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On exterior powers of reflection representations, II

Hongsheng Hu

ABSTRACT. Let W be a group endowed with a finite set S of generators. A
representation (V, p) of W is called a reflection representation of (W, S) if p(s)
is a (generalized) reflection on V for each generator s € S. In this paper,
we prove that for any irreducible reflection representation V', all the exterior
powers /\d V,d=0,1,...,dimV, are irreducible W-modules, and they are
non-isomorphic to each other. This extends a theorem of R. Steinberg which
is stated for Euclidean reflection groups. Moreover, we prove that the exterior
powers (except for the Oth and the highest power) of two non-isomorphic re-
flection representations always give non-isomorphic W-modules. This allows
us to construct numerous pairwise non-isomorphic irreducible representations
for such groups, especially for Coxeter groups.
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1. INTRODUCTION
1.1. Overview

In [9, Section 14], R. Steinberg proved a theorem stating that the exterior powers
of the irreducible reflection representation of a Euclidean reflection group are again
irreducible and pairwise non-isomorphic (see also [1, Ch. V, Section 2, Exercise 3]).
For Weyl groups, the exterior powers of the standard reflection representation are
well studied (see, for example, [2, 4, 5, 8]).

The proof of Steinberg’s theorem relies on the existence of an inner product
which stays invariant under the group action. In a previous paper [6], the author
extended Steinberg’s result to a more general context where the inner product may
not exist. Let W be a group and S = {s1,...,s;} be a set of generators of W. We
say a representation p : W — GL(V) is a reflection representation of (W, S) if each
of the generators s; acts by a generalized reflection, and denote by «; the chosen
reflection vector (see Subsection 2.1 for related notions). The main theorem in [6]
reads:

Theorem 1.1 ([6, Theorem 1.2]). Let (V,p) be an n-dimensional irreducible re-
flection representation of (W,S) over a field F of characteristic 0, with reflection
vectors aq, ..., ap. Suppose

(1.1) for any two indices 1,7, s; - oj # o if and only if s; - 0y # .

Then the W-modules {\"V | 0 < d < n} are irreducible and pairwise non-
isomorphic.

As pointed out in [6], usually there is no W-invariant bilinear form on the re-
flection representation, so that our result is not a trivial generalization.
The first aim of this paper is to show that the assumption (1.1) can be removed:

Theorem 1.2. Let (V, p) be an n-dimensional irreducible reflection representation

of (W, S) over a field F of characteristic 0. Then the W -modules {\°V | 0 < d < n}
are irreducible and pairwise non-isomorphic.

The readers may find that the proof of Theorem 1.2 is similar to that of Theorem
1.1 ([6, Theorem 1.2]). The proof here simplifies the proof in [6] a little bit. See
Section 4 for more details.

The major contribution of this paper is the second main result, stating that the
exterior powers of two different reflection representations are also different. To be
precise, we have

Theorem 1.3. Let (V,,p,), ¢ = 1,2, be two irreducible reflection representations
of (W, S) over a field F of characteristic 0, with dimensions nq and ns respectively.
Suppose /\d1 Vi ~ /\d2 Vo as W-modules for some integers dy,ds with1 < d, <n,—1
(t=1,2). Then d; = da, n1 = na, and Vi = Vo as W-modules.

Remark 1.4. Note that /\0 V' is the one-dimensional W-module with trivial W-
action. While A"V carries the one-dimensional representation detop for any n-
dimensional representation (V, p) of W, and different p’s might share the same deter-
minant det op (for example, if each generator s; is of order two, then det op(s;) = —1
for any reflection representation (V, p) and any ). Thus, in Theorem 1.3 the range
1 <d, <n,—1is the best we can expect.
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By combining the results in Theorems 1.2 and 1.3, immediately we have the
following corollary, which allows us to construct numerous pairwise non-isomorphic
irreducible representations for the group W.

Corollary 1.5. Suppose we have a family of irreducible reflection representations
(Vi |ieI} of (W,S). Then {\“V;|icI,1<d<dmV,—1} is a family of

simple W-modules, and they are pairwise non-isomorphic.

1.2. Motivation and application

The motivation of this work (as well as the previous [6]) comes as follows. Sup-
pose W is a Coxeter group with the finite set .S of defining generators. In another
paper [7] by the author, all the reflection representations (over C) of (W, S) are
determined. The most essential thing in this process is the classification of isomor-
phism classes of the so-called generalized geometric representations (that is, those
reflection representations admitting a basis formed by the reflection vectors). In [7],
such representations are classified using the characters of the first integral homology
group of simple graphs which are closely related to the Coxeter graph. Moreover,
“most” of them are irreducible. While if a generalized geometric representation
is reducible, then it has a semisimple quotient, each of whose direct summand is
an irreducible reflection representation of some parabolic subgroup. Therefore, the
results in this paper are applicable, and then we obtain a large class of irreducible
representations which are non-isomorphic to each other.

For example, if (W, S) is the affine Weyl group of type Zn, that is,

W = (80,81,--,5n | 57 = (8i8i41)> = €,Vi = 0,1,...,n)

(regard n + 1 as 0), then the Coxeter graph is a cycle. The corresponding first
homology group with integral coefficients is isomorphic to Z, and its characters
are parameterized by C*, and so are the generalized geometric representations.
For x € C*, the corresponding generalized geometric representation, denoted by
Ve, is an (n + 1)-dimensional C-vector space with basis {ag, a1,...,a,}, and the
W-action can be defined by

S§; 0 = —Q, VizO,l,...,n;
SoQin, = Qi + TQp;
1
Sp0p = Qg + — 0
xT
S04 :si+1ai:ai+ai+1, VZZO,l,...,’I'Lfl;

sija; = a, if i # j and 4, j are not adjacent.

All of these representations are irreducible except when z = 1. If x = 1, the
representation V3 is nothing but the geometric representation in the sense of [1,
Ch. V, Section 4], and it admits an n-dimensional simple quotient V; /U where
U:={(a+ a1+ + ap). The quotient V1 /U is also a reflection representation.
Applying Theorems 1.2 and 1.3 yields uncountably many simple modules for the
affine Weyl group W:

(A

1§d§n,x€@x\{1}}u{/d\(V1/U)‘1§d§n—1}.
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1.3. Outline of this paper

The paper is organized as follows. In Section 2 we recollect the basic definitions
and some preliminary results. In Section 3, we recollect some basic results on
exterior powers of reflection representations. In Section 4 and Section 5 we prove
Theorems 1.2 and 1.3 respectively.

2. PRELIMINARIES

Throughout this paper, we work over a field F of characteristic 0. We require
charF = 0 only to ensure the exterior powers of an irreducible representation are
semisimple (see Remark 3.7). In fact, the notions of reflections and reflection rep-
resentations can be defined over fields of arbitrary characteristic.

For any positive integer k, we denote [k] := {1,2,...,k}. For a fixed representa-
tion p : W — GL(V) and an element s € W, we also denote simply by s the linear
map p(s) € GL(V) if there is no ambiguity.

2.1. Reflections and reflection representations

Definition 2.1 ([6, Definition 2.1]). Let V be a finite-dimensional vector space
over F.

(1) A linear map s: V — V is called a generalized reflection (and reflection for
short) if s is diagonalizable and rank(s — Idy) = 1.

(2) Suppose s is a reflection on V. The hyperplane H; := ker(s — Idy ), which
is fixed pointwise by s, is called the reflection hyperplane of s. Let o be a
nonzero vector in Im(s —Idy ). Then, s- oy = Asa, for some Ay € F\ {1},
and «; is called a reflection vector of s.

Note that if s is an invertible map, then A # 0.
The following lemma is immediate.

Lemma 2.2 ([6, Lemma 2.2]). Let s be a reflection on V' and as be a reflection
vector. Then there exists a nonzero linear function f : V. — F such that s -v =
v+ f(v)as for anyv € V.

The main object of our study, reflection representation, is defined as follows.

Definition 2.3. Let W be a group endowed with a finite set of generators S =
{s1,..., 8k} Arepresentation (V, p) of W over F is called a reflection representation
of (W,S) if the linear map p(s;) € GL(V) is a reflection on V for any ¢ € [k].

2.2. Digraphs

Digraphs will be helpful to investigate the structure of reflection representations.
In what follows we recall some relevant basic definitions.

By definition, a directed graph (or digraph for short) G = (I, A) consists of a set
I of vertices and a set A of arrows, where each arrow in A is an ordered binary
subset (i,7) of I. We also denote by ¢ — j the arrow (4,7). For our purpose, we
only consider finite digraphs without loops and multiple arrows, that is, (1) I is a
finite set, (2) there is no arrow of the form ¢ — ¢ and (3) each arrow ¢ — j occurs
at most once in A.

Suppose i,j € I are two vertices of a digraph G. A walk in G from i to j is a
sequence of vertices

t=1g, %1, .., U-1, U=]
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such that ¢,,_1 — ., is an arrow in A for each m € [I].
An undirected walk in G from i to j is an alternating sequence

i:io, ay, 7’.17 az, Z.27 RN} 7:lfla ag, Zl:j

of vertices ig,i1,...,4 € I and arrows ay,...,a; € A such that either a,, = i,,_1 —
im OF Gy = i — Gm—1 for each m € [I].

A digraph G is called weakly connected if for any two vertices i,j there exists
an undirected walk from ¢ to j. In other words, G is weakly connected if the undi-
rected graph obtained by forgetting the directions of all arrows in A is connected.
Moreover, G is called strongly connected if for any two vertices 4, j there exists two
walks, one from ¢ to j and the other from j to .

Suppose J C I is a subset of the vertices of G. We define a digraph G(J), called
the sub-digraph spanned by J, to be the digraph (J, A(J)) with the set J of vertices,
and the set A(J):={i —j|4,j € J, and i — j is an arrow in A} of arrows.

Definition 2.4. Let G = (I, A) be a digraph and J, J" C I be subsets of vertices.
Suppose there exist vertices ¢ € J and j € J’ such that ¢ — j is an arrow in A and
J\{i} = J'\ {j}. Then we say J' is obtained from J by a move-forward, and J is
obtained from J’ by a move-back. We also say uniformly that J or J’ is obtained
from the other by a move.

Intuitively, we obtain J’ from J by moving the vertex ¢ to the vertex j along the
arrow ¢ — j.

The following lemma is essentially [6, Lemma 4.3].

Lemma 2.5. Let G = (I, A) be a weakly connected digraph. Let J,J" C I be two
subsets with the same cardinality. Then J' can be obtained from J by finite steps
of mowes.

Proof. Forgetting the directions of arrows in A, this lemma follows from [6, Lemma
4.3]. O

Digraphs and reflection representations are related via the following definition.

Definition 2.6. Let W be a group endowed with a finite set of generators S =
{s1,..., sk}, and (V, p) be a reflection representation of (W, S). For each i € [k], let
a; be an arbitrarily chosen reflection vector of s;. For any subset I C [k], we define
the associated digraph Gy to be a digraph (I, A) where I is the set of vertices and

A::{i—)j|i,j6[,sj-a¢7$ai}

is the set of arrows. We also denote simply by G the associated digraph G-
Clearly, for subsets J C I C [k], the digraph G is the sub-digraph G;(J) of Gy
spanned by J.

Immediately we have the following fact about the associated digraph.

Lemma 2.7. If i — j is an arrow in the digraph G, then o; belongs to the
subrepresentation generated by «;.

Proof. By definition, we have s; - a; # o;. In view of Lemma 2.2, the vector
o; — 85 -« is a nonzero multiple of a;. But this vector lies in the subrepresentation
generated by «;. (I
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2.3. Some numerical lemmas
We will need the following lemmas.

Lemma 2.8. Let ny,no,dy,ds be positive integers and 1 < d, <mn,—1 for.=1,2.

Suppose % =2 gnd (le) = (Z;) Then ni = ny and di = ds.

na
Proof. Without loss of generality, we may assume n; < np and d, < % for ¢ =1,2.

Suppose n; < ns. Then d; < dy. Then we have (Z;) > (Zf) > (Zi) which is a

contradiction. Therefore, n; = no and hence d; = ds. [l

Lemma 2.9. Let ni,ns,di,ds be positive integers and 1 < d, <n,—1 fori1=1,2.
Suppose

ny —1 ng — 1

1) < dy )Z( da )

and
ny —1 ng — 1

(22) <d1 - 1) - (d2 - 1)'

Then ny = ne and di = ds.

Proof. By direct computations, for « = 1,2 we have

(nL - 1> <nb - 1) B (n, —1)! (n, —1)!
d, d,—1 dn,—d,—1)! (d,—1)}(n, —d,)!

_ (n,—1)!
= T(n, a2

(-t

By Equations (2.1) and (2.2) we then have

= (a)e-T0-()e-20

Adding the Equations (2.1) and (2.2) together yields

@ ()= ()

We combine Equations (2.3) and (2.4), then we obtain

diy  do
1 o 712.
By Lemma 2.8 we have n; = ng and d; = ds. U

3. EXTERIOR POWERS OF REFLECTION REPRESENTATIONS

In this section we recollect some first results about exterior powers. Let W be a
group endowed with a set of generators S = {s1,..., sk} as before. Suppose (V, p)

is an n-dimensional representation of W. The action /\d p of W on the dth exterior
power AV (0 < d < n) is given by

w- (A Avg) = (w-v) A A(w-vg), Yw € W,ug,...,vqg€V.
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In particular, A’V is the one-dimensional W-module with trivial action, and A" V'
carries the one-dimensional representation detop. If {vq,...,v,} is a basis of V,
then

{vig Ao ANy |1 <4 < <ig<n}
is a basis of A” V. In particular, dim A" V = (). For more details about exterior
powers, see, for example, [3].

Suppose further that (V,p) is a reflection representation and «; is a chosen
reflection vector of s; with eigenvalue A; (# 1) for each i € [k] (see Definitions 2.1
and 2.3). We also denote by H; the reflection hyperplane of s;. For each i € [k]
and 0 < d < n, we define

Vdfi:: {ve/d\V‘si-v—v}, Vdfi = {ve/d\V‘siov—)\iv}

to be the eigen-subspaces of s; in /\d V', for the eigenvalues 1 and \;, respectively.
Retain the notations W,V s;, o, etc.

Lemma 3.1 ([6, Lemma 3.2 and Corollary 3.3]). Leti € [k] and 0 < d < n.

(1) We have Vdf'i = /\d H; and dim Vdf'i = (”gl). Here we regard (";1) =0 if
d=n.
2) FExtend the reflection vector a; arbitrarily to a basis of V', say, o, va, ..., Un.
( y y
Then, Vdfi has a basis

{O[i/\’l}il ANRERVAN V7S |2§Zl < <tgeq STL}
In particular, dimV,; = (Z:}) Here we regard (”:11) =01ifd=0.
(3) As a wvector space, /\dV = VdZ@Vd}. In particular, the only possible

eigenvalues of s; on /\d V oare 1 and A;.

Lemma 3.2 ([6, Proposition 3.5]). Suppose the reflection vectors ay, ...,y (m <
k) are linearly independent. We extend these vectors to a basis of V', say,

{a1, . s Qs U1y -+ 5 Un b

(1) Ifo<d<m, then (<;<p, Va, = 0.
(2) If m<d<mn, then (,<;<,, Va, has a basis

{far AN ANvg oy A AN M1 <y < <lig < i

In particular, if d = m, then (), <,<,, V,,; is one-dimensional with a basis
vector ay N\ -+ A Q.

Lemma 3.3. Suppose m < d, m < k — 1, and the reflection vectors a,...,0m
are linearly independent. Suppose a1 is a linear combination of aq,..., 0.
Then nl§i§m+1 Vii= n1§z‘§m Vi #0 (that is, Sm+1 -V = Ap41v for any v €
m1§z‘§m Vdji)'

Proof. The fact that (,.,,, V;; # 0 follows from Lemma 3.2. Moreover, the
subspace ), <i<m Va; admits a basis of the form

(3.1) {oa AN ANy N ANy |41 <y < - <ig <nj

where {aq,...,Qm, Umt1,-..,0,} is a basis of V.
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Suppose Q11 = €101 + -+ -+ i, ¢; € F. Without loss of generality, we may
assume further ¢; # 0. Then for any basis vector in (3.1) we have
ap A ANam AN N ANy,
= 01_1(01041) Nag N Ny NV, Neee Aoy,
=ci ' (cron + -+ emam) Aaa A A Ay, A A,
=cl_l<)4m_~_1/\ozg/\---/\ozm/\vimJrl N AN,

Note that this is a nonzero vector, and that {11, 2, .., @m, Vg1, ..., 0n} 18
also a basis of V. By Lemma 3.2 again, we have

A1 N Ao N N N AN € V.
Therefore, ﬂ1gigm Vi © Vi, and thus ﬂl§i§m+1 Vii= ﬂ1gi§m Vi O

Lemma 3.4 ([6, Proposition 3.6]). If0 < d,d < n are integers and /\d V ~ /\d/ V
as W-modules, then d = d'.

Remark 3.5. Lemma 3.4 holds for any representation on which some element s € W
acts by a reflection, not necessary a reflection representation. See [6, Proposition
3.6] for details.

Lemma 3.6 ([6, Corollary 3.8]). If the representation (V, p) is irreducible, then the
W -module /\d V is semisimple for any d =0,1,...,n.

Remark 3.7. Recall that charF is assumed to be 0. This is used in the proof of
Lemma 3.6. See [6, Lemma 3.7 and Corollary 3.8] for details.

4. PROOF OF THEOREM 1.2

In this section we give the proof of Theorem 1.2.

Recall that W is a group endowed with a set of generators S = {s1, ..., sx}, and
(V, p) is an n-dimensional irreducible reflection representation of (W, .S) over a field
F of characteristic 0. We denote by «; the chosen reflection vector of s; as before,
and by A; (#£ 1) the corresponding eigenvalue, for each i € [k].

By Lemma 3.4, the W-modules {A\” V | 0 < d < n} are pairwise non-isomorphic.
Therefore, to prove Theorem 1.2, it suffices to show that /\d V is a simple W-module
for each d. But we have seen in Lemma 3.6 that /\d V' is semisimple, so the problem
reduces to proving

d
(4.1) any endomorphism of /\ V is a scalar multiplication.

Recall in Definition 2.6 that a digraph G is associated to the reflection repre-
sentation (V, p) and an arbitrary subset I C [k]. We have the following lemma.
Lemma 4.1. There exists a subset I C [k] such that

(1) the digraph Gy is weakly connected, and
(2) {oi |t €I} isabasis of V.
Proof. Suppose we have found a subset J C [k] such that

(a) the digraph G is weakly connected, and
(b) {«; |7 € J} is linearly independent.
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For example, any singleton {j} C [k] is such a subset.

If |J| = n (the dimension of V'), then we are done. Otherwise, suppose |J| < n.
Let Vy := @, Foy, which is a proper subspace of V. Since V is a simple W-
module, there exists j € J and iy € [k] such that s;, - a; ¢ V;. By Lemma 2.2,
Si, - o is of the form

Sip " QU = O + Q)
for some x € F. Then we must have x # 0 and iy ¢ J, otherwise s;, - o; would
belong to V;. Now let J' = J U {ig}. Then the associated digraph G is also
weakly connected since we have an arrow j — ig. Moreover, the set of vectors
{a; | i € J'} is linearly independent since oy, ¢ @@, ; Fa;. Therefore, the subset J’
satisfies the conditions (a) and (b). Moreover, we have |J'| = |J|+ 1. By induction
on cardinality, there exists a subset I C [k] satisfying (1) and (2). O

The following corollary of Lemma 4.1 will be used in Section 5.

Corollary 4.2 (See also [6, Claim 5.2]). Suppose (V,p) is an n-dimensional ir-
reducible reflection representation of (W, S) with reflection vectors {a; | ¢ € [k]}.
Then the space V is spanned by {c | i € [k]}, that is, V =}, Faq. In particu-
lar, n < k.

Let I be obtained as in Lemma 4.1. Without loss of generality, we may assume
I = [n], the first n indices of [k] (note that we have n < k by Lemma 4.1). The
vectors {a; | ¢ € I'} form a basis of V. For each fixed d with 0 < d < n, the set of
vectors

{ail/\-~-/\o¢¢d ‘ 1< < <id§n}

is a basis of AV

For any set of distinct indices 1 < ¢1,...,17q < n, by Lemma 3.2, the intersection
N, <j<d Vdjij of the d eigen-subspaces is one-dimensional,

ﬂ Vdjij :IFOQ'1 /\"'/\Olid.
1<j<d

Suppose now ¢ € Endyy ( /\d V') is an endomorphism. Then ¢ preserves the subspace
Mi<j<a Va,- Therefore,

olag, N ANty) =Yy, i@y A<+ Ao, for some 7, ;. €F.

Notice that a;,,, A+ Ay, 0 = sign(o)ay, A--- Ay, for any permutation o € G,
and hence that ;,  ;, depends only on the set {i1,...,i4}, not on the order of
the indices. To prove the statement (4.1), it suffices to show that the coefficients
Vir....iq are independent of the choice of the indices {i1,...,iq}. The following
result is essentially the same as [6, Claim 5.5].

Lemma 4.3. Let J = {i1,...,4q}, J = {j1,--.,Ja} be two subsets of I, both con-
sisting of d elements. Suppose J' can be obtained from J by a move (see Definition
2.4) in the digraph Gy. Then ;,

Proof. Without loss of generality, we may assume that d <n —1, J = {1,...,d},
J ={1,2,...,d—1,d+ 1}, and d = d+1 is an arrow in G;. Then $441 - aqg # aq.
Fori=1,...,d, by Lemma 2.2 we assume that

Sd41 -0y = o + Ciagy1, ¢ €.
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Then ¢4 # 0. We have
Sd+1 - (al/\---/\ad)
= (a1 + crager) A A (g + caogyr)

=1 A Aag + Z (—l)d_ici-a1A"'AaiA"‘AadAad+1-
1<i<n

Hence,

@(Sa41 - (a1 A+ Aayg))

d
zap(al/\---/\ozd—i—Z(—l)d_ici-al/\---/\&i/\-~-/\ad+1)
=1

d
d—i ~
=y,.d 0N ANag+ Z(—l) iy G ar AN NN A g
i=1

This also equals

Sd+1 (’O(al/\/\ad)
=",..dSd+1 - (1 A+ A ag)

d
=71,..d Q1N Nag+ Z(—l)d_zci’}/17,__,d cap A A ai ARERWANAIR R
=1

Note that ¢4 # 0, and that the vectors involved in the summations above are
linearly independent. Thus, we have the desired equality v1,....¢ = 71,....a—1,a+1 by
comparing the coefficients of a; A -+ A ag_1 A ags1. [l

In general, for two subsets J and J’ of I, if both of them consist of d elements,
then, since G is weakly connected, one can be obtained from the other by finite
steps of moves by Lemma 2.5. Therefore, the coefficients v;,,. ;, are constant
among all choices of the distinct indices 1 < iq,...,iq < n.

The proof of Theorem 1.2 is completed.

d

Remark 4.4. We cannot expect the digraph G; in Lemma 4.1 to be strongly con-
nected. For example, let S = {s1, 2, s3} consist of 3 elements, and V = Fa; ® Fas
be a two-dimensional vector space. Define three reflections on V' by

§1 0 = —Qq, 1 Qg = (2,
82+ a1 = a1 + 20, Sy = —Qa,
S3-Qa1 = Qq, S3 - g = —201] — Qo
Then the corresponding reflection vectors are «y, as, and az := —a1 — ai, respec-

tively. The associated digraph G| is as follows:

2

1 3

In this digraph, each sub-digraph spanned by two vertices is not strongly connected.
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5. PROOF OF THEOREM 1.3

This section is devoted to proving Theorem 1.3.

Recall that W is a group endowed with a set of generators S = {s1,..., sx}, and
(V,,p.), t = 1,2, are two irreducible reflection representations. We use the following
notations.

n, (t=1,2): dimV,

a; (i € [K]) the chosen reflection vector of s; in V;

A (#1): the corresponding eigenvalue, s; - a; = A\«

B; (i € [k]) :  the chosen reflection vector of s; in Va

wi (#1): the corresponding eigenvalue, s; - 8; = ;. 5;
Suppose

is an isomorphism of W-modules, where d;,ds are certain integers satisfying 1 <
d, <n,—1(=1,2). As in Section 3, for each i € [k] we denote by

d1 dl
fodhi = {’U € /\V1 S v = v}, Vljdhi = {’U € /\V1

d2 d2
V2sz,i = {U € /\V2 ‘ Si'”:”}’ 2 {U € /\V2 ‘ Si'U:Nz‘U}

the eigen-subspaces of s;.

Before giving the rigorous proof, let us talk a little more about Theorem 1.3
informally. A priori, an isomorphism f : V; — V5 of reflection representations gives
an isomorphism A% f: A*Vi — A V5 via

S8V = /\iv},

d
(/\f)(vl/\m/\vd):f(vl)/\-~-/\f(vd), Yor,..., 04 € Vi.

It is not difficult to see that f(«;) = 2;8; for some z; € F*. Then we have

d
(/\f)(ail AN Nagy) =2y o 2,8 N A By, for any i1,...,iq € [K].

Conversely suppose in Theorem 1.3 that d = d; = ds, and that the isomorphism
P /\d Vi — /\d V5 is given by an isomorphism f : V3 — V5. Suppose further that
we are able to show for any indices i1, ...,iq € [k] that

w(ail ARER /\Olid) = Cih»--,idﬁh AR /\Bid for some Cil,»--,id € FX.

(This is indeed the case, see Subsection 5.3.) Since the map f is of the form
flow) = 28, we have (i, i, = 2iy -+ - 2y, and

Zi C’L,iQ,...,id

= for any suitable indices i, j, 2, ..., iq € [k].
2 iz
This indicates that
the ratio M only depends on 4 and j,
(5.1) Cliz,e.ia
but independent of the indices io, ..., 1iq4.
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We would be close to find the desired isomorphism f if we can prove (5.1) (this is
essentially Lemma 5.9).
We divide the proof of Theorem 1.3 into the following five steps, presented in

Subsections 5.1 to 5.5 respectively:

Step 1. Show that dy = da, n; = ng, and \; = p; for each i € [k].

Step 2. Show that the linear independence of a set of reflection vectors in Vi is
equivalent to that in V5.

Step 3. Show that the two reflection representations have the same associated di-
graphs.

Step 4. Define a linear isomorphism f : V7 — V4 of vector spaces.

Step 5. Show that f is an isomorphism of W-modules.

5.1. A preliminary numerical result
Proposition 5.1. d; = dy, n1 = n2. Moreover, \; = u; for each i € [k].

Proof. Note that the element s; € S acts by reflections on both V; and V5. Since
A Vi~ A® V as W-modules, we have

. + _ . + . - _ . —
dlmvl,dh1 = dlmVQ,dz,l’ dim V17d1,1 = dim 2.da 1

Then we have by Lemma 3.1(1)(2)

n1—1 77,2—1 n1—1 n2—1
5.2 == = .
52) ( d ) ( d> )7 <d1—1> <d2—1>
Notice that 1 < d, < n, — 1 for ¢« = 1,2. By Lemma 2.9, Equations (5.2) imply
dl = dg, ny = na.
By Lemma 3.1(3), we have A® V; = Vf,rdm @ Vi, for each i € [k], and the

only possible eigenvalues of s; on /\d1 Viareland A;. But dimVy, , = (Zij) #0
since 1 < d; < n; — 1. Thus )\; is indeed an eigenvalue. Similarly, the only

eigenvalues of s; on /\d2 V5 are 1 and p;. Thus we must have \; = p;. Il

Remark 5.2. From the proof of Proposition 5.1, we see that the results hold for two
representations (V7, p1), (Va, p2) on which p;(s) and ps(s) are both reflections for
some element s € W, not necessary to be reflection representations.

In view of Proposition 5.1, we denote
d:=dy=dy and n:=dimV; =dimV,
from now on. Note that we have 1 < d < n — 1 by assumption. However, Theorem
1.3 for the case d = 1 is trivial. Thus we may assume 2 < d <n — 1.
5.2. Preliminary results on linear independence of reflection vectors

This subsection aims to prove Propositions 5.5 and 5.6, which transfer linear
independence property of reflection vectors in V; to those with the same indices in
V. Recall that k = |S| is the number of chosen generators of the group W, and
ai, Bi (i € [k]) are the reflection vectors of the generator s; in the space V3 and
V4 respectively. By Corollary 4.2, the n-dimensional vector space V; is spanned by
ag,...,ak, and we have n < k.
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Lemma 5.3. Suppose {a1,...,an} is a basis of V1. Then we have decompositions
of vector spaces

Avi= @ (N i)

1<i1 < <ig<n 1<j<d

and
d
Ave= @ (N Vaus)
1<ii < <ig<n 1<5<d
Proof. The vector space A% V; has a basis
{ag Ao Ny, | 1<idp <+ <ig <n}

Note that by Lemma 3.2 the vector o, A--- A oy, is a basis vector of the one-
dimensional space [); j<aVia i which is the intersection of eigen-subspaces of

. ad "
si;’s in A" V1. Therefore, we have a decomposition of vector space

d
AVi

@ F<O[i1/\"'/\a7;d>

1<iy <-+-<ig<n

B (N Viu,)

1<ii<--<ig<n 1<5<d

Since 9 : /\d Vi = /\d V4 is an isomorphism of W-modules, we have
7/’( ﬂ Vfd,ij) = m V2jd,ij
1<j<d 1<j<d

for any set of indices 1 < i1 < --- < ig < n, and hence

/d\VQZ SV, ( N ‘/QTdﬂ'j)

1<i1 < <ig<n 1<5<d

as claimed. O

Recall that the number d satisfies d+1 < n. We have the following lemma which
is a “weak version” of Proposition 5.6.

Lemma 5.4. Suppose 1 < ji,...,jar1 < k. If aj,..., ;. , are linearly indepen-
dent, then so are Bj,, ..., Bj, -

Proof. Suppose otherwise that 3;,,...,3;,,, are linearly dependent and the subset
{Bjrs---, B4} (h < d) is a maximal linearly independent set. Then there exists a

nonzero vector v in /\dVQ of the form v = 8, A+ A Bj, Avpy1 A--- Avg. By
Lemma 3.2, we have

ve ﬂ ‘/2jd7ji'
1<i<h
Note that for any index 4 such that h+1 <7 < d+ 1, 3, is a linear combination
of Bj,,...,Bj,- Then by Lemma 3.3, we have

ve () Vaus= [ Vouy

1<i<h 1<i<d+1
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As in the proof of Lemma 5.3, since v : /\d Vi = /\dVQ is an isomorphism of
W-modules, we have
1 —
v (v) € n Vl,dﬂ'z"
1<i<d+1
Note that ¢~"(v) is a nonzero vector. However, the intersection (), ;<44 Viag, is
zero by Lemma 3.2. This is absurd.

WJi

Proposition 5.5. Suppose 1 < ji,...,jn < k. If {aj,,...,j, } is a basis of Vi,

then {Bj,,...,B;,} is a basis of Va, and vice versa.
Proof. Without loss of generality, we may assume j; = 1, jo = 2, ..., j, = n.
Then {aq,...,a,} is a basis of V4. Suppose the space U := F(fy,...,,) spanned
by Bi,...,08n is a proper subspace of V5, and m := dimU < n. We may assume
further that {f1,...,5m} is a basis of U.

For any indices 1 < i3 < -+ < ig < n, there exists an index i441 € [n] \
{i1,...,ia} since d < n — 1. Note that the vectors o, ..., q;,,®;,,, are linearly

independent. By Lemma 5.4, 5;,,...,8;,,B8i,,, € U are linearly independent as
well. In particular, 8;, A--- A B;, # 0 and we have by Lemma 3.2 that

d
() Vaus, =FBiu A=A Bi) S AU

1<j<d

But then by Lemma 5.3 we have

Avi— @ (N Vi) SATEA

1<ir < <ig<n 1<j<d
which is a contradiction. Thus, we must have U = Vo, m = n, and {f1,...,8,} is
O

a basis of V5.

As a corollary, we have the following proposition.

Proposition 5.6. Suppose h < n and 1 < 4y,...,0, < k. If ayy,..., 0, are
linearly independent, then so are Bi,,..., B, . In particular, if o; and o are not
proportional for some 1 < i # j <k, then so are §;, B;.

Proof. Recall Corollary 4.2 that V; is spanned by ag,...,a,. Thus there exist
reflection vectors oy, , ., Q. 0, - .., 05, such that oy, ..., 04, 05,,.,...,05, form a
basis of V;. Then use Proposition 5.5. O

5.3. Coincidence of the associated digraphs

Recall in Definition 2.6 that a digraph is associated to any subset I C [k] and any
reflection representation. For ¢ = 1,2, we denote temporarily by G, the associated
graph to the full set [k] and the representation (V,,p,). In this subsection we will
prove that G; = Gs.

For two distinct indices 4, j € [k], we set

St = Oy —+ Ty,  Tji S ]F,
si - B = B +y;ibi, v €F.

Then j — ¢ is an arrow in G, Go if and only if x;;, y;; # 0, respectively.
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For distinct indices 1 < dy,...,iq < k, if a;, A---Aay, # 0, that is, if o, ..., a4,
are linearly independent, then by Proposition 5.6, the vectors 3;,, ..., 3;, are lin-
early independent as well. Moreover, we have by Lemma 3.2

m Vlfd’ij =Flaj;, A  ANayy,), and ﬂ szd’ij =F(Bi, A+ A Biy)-
1<j<d 1<j<d
Therefore, since ¢ : A*V; <> A% V4 is an isomorphism of W-modules, it holds
(o N ANagy) = CiyoigBiy Ao+ A Biy, for some (i, € FX.
By convention, we define (;, . ;, :==0if oy A+~ A, =0.
Remark 5.7. Note that the coefficients (;, . ,, are independent of the order of

i1,y 4d, that is, Gy iy = Gy, ingg, fOr any permutation o € G4 (as ¥iy,....iy In
Section 4).

Lemma 5.8. Suppose i,j € [k] and i # j. There exist distinct indices ia, ..., iq €
[k] such that

(1) aj,aj, 0y, .., 0, are linearly independent if o, o; are not proportional;
(2) aj, iy, ... a4, are linearly independent if ay, o are proportional (thus in
this case the vectors o, a,, ..., a5, are linearly independent as well).
Proof. The existence of the required indices is ensured by the facts that d+1 < n
and that V; is spanned by all the reflection vectors (Corollary 4.2). O

The following lemma is the key in this subsection.

Lemma 5.9. Suppose i,j € [k] and i # j. Let ia,...,iq € [k] be any indices
satisfying the conditions (1)(2) in Lemma 5.8. Then we have

(5.3) Giyizyerrsia¥is = ChinyeyiaLi-
Proof. We consider
sj - (hlai Aaiy Ao Nagy))
= GisigyooiaSj - (Bi N Big N A\ Biy)
= Giin,.ooyia (B T YijBi) N (Biy + YiniBi) N+ N (Big + YiajBi)

(5.4) = Gisig,oosia(Bi N Big N+ A Biy + i85 A Big A+ A Biy)
+ Z (_1)d_l<i,i2,~~~»idyiljﬂi A ﬁiz ARERNAN ﬁiz ARERNAN ﬁld A ﬂj
2<1<d

which also equals
V(sj - (i Aaiy Ao Aay))
= P((i + zi505) A (i, + Tigjog) Ao A (@i, + 2,505))

:l/J(Oli/\ai2/\"'/\Oéid+£Cij0[j/\04i2/\"'/\a7;d

+ Z (71)dil$iljai N Oy /\”-/\ail N Nagy, /\Otj)

2<i<d
(5.5) = Giyig,oryialBi A Big N+ N Biy + Clrio,.osia®ijBi N Big N+ A By
+ Z (_1)d_lci,i27-~3z7--~,id,jxiljﬁi A ﬁi? AR Bil AR Bid A Bj
2<i<d
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If a;, o are not proportional, then oy, a;, ay,, ..., o;, are linearly independent
by our assumption, and then so are 3;, 8, 8i,, - - . , Bi, by Proposition 5.6 (or Lemma
5.4). Therefore, the vectors occurring in (5.4) and (5.5) are nonzero and linearly
independent. By comparing the coefficients of 5; A B;, A--- A B;, in (5.4) and (5.5)
we see that the desired Equation (5.3) holds.

If a;, o are proportional, then so are 3;, 5; by Proposition 5.6, and the summa-

tions in (5.4) and (5.5) vanish, that is,
(5:4) = Cirig,.oosiaBi N Big N -+ N Biy + Ciig,.ia¥iiBj A Bis N A Big,
(5.5) = Giyig,.ooiaBi A Big A== N Biy + Crio,.ia®ijBi A Big A=+ A Biy-

As pointed out in Lemma 5.8, the vectors i, v, . . ., v, are linearly independent,
and so are §;, B, .-, B, by Proposition 5.6. Therefore, we have Equation (5.3)
again by comparing the two equations above. (|

Note that in Equation (5.3) the coefficients (; ...
Therefore we have the following corollary.

and Cj,ig,...

i /iy are nonzero.
Corollary 5.10. Suppose i,j € [k] and i # j. Then x;; and y;; are equal or not
equal to zero simultaneously, that is, either x;; = y;; =0 or x;;y:; # 0.

By the definition of the associated digraphs G; and G5, Corollary 5.10 implies
Corollary 5.11. G; = Gs.

From now on, we recover the notation G = G| to indicate uniformly the di-
graphs G; and G, and Gy to be the sub-digraph spanned by a subset I C [k] (see
Definition 2.6).

We will also need the following corollary of Lemma 5.9.

Corollary 5.12. Let i,j,12,...,iq € [k] be as in Lemma 5.9. Suppose x;; # 0 and
yji # 0 (equivalently, y;; # 0 and xj; # 0). Then we have

Yij _ Ginoooia _ Tji

Tij  Giig,oia  Yii
Proof. The first desired equality is nothing but Equation (5.3). By swapping the
indices 7 and j in Equation (5.3), we obtain the second equality. O

5.4. The linear isomorphism f from V; to V;

Remember that our final goal is to find an isomorphism f : Vi = V5 of W-
modules. For this, let us introduce some notations.
By applying Lemma 4.1 to the reflection representation (Vi, p1), we choose and
fix a subset I C [k] such that
(1) Gy is weakly connected, and
(2) {«a; | i€ I}isa basis of V7.
Then by Proposition 5.5, {5; | i € I'} is a basis of V5.
For two indices 7, j € I such that i # j and either ¢ — j or j — i is an arrow in

G, we define
zfj, if i — j is an arrow
Zij = o L .
ﬁ, if j — 4 is an arrow.
By Corollary 5.12, we have ¥4 ? if both ¢ — j and j — ¢ are arrows. So the

element z;; € F* is well deﬁned We have the following lemma.
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Lemma 5.13. Let h > 1 be an integer and

to, ai, 11, az, l2, ... Ip—1, Qh, Tp
be an undirected walk in Gr. For any p € [h] and any distinct indices ja, ..., jd €
I\ {io,ip} (if io =ip then we regard {io,ip} = {io}) we have
(5.6) Zigiy " Ziy iy = 2piJ2sendd
Gio,jzseja

Note that |I\ {ig,%p}| > n —2 > d — 1. Therefore such indices js, ..., jq exist.
Note also that {a; | j € I} is a basis for Vi. Thus (i j,.....j, and i, j,.....j, are
nonzero.

Proof. We prove by induction on p. Suppose first that p = 1. Then the desired
equality Zipi, = Giy j,...rja/Ciosjz,....ja follows from Corollary 5.12.
Suppose now p > 2. The induction hypothesis reads

Zigiy " " Zip_gip_y = 42”_”2“ for any distinct jo,...,j5q € I\ {40,9p—1}-
20,725---5]d
For distinct indices jo, ..., jq € I\ {40,%p} given arbitrarily, we have three cases.
Case one: ip_1 & {j2,...,ja}- By the same arguments as in the beginning case
“p =17, we have
Zip,lip _ CZP’JZV“»]d

Cip—lvaV"vjd
whenever a, = i,_1 — 4, or a, = i, — i,_1. Therefore by induction hypothesis we
have

o Sieridaeda Sipdaeia _ Sigdada
10?1 1p—21lp—1~lp—1lp ~

Giouizveda  Gip—rdzwenda  Giowzeida
as claimed in Equation (5.6).
Case two: i,_1 € {j2,...,ja} and ig # i,. We may assume i,_; = jo. Then i,
ip, ip—1 (= J2), Js, - -, ja ave distinct. We have
Cipiip s
Rigiy " Rip_gip_q —
Ciosip.dasa
by applying induction hypothesis to the indices i,, js, ..., ja, and
Gipyio.ja--osda
Zipflip = . . .
C’Lp—lvzow]Sy“'v]d
by the same arguments as in the beginning case “p = 1”. Therefore,

(5.7) _ Cip—l»ip’j?nuwjd . Cip:i()ij;“wjd

Zioil e Z’L‘pfgipflz’ipflip -

CiOVipvj.?y-'-v]d Cip—lyioyjs,myjd,
Note that Cig.i,.js.....5a = Cipiiorjs,....ja (5¢€ Remark 5.7). Therefore Equation (5.7)
reduces to

.  _ Sipvipseda _ Sipadzidsida
Zlgll lelepflzlpfllp -

Cip1,i0,33s0ensa Giojz,daymsia
which is what we want.

Case three: i,_1 € {Jja,...,Jja} and i9 = i,. Then our goal Equation (5.6)
becomes

(58) Zioil e Zip_1ip =1.
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We can still assume i,_1 = jo. Note that in this case iy (= ip), ip—1 (= j2),

j3,...,7q are distinct d indices. But d < n — 1, so there exists an extra index
j €I\ {io,J2,73,---,ja}. Similar to the former cases, we have

G143,

Zioi] et Zipfzip71 - . . .
<Zo7],j3,~~7jd
and ¢
_ Sip.jidssnda
Zip_1ip —

C2'1»—1 2J5 3350
Therefore, we have

_ Sipmrididsida | Sipididseia _ Sipdiseda _

Zz'oil o 'Zip_zi,,_IZip_lip C o ] : C o T C o ]
20,75J35+++5]d 1p—157:735-+5]d 20,7573 5+++5Jd

which is exactly Equation (5.8). O

Now we are ready to construct a linear map f from V; to V5. Such a map is
determined by vectors {f(«;) € Vo | i € I} since {oy; € V4 | i € I} is a basis of V3.
Because a; and ; are the reflection vectors of s; in V4 and V5 respectively, we are
excepted to have

f(a;) = 23, for some z; € F* and each i € I.

Below we propose a choice of the coefficients z;.
From now on we fix an index i € I and set z;, := 1. For any other index ¢ € I,
we choose an undirected walk in G from i to i, say,

o, ai, i1, G2, 92, ..., G-1, Q, 4 =1,
where ig,i1,...,1 € I. Then z; is defined to be
—— X
Zi = zioilzili,z e Zil—lil c IE" .

We need to show that z; such defined is independent of the choice of the undirected
walk (but it does depend on the choice of the beginning vertex ig).

Proposition 5.14. Fiz ig € I as above. For each i € I, the value of z; only
depends on i, not on the choice of the undirected walk from ig to 1.

Proof. Suppose there exist two undirected walks in Gy from 1 to 4, say (h > 1),
(5.9) g, ai, 11, ag, ig, ceey dp—1, ay, i =1,
(5.10) 10, @hy Th—1, @h—1, Th=2, ---5 U+1, Q+1, & = 1.

By convention, we also denote ;, := i9. We need to show

Zigi1 Ririe T Ri_19 = Ripip_1Rip_1in—2 " Riy1i;-
By definition we have z;._,;. = —1 Thus our goal becomes
J=1%j 1551
Rigi1Rivia * " R4 i T Rip_gih_1Fin—_1in L.

By extending the first undirected walk (5.9) by the reverse of (5.10), we have an
undirected walk in G from ig to ig,

to, ai, %1, ..., @-1, U, Q41 ..oy  Ih—1, @hs; Ip =Tp-
By taking p = h in Lemma 5.13, we have that

_ Cih,jz coJd
Zi()’il - 'Zih—lih = 2wJendd
C’i()s.ij“'yjd
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for any distinct indices j1,...,Jq4 € I \ {io,in}. This equality is what we want. O

By Proposition 5.14, we have a well defined linear map f : V3 — V5 by setting
fla;) == 28, foreachiel.

Since z; € F* and {«; | i € I}, {B; | i € I} are bases of Vi, V5 respectively, the
map f is clearly an isomorphism of vector spaces. It remains to show that f is a
homomorphism of W-modules.

5.5. The map f is a W-isomorphism
To show that f is a homomorphism of W-modules, it suffices to show
f(sh-a;)=sn- fla;), foranyh € [k]andie€ l.
We split the proof into two parts (Propositions 5.15 and 5.16), depending on
whether h € T or h ¢ I.
Proposition 5.15. For any h,i € I, we have f(sp - o;) = sp - fay).
Proof. In this case we have
f(sn-ai) = flai + zinan) = 2iBi + TinznBh,
and
sh - flai) = sn - (2i8i) = ziBi + 2iyinBh-
Therefore, we need to show
(5.11) TihZh = ZiYih-

If 2;, = 0, then y;; = 0 by Corollary 5.10, and thus Equation (5.11) holds
trivially. Suppose otherwise that x;; # 0. Then ¢ — h is an arrow. Recall that the
coefficient z; is computed by taking arbitrarily an undirected walk in G from the
fixed ig (€ I) to 1, say,

iOa ai, i17 ceey Qg Zl:Z
If we set 441 = h and a;+1 =% — h, then the extended undirected walk
o, @1, 1, ..., A, =1, a1, A1 ="h
goes from iy to h. Therefore, by the definitions of z; and z;;, in Subsection 5.4, we
have zj, = z;2z;n = 2ziyin/xin which is exactly Equation (5.11). O

Proposition 5.16. For any i € I and h € [k]\ I, we have f(sp - a;) = sp - f(o).

The rest of this subsection is devoted to proving Proposition 5.16. Since {¢; |
l € I} is a basis for V1, and so is {#; | | € I} for Vo by Proposition 5.5, we write

ap = Zalal, ﬁh = Zblﬂh where al,bl eF.
lel lel
Then we have
flsn - ai) = fla; + zinan) = f(ai + Zin Zazaz) =zifi + meazzzﬁz
lel lel
and

sn - flouw) = sn - (2:6i) = 2iBi + 2iYinBn = 2iBi + Z 2iYinbi B

lel
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Therefore, to prove Proposition 5.16 it suffices to show for any j € I that
(5.12) TiphQj2j = yihbjzi.
For this, we need the following lemma.

Lemma 5.17. Suppose h € [k]\I, j € I. Wewrite ap, =) ;o apeu, B =D 1 i
as above. If a; # 0, then for any distinct ia,...,1q € I\ {j}, we have

Cj7i27~~~aida.j = Ch,iz,.‘.,idbj-

Note that both (j4,.... i, and Cp i,,...s, are nonzero, because both of the two sets

.....

{oj, iy, ..., 05,} and {ap, a,, ..., o, } are linearly independent sets.

Proof. Since a; # 0, the vectors ap, o, . . ., @, are linearly independent. We write

I={j,ia,...,ids%4+1,--,in}. Then

(5.13) ap AN, N ANy, = (ajaj + Z ailail) ANy N Ny,
d+1<i<n

The image under ¥ of the left hand side of Equation (5.13) is
Ylan A iy Ao Niy) = Crig,.igBn A Biy N A Biy
(5.14) = Cuinnia (BB + D2 biBic) A Bia Ao A By

d+1<i<n
Moreover, the image under ¢ of the right hand side of Equation (5.13) equals
(5'15) Cj7i27~~~,ida’jﬁj A Biz ARERNA ﬁid + Z Cil’iZ,nwidailﬁil A Bi2 ARRNA Bid'
d+1<i<n
The equality of (5.14) and (5.15) gives (j iy, ...i0@ = Chia,....ia0;- O

Now we are ready to complete the proof of Proposition 5.16

Proof of Proposition 5.16. As we mentioned, it suffices to prove Equation (5.12)
for any j € I. We have three cases.

Case one: a; = 0. Then {ap}U{ay |1 € I\ {j}} is a linearly dependent set.
Then {Br} U{B |l € I\ {j}} is also linearly dependent. Otherwise, it would be a
basis for Vs, contradicting Proposition 5.5. Therefore, we have b; = 0, and hence
Equation (5.12) holds trivially.

Case two: a; # 0 and j = ¢. In this case Equation (5.12) reduces to

xjhaj = yjhbj.

If oy, and «; are proportional, then oy, ;,,...,;, are linearly independent for
any distinct 49,...,7q € I\ {j}. If a;, and «; are not proportional, then a; # 0
for some j' € I'\ {j}. There exist d — 1 distinct indices iq,...,iq € I\ {J, '} since
d <n — 1. In both cases, we have by Lemma 5.9 that

Ciriayersia¥ih = Chiin,.sigTih-
By Lemma 5.17 we also have
<j7i27~~-aida’j = Ch,iz;-n,idbj'

Therefore x;na; = y;nb; as desired.
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Case three: a; # 0 and i # j. By the same arguments as in case one, we have
b; # 0. We may further assume z;,y;, # 0 by Corollary 5.10, otherwise Equation
(5.12) reduces to “0 = 0”. Suppose
io, ai, ’il, ey Z’pfl, ap, ip =1

is an undirected walk in G from i to 7, and

i:ip, Ap+1, ip-‘rla sy iq—17 Qg, Z‘q =J
is an undirected walk in G from ¢ to j. Their concatenation is an undirected walk
from ig to j. Note that there exist d — 1 distinct indices is,...,iq € I\ {4,j} since
d <n —1. Then by definitions of z; and z; and Lemma 5.13, we have

Zj _ _ Sjrinsia
(516) 2 = Zipip+1 R Ziqfliq = 4_74171
3024..050d
Also note that ay,, o, vy, . . ., a4, are linearly independent since a; # 0. Then by

Lemma 5.9 we have

(517 Zih _ Shinda
Yin  Chyis,...yia

Moreover, by Lemma 5.17 we also have

a;  Chin,... ig
(5.18) E = 7@72_27“.% .
Multiplying Equations (5.16), (5.17) and (5.18) together, we obtain
Zj  Tip Gy
2 . Yin . bj B
This is exactly Equation (5.12). O
By Propositions 5.15 and 5.16, f : Vi3 — V4 is a homomorphism of W-modules.
We have finished the proof of Theorem 1.3.
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