Hacon’s inversion of adjunction). In [12, Th. 1], Hacon treated inversion

of adjunction on log canonicity for log canonical centers of arbitrary codimension under the

extra assumption that Δ is a boundary Q-divisor. We note that the b-divisor B(V ;X,Δ)

in [12] coincides with B in Theorem 1.2 by [10, Th. 1.2]. In [11, Th. 5.4], we proved a

generalization of [12, Th. 1]. We note thatB in [11, Th. 5.4] coincides withB in Theorem 1.2.

Hence, Theorem 1.2 can be seen as a complete generalization of [11, Th. 5.4] and [12, Th. 1].

Remark 1.6 (Generalized adjunction and inversion of adjunction by Filipazzi). In

[3], Filipazzi established some related results for generalized pairs (see, e.g., [3, Th. 1.6].

Although they are more general than Theorems 1.1 and 1.2 in some sense, they do not

include Theorem 1.1.

The main ingredients of Theorem 1.2 are the existence theorem of log canonical

modifications established in [11] and the theory of basic slc-trivial fibrations in [6], [7].

Hence, this paper can be seen as a continuation of [7], [11]. Moreover, the theory of partial

resolutions of singularities of pairs in [2] is indispensable. We do not use Kawakita’s inversion

of adjunction (see [15, Th.]) nor the Kawamata–Viehweg vanishing theorem. If KX +Δ is

Q-Cartier, then Theorem 1.2 easily follows from [6], [7], [11]. Unfortunately, however, the

framework of basic slc-trivial fibrations discussed in [6] is not sufficient for our purposes in

this paper. Hence, we establish the following result.

Theorem 1.7 (Corollary 5.2). Let f : (X,B)→ Y be a basic R-slc-trivial fibration, and

let B and M be the discriminant and moduli R-b-divisors associated with f : (X,B)→ Y ,

respectively. Then we have the following properties:

(i) K+B is R-b-Cartier, where K is the canonical b-divisor of Y.

(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ → Y

from a normal variety Y ′ such that MY ′ is a potentially nef R-divisor on Y ′ and that

M=MY ′ holds.

If f : (X,B) → Y is a basic Q-slc-trivial fibration, then Theorem 1.7 is nothing but [6,

Th. 1.2], which is the main result of [6]. More precisely, we establish the following theorem.

Theorem 1.8 (see Theorem 5.1). Let f : (X,B)→Y be a projective surjective morphism

from a simple normal crossing pair (X,B) to a smooth quasi-projective variety Y such that

every stratum of X is dominant onto Y and f∗OX �OY with:
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122 O. FUJINO AND K. HASHIZUME

• B =B≤1 holds over the generic point of Y,

• there exists an R-Cartier R-divisor D on Y such that KY +B ∼R f∗D holds, and

• rankf∗OX(	−(B<1)
) = 1.

We assume that there exists a simple normal crossing divisor Σ on Y such that SuppD⊂Σ

and that every stratum of (X,SuppB) is smooth over Y \ Σ. Let B and M be the

discriminant and moduli R-b-divisors associated t with f : (X,B)→ Y , respectively. Then:

(i) K+B=KY +BY holds, where K is the canonical b-divisor of Y, and

(ii) MY is a potentially nef R-divisor on Y with M=MY .

Note that Theorem 1.8 completely generalizes [14, Lem. 2.8]. By Theorem 1.8, we can

use the framework of basic slc-trivial fibrations in [6] for R-divisors. We also note that the

main part of this paper is devoted to the proof of Theorem 1.8. In the proof of Theorem 1.2,

we naturally construct a basic R-slc-trivial fibration f : (V,ΔV )→ Z by taking a suitable

resolution of singularities of the pair (X,Δ). The R-b-divisorsB andM on Z in Theorem 1.2

are the discriminant and moduli R-b-divisors associated with f : (V,ΔV )→Z, respectively.

Conjecture 1.9. In Theorem 1.8, MY is semi-ample.

If Conjecture 1.9 holds true, then M in Theorem 1.2 is b-semi-ample, that is, MZ′ is

semi-ample. Note that Conjecture 1.9 follows from [6, Conj. 1.4]. When dimY = 1, we can

easily check that MY is semi-ample by [9, Cor. 1.4]. Unfortunately, however, it is still

widely open. In this paper, we prove Conjecture 1.9 for basic slc-trivial fibrations of relative

dimension one under some extra assumption (see Theorem 7.2). Then we establish the

following theorem.

Theorem 1.10 (see Corollary 7.3). If W is a codimension 2 log canonical center of

(X,Δ) in Theorem 1.2, then M is b-semi-ample.

Theorem 1.10 generalizes Kawamata’s result (see [16, Th. 1]). For the details, see

Corollary 7.3.

We briefly look at the organization of this paper. In §2, we recall some basic definitions

and results. In §3, we introduce the notion of basic R-slc-trivial fibrations and recall the

main result of [6]. In §4, we slightly generalize the main result of [6]. This generalization (see

Theorem 4.1) seems to be indispensable in order to treat basic R-slc-trivial fibrations. In

§5, we establish a fundamental theorem for basic R-slc-trivial fibrations (see Theorems 1.8

and 5.1). In §6, we prove the main result, that is, adjunction and inversion of adjunction

for log canonical centers of arbitrary codimension, in full generality. More precisely, we

first establish Theorem 1.2. Then we see that Theorem 1.1 and Corollary 1.4 easily follow

from Theorem 1.2. In §7, we treat adjunction and inversion of adjunction for log canonical

centers of codimension 2.

§2. Preliminaries

In this paper, we freely use the standard notation as in [4]–[7]. A scheme means a

separated scheme of finite type over C. A variety means an integral scheme, that is, an

irreducible and reduced separated scheme of finite type over C. We note that Q and R

denote the sets of rational numbers and real numbers, respectively. We also note that Q>0

and R>0 are the sets of positive rational numbers and positive real numbers, respectively.

Similarly, Q≥0 denotes the set of nonnegative rational numbers.
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Here, we collect some basic definitions for the reader’s convenience. Let us start with the

definition of potentially nef divisors.

Definition 2.1 (Potentially nef divisors; see [6, Def. 2.5]). Let X be a normal variety,

and let D be a divisor on X. If there exist a completion X† of X, that is, X† is a complete

normal variety and contains X as a dense Zariski open subset, and a nef divisor D† on

X† such that D = D†|X , then D is called a potentially nef divisor on X. A finite Q>0-

linear (resp. R>0-linear) combination of potentially nef divisors is called a potentially nef

Q-divisor (resp. R-divisor).

We give two important remarks on potentially nef R-divisors.

Remark 2.2. Let D be a nef R-divisor on a smooth projective variety X. Then D is not

necessarily a potentially nef R-divisor. This means that D is not always a finite R>0-linear

combination of nef Cartier divisors on X.

Remark 2.3. Let X be a normal variety, and let D be a potentially nef R-divisor on

X. Then D ·C ≥ 0 for every projective curve C on X. In particular, D is π-nef for every

proper morphism π : X → S to a scheme S.

It is convenient to use b-divisors to explain several results. Here, we do not repeat the

definition of b-divisors. For the details, see [6, §2].
Definition 2.4 (Canonical b-divisors). Let X be a normal variety, and let ω be a top

rational differential form of X. Then (ω) defines a b-divisor K. We call K the canonical

b-divisor of X.

Definition 2.5 (R-Cartier closures). The R-Cartier closure of an R-Cartier R-divisor

D on a normal variety X is the R-b-divisor D with trace

DY = f∗D,

where f : Y →X is a proper birational morphism from a normal variety Y.

We use the following definition in order to state our results (see Theorem 1.2).

Definition 2.6 [6, Def. 2.12]. Let X be a normal variety. An R-b-divisor D of X is

b-potentially nef (resp. b-semi-ample) if there exists a proper birational morphism X ′ →X

from a normal variety X ′ such that D =DX′ , that is, D is the R-Cartier closure of DX′ ,

and that DX′ is potentially nef (resp. semi-ample). An R-b-divisor D of X is R-b-Cartier if

there is a proper birational morphism X ′ →X from a normal variety X ′ such that D=DX′ .

Obviously, D is said to be Q-b-Cartier when DX′ is Q-Cartier and D=DX′ .

For the reader’s convenience, let us recall the definition of singularities of pairs. The

following definition is standard and is well known.

Definition 2.7 (Singularities of pairs). Let X be a variety, and let E be a prime divisor

on Y for some birational morphism f : Y →X from a normal variety Y. Then E is called

a divisor over X. A normal pair (X,Δ) consists of a normal variety X and an R-divisor Δ

on X such that KX +Δ is R-Cartier. Let (X,Δ) be a normal pair, and let f : Y →X be a

projective birational morphism from a normal variety Y. Then we can write

KY = f∗(KX +Δ)+
∑
E

a(E,X,Δ)E
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with

f∗

(∑
E

a(E,X,Δ)E

)
=−Δ,

where E runs over prime divisors on Y. We call a(E,X,Δ) the discrepancy of E with respect

to (X,Δ). Note that we can define the discrepancy a(E,X,Δ) for any prime divisor E over

X by taking a suitable resolution of singularities of X. If a(E,X,Δ)≥−1 (resp. >−1) for

every prime divisor E over X, then (X,Δ) is called sub log canonical (resp. sub Kawamata

log terminal). We further assume that Δ is effective. Then (X,Δ) is called log canonical

and Kawamata log terminal if it is sub log canonical and sub Kawamata log terminal,

respectively. When Δ is effective and a(E,X,Δ)>−1 holds for every exceptional divisor E

over X, we say that (X,Δ) is purely log terminal.

Let (X,Δ) be a log canonical pair. If there exists a projective birational morphism f : Y →
X from a smooth variety Y such that both Exc(f), the exceptional locus of f, and Exc(f)∪
Suppf−1

∗ Δ are simple normal crossing divisors on Y and that a(E,X,Δ) > −1 holds for

every f -exceptional divisor E on Y, then (X,Δ) is called divisorial log terminal (dlt). It is

well known that if (X,Δ) is purely log terminal, then it is dlt.

In this paper, the notion of non-lc loci and log canonical centers is indispensable.

Definition 2.8 (Non-lc loci and log canonical centers). Let (X,Δ) be a normal pair.

If there exist a projective birational morphism f : Y → X from a normal variety Y and

a prime divisor E on Y such that (X,Δ) is sub log canonical in a neighborhood of the

generic point of f(E) and that a(E,X,Δ) =−1, then f(E) is called a log canonical center

of (X,Δ).

From now on, we further assume that Δ is effective. The non-lc locus of (X,Δ), denoted

by Nlc(X,Δ), is the smallest closed subset Z of X such that the complement (X \Z,Δ|X\Z)

is log canonical. We can define a natural scheme structure on Nlc(X,Δ) by the non-lc ideal

sheaf JNLC(X,Δ) of (X,Δ). For the definition of JNLC(X,Δ), see [4, §7].

We omit the precise definition of NQC generalized log canonical pairs and NQC

generalized Kawamata log terminal pairs here since we need it only in Theorem 1.1 and the

statement of Theorem 1.2 is sharper than that of Theorem 1.1. For the basic definitions and

properties of generalized polarized pairs, we recommend the reader to see [13, §2]. Note that
the notion of generalized pairs plays a crucial role in the recent study of higher-dimensional

algebraic varieties.

Definition 2.9. Let X be an equidimensional reduced scheme. Note that X is not

necessarily regular in codimension one. Let D be an R-divisor (resp. a Q-divisor), that is,

D is a finite formal sum
∑

i diDi, where Di is an irreducible reduced closed subscheme of X

of pure codimension one and di ∈ R (resp. di ∈Q) for every i such that Di =Dj for i = j.

We put

D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, D>1 =
∑
di>1

diDi, and 	D
=
∑
i

	di
Di,
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where 	di
 is the integer defined by di ≤ 	di
 < di+1. We note that �D� = −	−D
 and

{D}=D−�D�. Similarly, we put

D≥1 =
∑
di≥1

diDi.

Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor

(resp. Q-divisor) if D =D≤1 holds. When D is effective and D =D≤1 holds, we call D a

boundary R-divisor (resp. Q-divisor).

We further assume that f : X → Y is a surjective morphism onto a variety Y such that

every irreducible component of X is dominant onto Y. Then we put

Dv =
∑

f(Di)�Y

diDi and Dh =
∑

f(Di)=Y

diDi.

We call Dv (resp. Dh) the vertical part (resp. horizontal part) of D with respect to

f : X → Y .

§3. On basic slc-trivial fibrations

Roughly speaking, a basic slc-trivial fibration is a canonical bundle formula for simple

normal crossing pairs. It was first introduced in [6] based on [8]. Let us start with the

definition of simple normal crossing pairs.

Definition 3.1 (Simple normal crossing pairs). A pair (X,B) consists of an equidi-

mensional reduced scheme X and an R-divisor B on X. We say that the pair (X,B) is

simple normal crossing at a point x ∈X if X has a Zariski open neighborhood U of x that

can be embedded in a smooth variety M, where M has a regular system of parameters

(x1, . . . ,xp,y1, . . . ,yr) at x= 0 in which U is defined by a monomial equation

x1 · · ·xp = 0

and

B|U =
r∑

i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,B) is a simple normal crossing pair if it is simple normal crossing at every

point of X.

Let (X,B) be a simple normal crossing pair, and let ν : Xν →X be the normalization.

We define Bν by KXν +Bν = ν∗(KX +B), that is, Bν is the sum of the inverse images of

B and the singular locus of X. Then a stratum of (X,B) is an irreducible component of X

or the ν-image of some log canonical center of (Xν ,Bν).

Let (X,B) be a simple normal crossing pair, and let X =
⋃

i∈IXi be the irreducible

decomposition of X. Then a stratum of X means an irreducible component of Xi1 ∩·· ·∩Xik

for some {i1, . . . , ik} ⊂ I. It is easy to see that W is a stratum of X if and only if W is a

stratum of (X,0).

We introduce the notion of basic slc-trivial fibrations. In [6], we only treat basic Q-slc-

trivial fibrations.
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Definition 3.2 (Basic slc-trivial fibrations; see [6, Def. 4.1]). A pre-basic Q-slc-trivial

(resp. R-slc-trivial) fibration f : (X,B) → Y consists of a projective surjective morphism

f : X → Y and a simple normal crossing pair (X,B) satisfying the following properties:

(1) Y is a normal variety.

(2) Every stratum of X is dominant onto Y and f∗OX �OY .

(3) B is a Q-divisor (resp. an R-divisor) such that B = B≤1 holds over the generic point

of Y.

(4) There exists a Q-Cartier Q-divisor (resp. an R-Cartier R-divisor) D on Y such that

KX+B∼Q f∗D (resp.KX+B∼R f∗D), that is,KX+B is Q-linearly (resp. R-linearly)

equivalent to f∗D.

If a pre-basic Q-slc-trivial (resp. R-slc-trivial) fibration f : (X,B)→ Y also satisfies

(5) rankf∗OX(	−(B<1)
) = 1,

then it is called a basic Q-slc-trivial (resp. R-slc-trivial) fibration.

If there is no danger of confusion, we sometimes use (pre-)basic slc-trivial fibrations to

denote (pre-)basic Q-slc-trivial fibrations or (pre-)basic R-slc-trivial fibrations.

Remark 3.3 (see Remark 4.5). The condition f∗OX �OY in (2) in Definition 3.2 does

not play an important role. Moreover, we have to treat the case where OY � f∗OX in this

paper. The reader can find that we do not need the condition f∗OX �OY in many places

in [6]. Hence, it may be better to remove the condition f∗OX �OY from the definition of

pre-basic slc-trivial fibrations (see [6, Def. 4.1] and Definition 3.2). However, we keep it here

not to cause unnecessary confusion.

Note that the condition f∗OX � OY always holds for basic slc-trivial fibrations even

when we remove it from the definition of pre-basic slc-trivial fibrations. We will see it

more precisely. It is sufficient to see that if every stratum of X is dominant onto Y with

rankf∗OX(	−(B<1)
) = 1, then the natural map OY → f∗OX must be an isomorphism.

We note that there are natural inclusions

OY ↪→ f∗OX ↪→ f∗OX(	−(B<1)
)

since 	−(B<1)
 is effective. Hence, OY ↪→ f∗OX is an isomorphism over some nonempty

Zariski open subset of Y and rankf∗OX = 1 holds. We consider the Stein factorization

f : X −→ Z := SpecY f∗OX
α−→ Y

of f : X → Y . Since every irreducible component of X is dominant onto Y, Z is a variety.

Moreover, α : Z→Y is birational since rankf∗OX =1. By Zariski’s main theorem, α : Z→Y

is an isomorphism. Hence, the natural map OY → f∗OX is an isomorphism.

In order to define discriminant R-b-divisors and moduli R-b-divisors for basic slc-trivial

fibrations, we need the notion of induced (pre-)basic slc-trivial fibrations.

Definition 3.4 (Induced (pre-)basic slc-trivial fibrations [6, 4.3]). Let f : (X,B)→ Y

be a (pre-)basic slc-trivial fibration, and let σ : Y ′ → Y be a generically finite surjective

morphism from a normal variety Y ′. Then we have an induced (pre-)basic slc-trivial fibration

f ′ : (X ′,BX′)→ Y ′, where BX′ is defined by μ∗(KX +B) =KX′ +BX′ , with the following
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commutative diagram:

(X ′,BX′)
μ ��

f ′

��

(X,B)

f

��
Y ′

σ
�� Y,

whereX ′ coincides withX×Y Y ′ over a nonempty Zariski open subset of Y ′. More precisely,

(X ′,BX′) is a simple normal crossing pair with a morphism X ′ → X ×Y Y ′ that is an

isomorphism over a nonempty Zariski open subset of Y ′ such that X ′ is projective over Y ′

and that every stratum of X ′ is dominant onto Y ′.

Now, we are ready to define discriminant R-b-divisors and moduli R-b-divisors for basic

slc-trivial fibrations.

Definition 3.5 (Discriminant and moduli R-b-divisors [6, 4.5]). Let f : (X,B)→ Y be

a (pre-)basic slc-trivial fibration as in Definition 3.2. Let P be a prime divisor on Y. By

shrinking Y around the generic point of P, we assume that P is Cartier. We set

bP =max

{
t ∈ R

∣∣∣∣ (Xν ,Bν + tν∗f∗P ) is sub log canonical

over the generic point of P

}
,

where ν : Xν →X is the normalization and KXν +Bν = ν∗(KX +B), that is, Bν is the sum

of the inverse images of B and the singular locus of X, and set

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y. Then it is easy to see that BY is a well-defined

R-divisor on Y and is called the discriminant R-divisor of f : (X,B)→ Y . We set

MY =D−KY −BY

and call MY the moduli R-divisor of f : (X,B)→ Y . By definition, we have

KX +B ∼R f∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′, and let

f ′ : (X ′,BX′) → Y ′ be an induced (pre-)basic slc-trivial fibration by σ : Y ′ → Y . We can

define BY ′ , KY ′ , and MY ′ such that σ∗D =KY ′ +BY ′ +MY ′ , σ∗BY ′ =BY , σ∗KY ′ =KY ,

and σ∗MY ′ =MY . We note that BY ′ is independent of the choice of (X ′,BX′), that is, BY ′

is well defined. Hence, there exist a unique R-b-divisor B such that BY ′ = BY ′ for every

σ : Y ′ → Y and a unique R-b-divisor M such that MY ′ =MY ′ for every σ : Y ′ → Y . Note

that B is called the discriminant R-b-divisor and that M is called the moduli R-b-divisor

associated with f : (X,B) → Y . We sometimes simply say that M is the moduli part of

f : (X,B)→ Y .

Let g : V → Y be a proper surjective morphism from an equidimensional normal scheme

V onto a normal variety Y such that every irreducible component of V is dominant onto

Y. Let G be an R-divisor on V such that KV +G is R-Cartier. Assume that (V,G) is sub

log canonical over the generic point of Y. Let σ : Y ′ → Y be a generically finite surjective
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morphism from a normal variety Y ′. Then we have the following commutative diagram:

(V ′,G′)
μ ��

g′

��

(V,G)

g

��
Y ′

σ
�� Y,

where V ′ is the normalization of the main components of V ×Y Y ′ and G′ is defined by

KV ′ +G′ = μ∗(KV +G). Then we can define the discriminant R-divisor BY on Y and the

discriminant R-b-divisor B as in Definition 3.5. Let f : (X,B) → Y be a (pre-)basic slc-

trivial fibration, and let ν : Xν →X be the normalization with KXν +Bν = ν∗(KX +B).

Then the discriminant R-b-divisor B associated with f : (X,B)→ Y defined in Definition

3.5 obviously coincides with that of f ◦ν : (Xν ,Bν)→ Y by definition.

Let us see the main result of [6].

Theorem 3.6 [6, Th. 1.2]. Let f : (X,B) → Y be a basic Q-slc-trivial fibration, and

let B and M be the discriminant and moduli Q-b-divisors associated with f : (X,B)→ Y ,

respectively. Then we have the following properties:

(i) K+B is Q-b-Cartier, where K is the canonical b-divisor of Y.

(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ → Y

from a normal variety Y ′ such that MY ′ is a potentially nef Q-divisor on Y ′ and that

M=MY ′ .

The following result was established in [9].

Theorem 3.7 [9, Cor. 1.4]. In Theorem 3.6, if Y is a curve, then MY is semi-ample.

We close this section with important remarks on [6].

Remark 3.8. In part (d) in [6, §6], we assume that SuppMY ⊂ SuppΣY . However, this

condition is unnecessary. This is because if P is not an irreducible component of SuppΣY ,

then we can always take a prime divisor Q on V such that multQ(−BV + h∗BY ) = 0,

h(Q) = P , and multQh∗P = 1 (see [6, Prop. 6.3(iv)]).

Remark 3.9. In [6, 6.1], we assume that Supp(B−f∗(BY +MY )) is a simple normal

crossing divisor on X. However, we do not need this assumption. All we need in [6, 6.1] is

the fact that the support of {Δ} is a simple normal crossing divisor on X. We note that

Supp{Δ} ⊂ Supp(B−f∗(BY +MY ))

always holds since Δ =KX/Y +B−f∗(BY +MY ).

§4. Fundamental theorem for basic Q-slc-trivial fibrations

In this section, we slightly generalize the main theorem of [6] (see Theorem 3.6). The

following theorem is the main result of this section.

Theorem 4.1 (see [6, Th. 1.2]). Let f : (X,B) → Y be a basic Q-slc-trivial fibration

such that Y is a smooth quasi-projective variety. We write KX +B ∼Q f∗D. Assume that

there exists a simple normal crossing divisor Σ on Y such that SuppD ⊂ Σ and that every

stratum of (X,SuppB) is smooth over Y \Σ. Then:
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(i) K+B=KY +BY holds.

(ii) MY is a potentially nef Q-divisor on Y with M=MY .

In §5, Theorem 4.1 is generalized for basic R-slc-trivial fibrations (see Theorems 1.8

and 5.1). We note that Theorem 4.1 is indispensable for the proof of Theorem 5.1 in §5.
For the proof of Theorem 4.1, we prepare a lemma on simultaneous partial resolutions of

singularities of pairs. Let us recall the main result of [2].

Theorem 4.2 [2, Th. 1.4]. Let X be a reduced scheme, and let D be a Q-divisor on X.

Let U be the largest open subset of X such that (U,D|U ) is a simple normal crossing pair.

Then there is a morphism f : X̃ →X, which is a composition of blowups, such that:

• the exceptional locus Exc(f) is of pure codimension one,

• putting D̃ = f−1
∗ D+Exc(f), then (X̃,D̃) is a simple normal crossing pair, and

• f is an isomorphism over U.

Remark 4.3 (Functoriality; see [2, Rem. 1.5(3)]). By [2, Rem. 1.5(3)], for every reduced

scheme X and a Q-divisor D on X, we may take fX : X̃ →X of Theorem 4.2 satisfying the

following functoriality. Suppose that we are given an étale or a smooth morphism φ : X → Y

of reduced schemes and Q-divisors DX and DY on X and Y, respectively, such that:

• φ∗DY =DX and

• the number of irreducible components of X (resp. SuppDX) at a point x ∈X coincides

with that of Y (resp. SuppDY ) at φ(x) ∈ Y for every x ∈X.

Then, the morphisms fX : X̃ →X and fY : Ỹ → Y as in Theorem 4.2 form the diagram of

the fiber product

X̃

fX
��

φ̃ �� Ỹ

fY
��

X
φ

�� Y,

�

that is, X̃ =X×Y Ỹ .

The following lemma is a key lemma for the proof of Theorem 4.1.

Lemma 4.4. Let (X,B) be a simple normal crossing pair such that B is a Q-divisor.

Let f : X → Y be a surjective morphism onto a smooth variety Y such that every stratum

of (X,SuppB) is smooth over Y. We put Δ =KX +B and assume that bΔ ∼ 0 for some

positive integer b. We consider a b-fold cyclic cover

π : X̃ = SpecX

b−1⊕
i=0

OX(�iΔ�)−→X

associated with bΔ∼ 0. We put K
˜X +B

˜X = π∗(KX +B). Let Ũ be the largest Zariski open

subset of X̃ such that (Ũ ,B
˜X |

˜U ) is a simple normal crossing pair. Then there exists a

morphism d : V → X̃ given by a composition of blowups such that:

(i) d is an isomorphism over Ũ ,

(ii) (V,BV ) is a simple normal crossing pair, where KV +BV = d∗(K
˜X +B

˜X), and

(iii) every stratum of (V,SuppBV ) is smooth over Y.
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Proof. Let us quickly recall the b-fold cyclic cover π : X̃ →X. We fix a rational function

φ on X such that bΔ = div(φ). As usual, we can define an OX -algebra structure of⊕b−1
i=0 OX(�iΔ�) by bΔ= div(φ). We note that

OX(�iΔ�)×OX(�jΔ�)→OX(�(i+ j)Δ�)

is well defined for 0≤ i, j ≤ b−1 by �iΔ�+ �jΔ� ≤ �(i+ j)Δ� and that

OX(�(i+ j)Δ�)�OX(�(i+ j− b)Δ�)

for i+ j ≥ b defined by the multiplication with φ−1. We put

π : X̃ = SpecX

b−1⊕
i=0

OX(�iΔ�)

and call it a b-fold cyclic cover associated with bΔ ∼ 0. By construction, π : X̃ → X is

étale outside Supp{Δ}. We note that X̃ is normal over a neighborhood of the generic point

of every irreducible component of Supp{Δ}. We also note that (X̃,B
˜X) is simple normal

crossing in codimension one. Throughout this proof, we freely use the following commutative

diagram:

(X,B)

f

��

(X̃,B
˜X)

˜f

�����
���

���
��

π�� (V,BV )

h
������

����
����

����
����

��
d��

Y

Step 1. Let U and Z be affine open neighborhood of x ∈ X and y = f(x) ∈ Y ,

respectively. Without loss of generality, we may assume that U is a simple normal crossing

divisor on a smooth affine variety W since (X,B) is a simple normal crossing pair. By

shrinking W, U, and Z suitably, we get the following commutative diagram:

U

f |U ���
��

��
��

�
� � ι �� W

p

��
Z,

where ι is the natural closed embedding U ↪→W . From now on, we repeatedly shrink W, U,

and Z suitably without mentioning it explicitly. Since every stratum of X is smooth over

Y, we may assume that p is a smooth morphism between smooth affine varieties.

Step 2. Since p : W → Z is a smooth morphism, there exists a commutative diagram:

W

p
���

��
��

��
��

�
g �� Z×Cn

p1

��
Z,

where g is étale and p1 is the first projection (see, e.g., [1, Chap. VII, Def. 1.1 and Th.

1.8]). By choosing a coordinate system (z1, . . . , zn) of C
n suitably and shrinking U and W

if necessary, we may further assume that U is defined by a monomial

x1 · · ·xp = 0
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on W, where xi = g∗zi for 1≤ i≤ p, and

B|U =
r∑

i=1

αi(yi = 0)|U with αi ∈Q

holds, where yi = g∗zp+i for 1≤ i≤ r. Here, we used the hypothesis that every stratum of

(X,SuppB) is smooth over Y.

Step 3. We put L = (z1 · · ·zp = 0) in Cn. Then we have the following commutative

diagram.

U

f |U 		�
��

��
��

��
g|U �� Z×L

p1

��
Z

Note that g|U is étale because it is the base change of g by L ↪→ Cn. We put

D =
r∑

i=1

αi(zp+i = 0)

on Cn. Let p2 : Z×Cn → Cn be the second projection. Then B|U = g∗p∗2D|U holds.

Step 4. Without loss of generality, we may assume thatKZ ∼ 0 by shrinking Z suitably.

Then KU ∼ 0 holds. Hence, by using the second projection p2 : Z×Cn → Cn, we have

0∼ bΔ|U = b(KU +B|U )∼ bg|∗U
(
p∗2D|Z×L

)
.

Since g|U is étale, we see that all the coefficients of bp∗2D|Z×L are integers. Since p2 is the

second projection and D+L is a simple normal crossing divisor on Cn, all the coefficients

of bD are integers. Therefore, we have bD∼ 0. We fix a rational function σ on Cn such that

bD = div(σ). We consider the b-fold cyclic cover α : M → Cn associated with bD = div(σ).

We put N =α−1L. We define BN by KN +BN = (α|N )∗(KL+D|L) and put BZ×N = p∗2BN ,

where p2 : Z ×N → N is the second projection. Then we get the following commutative

diagram:

U ′

��

g′
�� Z×N

idZ×(α|N )

��

p2 �� N � � ��

α|N
��

M

α

��
U

f |U ���
��

��
��

��
g|U �� Z×L

p1

��

p2

�� L � � �� Cn

Z,

where g′ : U ′ → Z×N is the base change of g|U : U → Z×L by idZ × (α|N ). We put BU ′ =

g′∗BZ×N . Then KU ′ +BU ′ is equal to the pullback of KU +B|U to U ′.

Step 5. Since α : M → Cn is the b-fold cyclic cover associated with bD = div(σ), we

see that

M = SpecCn

b−1⊕
i=0

OCn(�iD�).
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Since p2 ◦ g : W → Z×Cn → Cn is the composition of an étale morphism and the second

projection, we have g∗p∗2�iD�|U = �ig∗p∗2D�|U = �iB�|U = �iB|U�, where the last equality

follows from that (U,B|U ) is a simple normal crossing pair. Let σU be a rational function

on U which is the pullback of σ. Then bB|U = div(σU ) because we have bD = div(σ). By

the construction of U ′ → U , we see that

U ′ = SpecU

b−1⊕
i=0

OU (�iB|U�)

and U ′ → U is the b-fold cyclic cover associated with bB|U = div(σU ).

We recall that Δ =KX +B and X̃ →X is the b-fold cyclic cover associated with bΔ=

div(φ). We put φU as the restriction of φ to U. Then, the morphism π−1(U) → U is the

b-fold cyclic cover associated with bΔ|U = div(φU ). Now, Δ|U −B|U is a Cartier divisor on

U and b(Δ|U −B|U ) = div(φU ·σ−1
U ). With this relation, we construct a b-fold cyclic cover

τ : U →U . Then τ is étale, τ∗(Δ|U −B|U ) is Cartier, and τ∗(Δ|U −B|U )∼ 0. So there exists

a rational function ξ on U such that ξb = τ∗(φU ·σ−1
U ), equivalently, τ∗(Δ|U −B|U ) = div(ξ).

From this, the b-fold cyclic cover U †
1 →U associated with bτ∗Δ|U =div(τ∗φU ) is isomorphic

to the b-fold cyclic cover U †
2 → U associated with bτ∗B|U = div(τ∗σU ) = div(τ∗φU · ξ−b).

Since τ : U → U is étale, the construction of U †
2 shows that U †

2 → U is the base change of

U ′ → U by U → U . Similarly, we see that U †
1 → U is the base change of π−1(U) → U by

U → U .

U †
2

��

a2 �� U ′

��

U †
1

��

a1 �� π−1(U)

��
U τ

�� U

�

U τ
�� U

�

We put a1 : U
†
1 → π−1(U) and a2 : U

†
2 → U ′. By construction, a1 and a2 are étale. We see

that the composition U †
1 → π−1(U)→ U is isomorphic to the composition U †

2 → U ′ → U by

construction. By this isomorphism, we obtain that a∗1(B ˜X |π−1(U)) is isomorphic to a∗2BU ′ .

In this way, there exist étale morphisms a : U † → π−1(U) and a′ : U † → U ′ over Z such

that U †
1 � U † � U †

2 with the following commutative diagram:

U †

a



��
��
��
��
�

a′

���
��

��
��

�

π−1(U)

π

��

U ′

��
U U

such that a∗(B
˜X |π−1(U)) = a′∗BU ′ .

Step 6. We apply [2, Th. 1.4] (see Theorem 4.2) to the pair (X̃,B
˜X). Then we obtain

a morphism d : V → X̃ given by a composite of blowups satisfying (i) and (ii). Hence, all

we have to do is to check that d : V → X̃ satisfies (iii).

Step 7. Recall that BZ×N = p∗2BN , where p2 : Z×N →N , and BU ′ = g′∗BZ×N . Recall

also the relation a∗(B
˜X |π−1(U)) = a′∗BU ′ . We apply [2, Th. 1.4] (see Theorem 4.2) to N and
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BN , and we obtain a morphism β : N ′ →N given by a composition of blowups. We apply

[2, Th. 1.4] again to Z×N and BZ×N . Then we get a morphism idZ ×β : Z×N ′ → Z×N

by the functoriality of [2, Th. 1.4] (see Remark 4.3). We put V̂ = d−1(π−1(U))⊂ V , and we

apply [2, Th. 1.4] to the pair of U † and a∗(B
˜X |π−1(U)), and the pair of U ′ and BU ′ . Then

we obtain morphisms V † → U † and V ′ → U ′.

We check that we may apply the functoriality (see Remark 4.3) to the morphisms

g′ : U ′ → Z×N,a′ : U † → U ′, and a : U † → π−1(U)

(see the diagram in the next paragraph) and divisors

BZ×N on Z×N,BU ′ on U ′, and B
˜X |π−1(U) on π−1(U) and their pullbacks.

We only check the second condition of Remark 4.3 for schemes because the case of divisors

can be proved by the same way. By construction, g′ is the base change of g|U : U →Z×L by

the morphism Z×N →Z×L. Because Z×L is a simple normal crossing divisor on Z×Cn

and g|U is étale, by arguing locally, we see that g|U satisfies the second condition of Remark

4.3. Then so does g′ since g′ is constructed by the base change of g|U . Similarly, a′ (resp. a)

is constructed with the base change of τ : U → U by U ′ → U (resp. π−1(U)→ U), and U

is a simple normal crossing divisor on W. Thus, the same argument as above implies that

a′ and a satisfy the second condition of Remark 4.3. Thus, we may apply the functoriality

(see Remark 4.3) to the above morphisms and divisors.

Applying the functoriality (see Remark 4.3), we have the following diagram:

V̂

d|
̂V

��

V †��

��

�� V ′

��

�� Z×N ′

��
π−1(U) U †

a
��

a′
��

�

U ′
g′

��

�

Z×N,

�

where each square is the fiber product. By construction, all the upper horizontal morphisms

are étale. Let BV † (resp. B
̂V ) be the sum of the birational transform of a′∗BU ′ (resp.

B
˜X |π−1(U)) and the exceptional locus of V † →U † (resp. V̂ → π−1(U)). Then, every stratum

of (V †,SuppBV †) is smooth over Z. Since each irreducible component of V † is smooth over

Z and V † → V̂ is étale, we see that each irreducible component of V̂ is smooth over Z. By a

similar argument, we see that every stratum of (V̂ ,SuppB
̂V ) is smooth over Z. This implies

that d : V → X̃ satisfies (iii).

We finish the proof of Lemma 4.4.

Before we start the proof of Theorem 4.1, we make an important remark on [6].

Remark 4.5 (see Remark 3.3). In Theorem 4.1, we can write

KX +B+
1

b
div(ϕ) = f∗D

for some positive integer b and a rational function ϕ ∈ Γ(X,K∗
X), where KX is the sheaf

of total quotient rings of OX and K∗
X denotes the sheaf of invertible elements in KX , such

that b(KX +B−f∗D)∼ 0. In general, b is larger than b(F,BF ) in [6, §6]. We take a b-fold

cyclic cover π : X̃ → X associated with bΔ ∼ 0, where Δ = KX +B− f∗D, as in [6, §6].
Then the general fiber of h : V → Y is not necessarily connected in [6, §6]. Moreover, V
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is not necessarily connected. This means that [6, Prop. 6.3(ii)] does not hold true since

the natural map OY → h∗OV is not always an isomorphism. Fortunately, the condition

h∗OV �OY is not necessary for the proof of the other properties of [6, Prop. 6.3]. We note

that the condition h∗OV �OY is unnecessary in [6, Lem. 7.3 and Th. 8.1]. Hence, it may

be better to remove the condition f∗OX �OY from part (2) in Definition 3.2.

Let b be the smallest positive integer such that b(KX +B−f∗D)∼ 0. Then we can write

KX +B+
1

b
div(ϕ) = f∗D.

As usual, we consider the b-fold cyclic cover π : X̃ → X associated with bΔ = div(ϕ−1),

where Δ = KX +B− f∗D. Let b	 be any positive integer with b	 ≥ 2. We put ϕ	 = ϕb� .

Then we get

KX +B+
1

bb	
div(ϕ	) = f∗D.

Let π	 : X	 →X be the bb	-fold cyclic cover associated with bb	Δ=div
(
(ϕ	)−1

)
. We take the

H -invariant part of π	 : X	 →X, where H is the subgroup of the Galois group Gal(X	/X)�
Z/bb	Z of π	 : X	 → X corresponding to bZ/bb	Z. Then we can recover π : X̃ → X. Note

that π	 : X	 →X is decomposed into b	 components and that each component is isomorphic

to π : X̃ →X.

Let us prove Theorem 4.1.

Proof of Theorem 4.1. Here, we only explain how to modify the proof of [6, Th. 1.2] by

using Lemma 4.4.

By taking a completion as in [6, Lem. 4.12], we may further assume that Y is projective.

By Lemma 4.4, we can construct a commutative diagram (6.4) in [6, §6] satisfying (a)–

(g) such that ΣY = Σ holds without taking birational modifications of Y. Here, we do not

require the condition SuppMY ⊂ SuppΣY in part (d) in [6, §6] (see Remark 3.8). We also

do not require the condition that the general fiber of h : V → Y is connected (see Remark

4.5). The covering arguments and [6, Prop. 6.3] work without any modifications. We note

that Y is a smooth projective variety. In what follows, we apply the proof of [6, Th. 8.1].

Let γ : Y ′ → Y be a projective birational morphism from a normal variety Y ′. By replacing

Y ′ with a higher model if necessary, we may assume that Y ′ is smooth and that γ−1ΣY

is a simple normal crossing divisor on Y ′. With [6, Lem. 7.3], we construct τ : Y → Y a

unipotent reduction of the local monodromies around ΣY . Then the induced fibration over

Y satisfies [6, Prop. 6.3(iv) and (v)]. As in the proof of [6, Th. 8.1], we get a diagram:

Y

τ

��

Y
′γ′

��

τ ′

��
Y Y ′

γ
��

such that τ ′ is finite and the induced fibration over Y
′
satisfies [6, Prop. 6.3(iv) and (v)].

By [6, Th. 3.1], we see that MY is a nef Cartier divisor and γ′∗MY =MY
′ . Moreover, we

have τ∗MY =MY and τ ′∗MY ′ =MY
′ because τ and τ ′ are both finite (see [6, Lem. 4.10]).

Thus, we have that MY is a nef Q-divisor and γ∗MY = MY ′ . This is Theorem 4.1 (ii).

Theorem 4.1(i) immediately follows from Theorem 4.1(ii). So we are done.
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§5. Fundamental theorem for basic R-slc-trivial fibrations

In this section, we establish the following fundamental theorem for basic R-slc-trivial

fibrations.

Theorem 5.1 (see Theorem 1.8). Let f : (X,B)→ Y be a basic R-slc-trivial fibration

such that Y is a smooth quasi-projective variety. We write KX +B ∼R f∗D. Assume that

there exists a simple normal crossing divisor Σ on Y such that SuppD ⊂ Σ and that every

stratum of (X,SuppB) is smooth over Y \Σ. Then:

(i) K+B=KY +BY holds, and

(ii) MY is a potentially nef R-divisor on Y with M=MY .

By Theorem 5.1, which is obviously a generalization of Theorem 4.1, we can use the

theory of basic slc-trivial fibrations in [6], [7] for R-divisors. The following formulation may

be useful. Hence, we state it explicitly here for the reader’s convenience. We note that if

f : (X,B) → Y is a basic Q-slc-trivial fibration, then Corollary 5.2 is nothing but [6, Th.

1.2].

Corollary 5.2 [6, Th. 1.2]. Let f : (X,B)→ Y be a basic R-slc-trivial fibration, and

let B and M be the discriminant and moduli R-b-divisors associated with f : (X,B)→ Y ,

respectively. Then we have the following properties:

(i) K+B is R-b-Cartier, where K is the canonical b-divisor of Y.

(ii) M is b-potentially nef, that is, there exists a proper birational morphism σ : Y ′ → Y

from a normal variety Y ′ such that MY ′ is a potentially nef R-divisor on Y ′ and that

M=MY ′ holds.

Remark 5.3 (see [9, Cor. 1.4]). In Theorem 5.1 and Corollary 5.2, we can easily see

that MY is semi-ample when Y is a curve by Theorem 3.7 and Lemma 5.4.

Let us start with an easy lemma.

Lemma 5.4. Let f : (X,B)→ Y be a basic R-slc-trivial fibration with KX +B ∼R f∗D.

Then there exist a Q-divisor Bi on X, a Q-Cartier Q-divisor Di on Y, and a positive real

number ri for 1≤ i≤ k such that:

(1)
∑k

i=1 ri = 1 with
∑k

i=1 riBi =B and
∑k

i=1 riDi =D,

(2) SuppB = SuppBi, �B>1�= �B>1
i �, and 	−(B<1)
= 	−(B<1

i )
 hold for every i,

(3) if coeffS(B) ∈ Q for a prime divisor S on X, then coeffS(B) = coeffS(Bi) holds for

every i,

(4) SuppD = SuppDi holds for every i,

(5) if coeffT (D) ∈ Q for a prime divisor T on Y, then coeffT (D) = coeffT (Di) holds for

every i, and

(6) KX +Bi ∼Q f∗Di holds for every i.

In particular, f : (X,Bi) → Y is a basic Q-slc-trivial fibration with KX +Bi ∼Q f∗Di for

every i. Moreover, if t1, . . . , tk are real numbers such that 0 ≤ ti ≤ 1 for every i with∑k
i=1 ti = 1, then f :

(
X,

∑k
i=1 tiBi

)
→ Y is a basic R-slc-trivial fibration with

KX +
∑k

i=1 tiBi ∼R f∗
(∑k

i=1 tiDi

)
.
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Proof. The proof of [6, Lem. 11.1] works with some suitable minor modifications.

Therefore, we can take Bi, Di, and ri for 1 ≤ i ≤ k satisfying (1)–(6). By (2), Bi = B≤1
i

holds over the generic point of Y for every i. By (2) again, rankf∗OX(	−(B<1
i )
) =

rankf∗OX(	−(B<1)
) = 1. Hence, f : (X,Bi) → Y is a basic Q-slc-trivial fibration with

KX +Bi ∼Q f∗Di for every i. We put B̃ =
∑k

i=1 tiBi. Then B̃ = B̃≤1 holds over the generic

point of Y by (2). By (2) again, we see that 	−(B̃<1)
 = 	−(B<1)
 holds. Therefore,

f : (X,B̃)→ Y is a basic R-slc-trivial fibration.

We also need the following lemma.

Lemma 5.5. Let f : (X,B) → Y be a basic R-slc-trivial fibration. Let B denote the

discriminant R-b-divisor associated with f : (X,B)→ Y . Suppose that there are Q-divisors

B1, . . . ,Bk on X and real numbers r1, . . . , rk such that
∑k

i=1 ri = 1 and
∑k

i=1 riBi =B. We

put

P =

{
k∑

i=1

tiBi

∣∣∣∣∣ 0≤ ti ≤ 1 for every i with
k∑

i=1

ti = 1

}
.

Assume that f : (X,Δ)→ Y has the structure of a basic R-slc-trivial fibration for every Δ∈
P. For Δ ∈ P, BΔ denotes the discriminant R-b-divisor of the basic R-slc-trivial fibration

f : (X,Δ) → Y . Then, we can find Δ1, . . . ,Δl ∈ P which are Q≥0-linear combinations of

B1, . . . ,Bk and positive real numbers s1, . . . , sl such that:

•
∑l

j=1 sj = 1 and
∑l

j=1 sjΔj =B, and

• BY =
∑l

j=1 sjB
Δj

Y .

Here, BY (resp. B
Δj

Y ) is the trace of the discriminant R-b-divisor B (resp. BΔj) on Y.

Proof. Since B is an R-b-divisor, it is sufficient to prove the lemma for a resolution of

Y ′ →Y and the induced basic slc-trivial fibrations f ′ : (X ′,BX′)→Y and f ′ : (X ′,(Bi)X′)→
Y ′. Moreover, by Definition 3.5 and taking the normalization of X, we may assume that X

is a disjoint union of smooth varieties. Therefore, by replacing X, Y, B, and Bi, we may

assume that Y is smooth and there are simple normal crossing divisors ΣX on X and ΣY

on Y such that:

• SuppB ⊂ ΣX and SuppBi ⊂ ΣX for every i,

• Σv
X ⊂ f−1ΣY ⊂ ΣX , where Σv

X is the vertical part of ΣX ,

• f is smooth over Y \ΣY , and

• ΣX is relatively simple normal crossing over Y \ΣY .

Then it is clear that SuppBY ⊂ΣY and SuppBΔ
Y ⊂ΣY for all Δ∈P. We consider a rational

convex polytope

C =

⎧⎨⎩v = (v1, . . . ,vk) ∈ [0,1]k

∣∣∣∣∣∣
∑
j

vj = 1

⎫⎬⎭⊂ [0,1]k.

Then we may identify C with P by putting Δv =
∑

i viBi ∈ P for v = (v1, . . . ,vk) ∈ C. We

define v0 ∈ C to be the point such that Δv0 =B.

Fix a prime divisor Q on Y which is a component of ΣY . We shrink Y near the generic

point of Q so that all components of f∗Q dominate Q. We can write f∗Q =
∑

imPiPi,

https://doi.org/10.1017/nmj.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.24


ADJUNCTION AND INVERSION OF ADJUNCTION 137

where Pi are components of ΣX such that f(Pi) = Q, and mPi = coeffPi(f
∗Q). We fix a

component P(B,Q) of f
∗Q such that

1− coeffP(B,Q)
(B)

mP(B,Q)

=min
Pi

{
1− coeffPi(B)

mPi

}
.

Note that
1−coeffP(B,Q)

(B)

mP(B,Q)

is the log canonical threshold of (X,B) with respect to f∗Q over

the generic point of Q because (X,B+μf∗Q) is sub log canonical over the generic point of

Q if and only if coeffPi(B)+μmPi ≤ 1 for all Pi. For every component Pi of f
∗Q, we can

define a function

H(Pi)(v) :=
1− coeffP(B,Q)

(Δv)

mP(B,Q)

− 1− coeffPi(Δv)

mPi

and the half-space

H
(Pi)
≤0 := {v ∈ C |H(Pi)(v)≤ 0}.

It is easy to check that H(Pi) are rational affine functions and the half spaces H
(Pi)
≤0 contain

v0 since v0 is the point such that Δv0 =B. Therefore, the set

CQ := C ∩
(⋂

Pi

H
(Pi)
≤0

)

is a rational polytope in C containing v0, where Pi runs over components of f∗Q. We put

t(Δv,Q) := 1− coeffQ

(
BΔv

Y

)
= sup{μ ∈ R |(X,Δv+μf∗Q) is sub log canonical over the generic point of Q}.

Then, by the definitions of H
(Pi)
≤0 , every v ∈ CQ satisfies

t(Δv,Q) = min
Pi

{
1− coeffPi(Δv)

mPi

}
=

1− coeffP(B,Q)
(Δv)

mP(B,Q)

. (1)

Here, to prove the first equality, we used the fact that (X,Δv+μf∗Q) is sub log canonical

over the generic point of Q if and only if coeffPi(Δv)+μmPi ≤ 1 for all Pi.

Finally, we define

C′ :=
⋂
Q

CQ,

where Q runs over all irreducible components of ΣY . It is easy to see that C′ is a rational

polytope in C and C′ contains v0. Thus, we can find rational points v1, . . . ,vl and positive

real numbers s1, . . . , sl such that
∑l

j=1 sj = 1 and
∑l

j=1 sjvj = v0. We put Δj = Δvj for

each 1 ≤ j ≤ l. Then B = Δv0 =
∑l

j=1 sjΔj . For every component Q of ΣY , the equation
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(1) implies that

t(B,Q) =
1− coeffP(B,Q)

(B)

mP(B,Q)

(see (1))

=
1− coeffP(B,Q)

(∑l
j=1 sjΔj

)
mP(B,Q)

(B =
∑l

j=1 sjΔj)

=
∑l

j=1 sj ·
1− coeffP(B,Q)

(Δj)

mP(B,Q)

(
∑l

j=1 sj = 1)

=
∑l

j=1 sj · t(Δj ,Q) (see (1)).

Since t(Δj ,Q) = 1− coeffQ

(
B

Δj

Y

)
for every 1 ≤ j ≤ l and every irreducible component Q

of ΣY , we see that BY =
∑l

j=1 sjB
Δj

Y .

We are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Fix an arbitrary projective birational morphism σ : Y ′ → Y from

a normal quasi-projective variety Y ′, and let

(X ′,BX′)
μ ��

f ′

��

(X,B)

f

��
Y ′

σ
�� Y

be the induced basic R-slc-trivial fibration (see Definition 3.4). It is sufficient to show that

σ∗(KY +BY ) =KY ′ +BY ′ and MY is a potentially nef R-divisor on Y with σ∗MY =MY ′ .

We pick Q-divisors B1, . . . ,Bk on X, Q-divisorsD1, . . . ,Dk on Y and positive real numbers

r1, . . . , rk as in Lemma 5.4. Then, the following properties hold:

•
∑k

i=1 ri = 1 with
∑k

i=1 riBi =B and
∑k

i=1 riDi =D,

• SuppB = SuppBi and SuppD = SuppDi hold for every i, and

• KX +Bi ∼Q f∗Di holds for every i.

We put D′
i = σ∗Di and we define B′

i by KX′ +B′
i = μ∗(KX +Bi) for any 1 ≤ i ≤ k. Then

f ′ : (X ′,B′
i)→ Y ′ are basic Q-slc-trivial fibrations with KX′ +B′

i ∼Q f ′∗D′
i. As in Lemma

5.5, we put

P ′ =

{
k∑

i=1

tiB
′
i

∣∣∣∣∣ 0≤ ti ≤ 1 for every i with
k∑

i=1

ti = 1

}
.

We may assume that f ′ : (X ′,Δ)→ Y ′ is a basic R-slc-trivial fibration for every Δ∈P ′. We

define P ′
Q as

P ′
Q :=

{
k∑

i=1

tiB
′
i

∣∣∣∣∣ ti ∈Q and 0≤ ti ≤ 1 for every i with
k∑

i=1

ti = 1

}
.

Note that BX′ ∈ P ′.
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Pick any Δ=
∑k

i=1 tiB
′
i ∈P ′

Q. Since μ∗B
′
i =Bi, we have μ∗Δ=

∑k
i=1 tiBi such that ti ∈Q.

Therefore, the morphism f : (X,μ∗Δ)→ Y is a basic Q-slc-trivial fibration such that KX +

μ∗Δ∼Q f∗(∑k
i=1 tiDi

)
. Let BΔ andMΔ be the discriminant Q-b-divisor and the moduli Q-

b-divisor of the basic Q-slc-trivial fibration f : (X,μ∗Δ)→ Y , respectively. Because we have

Supp
(∑k

i=1 tiDi

)
⊂ SuppD and Suppμ∗Δ⊂ SuppB, we may apply Theorem 4.1. Therefore,

for every Δ∈P ′
Q, it follows that σ

∗(KY +BΔ
Y ) =KY ′ +BΔ

Y ′ and MΔ
Y is a potentially nef Q-

divisor on Y with σ∗MΔ
Y =MΔ

Y ′ . It also follows from the construction that f ′ : (X ′,Δ)→ Y ′

is the basic Q-slc-trivial fibration induced from f : (X,μ∗Δ) → Y such that KX′ +Δ ∼Q

f ′∗(∑k
i=1 tiD

′
i

)
. It is because KX′ +Δ= μ∗(KX +μ∗Δ) by construction.

We apply Lemma 5.5 to f ′ : (X ′,BX′)→ Y ′ and P ′. Then, we can find Δ1, . . . ,Δl ∈ P ′
Q

and positive real numbers s1, . . . , sl such that:

•
∑l

j=1 sj = 1 and
∑l

j=1 sjΔj =BX′ , and

• BY ′ =
∑l

j=1 sjB
Δj

Y ′ .

Since B and BΔj are R-b-divisors, we have BY =
∑l

j=1 sjB
Δj

Y . Then

σ∗(KY +BY ) = σ∗

⎛⎝KY +

l∑
j=1

sjB
Δj

Y

⎞⎠=

l∑
j=1

sjσ
∗(KY +B

Δj

Y )

=
l∑

j=1

sj(KY ′ +B
Δj

Y ′ ) =KY ′ +
l∑

j=1

sjB
Δj

Y ′

=KY ′ +BY ′ .

Therefore, we have σ∗(KY +BY ) =KY ′ +BY ′ . Recalling that σ : Y ′ → Y is an arbitrary

projective birational morphism, we see that part (i) of Theorem 5.1 holds, that is,

K+B=KY +BY .

As in the third paragraph, for each j, we define D′
Δj

to be the Q-divisor on Y ′ associated

with the basic Q-slc-trivial fibration f ′ : (X ′,Δj)→ Y ′. Note that KX′ +Δj ∼Q f ′∗D′
Δj

for

all j. Since
∑l

j=1 sj = 1 and
∑l

j=1 sjΔj =BX′ , we have σ∗D=
∑l

j=1 sjD
′
Δj

. By the relation

BY ′ =
∑l

j=1 sjB
Δj

Y ′ and the definition of the moduli R-b-divisors (see Definition 3.5), we

have

MY ′ =
l∑

j=1

sjM
Δj

Y ′ and MY =
l∑

j=1

sjM
Δj

Y .

Then MY is a potentially nef R-divisor on Y and

σ∗MY = σ∗

⎛⎝ l∑
j=1

sjM
Δj

Y

⎞⎠=

l∑
j=1

sjM
Δj

Y ′ =MY ′ .

Here, we used σ∗M
Δj

Y = M
Δj

Y ′ for every j, which follows from the third paragraph. We

complete the proof.

The following result is essentially obtained in the proof of Theorem 5.1. We explicitly

state it here for future use.

https://doi.org/10.1017/nmj.2022.24 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.24


140 O. FUJINO AND K. HASHIZUME

Theorem 5.6. Let f : (X,B)→Y be a basic R-slc-trivial fibration with KX+B∼R f∗D.

Then there are Q-divisors B1, . . . ,Bl on X, Q-Cartier Q-divisors D1, . . . ,Dl on Y, and

positive real numbers r1, . . . , rl satisfying the following properties:

•
∑l

j=1 rj = 1 with
∑l

j=1 rjBj =B and
∑l

j=1 rjDj =D,

• SuppB = SuppBj, �B>1�= �B>1
j �, and 	−(B<1)
= 	−(B<1

j )
 hold for every j,

• if coeffS(B) ∈Q for a prime divisor S on X, then coeffS(B) = coeffS(Bj) holds for every

j,

• SuppD = SuppDj holds for every j,

• if coeffT (D)∈Q for a prime divisor T on Y, then coeffT (D) = coeffT (Dj) holds for every

j,

• KX +Bj ∼Q f∗Dj holds for every j,

• B =
∑l

j=1 rjBj as b-divisors, where B (resp. Bj) is the discriminant R-b-divisor (resp.

the discriminant Q-b-divisor) of f : (X,B)→ Y (resp. f : (X,Bj)→ Y ), and

• M=
∑l

j=1 riMj as b-divisors, where M (resp. Mj) is the moduli R-b-divisor (the moduli

Q-b-divisor) associated with f : (X,B)→ Y (resp. f : (X,Bj)→ Y ).

Sketch of Proof. It can be proved by Theorem 5.1 and Lemmas 5.4 and 5.5. We only

outline the proof.

We note that the properties of Theorem 5.6 except the last two properties correspond to

parts (1)–(6) of Lemma 5.4, respectively. By Lemma 5.4, we can find Q-divisors B̃1, . . . , B̃k

on X, Q-Cartier Q-divisors D̃1, . . . , D̃k on Y, and positive real numbers r̃1, . . . , r̃k satisfying

parts (1)–(6) of Lemma 5.4. Then B̃i, D̃i, and r̃i satisfy all the properties of Theorem 5.6

except the last two properties. More specifically, B̃i, D̃i, and r̃i satisfy:

•
∑k

i=1 r̃i = 1 with
∑k

i=1 r̃iB̃i =B and
∑k

i=1 r̃iD̃i =D (see part (1) of Lemma 5.4),

• SuppB = SuppB̃i and SuppD = SuppD̃i hold for every i, and

• KX + B̃i ∼Q f∗D̃i holds for every i (see part (6) of Lemma 5.4),

and parts (2)–(5) in Lemma 5.4. We take a smooth higher model σ : Y ′ → Y so that the

induced basic R-slc-trivial fibration f ′ : (X ′,B′)→ Y ′ satisfies the property that there exists

a simple normal crossing divisor Σ′ on Y ′ such that Suppσ∗D ⊂Σ′ and that every stratum

of (X ′,SuppB′) is smooth over Y ′ \Σ′. The morphism X ′ →X is denoted by μ. For each

1 ≤ i ≤ k, let B̃′
i be a Q-divisor on X ′ defined by KX′ + B̃′

i = μ∗(KX + B̃i). Note that

KX′ + B̃′
i ∼Q f ′∗σ∗D̃i. We may assume that Suppσ∗D̃i ⊂ Σ′ and that every stratum of

(X ′,SuppB̃′
i) is smooth over Y ′ \Σ′ for every i by taking σ : Y ′ → Y suitably. We define

P =

{
k∑

i=1

tiB̃
′
i

∣∣∣∣∣ 0≤ ti ≤ 1 for every i with
k∑

i=1

ti = 1

}
.

By Lemma 5.5, we can find B′
1, . . . ,B

′
l ∈P, which are Q≥0-linear combinations of B̃′

1, . . . , B̃
′
l

and positive real numbers r1, . . . , rl such that:

•
∑l

j=1 rj = 1 and
∑l

j=1 rjB
′
j =B′, and

• BY ′ =
∑l

j=1 rjBjY ′ .

Here, Bj is the discriminant Q-b-divisor associated with f ′ : (X ′,B′
j) → Y ′. By Theorem

5.1, we have K+B = KY ′ +BY ′ and K+Bj = KY ′ +BjY ′ . We put Bj = μ∗B
′
j for each

1 ≤ j ≤ l. Then we can find Q-divisors D1, . . . ,Dl on Y such that KX +Bj ∼Q f∗Dj and
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j=1 rjDj =D. By construction, we can easily see that B1 . . . ,Bl, D1, . . . ,Dl, and r1, . . . , rl

constructed above satisfy the desired properties.

§6. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is the main result of this paper. Then we

treat Theorem 1.1 and Corollary 1.4. We note that we freely use the framework of quasi-log

schemes in the proof of Theorem 1.2. For the details of quasi-log schemes, see [5, Chap. 6].

Let us start with the proof of Theorem 1.2.

Proof of Theorem 1.2. From Step 1 to Step 3, we define a natural quasi-log scheme

structure on Z. This part is essentially contained in [5, Chap. 6] and [7].

Step 1. In this step, we give a natural quasi-log scheme structure on W ′ := W ∪
Nlc(X,Δ). This step is essentially the adjunction for quasi-log schemes (see [5, Th. 6.3.5(i)]).

We put W ′ := W ∪Nlc(X,Δ) as above. We sketch how to define a natural quasi-log

scheme structure on W ′. Let f : Y →X be a projective birational morphism from a smooth

quasi-projective variety Y such that KY +ΔY = f∗(KX +Δ) and that SuppΔY is a simple

normal crossing divisor on Y. By taking some more blowups, we may assume that the union

of all log canonical centers of (Y,ΔY ) mapped to W ′ by f, which is denoted by V ′, is a union

of some irreducible components of Δ=1
Y . As usual, we put A = 	−(Δ<1

Y )
 and N = �Δ>1
Y �

and consider the following short exact sequence:

0→OY (A−N −V ′)→OY (A−N)→OV ′(A−N)→ 0.

By taking Rif∗, we obtain

0−→ f∗OY (A−N −V ′)−→ f∗OY (A−N)−→ f∗OV ′(A−N)

δ−→R1f∗OY (A−N −V ′)−→ ·· · .

The connecting homomorphism δ is zero since no associated prime of R1f∗OY (A−N−V ′)

is contained in W ′ = f(V ′) (see [4, Th. 6.3 (i)] and [5, Th. 5.6.2(i)]). Hence, we have

0→ f∗OY (A−N −V ′)→ f∗OY (A−N)→ f∗OV ′(A−N)→ 0.

Note that JNLC(X,Δ)= f∗OY (A−N) by definition. We put IW ′ = f∗OY (A−N−V ′) and

IW ′
−∞

= f∗OV ′(A−N). We define ΔV ′ by (KY +ΔY )|V ′ =KV ′ +ΔV ′ . Then

(W ′,(KX +Δ)|W ′ ,f : (V ′,ΔV ′)→W ′)

is a quasi-log scheme. By construction, Nqlc(W ′,(KX +Δ)|W ′) = Nlc(X,Δ) holds. By

construction again, a subset C ⊂ X is a qlc stratum of [W ′,(KX +Δ)|W ′ ] if and only if

C is a log canonical center of (X,Δ) included in W. We note that the above construction

is independent of the choice of f : Y →X by [5, Prop. 6.3.1].

Step 2. In this step, we give a natural quasi-log scheme structure on [W,(KX +Δ)|W ].

This step is essentially [7, Lem. 4.19].

In Step 1, we may further assume that the union of all strata of (V ′,ΔV ′) mapped to

W ∩Nlc(X,Δ) is also a union of some irreducible components of V ′. Let V̂ be the union

of the irreducible components of V ′ mapped to W by f. We put Δ
̂V by (KY +ΔY )|̂V =
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K
̂V +Δ

̂V . Then, by the proof of [7, Lems. 4.18 and 4.19],(
W,(KX +Δ)|W ,f : (V̂ ,Δ

̂V )→W
)

is a quasi-log scheme. By [7, Lem. 4.19], we obtain that IW−∞ = IW ′
−∞

holds and that a

subset C ⊂ X is a qlc stratum of [W ′,(KX +Δ)|W ′ ] if and only if C is a qlc stratum of

[W,(KX +Δ)|W ]. Hence, W ∩Nlc(X,Δ) =W−∞ and

W ∩

⎛⎝Nlc(X,Δ)∪
⋃

W �⊂W †

W †

⎞⎠=Nqklt(W,(KX +Δ)|W )

hold set-theoretically, where W † runs over log canonical centers of (X,Δ) which do not

contain W.

Step 3. In this step, we give a natural quasi-log scheme structure on Z. This step is

nothing but [7, Th. 1.9].

In Step 2, we may further assume that the union of all strata of (V̂ ,Δ
̂V ) mapped to

Nqklt(W,(KX +Δ)|W ) is a union of some irreducible components of V̂ . Let V be the union

of the irreducible components of V̂ which are dominant onto W. Then, by the proof of [7,

Th. 1.9], f : V →W factors through Z and

(Z,ν∗(KX +Δ),f : (V,ΔV )→ Z)

becomes a quasi-log scheme, where ΔV is defined by (KY +ΔY )|V = KV +ΔV . By

construction, we have ν∗INqklt(Z,ν∗(KX+Δ)) = INqklt(W,(KX+Δ)|W ). Hence,

Nqklt(Z,ν∗(KX +Δ)) = ν−1Nqklt(W,(KX +Δ)|W )

holds.

Step 4. Then f : (V,ΔV ) → Z is a basic R-slc-trivial fibration. Hence, we can apply

Corollary 5.2 and Remark 5.3 to f : (V,ΔV )→ Z. We note that f : (V,ΔV )→ Z is a basic

Q-slc-trivial fibration when KX +Δ is Q-Cartier. In that case, Theorem 3.6 with Theorem

3.7 is sufficient.

Step 5. By [7, Th. 7.1] and Steps 1–3 in its proof, we can construct a projective

birational morphism p : Z ′ →Z from a smooth quasi-projective variety Z ′ satisfying (i)–(v).

We note that we can directly apply Step 3 in the proof of [7, Th. 7.1] to basic R-slc-trivial

fibrations by Corollary 5.2. We also note that B is a well-defined R-b-divisor on Z and is

independent of f : Y →X (see [11, Lem. 5.1] and [10, Th. 1.2]).

Step 6. (see [11, Th. 5.4]). In this final step, we prove (iv). This step is essentially [11,

Th. 5.4]. We explain it here for the reader’s convenience.

Without loss of generality, we may assume that X is affine by taking a finite affine open

cover of X. Let gdlt : Xdlt →X be a good dlt blowup of (X,Δ) such that KXdlt
+ΔXdlt

=

g∗dlt(KX +Δ) (see [11, Lem. 3.5]). We may assume that there is an irreducible component

S of Δ=1
Xdlt

with gdlt(S) =W . We put

D =Δ≥1
Xdlt

−SuppΔ≥1
Xdlt

=Δ>1
Xdlt

−SuppΔ>1
Xdlt

.

Then −D is semi-ample over X and SuppD =Nlc(Xdlt,ΔXdlt
) holds set-theoretically (see

[11, Lem. 3.5]). By taking the contraction morphism ϕ : Xdlt → Xlc associated with −D
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over X, we get a log canonical modification glc : Xlc →X with KXlc
+ΔXlc

= g∗lc(KX +Δ)

(see [11, Th. 1.3]).

Xdlt

gdlt ���
��

��
��

�
ϕ �� Xlc

glc��		
		
		
		

X

We put D′ = ϕ∗D. Then −D′ is ample over X, and

g−1
lc Nlc(X,Δ) = Nlc(Xlc,ΔXlc

) = SuppD′

holds set-theoretically. We note that

Nlc(Xdlt,ΔXdlt
) = ϕ−1Nlc(Xlc,ΔXlc

) = g−1
dlt Nlc(X,Δ)

holds set-theoretically. Let W̃ be the strict transform of W on Xlc. Let ν̃ : Z̃ → W̃ be the

normalization. Then we can easily see that

SuppB>1
Z̃

= ν̃∗D′ = ν̃−1
(
Nlc(Xlc,ΔXlc

)∩W̃
)
= (glc ◦ ν̃)−1 (Nlc(X,Δ)∩W )

holds set-theoretically. We note that B>1 = 0 over X \Nlc(X,Δ) by construction. Hence,

we obtain ν ◦p(B>1
Z′ ) =W ∩Nlc(X,Δ) set-theoretically.

We finish the proof of Theorem 1.2.

Finally, we prove Theorem 1.1 and Corollary 1.4.

Proof of Theorem 1.1. Here, we use the same notation as in Theorem 1.2. We put BZ =

BZ and MZ =MZ in Theorem 1.2. We note that MZ′ is a finite R>0-linear combination

of potentially nef Cartier divisors on Z ′ with p∗MZ′ =MZ . Hence, the desired statement

follows from Theorem 1.2.

Proof of Corollary 1.4. By the definition of B in Theorem 1.2 (see the proof of Theorem

1.2 and Definition 1.3), we can easily check that BZ is nothing but Shokurov’s different

(see [4, §14]) and ν∗(KX +Δ) =KZ +BZ holds, where ν : Z →W is the normalization of

W. In particular, we have MZ = 0. By part (A) in Theorem 1.1, we obtain that (X,Δ) is

log canonical in a neighborhood of W if and only if (Z,BZ) is log canonical in the usual

sense. It recovers Kawakita’s inversion of adjunction (see [15, Th.]). By part (B), we see that

(Z,BZ) is Kawamata log terminal if and only if (X,Δ) is log canonical in a neighborhood of

W and W is a minimal log canonical center of (X,Δ) (see [4, Th. 9.1] and [5, Th. 6.3.11]).

Note that (X,Δ) is purely log terminal in a neighborhood of W if and only if (X,Δ) is log

canonical in a neighborhood of W and W is a minimal log canonical center of (X,Δ).

We close this section with the following remark, which summarizes the construction of

the R-b-divisors B and M on Z.

Remark 6.1. Let X be a normal variety, and let Δ be an effective R-divisor on X such

that KX +Δ is R-Cartier. Let W be a log canonical center of (X,Δ), and let ν : Z →W

be the normalization of W.

We take a log resolution f : Y → X of (X,Δ) which is a sufficiently high birational

model. We define ΔY by KY +ΔY = f∗(KX +Δ), and let V be the union of the irreducible

components of Δ=1
Y which map ontoW. Let ΔV be an R-divisor on V defined byKV +ΔV =
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(KY +ΔY )|V , then we get the morphism f : (V,ΔV ) → Z, which has the structure of a

basic R-slc-trivial fibration. Then B and M are defined to be the discriminant R-b-divisor

and the moduli R-b-divisor as in Definition 3.5. By construction, we can easily check that

the construction in the proof of Theorem 1.2 and the one in Definition 1.3 define the

same R-b-divisor B on Z (see [11, Lem. 5.1] and [10, Th. 1.2]). Precisely speaking, when

dimW ≤ dimX−2, we consider the R-line bundle L on X associated with KX +Δ. We fix

an R-Cartier R-divisor D on Z whose associated R-line bundle is the pullback of L. Then
we put M = D−K−B, where D is the R-Cartier closure of D and K is the canonical

b-divisor of Z.

§7. Adjunction for codimension 2 log canonical centers

In this final section, we first discuss basic slc-trivial fibrations under some extra

assumption and then prove adjunction for codimension 2 log canonical centers.

Theorem 7.1. Let f : (X,B)→ Y be a basic R-slc-trivial fibration. Assume that there

exists a stratum S of (X,B) such that the induced morphism S → Y is generically finite

and surjective. Then there exists a proper birational morphism p : Y ′ → Y from a smooth

quasi-projective variety Y ′ such that M=MY ′ with MY ′ ∼R 0. In particular, M is b-semi-

ample.

Proof. By Theorem 5.6, we may assume that f : (X,B) → Y is a basic Q-slc-trivial

fibration. Let ν : Xν →X be the normalization. We define a Q-divisor Bν on Xν by KXν +

Bν = ν∗(KX +B). Note that after the reduction we may find a log canonical center S of

(Xν ,Bν) such that the induced morphism S → Y is generically finite and surjective. By

[6, Lem. 4.12], we may further assume that Y is a complete variety. By replacing Y with

a smooth higher birational model and f : (X,B)→ Y with the induced basic Q-slc-trivial

fibration, we may assume that Y is a smooth projective variety, M = MY , and MY is

nef. The induced morphism S → Y is denoted by fS . We define a Q-divisor BS on S by

KS +BS = (KXν +Bν)|S .
From now on, we show that −MY is Q-linearly equivalent to an effective Q-divisor. We

consider the divisor ν∗f∗MY ∼Q KXν +Bν−ν∗f∗(KY +BY ). By restricting it to S, we get

the relation f∗
SMY ∼Q KS+BS−f∗

S(KY +BY ). Let g : S → T be the Stein factorization of

fS . The finite morphism T → Y is denoted by fT . We put BT = g∗BS . Then the relation

KS +BS = g∗(KT +BT ) holds because KS +BS is Q-linearly trivial over Y. We also have

the relation

f∗
TMY ∼Q KT +BT −f∗

T (KY +BY ).

To show that −MY is Q-linearly equivalent to an effective Q-divisor, it is sufficient to prove

that −
(
KT +BT −f∗

T (KY +BY )
)
is Q-linearly equivalent to an effective Q-divisor.

By the definition of the discriminant Q-b-divisor (see Definition 3.5), for every prime

divisor P on Y, we have coeffP (BY ) = 1− bP , where bP is the log canonical threshold of

(Xν ,Bν) with respect to ν∗f∗P over the generic point of P. Since fT is finite, we may write

f∗
TP =

∑
Qi

miQi, where Qi runs over prime divisors on T with fT (Qi) = P and mi is the

multiplicity of Qi with respect to fT . By the ramification formula, over a neighborhood of
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the generic point of P, we may write

f∗
T (KY +BY ) = f∗

T (KY +(1− bP )P )

=KT −
∑
Qi

(mi−1)Qi+(1− bP )
∑
Qi

miQi

=KT +
∑
Qi

(1−mibP )Qi.

We define E :=
∑

Qi
(coeffQi(BT )−(1−mibP ))Qi. Then, over a neighborhood of the generic

point of P, we have

f∗
TMY ∼Q KT +BT −f∗

T (KY +BY ) =
∑
Qi

(coeffQi(BT )− (1−mibP ))Qi = E.

On the other hand, by the definition of bP (see Definition 3.5) and the fact that S is a log

canonical center of (Xν ,Bν), the pair (S,BS+bP f
∗
SP ) is sub log canonical over the generic

point of P. Since g : S → T is birational and KS +BS = g∗(KT +BT ), the pair (T,BT +

bP f
∗
TP ) is sub log canonical over the generic point of P. This shows coeffQi(BT )+mibP ≤ 1

for all Qi such that fT (Qi) =P . Thus, −E is effective. Hence, −MY is Q-linearly equivalent

to an effective Q-divisor.

Finally, since MY is nef, we see that MY ∼Q 0.

We prove the b-semi-ampleness of M for basic slc-trivial fibrations of relative dimension

one under some extra assumption.

Theorem 7.2. Let f : (X,B) → Y be a basic R-slc-trivial fibration with

dimX = dimY +1 such that the horizontal part Bh of B is effective. Then the moduli

R-b-divisor M is b-semi-ample.

Proof. By Theorem 5.6, we may assume that f : (X,B) → Y is a basic Q-slc-trivial

fibration. By [6, Lem. 4.12], we may further assume that Y is a complete variety. When

X is reducible, by the definition of basic slc-trivial fibrations (see Definition 3.2), there

is a stratum S of X such that the morphism S → Y is generically finite and surjective

since dimX = dimY +1. Thus, we can apply Theorem 7.1. By Theorem 7.1, the moduli Q-

b-divisor M is b-semi-ample when X is reducible. So we may assume that X is irreducible.

Let F be a general fiber of f. Then B|F ≥ 0 by the assumption Bh ≥ 0. If (F,B|F ) is not

Kawamata log terminal, then there is a log canonical center S′ of (X,B), that is, S′ is a

stratum of (X,B), such that the morphism S′ → Y is generically finite and surjective. As

in the reducible case, by applying Theorem 7.1, we see that the moduli Q-b-divisor M is

b-semi-ample. If (F,B|F ) is Kawamata log terminal, then the morphism f : (X,B) → Y

satisfies [17, Assump. 7.11]. Therefore, by [17, Th. 8.1], the moduli Q-b-divisor M is b-

semi-ample. In this way, in any case, the moduli Q-b-divisor M is b-semi-ample.

By combining Theorem 7.2 with the proof of Theorem 1.2, we obtain the following result,

which generalizes Kawamata’s theorem (see [16, Th. 1]).

Corollary 7.3 (Adjunction and inversion of adjunction in codimension 2). Under the

same notation as in Theorem 1.2, we further assume that dimW = dimX − 2. Then M

is b-semi-ample. Equivalently, MZ′ is semi-ample. In particular, there exists an effective

R-divisor ΔZ on Z such that:
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• ν∗(KX +Δ)∼R KZ +ΔZ ,

• (Z,ΔZ) is log canonical if and only if (X,Δ) is log canonical near W, and

• (Z,ΔZ) is Kawamata log terminal if and only if (X,Δ) is log canonical near W and W

is a minimal log canonical center of (X,Δ).

When KX +Δ is Q-Cartier, we further make ΔZ an effective Q-divisor on Z such that

ν∗(KX +Δ)∼Q KZ +ΔZ in the above statement.

Proof. We use the same notation as in Theorem 1.2. Note that W is a codimension

2 log canonical center of (X,Δ) by assumption. Let f : Y →X be a projective birational

morphism from a smooth quasi-projective variety Y such that KY +ΔY = f∗(KX+Δ) and

that SuppΔY is a simple normal crossing divisor on Y. Without loss of generality, we may

assume that f−1(W ) is a simple normal crossing divisor on Y such that f−1(W ) =
∑

iEi

is the irreducible decomposition. We put

E =
∑

a(Ei,X,Δ)=−1

Ei.

We define ΔE by KE +ΔE = (KY +ΔY )|E . In this situation, we can check that ΔE is

effective over the generic point of W. Indeed, if X is a surface, then we can check this fact

by using the minimal resolution. In the general case, by shrinking X and cutting X by

general hyperplanes, we can reduce the problem to the case where X is a surface.

Let Z be the normalization of W. By the same arguments as in Steps 1–3 in the proof

of Theorem 1.2, we can construct a basic R-slc-trivial fibration f : (V,ΔV ) → Z. Then

dimV = dimZ +1 because dimV = dimX − 1 and W is a codimension 2 log canonical

center of (X,Δ). Furthermore, by the discussion in the first paragraph, we see that the

horizontal part Δh
V of ΔV with respect to f : V → Z is effective. By the same arguments as

in Steps 4–6 in the proof of Theorem 1.2, we get a projective birational morphism p : Z ′ →Z

from a smooth quasi-projective variety Z ′ satisfying parts (i)–(v) of Theorem 1.2. Moreover,

by Theorem 7.2, M is b-semi-ample, that is, MZ′ is semi-ample.

Let N ∼R MZ′ be a general effective R-divisor such that N and BZ′ have no common

components, Supp(N+BZ′) is a simple normal crossing divisor on Z ′, and all the coefficients

of N are less than 1. We put ΔZ = p∗N +BZ . Then, it is easy to see that ΔZ satisfies the

desired three conditions of Corollary 7.3. By the above construction, we can make ΔZ an

effective Q-divisor such that KZ +ΔZ ∼Q ν∗(KX +Δ) when KX +Δ is Q-Cartier. So we

are done.

Acknowledgment. The authors thank Christopher Hacon very much for answering their

question.
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