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1. Introduction

A basic requirement for many models of deformable solids is that they should pre-
vent interpenetration of mass. In context of hyperelasticity, i.e., nonlinear elasticity
fully determined by a stored elastic energy function (see e.g. [3, 10] for an introduc-
tion), this is ensured by a strong local resistance to compression built into the energy
density, which in particular prevents local change of orientation, combined with a
constraint preventing global self-penetration, usually the Ciarlet–Nečas condition
[11], see (CN).

In this article, we study the approximation of the latter by augmenting the local
elastic energy with a nonlocal functional with self-repulsive properties, formally
corresponding to suitable Sobolev–Slobodeckĭı seminorms of the inverse deforma-
tion. While all results presented here are purely analytical, our motivation is mainly
numerical, related to the fact that the Ciarlet–Nečas condition is hard to handle
numerically in such a way that the algorithm maintains an acceptable computa-
tional cost while still provably converging. In particular, there is still no known
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2 S. Krömer and P. Reiter

projection onto the Ciarlet–Nečas condition which is rigorous with acceptable
computational cost, see [1] for some partial results. There is a well-known straight-
forward penalty term that rigorously reproduces the Ciarlet–Nečas condition in
the limit (see e.g. [24]), but it is hard to implement, non-smooth and computa-
tionally very expensive as a double integral on the full domain. Recent results
on more practical rigorous approximation of the Ciarlet–Nečas condition via non-
local penalty terms added to the elastic energy were obtained in [21, 22], but
these require additional regularity of elastic deformations which possibly interferes
with the Lavrentiev phenomenon which is known to appear at least in particular
nonlinear elastic models [14].

Using the language of Γ-convergence (see e.g. [8]), we show that in combina-
tion with local nonlinear elastic energies, the self-repulsive terms studied here also
provide a rigorous approximation of the Ciarlet–Nečas condition without requir-
ing regularity of deformations beyond what is naturally provided by the nonlinear
elastic energy (theorem 3.3). In addition, these admit natural variants near or on
the boundary (theorems 3.8 and 3.12), which are significantly cheaper to compute
in practice. The latter crucially rely on a global invertibility property of orienta-
tion preserving maps exploiting topological information on the boundary [20] (for
related results see also [2, 17]).

Our results here still do not cover the full range of hyperelastic energies which are
known to be variationally well-posed, though. In fact, we require lower bounds on
the energy density which are strong enough so that deformation maps with finite
elastic energy are automatically continuous, open and discrete, the latter two by
the theory of functions of bounded distortion [18]. In our proofs, this is essential
so that all local regularity is controlled by the elastic energy, while the nonlocal
self-repulsive term asymptotically only controls global self-contact.

For related results concerning self-avoiding curves and surfaces in more geo-
metrical context with higher regularity, we refer to [5–7, 29] and references
therein.

General assumptions

Let Ω ⊂ R
d be a bounded Lipschitz domain, d � 2, p ∈ (d, ∞), r > 0, ε � 0, q � 1

and s � 0. By W 1,p
+ (Ω, R

d) we denote the set of all functions y ∈W 1,p(Ω, R
d) with

det∇y(x) > 0 for a.e. x ∈ Ω.
We consider an integral functional modelling the internal elastic energy of a

deformation y ∈W 1,p
+ (Ω, R

d) of a nonlinear hyperelastic solid. For simplicity, we
restrict ourselves to the following generalized ‘neo-Hookean’ form given by

E(y) =
∫

Ω

|∇y(x)|p dx+
∫

Ω

dx
(det∇y(x))r . (1.1)

We are interested in precluding deformations corresponding to self-
interpenetration of matter, i.e., non-injective y. Classically, the latter is imposed by
adding the Ciarlet–Nečas condition [11] as a constraint:∫

Ω

|det∇y(x)|dx = |y(Ω)|. (CN)
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Nonlinear elasticity with vanishing nonlocal self-repulsion 3

Remark 1.1. By the area formula, the inequality ‘�’ in (CN) always holds true
and (CN) is equivalent to a.e. injectivity of y provided that det∇y > 0 a.e. As the
latter is usually given, (CN) can also be expressed in the more standard form∫

Ω

det∇y(x) dx � |y(Ω)|.

As a step towards a possible (numerical) approximation of (CN), we regularize
E by adding a singular nonlocal contribution D. Below, we will show that (CN)
automatically holds whenever E(y) <∞ and D(y) <∞ with various examples for
D, see propositions 3.4, 3.9 and 3.14.

The first such example for D is given by

DU (y) =
∫∫

U×U

|x− x̃|q
|y(x) − y(x̃)|d+sq

|det∇y(x)||det∇y(x̃)| dxdx̃ (1.2)

where U ⊂ Ω is some open neighbourhood of ∂Ω in Ω and suitable parameters
q ∈ [1, ∞), s ∈ [0, 1). In particular, we can choose U = Ω. Transforming the integral
and invoking [9, Prop. 2] reveals that the integral is singular if s � 1.

Formally, after a change of variables, DU is the Sobolev–Slobodeckĭısemi-norm of
y−1 in the space W s,q(y(U), R

d). As long as sq � 0, the functional DU effectively
prevents self-interpenetration, i.e., a loss of injectivity of y, as shown in proposition
3.4. To the best of our knowledge, variants of DU for curves, with such a purpose
in mind, first appeared in a master thesis [27] supervised by Dziuk, and have
subsequently been studied in another master thesis [19]. The functional DU can be
interpreted to be a sort of ‘relaxation’ of the bi-Lipschitz constant. In this sense
it is a rather weak quantity in comparison with similar concepts that have been
introduced earlier [15, 25].

We also study the boundary variant

D̃∂Ω(y) =
∫∫

∂Ω×∂Ω

|x− x̃|q
|y(x) − y(x̃)|d−1+sq

dA(x) dA(x̃)

where A denotes the (d− 1)-dimensional Hausdorff measure.
We give a rigorous statement of this approximation by establishing Γ-convergence

which is the main result of this paper. To this end, we consider for y ∈W 1,p(Ω, R
d),

ε > 0,

Eε(y) =

{
E(y) + εD(y) if y ∈W 1,p

+ (Ω,Rd),
+∞ else.

We reserve the symbol E0 for the Γ-limit which will turn out to be

E0(y) :=

{
E(y) if y ∈W 1,p

+ (Ω, R
d) satisfies (CN),

+∞ else.
(1.3)

2. Preliminary results

Change of variables in quite general form is important for us throughout, in form of
the following special case of the area formula due to Marcus and Mizel. We use the
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convention that f(y(x))|det∇y(x)| = 0 whenever |det∇y(x)| = 0 for some x ∈ E
and abbreviate Ny(z, E) = #(y−1(z) ∩ E) for any z ∈ R

d, where # denotes the
counting measure.

Lemma 2.1 cf. [23, Theorem 2]. Let y ∈W 1,p(Λ, R
d) with p > d, where Λ is a

bounded domain in R
d. Moreover, assume that f : R

d → R is measurable and E ⊂
Λ is measurable. Then, if one of the functions x �→ f(y(x))|det∇y(x)| and z �→
f(z)Nf (z, E) is integrable, so is the other one and the identity∫

E

f(y(x))|det∇y(x)|dx =
∫

Rm

f(z)Nf (z,E) dz

holds.

Proposition 2.2. For p > d and r > 0, the functional E : W 1,p(Ω; Rd) → [0, ∞] is
lower semicontinuous with respect to weak convergence in W 1,p.

Proof. The integrand of E is polyconvex, since (F, J) �→ |F |p + J−r, R
d×d ×

(0, ∞) → [0, ∞], is convex. As shown in detail by Ball [3], sequential weak lower
semicontinuity of E therefore follows from the weak continuity of the determinant,
i.e., y �→ det∇y as a map between W 1,p(Ω; Rd) and Lp/d(Ω), where both spaces are
endowed with their weak topologies. �

The Ciarlet–Nečas condition is a viable constraint for direct methods:

Lemma 2.3 Weak stability of (CN) [11, p. 185]. Let yk ⇀ y∞ in W 1,p
+ (Ω, R

n),
p > d, and assume that (CN) holds for all yk, k ∈ N. Then (CN) applies to y∞ as
well.

Using the theory of maps of bounded distortion, we can obtain even more. For
sufficiently large p and r, deformations with finite energy are open and discrete
(see below) due to a result of Villamor and Manfredi [28]. With added global
topological information, say, in form of (CN), finite energy maps are even necessarily
homeomorphisms [16, Section 3] (see also [20] for related results). In summary, we
have the following.

Proposition 2.4. Let d � 2,

p > d(d− 1) (� d), r >
p(d− 1)

p− d(d− 1)
(>d− 1),

and let y ∈W 1,p
+ (Ω, R

d) such that E(y) <∞. Then the continuous representative
of y is open (i.e., y maps open subset of Ω to open sets in R

d) and discrete (i.e.,
for each z ∈ R

d, y−1({z}) does not have accumulation points in Ω). In particular,
y(Ω) is open in R

d. If, in addition, (CN) holds, then y is a homeomorphism on Ω
and y−1 ∈W 1,σ

+ (y(Ω), Ω), where

σ :=
(r + 1)p

r(d− 1) + p
> d.
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Nonlinear elasticity with vanishing nonlocal self-repulsion 5

Remark 2.5. Possible self-contact on ∂Ω is not ruled out, and so y is not necessarily
a homeomorphism on Ω.

Proof of proposition 2.4. With F = ∇y(x),

KO(F ) :=
|F |d
detF

is the outer distortion of y at x (or dilatation in the terminology of [28]). We infer
from Young’s inequality for some κ, ρ ∈ (1, ∞) that

∣∣KO(F )
∣∣κ � Cρ

(
|F |dκρ +

(
1

detF

) κρ
ρ−1
)
.

Given y ∈W 1,p
+ (Ω, R

d), we find that KO(∇y) ∈ Lκ(Ω) provided E(y) <∞ as well
as dκρ = p and κ = r(1 − 1

ρ ). Since 1
κ = 1

r + d
p <

p−d(d−1)
p(d−1) + d

p = 1
d−1 and ρ = 1 +

p
dr > 1 we may conclude that y is open and discrete as shown by Villamor and
Manfredi [28, Theorem 1].

Finally, (CN) implies that y ∈W 1,p
+ is a map of (Brouwer’s) degree 1 for values

of its image (e.g. y ∈ DEG1 by [20, Remark 2.19(b)]). By [20, Thm. 6.8], it now
follows that y : Ω → y(Ω) is a homeomorphism with weakly differentiable inverse,
and ∇(y−1) ∈ Ld(y(Ω); Rd×d).

Now that y is invertible with weakly differentiable inverse, we may improve the
last conclusion to Lσ. To this end, we first apply a change of variables and use
F−1 = cof F

det F , whence |F−1| � c|F |d−1|detF |−1. Then the assertion follows again
by invoking Young’s inequality to bound |F |(d−1)σ|detF |−(σ−1). �

The final two lemmas of this section will be crucial ingredients in the construction
of a recovery sequence in the proof of theorem 3.3. They are also used in [21, 22]
in similar fashion. For a closely related result and further references we refer to [4,
Theorem 5.1].

Lemma 2.6 domain shrinking. Let Ω ⊂ R
d be a bounded Lipschitz domain. Then

there exists a sequence of C∞-diffeomorphisms

Ψj : Ω → Ψj(Ω) ⊂ ⊂Ω

such that as j → ∞, Ψj → id in Cm(Ω; Rd) for all m ∈ N.

Lemma 2.7 composition with domain shrinking is continuous. Let Ω ⊂ R
d be a

bounded Lipschitz domain, k ∈ N0, 1 � p <∞ and f ∈W k,p(Ω; Rm), m ∈ N. Let
Ψj be a sequence of maps as in lemma 2.6, we then have that f ◦ Ψj → f in
W k,p(Ω; Rn).

Proof of lemma 2.6. If Ω is strictly star-shaped with respect to a point x0 ∈ Ω,
one may take Ψj(x) := x0 + j−1

j (x− x0). For a general Lipschitz domain, one can
combine local constructions near the boundary using a smooth decomposition of
unity: if, locally in some open cube Q, the set Ω is given as a Lipschitz subgraph,
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6 S. Krömer and P. Reiter

i.e., Ω ∩Q = {x ∈ Q | x · e � f(x′)} and ∂Ω ∩Q = {x′ + ef(x′) | x ∈ Q}, where e
is a unit vector orthogonal to one of the faces of Q, x′ := x− (x · e)e and f is a
Lipschitz function, we define

Ψ̂j(x;Q) := x′ + α0e+
j − 1
j

(e · x− α0)e for x ∈ Q, with α0 := inf
x∈Q

e · x.

Notice that Ψ̂j(·;Q) pulls the local boundary piece ∂Ω ∩Q ‘down’ (in direction −e)
into the original domain while leaving the ‘lower’ face of Q fixed. Since ∂Ω can be
covered by finitely many such cubes, we can write Ω ⊂ Q0 ∪

⋃n
k=1Qk with some

open interior set Q0 ⊂⊂ Ω. For a smooth decomposition of unity 1 =
∑n

k=0 ϕk

subordinate to this covering of Ω (i.e., ϕk smooth, non-negative and compactly
supported in Qk),

Ψj(x) := ϕ0(x)x+
n∑

k=1

ϕj(x)Ψ̂j(x;Qk)

now has the asserted properties. �

Proof of lemma 2.7. We only provide a proof for the case k = 1, which will include
the argument for k = 0. For k � 2, the assertion follows inductively. It suffices
to show that as j → ∞, ∂n[f ◦ Ψj − f ] → 0 in Lp, for each partial derivative ∂n,
n = 1, . . . , d. By the chain rule,

∂n[f ◦ Ψj − f ] = [(∇f) ◦ Ψj ]∂nΨj − ∂nf

=
(
[(∇f) ◦ Ψj ]∂nΨj − (∂nf) ◦ Ψj

)
+
(
(∂nf) ◦ Ψj − ∂nf

)
. (2.1)

The first term above converges to zero in Lp since (∇f)en = ∂nf for the nth unit
vector en, and ∂nΨj → ∂n id = en uniformly. The convergence of the second term
corresponds to our assertion for the case k = 0, with f̃ := ∂nf ∈ Lp. It can be proved
in the same way as the well-known continuity of the shift in Lp: if f̃ is smooth and
can be extended to a smooth function on R

d, we have∥∥∥f̃ ◦ Ψj − f̃
∥∥∥

Lp(Ω;Rm)
�
∥∥∥∇f̃∥∥∥

L∞(Rd;Rm×d)
‖Ψj − id‖Lp(Ω;Rd) −→

j→∞
0. (2.2)

The general case follows by approximation of f̃ in Lp with such smooth functions,
by first extending f̃ by zero to all of R

d, and then mollifying. Here, notice that for
the mollified function, ‖∇f̃‖L∞ in (2.2) is unbounded in general as a function of
the mollification parameter, but one can always choose the latter to converge slow
enough with respect to j so that (2.2) still holds. �

3. Elasticity with vanishing nonlocal self-repulsion

In this section, we will study energies of the form

Eε(y) =

{
E(y) + εD(y) if y ∈W 1,p

+ (Ω,Rd),
+∞ else,
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Nonlinear elasticity with vanishing nonlocal self-repulsion 7

where E is defined in (1.1), in the limit ε→ 0+, in the sense of Γ-convergence
with respect to the weak topology of W 1,p. Here, we say that Eε Γ-converges to
a functional E0 if the following two properties hold for every sequence ε(k) → 0+

and every y ∈W 1,p(Ω; Rd):

(i) (lower bound) For all sequences yk ⇀ y weakly in W 1,p,

lim inf
k

Eε(k)(yk) � E0(y).

(ii) (recovery sequence) There exists a sequence yk ⇀ y weakly in W 1,p s.t.

lim sup
k

Eε(k)(yk) � E0(y).

Remark 3.1. Notice that we do not require compactness here, i.e., that any
sequence (yk) with bounded Eε(k)(yk) has a subsequence weakly converging inW 1,p.
This is automatic as soon as bounded energy implies a bound in the norm of W 1,p.
However, in the most basic form, the energies we study are translation invariant
and only control ∇y but not y. Of course, this would change as soon as a Poincaré
inequality can be used due to a suitable boundary condition or other controls on y
or its average added via constraint or additional energy terms of lower order.

We will discuss three different examples for D, each preventing self-
interpenetration, i.e., a loss of injectivity of y, in a different way. Recall that,
according to (1.3),

E0(y) =

{
E(y) if y ∈W 1,p

+ (Ω,Rd) satisfies (CN),
+∞ else.

Throughout this section, we assume that d, p, r, σ satisfy the assumptions of
proposition 2.4, namely,

d � 2, p > d(d− 1), r >
p(d− 1)

p− d(d− 1)
, σ =

(r + 1)p
r(d− 1) + p

. (3.1)

3.1. Bulk self-repulsion

Here we consider the energy Eε with D := DΩ introduced in (1.2), i.e.,

D(y) = DΩ(y) =
∫∫

Ω×Ω

|x− x̃|q
|y(x) − y(x̃)|d+sq

|det∇y(x)||det∇y(x̃)|dxdx̃

for y ∈W 1,p(Ω, R
d), q ∈ [1, ∞), s ∈ [0, 1).

The following statement is actually not required for our main result. However,
together with its counterpart for the elastic energy (cf. proposition 2.2) it ensures
well-posedness of the variational model.

Proposition 3.2. For p > d, the functional DΩ : W 1,p(Ω; Rd) → [0, ∞] is lower
semicontinuous with respect to the weak convergence in W 1,p.
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8 S. Krömer and P. Reiter

Proof. For δ > 0 define

D[δ](y) :=
∫∫

Ω×Ω

|x− x̃|q
max{δ, |y(x) − y(x̃)|d+sq}

|det∇y(x)||det∇y(x̃)|dxdx̃ � D(y).

Let (yk) ⊂W 1,p(Ω; Rd) with yk ⇀ y in W 1,p, for some y ∈W 1,p(Ω; Rd). In
particular, yk → y in C(Ω; Rd) by embedding, and consequently,

lim inf
k→∞

D[δ](yk) = lim inf
k→∞

∫∫
Ω×Ω

Wδ,y(x, x̃,det∇yk(x),det∇yk(x̃)) dxdx̃ (3.2)

where

Wδ,y(x, x̃, J, J̃) :=
|x− x̃|q

max{δ, |y(x) − y(x̃)|d+sq}
|J ||J̃ | for x, x̃ ∈ Ω, J, J̃ ∈ R.

Clearly, Wδ,y is symmetric in (x, x̃) and (J, J̃), as well as separately convex in
(J, J̃), i.e., convex in J with x, x̃, J̃ fixed and convex in J̃ with x, x̃, J fixed. By
[26, Theorem 2.5] (see also the related earlier result [12, Theorem 11]), this implies
weak lower semicontinuity of J �→ ∫∫

Ω×Ω
Wδ,y(x, x̃, J(x), J(x̃)) dxdx̃ in Lα(Ω), in

particular for α := p
d . Again exploiting the weak continuity of the determinant, i.e.,

Jk := det∇yk ⇀ J := det∇y weakly in Lp/d, we thus get that

lim inf
k→∞

∫∫
Ω×Ω

Wδ,y(x, x̃,det∇yk(x),det∇yk(x̃)) dxdx̃

�
∫∫

Ω×Ω

Wδ,y(x, x̃,det∇y(x),det∇y(x̃)) dxdx̃ = D[δ](y). (3.3)

Combining (3.2) and (3.3), we see that D[δ] is weakly lower semicontinuous for each
δ > 0. Since DΩ(y) = supδ>0 D[δ](y), this implies weakly lower semicontinuity of
DΩ. �

Theorem 3.3. Let Ω ⊂ R
d, be a bounded Lipschitz domain, and suppose that q � 1

and s ∈ [0, 1). In addition, suppose that (3.1) holds together with

s− d
q

� 1 − d
σ
. (3.4)

Then the functionals Eε Γ-converge to E0 as ε↘ 0, with respect to the weak topology
of W 1,p(Ω, R

d).

For the proof, we additionally need the following two propositions.

Proposition 3.4 Finite Eε(y) implies (CN). Suppose that s, q � 0 and (3.1) holds,
and let y ∈W 1,p

+ (Ω, R
d) such that E(y) <∞ and D(y) <∞. Then y satisfies (CN).

Recall that a function is said to satisfy Lusin’s property (N) if it maps sets of
measure zero to maps of measure zero. In particular, it applies to Sobolev functions
W 1,p(Ω, R

n) where p > n; cf. [14].
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Proof. The proof is indirect. Suppose that (CN) does not hold. By the area formula
(cf. Lemma 2.1), this means that Z2 := {z ∈ R

d | Ny(z, Ω) � 2} has positive mea-
sure. As a consequence, X2 := y−1(Z2) also has positive measure, because y satisfies
Lusin’s property (N) as a map in W 1,p with p > d. In addition, we claim that X2

is open. For a proof, take any x ∈ X2 
= ∅. By definition of X2, there exists another
point x̃ ∈ X2 \ {x} such that y(x) = y(x̃). If we choose disjoint open neighbour-
hoods U, Ũ ⊂ Ω of x, x̃, respectively, then y(U) and y(Ũ) are open sets because y
is open by proposition 2.4. Hence, their intersection y(U) ∩ y(Ũ) ⊂ Z2 is also open,
and it contains y(x) = y(x̃). By continuity of y, we conclude that y−1(y(U) ∩ y(Ũ))
is now an open subset of X2 containing x (and x̃).

The above construction in particular shows that we can have two open, nonempty
sets V, W ⊂ X2 ⊂ Ω with x ∈ V ⊂ U ∩ y−1(y(U) ∩ y(Ũ)) andW := Ũ ∩ y−1(y(V ))
such that V ∩W = ∅ and y(W ) ⊂ y(V ) are open. Hence, with

δ := min{|x− x̃| | x ∈ V , x̃ ∈W} > 0,

we have that

D(y) �
∫∫

V ×W

δq

|y(x) − y(x̃)|d+sq
|det∇y(x)||det∇y(x̃)| dxdx̃.

Changing variables in both integrals using lemma 2.1, also using that Ny � 1 on
the image of y, we infer that

D(y) � δq

∫
y(W )

∫
y(V )

1

|ξ − ξ̃|d+sq
dξ dξ̃.

The double integral is infinite since y(W ) ⊂ y(V ) and sq � 0. This implies that
D(y) = +∞, contradicting our assumption. �

Proposition 3.5. Let y ∈W 1,p
+ (Ω, R

d) be a homeomorphism Ω → y(Ω) with y−1 ∈
W 1,σ(y(Ω), Ω), q ∈ [1, ∞), s ∈ [0, 1). In addition, suppose that (3.1) and (3.4) hold.
If Ω′ is open and Ω′ ⊂⊂ Ω then DΩ′(y|Ω′) <∞.

Proof. We apply lemma 2.1 twice to change variables in each of the two inte-
grals in DΩ′ , with E = Ω′. First, change variables in the inner integral, say,
over x, using z = ξ and f(z) = |y−1(z) − x̃|q|z − y(x̃)|−(d+sq) for any fixed x̃ ∈ Ω′.
Afterwards, use Fubini’s theorem to change the order of integration and change
variables in the integral over x̃, now for any fixed ξ using z = ξ̃ and f(z) =
|y−1(ξ) − y−1(z)|q|ξ − z|−(d+sq). We thus obtain that

DΩ′(y|Ω′) =
∫∫

y(Ω′)×y(Ω′)

|y−1(ξ) − y−1(ξ̃)|q

|ξ − ξ̃|d+sq
dξ dξ̃.

The right-hand side is just the qth power of the seminorm belonging to the
Sobolev–Slobodeckĭı space W s,q(y(Ω′), R

d). As y(Ω′) ⊂ y(Ω) we may find ψ ∈
C∞(Rd) supported in y(Ω) with ψ = 1 on y(Ω′). Choosing any regular value
r ∈ (0, 1), the set ψ−1((r, 1]) has a smooth boundary. We denote its component
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10 S. Krömer and P. Reiter

containing y(Ω′) by Υ. In case s ∈ (0, 1), using y(Ω′) ⊂ Υ ⊂ y(Ω) and applying the
embedding theorem, we infer

DΩ′(y|Ω′) �
[
y−1|y(Ω′)

]q
W s,q(y(Ω′),Rd)

�
[
y−1|Υ

]q
W s,q(Υ,Rd)

� Cd,q,σ,Υ

∥∥y−1|Υ
∥∥q

W 1,σ(Υ,Rd)
� Cd,q,σ,Υ

∥∥y−1|y(Ω)

∥∥q

W 1,σ(Ω,Rd)
.

The case s = 0 is similar; in the intermediate step above, we now use W s̃, q with
some s̃ > 0 small enough so that W 1,σ still embeds into W s̃, q since σ > dq

q+d . �

Proof of theorem 3.3. Lower bound (Γ-lim inf-inequality): Assume that yk ⇀ y in
W 1,p and εk ↘ 0. If lim infk Eεk

(yk) = +∞, there is nothing to show. Hence, pass-
ing to a suitable subsequence (not relabelled), we may assume that the lim inf is a
limit and Eεk

(yk) is bounded. Since D � 0 and E is weakly lower semicontinuous,
we get that

lim
k
Eεk

(yk) � lim inf
k

E(yk) � E(y). (3.5)

Moreover, by proposition 3.4, we see that yk satisfies (CN) for all k, and by lemma
2.3, this implies that y satisfies (CN). Hence, E(y) = E0(y), and (3.5) thus implies
the asserted lower bound.

Upper bound (construction of a recovery sequence): Let y ∈W 1,p(Ω; Rd) be given.
We may assume that E0(y) <∞, because otherwise there is nothing to show. We
therefore have that y ∈W 1,p

+ (Ω; Rd), y satisfies (CN) and E(y) <∞.
By proposition 2.4, the map y : Ω → y(Ω) is a homeomorphism. We choose j ∈ N

and shrink the domain Ω to Ωj = Ψj(Ω), using lemma 2.6. Now define

yj : Ω → y(Ωj), yj := y|Ωj
◦ Ψj .

As j → ∞, yj → y inW 1,p(Ω; Rd) and E(yj) → E(y) by lemma 2.7. Here, concerning
the term (det∇y)−r in E , notice that by the chain rule and the multiplicativity of
the determinant, we have that

1
(det∇yj)r

= (f ◦ Ψj)
1

(det∇Ψj)r
, with f :=

1
(det∇y)r

∈ L1(Ω).

Combined with the fact that det∇Ψj → 1 uniformly, lemma 2.7 can therefore
indeed be applied with k = 0 and p = 1 to obtain convergence of this singular term
in E .

Since Ωj ⊂⊂ Ω for each j, we also have that

DΩ(yj) = DΩj
(y) <∞

by change of variables and proposition 3.5.
Now let εk ↘ 0 be given. We choose jk → ∞ such that εkD(yjk

) k→∞−−−−→ 0. Here,
notice that this can be always achieved by choosing jk → ∞ slow enough (depending
on εk), even if D(yj) → +∞. So Eεk

(yjk
) = E(yjk

) + εkD(yjk
) k→∞−−−−→ E(y) = E0(y).

�
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3.2. Bulk self-repulsion near the boundary

Here, we consider D := DUδ
where, for any δ > 0, the set Uδ ⊂ Ω can be chosen

as any open neighbourhood of ∂Ω which is at least δ-thick in the sense that

Uδ ⊃ (∂Ω)(δ) = {x ∈ Ω | dist(x, ∂Ω) < δ} . (3.6)

For the ease of notation, we abbreviate Dδ := DUδ
so that

D(y) = Dδ(y) =
∫∫

Uδ×Uδ

|x− x̃|q
|y(x) − y(x̃)|d+sq

|det∇y(x)||det∇y(x̃)| dxdx̃

for y ∈W 1,p(Ω, R
d), q ∈ [1, ∞), s ∈ [0, 1). The combined energy Eε now also

depends on the choice of Uδ, and to make this more visible, we will now write

Eε,δ(y) =

{
E(y) + εDδ(y) if y ∈W 1,p

+ (Ω,Rd),
+∞ else.

We will see that E0 is still the correct limit functional independently of δ. In fact,
we can even allow the simultaneous limit as (ε, δ) → (0, 0).

Remark 3.6. The fact that the limit as δ → 0+ is admissible offers an attractive
choice of Uδ for numerical purposes: a single boundary layer of the triangulation,
which requires δ of the order of the grid size h. In that case, the cost of a numerical
evaluation of Dδ scales like h−2(d−1) (like a double integral on the surface), which
is much cheaper than for DΩ which scales like h−2d.

As before, for fixed ε, δ > 0, the functional Eε,δ is well suited for minimization
by the direct method:

Proposition 3.7. For p > d, the functional Dδ : W 1,p(Ω; Rd) → [0, ∞] is lower
semicontinuous with respect to weak convergence in W 1,p.

Proof. This is proposition 3.2 with Ω replaced by Uδ. Here, notice that no boundary
regularity of Uδ is required: if needed, we can cover Uδ from inside with open
domains with smooth boundary, and since the integrand of Dδ is nonnegative, we
can therefore write Dδ as a supremum of weakly lower semicontinuous functionals
using the smooth smaller domains as domain of integration. �

To prove the main result in this and the following subsection, we will employ
results of [20] which require that Ω does not have ‘holes’ as made precise in the
following statement.

Theorem 3.8. Let Ω ⊂ R
d be a bounded Lipschitz domain such that R

d \ ∂Ω has
exactly two connected components, q ∈ [1, ∞), s ∈ [0, 1). In addition, suppose that
(3.1) and (3.4) hold. Then for any δ0 ∈ [0, ∞], the functionals Eε,δ Γ-converge to
E0 as (ε, δ) → (0, δ0) (ε, δ > 0), with respect to the weak topology of W 1,p(Ω, R

d).

For the proof, we additionally need the following modification of proposition 3.4.
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12 S. Krömer and P. Reiter

Proposition 3.9 Finite Eε,δ(y) implies (CN). Let Ω ⊂ R
d be a bounded Lipschitz

domain such that R
d \ ∂Ω has exactly two connected components, q ∈ [1, ∞), s ∈

[0, 1). In addition, suppose that (3.1) holds. Moreover, let y ∈W 1,p
+ (Ω, R

d) such
that E(y) <∞ and Dδ(y) <∞. Then y satisfies (CN) on Ω.

Proof. Analogously to proposition 3.4, we infer that y satisfies (CN) on Uδ. By
proposition 2.4, we obtain that y : Uδ → y(Uδ) is a homeomorphism. Here, notice
that for this conclusion, we do not need any regularity of the boundary of Uδ, since
it is enough to apply proposition 2.4 with Ω replaced by subdomains of Uδ with
smooth boundary, and a sequence of such subdomains covers Uδ from the inside.

Such an inner covering can also be used for Ω: choose open Ωj ↗ Ω such that
∂Ωj is smooth, say, Lipschitz. In addition, using that ∂Ω itself is also Lipschitz,
we can make sure that as for Ω, we have that R

d \ ∂Ωj has exactly two connected
components. For any fixed δ, there exists a sufficiently large j such that ∂Ωj is
contained in the open δ-neighbourhood (∂Ω)(δ) of ∂Ω, and therefore ∂Ωj ⊂ Uδ.
Consequently, y|∂Ωj

is injective, which implies that y ∈ AIB(Ωj) in the sense of
[20, Def. 2.1 and 2.2]. In addition, we know that y ∈W 1,p

+ (Ωj ; Rd). By [20, Thm.
6.1 and Rem. 6.3], we infer that y satisfies (CN) on Ωj . As the latter holds for all
j, we conclude that y satisfies (CN) on Ω by monotone convergence. �

Remark 3.10. The proof of proposition 3.9 exploits that y is a homeomorphism
near the boundary, which we obtain from proposition 2.4. This forces the relatively
restrictive assumptions on p and r. While this may be technical to some degree, some
restrictions are definitely needed. In fact, by itself, (CN) on a boundary strip like Uδ

is not strong enough to provide the necessary global topological information: if one
can squeeze surfaces to points with a deformation of finite elastic energy (possible
if p and r are small enough), then self-penetration on Uδ is indeed possible for a
y ∈W 1,p

+ which is injective on Uδ outside a set of dimension d− 1. Such a set of
d-dimensional measure zero is invisible to (CN).

Proof of theorem 3.8. Lower bound (Γ-lim inf-inequality): This is completely anal-
ogous to the proof of theorem 3.3, using proposition 3.9 instead of proposition
3.4.

Upper bound (construction of a recovery sequence): Again, we can follow the
proof of theorem 3.3 step by step, using the domain shrinking maps Ψj to define
yj := y ◦ Ψj as before. In particular, changing variables we now observe that

Dδ(yj) = DΨj(Uδ)(y) � DΩj
(y) <∞

by proposition 3.5, for any fixed j. Given (εk, δk) → (0, δ0), we thus again get a
suitable recovery sequence given by (yj(k)) as long as j(k) → ∞ slow enough so
that εkDδk

(yj(k)) → 0. �

3.3. Surface self-repulsion

Here we look at D := D̃∂Ω where

D̃∂Ω(y) =
∫∫

∂Ω×∂Ω

|x− x̃|q
|y(x) − y(x̃)|d−1+sq

dA(x) dA(x̃), q ∈ [1,∞), s ∈ [0, 1),
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and A(·) denotes the (d− 1)-dimensional Hausdorff measure. Again, this is a term
well-suited for minimization via the direct method:

Proposition 3.11. For p > d, the functional D̃∂Ω : W 1,p(Ω; Rd) → [0, ∞] is lower
semicontinuous with respect to weak convergence in W 1,p.

Proof. As the trace operator fromW 1,p(Ω, R
d) to L1(∂Ω, R

d) is compact, we obtain
pointwise a.e. convergence of the integrand. So the claim immediately follows from
Fatou’s lemma. �

Theorem 3.12. Let Ω ⊂ R
d be a bounded Lipschitz domain such that R

d \ ∂Ω has
exactly two connected components. Given (3.1), we require q � 1 and s ∈ [0, 1] to
be chosen such that

q ((1 − s)σ − d) > d2 − σ (3.7)

and

sq � (d− 1)
p+ d

p− d
. (3.8)

Then the functionals Eε Γ-converge to E0 as ε↘ 0, with respect to the weak topology
of W 1,p(Ω, R

d).

Remark 3.13. With σ = σ(r, p, d) > d as defined in (3.1), the conditions (3.7) and
(3.8) are met if 0 < s < 1 − d

σ and q > max
{

d2−σ
(1−s)σ−d ,

d−1
s · p+d

p−d

}
For the proof, we additionally need the following two propositions.

Proposition 3.14 Finite Eε(y) implies (CN). Let Ω ⊂ R
d be a bounded Lipschitz

domain such that R
d \ ∂Ω has exactly two connected components. Suppose that (3.1)

and (3.8) hold. Moreover, let y ∈W 1,p
+ (Ω, R

d) such that E(y) <∞ and D̃∂Ω(y) <
∞. Then y satisfies (CN).

Proof. According to [20, Cor. 6.5] it is enough to show injectivity of y|∂Ω. If the
latter is not the case, we may choose x0, x̃0 ∈ ∂Ω, x0 
= x̃0, such that y(x0) =
y(x̃0). Recalling that y ∈ C0,α(Ω, R

d), α = 1 − d
p , and abbreviating ε = 1

3 |x0 − x̃0|,
t = d− 1 + sq, we infer

D̃∂Ω(y) =
∫∫

∂Ω×∂Ω

|x− x̃|q
|y(x) − y(x̃)|t dA(x) dA(x̃)

�
∫∫

(∂Ω∩Bε(x0))×(∂Ω∩Bε(x̃0))

|x− x̃|q
(|y(x) − y(x0)| + |y(x̃0) − y(x̃)|)t dA(x) dA(x̃)

� cα

∫∫
(∂Ω∩Bε(x0))×(∂Ω∩Bε(x̃0))

(
ε3
)q

(|x− x0|α + |x̃0 − x̃|α)t dA(x) dA(x̃).
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Introducing local bi-Lipschitz charts Φ : V → ∂Ω ∩Bε(x0), Φ̃ : Ṽ → ∂Ω ∩Bε(x̃0)
where V, Ṽ ⊂ R

d−1 are open sets and Φ(0) = x0, Φ̃(0) = x̃0, we arrive at

D̃∂Ω(y) � cα,ε,q,t

∫∫
V ×Ṽ

√
detDΦ(ξ)�DΦ(ξ)

√
detDΦ̃(ξ̃)�DΦ̃(ξ̃)(

|Φ(ξ) − Φ(0)|2 +
∣∣∣Φ̃(ξ̃) − Φ̃(0)

∣∣∣2)αt/2
dξ dξ̃

� cα,ε,q,t,Φ

∫∫
V ×Ṽ

dξ dξ̃(
|ξ|2 +

∣∣∣ξ̃∣∣∣2)αt/2
.

By assumption, both V and Ṽ contain Bδ(0) ⊂ R
d−1 for some δ > 0. Decomposing

(ξ�, ξ̃�) = ρη� ∈ R
2d−2 where ρ > 0, η ∈ S

2d−3, yields

D̃∂Ω(y) � cα,ε,q,t,Φ,d

∫ δ

0

ρ2d−3

ραt
dρ.

This term is infinite provided 2d− 3 − αt � −1 which is equivalent to (3.8). This
contradicts our assumption that D̃∂Ω(y) is finite. �

Proposition 3.15. Let Ω ⊂ R
d be a bounded Lipschitz domain. Assume that y ∈

W 1,p
+ (Ω, R

d) is a homeomorphism Ω → y(Ω) with y−1 ∈W 1,σ(y(Ω), Ω) for which
(3.7) applies. If Ω′ is open and Ω′ ⊂⊂ Ω and ∂Ω′ is Lipschitz, then D̃∂Ω′(y) <∞.

Proof. First notice that y(Ω) is open and bounded in R
d, the former by invariance of

domain (see e.g. [13, Theorem 3.30]) and the latter due to the fact that y ∈ C(Ω; Rd)
by embedding. Hence, y(Ω′) is a compact and connected subset of y(Ω) with positive
distance to ∂[y(Ω)]. We choose a domain Λ ⊂ R

d with smooth boundary such that
y(Ω′) ⊂⊂ Λ ⊂⊂ y(Ω). By embedding, y−1 ∈ C0,β(Λ, R

d), β = 1 − d
σ . Abbreviating

t = d− 1 + sq, we arrive at

D̃∂Ω′(y) =
∫∫

∂Ω′×∂Ω′

|x− x̃|q
|y(x) − y(x̃)|t dA(x) dA(x̃)

� Cβ

∫∫
∂Ω′×∂Ω′

|x− x̃|q−t/β dA(x) dA(x̃).

The term |x− x̃| is bounded above since Ω is bounded. It approaches zero only in
a neighbourhood of the diagonal. In order to show that D̃∂Ω′(y) is finite we only
have to consider

∫∫
Φ(V )×Φ(V )

|x− x̃|q−t/β dA(x) dA(x̃) where Φ : V → U ⊂ ∂Ω′ is
a chart and V ⊂ BR(0) ⊂ R

d−1 is an open set. Decomposing ξ = ρη ∈ R
d−1 where
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ρ > 0, η ∈ S
d−2, yields∫∫

Φ(V )×Φ(V )

|x− x̃|q−t/β dA(x) dA(x̃)

=
∫∫

V ×V

∣∣∣Φ(ξ) − Φ(ξ̃)
∣∣∣q−t/β√

detDΦ(ξ)�DΦ(ξ)
√

detDΦ(ξ̃)�DΦ(ξ̃) dξ dξ̃

� CΦ

∫∫
V ×V

∣∣∣ξ − ξ̃
∣∣∣q−t/β

dξ dξ̃

� CΦ

∫
BR(0)

∫
BR(0)

∣∣∣ξ − ξ̃
∣∣∣q−t/β

dξ dξ̃

� CΦ

∫
B3R(0)

∫
BR(ξ̃)

|ξ|q−t/β dξ dξ̃

� CΦ,d,R

∫ R

0

ρd−1+q−t/β dρ.

The right-hand side is finite if d− 1 + q − t/β > −1 which is equivalent to (3.7). �

Proof of theorem 3.12. We proceed as in the proof of theorem 3.3. For the lower
bound we use proposition 3.14 in place of proposition 3.4. To see that the recovery
sequence also works for D̃∂Ω, we compute

D̃∂Ω(yj) = D̃∂Ω(y|Ωj
◦ Ψj)

=
∫∫

∂Ω×∂Ω

∣∣∣ξ − ξ̃
∣∣∣q∣∣∣y(Ψj(ξ)) − y(Ψj(ξ̃))

∣∣∣d−1+sq
dA(ξ) dA(ξ̃)

� CΨj

∫∫
∂Ωj×∂Ωj

∣∣Ψ−1
j (x) − Ψ−1

j (x̃)
∣∣q

|y(x) − y(x̃)|d−1+sq
dA(x) dA(x̃)

� CΨj

∥∥∇Ψ−1
j

∥∥q

L∞

∫∫
∂Ωj×∂Ωj

|x− x̃|q
|y(x) − y(x̃)|d−1+sq

dA(x) dA(x̃)

where CΨj
denotes a factor that bounds the terms arising from the change of

variables. Now we deduce from proposition 3.15 (instead of proposition 3.5) that
the right-hand side is finite. �

3.4. Further generalizations and remarks

Remark 3.16 More general elastic energies. It is easy to see that throughout, the
integrand of E can be replaced by any polyconvex function admitting the original
integrand as a lower bound (up to multiplicative and additive constants). Moreover,
the latter is only exploited for the application of the theory of functions of finite
distortion in proposition 2.4. More precisely, theorems 3.3, 3.8 and 3.12 also hold
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for any elastic energy of the form

E(y) =
∫

Ω

W (∇y(x)) dx

such that

(i) W : R
d×d → (−∞, +∞] is continuous and polyconvex, and W (F ) <∞ if and

only if detF > 0,

(ii) W (F ) � c|F |p − C for all F ∈ R
d×d, where p > d,

(iii) W (F ) � c( |F |d
det F )β − C for all F ∈ R

d×d with detF > 0, where β > d− 1

Here, p > d, β > d− 1, c > 0, and C ∈ R are constants. Notice that (iii) directly
provides the bound on the outer distortion we need to generalize proposition 2.4.

Remark 3.17 Boundary conditions and force terms. Due to the stability of Γ-
convergence with respect to addition of continuous functionals, our main results
continue to hold if E is modified by adding a term which is continuous in the
weak topology of W 1,p (typically either linear or lower order, exploiting a com-
pact embedding). This includes many classical force potentials for body forces and
surface tractions. Additional boundary conditions, say, a Dirichlet condition of the
form y = y0 on a part Λ of ∂Ω, are in principle also possible but not trivial to add,
as they require modified recovery sequences in the proof of the theorems. In partic-
ular, we would need a suitable modification of lemma 2.6 which keeps the Dirichlet
part of the boundary fixed, as well as additional assumptions on y0 which at the
very least should map Λ to a reasonably smooth set out of self-contact. The easiest
way to set up a meaningful model with full coercivity in W 1,p which is compati-
ble with our theorems is to confine the deformed material to a box by constraint
(y(Ω) ⊂ B for a given compact B ⊂ R

d with non-empty interior).

Remark 3.18 More general nonlocal self-repulsive terms. It is clear that our general
proof strategy can also be applied to other nonlocal terms D. The only key features
of such a term D are the following:

(i) for any deformation y with finite elastic energy E(y), finite D(y) implies (CN)
(cf. propositions 3.4, 3.9 and 3.14);

(ii) for any homeomorphisms y ∈W 1,p
+ (p > d) whose inverse has the Sobolev

regularity W 1,σ (σ > d) obtained from the control of its distortion through
the elastic energy (see proposition 2.4), we obtain D(y) <∞, at least if we
move to a slightly smaller domain Ω′ ⊂⊂ Ω (cf. propositions 3.5 and 3.15).

Moreover, it is in principle possible to work with added penalty terms with proper-
ties closer to ones used in [21, 22], where, unlike here, the added terms are finite on
all a-priori admissible deformations, even those that exhibit self-interpenetration.
For instance, we could introduce an everywhere finite Dε instead of εD as, say, a
suitable truncation of the latter. For sufficiently small positive ε, the self-repulsive
property (i) in such a scenario can still hold for deformations satisfying a fixed
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energy bound. Here, the basic idea is to find at least one deformation y0 so that
e0 := E(y0) + sup0<ε�1 Dε(y0) <∞, for instance the identity or another map far
from self-contact. Then check if (i) still holds in such a case if we replace the
assumption D(y) <∞ by E(y) + Dε(y) � e0 (for sufficiently small ε independently
of y).

Remark 3.19 Mosco-convergence and recovery by homeomorphisms. Our proofs
of theorems 3.3, 3.8 and 3.12 actually provide more than Γ-convergence: the recov-
ery sequence we construct always converges strongly in W 1,p, which means that
we actually proved so called Mosco-convergence. Moreover, as constructed, each
member of the recovery sequence is a homeomorphism on Ω. In particular, any
admissible y with finite E0(y) is always contained in the C0-closure of these home-
omorphisms, i.e., y ∈ AI(Ω) in the notation of [20]. Our results here therefore also
show that within W 1,p

+ (Ω; Rd) with p > d, AI(Ω) coincides the class of maps satis-
fying (CN) if we also impose strong enough a-priori bounds on the outer distortion
to apply the result of Villamor and Manfredi as in proposition 2.4. The general case
is still not clear, cf. [20, Remark 2.19].
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