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Abstract
The Alperin–McKay conjecture is a longstanding open conjecture in the representation theory of finite groups.
Späth showed that the Alperin–McKay conjecture holds if the so-called inductive Alperin–McKay (iAM) condition
holds for all finite simple groups. In a previous paper, the author has proved that it is enough to verify the inductive
condition for quasi-isolated blocks of groups of Lie type. In this paper, we show that the verification of the iAM-
condition can be further reduced in many cases to isolated blocks. As a consequence of this, we obtain a proof of
the Alperin–McKay conjecture for 2-blocks of finite groups with abelian defect.

Introduction

Alperin–McKay conjecture

In the representation theory of finite groups, some of the most important conjectures predict a very
strong relationship between the representations of a finite group G and certain representations of its
ℓ-local subgroups, where ℓ is a prime dividing the order of G. One of these conjectures is the Alperin–
McKay conjecture. For an ℓ-block b of G, we denote by Irr0 (𝐺, 𝑏) the set of height zero characters of
b. Then this conjecture predicts the following:

Conjecture (Alperin–McKay). Let b be an ℓ-block of G with defect group D and B its Brauer corre-
spondent in N𝐺 (𝐷). Then

| Irr0 (𝐺, 𝑏) | = | Irr0(N𝐺 (𝐷), 𝐵) |.

Späth [42, Theorem C] showed that the Alperin–McKay conjecture holds if the so-called inductive
Alperin–McKay condition holds for all finite simple groups. In a previous article, the author has reduced
the verification of the inductive Alperin–McKay condition to so-called quasi-isolated blocks of groups
of Lie type [38]. The overall aim of this paper is to further reduce the verification of this condition
to isolated blocks of groups of Lie type. Using this, we can then verify the inductive Alperin–McKay
condition for many important classes of blocks.

Equivariant Bonnafé–Dat–Rouquier equivalence

One of our main ingredients toward such a reduction is the recent result by Bonnafé–Dat–Rouquier [4].
They have constructed a Morita equivalence, which can be seen as a first step toward a modular analogue
of Lusztig’s Jordan decomposition for characters. Let G be a simple, simply connected algebraic group

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

doi:10.1017/fms.2022.36
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.36&domain=pdf
https://doi.org/10.1017/fms.2022.36


2 Lucas Ruhstorfer

with Frobenius endomorphism 𝐹 : G → G defining an F𝑞-structure, where q is a power of a prime
p. Fix a prime ℓ different from p, and let (O, 𝐾, 𝑘) be an ℓ-modular system as in 1.1 below. In the
following, Λ denotes either the discrete valuation ring O or its residue field k. Let (G∗, 𝐹∗) be a group
in duality with (G, 𝐹) and 𝑠 ∈ (G∗)𝐹

∗ a semisimple element of ℓ′-order. Let 𝑒G𝐹

𝑠 ∈ Z(ΛG𝐹 ) be the
central idempotent associated to s as in [11, Theorem 9.12]; and we assume that L∗ is the minimal Levi
subgroup of G∗ containing C◦

G∗ (𝑠). Let N be the common stabiliser in G𝐹 of the idempotent 𝑒L𝐹

𝑠 and
L, and suppose that 𝑁/L𝐹 is cyclic. Then according to the main result of [4], there exists a Morita
equivalence between Λ𝑁𝑒L𝐹

𝑠 and ΛG𝐹 𝑒G𝐹

𝑠 . Using the methods developed in [37], we extend their result
to incorporate automorphisms of G𝐹.
Theorem A (see Theorem 4.2). Let G be a simple, simply connected algebraic group of type 𝐵𝑛,
𝐶𝑛 or 𝐸7 such that either 𝑛 > 2 or q is odd. Let 𝜄 : G ↩→ G̃ be a regular embedding. Then there
exists a Frobenius endomorphism 𝐹0 : G̃ → G̃, which commutes with F such that 𝐹0 stabilises L
and the image of G̃𝐹 � 〈𝐹0〉 in the outer automorphism group of G𝐹 is Out(G𝐹 )

𝑒G𝐹
𝑠

. Moreover, there

exists a Morita equivalence between Λ𝑁𝑒L𝐹

𝑠 and ΛG𝑒G𝐹

𝑠 , which lifts to a Morita equivalence between
ΛNG̃𝐹 〈𝐹0 〉ℓ′

(L, 𝑒L𝐹

𝑠 )𝑒L𝐹

𝑠 and ΛG̃𝐹 〈𝐹0〉ℓ′𝑒
G𝐹

𝑠 .

Quasi-isolated blocks of type A

In the next part of our paper, we focus on groups of Lie type A. According to the main result of [38], to
prove the inductive Alperin–McKay condition, it suffices to consider strictly quasi-isolated block: that
is, blocks of ΛG𝐹 𝑒G𝐹

𝑠 such that C◦
G∗ (𝑠) C(G∗)𝐹

∗ (𝑠) is not contained in a proper Levi subgroup of G∗.
Therefore, we will, from now on, assume that G is of type A and s is a strictly quasi-isolated element.
In contrast to the situation of Theorem A, the automorphism group of G𝐹 is more complicated, and the
quotient group 𝑁/L𝐹 can become arbitrary large with the rank of G increasing. Thus, a direct approach
along the lines of Theorem A does not seem possible.

Using the explicit description of quasi-isolated elements in groups of type A by Bonnafé [2], we
instead first construct a specific F-stable Levi subgroup L′ of G containing L. This Levi subgroup has the
additional property that 𝑁 ′/L′ is cyclic of prime order. Again, we denote by 𝑁 ′ the common stabiliser
of L′ and 𝑒L′𝐹

𝑠 in G𝐹 . The main result of [4] is still applicable in this slightly more general situation, and
we obtain a Morita equivalence between Λ𝑁 ′𝑒L′𝐹

𝑠 and ΛG𝐹 𝑒G𝐹

𝑠 . This enables us to construct a certain
abelian subgroup A of Aut(G̃𝐹 ) (see Definition 7.6) such that G̃𝐹 �A generates the stabiliser of 𝑒G𝐹

𝑠

in Out(G𝐹 ). We obtain the following result, which can be seen as a version of Theorem A for groups of
type A.

Theorem B (see Corollary 7.8). Assume that G is of type A, and let 𝑠 ∈ (G∗)𝐹
∗ be a strictly quasi-

isolated element of ℓ′-order. If ℓ � |A|, then there exists a Morita equivalence between Λ𝑁 ′𝑒L′𝐹

𝑠 and
ΛG𝐹 𝑒G𝐹

𝑠 , which lifts to a Morita equivalence between ΛNG̃𝐹A (L′, 𝑒L′𝐹

𝑠 )𝑒L′𝐹

𝑠 and ΛG̃𝐹A𝑒G𝐹

𝑠 .

Reduction to isolated blocks

Using as a blueprint the methods developed in the proof of the main theorem of [38], we use the result
of Theorem B to obtain a reduction of the verification of the iAM-condition to unipotent blocks of type
A. By the work of [12] and [8], which shows that the inductive Alperin–McKay condition holds for
unipotent blocks of type A, we obtain the following:

Theorem C (see Corollary 12.5). The inductive Alperin–McKay condition holds for all ℓ-blocks of
quasi simple groups of type A, whenever ℓ ≥ 5.

The statement of Theorem C has been obtained in special cases by [8]. As a byproduct of the
reduction methods developed for the proof of Theorem C and our equivariant Jordan decomposition
from Theorem A, we obtain the following:

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.36


Forum of Mathematics, Sigma 3

Theorem D (see Theorem 12.6). Suppose that ℓ ≥ 5, and let X be one of the symbols B or C.
Assume that all isolated ℓ-blocks of quasi-simple groups of type X are AM-good relative to the
Cabanes group (see 11.1) of their defect group. Then all ℓ-blocks of quasi-simple groups of type X are
AM-good.

2-Blocks with abelian defect group

According to the classification result of [17], almost all quasi-isolated 2-blocks of groups with abelian
defect arise as blocks of groups of type A. Using the arguments in Theorem C, we can then show
that these blocks satisfy the inductive condition. Moreover, we can prove the inductive Alperin–
McKay condition for the remaining quasi-isolated 2-blocks with the abelian defect group. In fact,
we can prove this condition for the slightly larger class of 2-blocks of G𝐹 whose defect group D
is almost abelian in G𝐹 ; see Definition 13.1. The advantage of working with this larger class of
blocks is that we obtain a reduction theorem to quasi-simple groups of the Alperin–McKay con-
jecture for blocks with almost abelian defect group. Following the proof of [42], we can show the
following:
Proposition E (see Proposition 13.3). Let X be a finite group and ℓ a prime. Assume that for every
nonabelian simple subquotient S of X with ℓ | |𝑆 |, the following holds: Every ℓ-block of the universal
covering group H of S with almost abelian defect group satisfies the iAM-condition. Then the Alperin–
McKay conjecture holds for any ℓ-block of X with almost abelian defect.

As a consequence of Proposition E and the verification of the inductive Alperin–McKay condition
for the necessary ℓ-blocks, we obtain the following result.
Theorem F (see Theorem 14.10). The Alperin–McKay conjecture holds for all 2-blocks with almost
abelian defect group.

By [22, Proposition 5.6] and [20, Theorem 1.1], we obtain the following immediate consequence of
Theorem F.
Theorem G. The Alperin weight conjecture holds for all 2-blocks with abelian defect group.

After submitting this paper, we were informed that Y. Zhou was also working on a proof of Theorem G
using different methods.

1. General properties of the Bonnafé–Dat–Rouquier equivalence

In the following, we mostly use the notation of [37] and [38]. For the convenience of the reader, we
recall the most important notions.

1.1. Representation theory

Let ℓ be a prime and K be a finite field extension of Qℓ . We assume in the following that K is large
enough for the finite groups under consideration. Let O be the ring of integers of K over Zℓ and 𝑘 =
O/𝐽 (O) its residue field. We will use Λ (respectively A) to interchangeably denote O or k (respectively
K or O).

1.2. Groups of Lie type

Let G be a connected reductive group with Frobenius endomorphism 𝐹 : G → G defined over F𝑝
for some prime 𝑝 ≠ ℓ. Given such a group G, it is often convenient to consider it a closed subgroup
of a group whose centre is connected. Therefore, we fix a regular embedding 𝜄 : G ↩→ G̃ of G as in
[11, Section 15.1], and we identify G with its image in G̃. For any closed subgroup M of G, we define
M̃ := MZ(G̃). Moreover, if H is any closed F-stable subgroup of G̃, then we denote by H its subset of
F-stable points H𝐹 .
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1.3. Godement resolutions and ℓ-adic cohomology

Let X be a variety defined over an algebraic closure of F𝑝 endowed with an action of a finite group G.
By work of Rickard and Rouquier, there exists an object 𝐺Γ𝑐 (X,Λ) in Ho𝑏 (Λ𝐺-perm), the bounded
homotopy category of ℓ-permutation Λ𝐺-modules. Its ith cohomology groups are denoted 𝐻𝑖𝑐 (X,Λ),
and we abbreviate 𝐻dim(𝑋 )

𝑐 (X,Λ) by 𝐻dim
𝑐 (X,Λ).

1.4. Deligne–Lusztig induction

Suppose that P is a parabolic subgroup of G with Levi decomposition P = L � U and 𝐹 (L) = L. We
consider the Deligne–Lusztig variety YG

U . Its cohomology groups 𝐻𝑖𝑐 (YG
U ,Λ) induce an additive map

𝑅G
L⊂P : Z Irr(L𝐹 ) → Z Irr(G𝐹 ), the so-called Lusztig induction. In the case under consideration, the

map 𝑅G
L⊂P will not depend on the choice of the parabolic subgroup P, and thus we will write 𝑅G

L for
𝑅G

L⊂P in the following.

1.5. The Bonnafé–Dat–Rouquier equivalence

Let G∗ be the Langlands dual of G with Frobenius endomorphism 𝐹∗ : G∗ → G∗ dual to F. We fix a
semisimple element 𝑠 ∈ (G∗)𝐹

∗ of ℓ′-order and, as in [11, Theorem 9.12], let 𝑒G𝐹

𝑠 ∈ Z(ΛG𝐹 𝑒G𝐹

𝑠 ) be
the central idempotent associated to it. Assume that L∗ is an 𝐹∗-stable Levi subgroup of G∗ containing
C◦

G∗ (𝑠). Additionally, suppose that L∗ CG∗ (𝑠)𝐹
∗
= CG∗ (𝑠)𝐹

∗L∗, and define N∗ := CG∗ (𝑠)𝐹
∗L∗. Let L

be an F-stable Levi subgroup of G in duality with L∗, and denote by N the subgroup of NG(L) that
corresponds to the subgroup N∗ of NG∗ (L∗) under the isomorphism NG(L)/L � NG∗ (L∗)/L∗ given by
duality. Throughout this paper, we assume that N/L � N𝐹/L𝐹 is cyclic.

Suppose that P is a parabolic subgroup of G with Levi decomposition P = L � U, and consider the
bimodule 𝐻dim

𝑐 (YG
U ,Λ)𝑒

L𝐹

𝑠 . Since N𝐹/L𝐹 is assumed to be cyclic (and of ℓ′-order by [2, Corollary 2.9])
and 𝐻dim

𝑐 (YG
U ,Λ)𝑒

L𝐹

𝑠 is N𝐹 -stable by [4, Theorem 7.2], there exists a Λ(G𝐹 × (N𝐹 )oppΔÑ𝐹 )-module
𝑀 ′ extending the Λ(G𝐹 × (L𝐹 )oppΔL̃𝐹 )-module 𝐻dim

𝑐 (YG
U ,Λ)𝑒

L𝐹

𝑠 ; see [35, Lemma 10.2.13].
For the following theorem, recall that for any complex C ∈ Comp𝑏 (𝐴), there exists (see, for instance,

[4, 2.A.]) a complex Cred with C � Cred in Ho𝑏 (𝐴) such that Cred has no nonzero direct summand that is
homotopy equivalent to 0.

Theorem 1.1 (Bonnafé–Dat–Rouquier). There exists a complex C′ of OG𝐹 -ON𝐹 -bimodules extending
𝐺Γ𝑐 (YG

U ,Λ)
red𝑒L𝐹

𝑠 such that 𝐻𝑑 (C′) � 𝑀 ′, where 𝑑 := dim(YG
U). The complex C′ induces a splendid

Rickard equivalence between OG𝐹 𝑒G𝐹

𝑠 and ON𝐹 𝑒L𝐹

𝑠 , and the bimodule 𝑀 ′ induces a Morita equiva-
lence between OG𝐹 𝑒G𝐹

𝑠 and ON𝐹 𝑒L𝐹

𝑠 .

Proof. In the proof of [4, Theorem 7.5], use the fact that 𝑀 ′ extends 𝐻dim
𝑐 (YG

U ,Λ)𝑒
L𝐹

𝑠 instead of [4,
Proposition 7.3]. The rest of the proof of the theorem is as in [4, Section 7]. �

Note that the Morita equivalence in Theorem 1.1 might depend on the particular choice of the
extension 𝑀 ′. In particular, this is also the case for the character bijection 𝑅 : Irr(N𝐹 , 𝑒L𝐹

𝑠 ) →

Irr(G𝐹 , 𝑒G𝐹

𝑠 ) induced by the Morita bimodule 𝑀 ′.

1.6. Some local properties of the Bonnafé–Dat–Rouquier Morita equivalence

Let C′ be a complex of Λ(G𝐹 × (N𝐹 )opp)-modules inducing the splendid Rickard equivalence between
ΛG𝐹 𝑒G𝐹

𝑠 and ΛN𝐹 𝑒L𝐹

𝑠 as in Theorem 1.1 above. Then C′ induces a bijection 𝑐 ↦→ 𝑏 between the blocks
of ΛN𝐹 𝑒L𝐹

𝑠 and ΛG𝐹 𝑒G𝐹

𝑠 , where b is defined as the unique block such that 𝑏C′𝑐 is not homotopy
equivalent to 0. We fix a block c of ΛN𝐹 𝑒L𝐹

𝑠 , and we let (𝑄, 𝑐𝑄) be a c-Brauer pair. There exists a
unique b-Brauer pair (𝑄, 𝑏𝑄) such that the complex BrΔ𝑄 (C′)𝑐𝑄 induces a Rickard equivalence between
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𝑘CG𝐹 (𝑄)𝑏𝑄 and 𝑘CN𝐹 (𝑄)𝑐𝑄; see [4, Theorem 7.7]. Moreover, this implies that every defect group of
the block c is a defect group of the block b; see also [37, Theorem 1.3].

Lemma 1.2. Suppose that Q is an ℓ-subgroup of L𝐹 . Then the NG𝐹 (𝑄) × NL𝐹 (𝑄)opp-bimodule
𝐻dim
𝑐 (YNG (𝑄)

CU (𝑄)
,Λ)br𝑄 (𝑒L𝐹

𝑠 ) is multiplicity-free.

Proof. According to the proof of [34, Theorem 5.2], there exists a unique complex C′𝑄 of ℓ-permutation
Λ(CG𝐹 (𝑄) × CN𝐹 (𝑄)opp)-modules lifting the complex BrΔ𝑄 (C′) from k to Λ. Note that

ResCG𝐹 (𝑄)×CN𝐹 (𝑄)opp

CG𝐹 (𝑄)×CL𝐹 (𝑄)opp (BrΔ𝑄 (C′)) � 𝐺Γ𝑐 (YCG (𝑄)
CU (𝑄)

, 𝑘)br𝑄 (𝑒L𝐹

𝑠 )

in Ho𝑏 (𝑘 (CG𝐹 (𝑄) ×CL𝐹 (𝑄)opp)); see, for example, [37, Lemma 2.9]. Let 𝑀 ′
𝑄 := 𝐻𝑑𝑄 (C′𝑄), where by

[4, Theorem 4.14], the integer 𝑑𝑄 := dim(YCG (𝑄)
CU (𝑄)

) is the unique degree in which BrΔ𝑄 (C) has nonzero
cohomology. Thus, 𝑀 ′

𝑄𝑐𝑄 induces a Morita equivalence between ΛCG𝐹 (𝑄)𝑏𝑄 and ΛCN𝐹 (𝑄)𝑐𝑄.

By the proof of [37, Proposition 1.12], the bimodule IndNG𝐹 (𝑄)×NN𝐹 (𝑄)opp

CG𝐹 (𝑄)×CN𝐹 (𝑄)oppΔ NN𝐹 (𝑄)
(𝑀 ′
𝑄𝑐𝑄) induces a

Morita equivalence between ΛNG𝐹 (𝑄)𝐵𝑄 and ΛNN𝐹 (𝑄)𝐶𝑄, where 𝐵𝑄 (respectively 𝐶𝑄) is the block
covering 𝑏𝑄 (respectively 𝑐𝑄).

In particular, IndNG𝐹 (𝑄)×NN𝐹 (𝑄)opp

CG𝐹 (𝑄)×CN𝐹 (𝑄)oppΔ NN𝐹 (𝑄)
(𝑀 ′
𝑄)𝐶𝑄 is indecomposable. Since this is true for all

Brauer pairs of all blocks c ofΛN𝐹 𝑒L𝐹

𝑠 , it follows that IndNG𝐹 (𝑄)×NN𝐹 (𝑄)opp

CG𝐹 (𝑄)×CN𝐹 (𝑄)oppΔ NN𝐹 (𝑄)
(𝑀 ′
𝑄) is multiplicity

free as well. By Mackey’s formula, this module is an extension of

IndNG𝐹 (𝑄)×NL𝐹 (𝑄)opp

CG𝐹 (𝑄)×CL𝐹 (𝑄)oppΔ NL𝐹 (𝑄)
(𝐻dim
𝑐 (YCG (𝑄)

CU (𝑄)
,Λ)br𝑄 (𝑐𝑄)) � (𝐻dim

𝑐 (YNG (𝑄)
CU (𝑄)

,Λ)br𝑄 (𝑐𝑄)).

Since N𝐹/L𝐹 is cyclic of ℓ′-order and the Morita bimodule is indecomposable, the result therefore
follows from Clifford theory. �

1.7. Extending the action of complexes

We need to slightly strengthen [4, Theorem 7.6] by including the diagonal action of 𝑁̃ .

Lemma 1.3. Assume that ℓ � |𝐻1 (𝐹,Z(G)) |. Then there exists a complex C′ of Λ(G𝐹 × (N𝐹 )oppΔÑ𝐹 )-
modules such that 𝐻𝑑 (C′) � 𝑀 ′ and C′ induces a splendid Rickard equivalence between ΛG𝐹 𝑒G𝐹

𝑠 and
ΛN𝐹 𝑒L𝐹

𝑠 .

Proof. Let us first assume that Λ = 𝑘 . We consider the complex of ℓ-permutation 𝑘 (G𝐹 ×

(L𝐹 )oppΔ (L̃𝐹 ))-modules C := 𝐺Γ𝑐 (YU, 𝑘)
red𝑒L𝐹

𝑠 . Consider an ℓ-subgroup 𝑅̃ of G𝐹 × (L𝐹 )oppΔ (L̃𝐹 ).
Let 𝑍 := Z(G̃𝐹 )ℓ , and denote 𝑅 := 𝑅̃ ∩ (G𝐹 × (L𝐹 )opp). By assumption, ℓ � |𝐻1 (𝐹,Z(G)) | =
|G̃𝐹/G𝐹Z(G̃𝐹 ) |, and therefore 𝑅̃ ⊂ 𝑅Δ (𝑍). The subgroup Δ (𝑍) centralises the variety YG

U . Hence,
C can be regarded as complex of (G𝐹 × (L𝐹 )oppΔ (L̃𝐹 ))/Δ (𝑍)-modules. Since 𝑅̃ ⊂ 𝑅Δ (𝑍), we de-
duce that Br𝑅 (C) � Br𝑅̃ (C). Using [4, Corollary 3.8], we deduce that Br𝑅 (C) is acyclic unless R is
G𝐹 × (L𝐹 )opp-conjugate to a subgroup of ΔL𝐹 . Thus, 𝑅̃ is G𝐹 × (L𝐹 )opp-conjugate to a subgroup
of ΔL̃𝐹 . By [4, Lemma A.2], we deduce that the vertices of the indecomposable summands of the
components C are all contained in ΔL̃𝐹 .

Consider now the complex End•
𝑘G𝐹 (C) of 𝑘 (L𝐹 ×(L𝐹 )oppΔ (L̃𝐹 ))-bimodules. The same argument as

above (for End•
𝑘G𝐹 (C) instead of C) shows that Br𝑅̃ (End•

𝑘G𝐹 (C)) � Br𝑅 (End•
𝑘G𝐹 (C)). The cohomology

of the latter complex is concentrated in degree 0 only by the proof of Step 1 of [4, Theorem 7.5]. Hence,
by [4, Lemma A.3], we have End•

𝑘G𝐹 (C) � End𝐷𝑏 (𝑘G𝐹 ) (C) in Ho𝑏 (𝑘 (L𝐹 × (L𝐹 )oppΔL̃𝐹 )).
The rest of the proof is now almost identical to the proof of [4, Theorem 7.6]. For completeness, we

provide most of the details here. Denote C′ = IndG𝐹×(N𝐹 )oppΔL̃𝐹

G𝐹×(L𝐹 )oppΔL̃𝐹
(C). Let P be a projective resolution of
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𝑘N𝐹 – that is, a complex of projective 𝑘 (N𝐹 × (N𝐹 )oppΔL̃𝐹 )-modules such that its terms P𝑖 = 0 for
𝑖 > 0 – together with a quasi-isomorphism P → 𝑘N𝐹 of 𝑘 (N𝐹 × (N𝐹 )oppΔL̃𝐹 )-modules.

Let X be a complex of 𝑘 (G𝐹 × (N𝐹 )oppΔL̃𝐹 )-modules. Observe that we can consider the com-
plex End•

𝑘G𝐹 (X) as a complex of 𝑘 (N𝐹 × (N𝐹 )oppΔL̃𝐹 )-modules. We have a natural isomorphism
End•

𝑘 (G𝐹×(N𝐹 )oppΔL̃𝐹 )
(X) � Hom•

𝑘 (N𝐹×(N𝐹 )oppΔL̃𝐹 )
(𝑘N𝐹 ,End•

𝑘G𝐹 (X)). The terms of C′ are projective
𝑘G𝐹 -modules. Therefore, as in the proof of [4, Theorem 7.6], we can consider the following commuta-
tive diagram:

EndHo𝑏 (𝑘 (G𝐹×(N𝐹 )oppΔL̃𝐹 )) (C′) ��

�
��

End𝐷𝑏 (𝑘 (G𝐹×(N𝐹 )oppΔL̃𝐹 )) (C′)

�

��

HomHo𝑏 (𝑘 (N𝐹×(N𝐹 )oppΔL̃𝐹 )) (𝑘N𝐹 ,End•
𝑘G𝐹 (C′)) �� HomHo𝑏 (𝑘 (N𝐹×(N𝐹 )oppΔL̃𝐹 )) (P,End•

𝑘G𝐹 (C′))

Using the isomorphisms of complexes in Ho𝑏 (𝑘 (N𝐹 × (N𝐹 )oppΔL̃𝐹 ))

End•
𝑘G𝐹 (C′) � IndN𝐹×(N𝐹 )oppΔL̃𝐹

L𝐹×(L𝐹 )oppΔL̃𝐹
(End•

𝑘G𝐹 (𝐶))

and

End𝐷𝑏 (𝑘G𝐹 ) (C′) � IndN𝐹×(N𝐹 )oppΔL̃𝐹

L𝐹×(L𝐹 )oppΔL̃𝐹
(End𝐷𝑏 (𝑘G𝐹 ) (𝐶)),

we deduce that

End•
𝑘G𝐹 (C′) � End𝐷𝑏 (𝑘G𝐹 ) (C′) in Ho𝑏 (𝑘 (N𝐹 × (N𝐹 )oppΔL̃𝐹 )).

Now, the canonical map

HomHo𝑏 (𝑘 (N𝐹×(N𝐹 )opp)) (𝑘N𝐹 ,End𝐷𝑏 (𝑘G𝐹 ) (C′)) → HomHo𝑏 (𝑘 (N𝐹×(N𝐹 )opp)) (P,End𝐷𝑏 (𝑘G𝐹 ) (C′))

is an isomorphism, since End𝐷𝑏 (𝑘G𝐹 ) (C′) is a complex concentrated in degree 0. It follows that the
top horizontal map in the commutative diagram above is an isomorphism, hence we have canonical
isomorphisms

EndHo𝑏 (𝑘 (G𝐹×(N𝐹 )oppΔ (L̃𝐹 ))) (C′)
�
−→ End𝐷𝑏 (𝑘 (G𝐹×(N𝐹 )oppΔ (L̃𝐹 ))) (C′)

�
−→

End𝑘 (G𝐹×(N𝐹 )oppΔL̃𝐹 ) (IndG𝐹×(N𝐹 )oppΔ (L̃𝐹 )

G𝐹×(L𝐹 )oppΔ (L̃𝐹 )
𝐻𝑑𝑐 (YU, 𝑘)𝑒

L𝐹

𝑠 ).

Using the proof of Step 3 of [4, Theorem 7.6], we deduce that there exists a summand C̃ of C′
that is quasi-isomorphic to 𝑀 ′. As in Step 4 and 5 of the proof of [4, Theorem 7.6], we see that
ResG𝐹×(N𝐹 )oppΔL̃𝐹

G𝐹×(L𝐹 )oppΔL̃𝐹
(C̃) � C in Ho𝑏 (𝑘 (G𝐹 × (L𝐹 )oppΔL̃𝐹 )). Furthermore, Step 5 of the proof of [4,

Theorem 7.6] shows that C̃ induces a splendid Rickard equivalence between 𝑘G𝐹 𝑒G𝐹

𝑠 and 𝑘N𝐹 𝑒L𝐹

𝑠 .
Finally, let us consider the case Λ = O. Using [34, Lemma 5.1] together with the arguments in the

first paragraph of the proof of [34, Theorem 5.2], we observe that there exists a unique complex of
O(G𝐹 × (L𝐹 )oppΔL̃𝐹 )-modules lifting C̃. Moreover, by the proof of [34, Theorem 5.2], this complex
induces a splendid Rickard equivalence between OG𝐹 𝑒G𝐹

𝑠 and ON𝐹 𝑒L𝐹

𝑠 . �

1.8. The Bonnafé–Dat–Rouquier equivalence and character correspondences

Let 𝑀 := 𝐻dim
𝑐 (YG

U ,Λ)𝑒
L𝐹

𝑠 be considered as 𝑋 := G𝐹 × (L𝐹 )oppΔL̃𝐹 -module, and let 𝑀 ′ be a
𝑌 := G𝐹 × (N𝐹 )oppΔÑ𝐹 -module extending M. Define 𝑀̃ = Ind𝑋̃𝑋 (𝑀), where 𝑋̃ := G̃𝐹 × (L̃𝐹 )opp.
Observe that 𝑀̃ � 𝐻dim

𝑐 (YG̃
U ,Λ)𝑒

L𝐹

𝑠 .

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.36


Forum of Mathematics, Sigma 7

Recall from the proof of [4, Theorem 7.5] that there exists a central idempotent 𝑒 ∈ Z(ΛL̃𝐹 )
such that

∑
𝑛∈N𝐹 /L𝐹

𝑛𝑒 = 𝑒L𝐹

𝑠 . Moreover, the induction functor yields a Morita equivalence between
ΛL̃𝐹 𝑒 and ΛÑ𝐹 𝑒L𝐹

𝑠 . From this, it follows that the right action of L̃𝐹 on 𝑀̃ extends to Ñ𝐹 and the
extended bimodule 𝑀̃ ′ := 𝑀̃𝑒⊗ΛL̃𝐹 ΛÑ𝐹 induces a Morita equivalence betweenΛÑ𝐹 𝑒L𝐹

𝑠 andΛG̃𝐹 𝑒G𝐹

𝑠 .
Writing

𝑅̃ : Irr(Ñ𝐹 , 𝑒L𝐹

𝑠 ) → Irr(G̃𝐹 , 𝑒G𝐹

𝑠 )

for the character bijection induced by the Morita bimodule 𝑀̃ ′, we therefore obtain:

Lemma 1.4. For every 𝜓 ∈ Irr(Ñ𝐹 , 𝑒L𝐹

𝑠 ), there exists a unique character 𝜆 ∈ Irr(L̃𝐹 , 𝑒) such that
IndÑ𝐹

L̃𝐹 (𝜆) = 𝜓, and we have 𝑅G̃𝐹

L̃𝐹
(𝜆) = 𝑅̃IndÑ𝐹

L̃𝐹 (𝜆).

The proof of [4, Theorem 7.5] shows that Ind𝑌̃𝑌 (𝑀 ′) � 𝑀̃ ′. This property ensures that 𝑅̃ restricts to a
bijection 𝑅̃ : Irr(Ñ𝐹 | 𝜒) → Irr(G̃𝐹 | 𝑅(𝜒)) for every 𝜒 ∈ Irr(N𝐹 , 𝑒L𝐹

𝑠 ). Here, R denotes the character
bijection induced by the Morita bimodule 𝑀 ′.

1.9. Local character correspondences

Our aim is now to prove a local version of Lemma 1.4. For this, let 𝑏̃ be a block of ΛG̃𝐹 𝑒G𝐹

𝑠 covering
b and 𝑐 be the unique block of ΛÑ𝐹 𝑒L𝐹

𝑠 corresponding to it under the Morita equivalence given by 𝑀̃ ′.
We let 𝑓 := 𝑐𝑒 be the unique block of ΛL̃𝐹 𝑒 below 𝑐.

Let D be a common defect group of the blocks c and b. We assume that Q is a characteristic subgroup of
D and consider the 𝑋𝑄 := NG𝐹 (𝑄)×NL𝐹 (𝑄)oppΔ NL̃𝐹 (𝑄)-module 𝑀𝑄 := 𝐻dim

𝑐 (YNG (𝑄)
CU (𝑄)

,Λ) br𝑄 (𝑒L𝐹

𝑠 ).
The bimodule 𝑀𝑄 is Δ NÑ𝐹 (𝑄)-stable by [37, Theorem 5.2]. Thus, there exists a 𝑌𝑄 := NG𝐹 (𝑄) ×
(NN𝐹 (𝑄))oppΔ NÑ𝐹 (𝑄)-module 𝑀 ′

𝑄 extending 𝑀𝑄.

Denote 𝑀̃𝑄 = Ind𝑋̃𝑄𝑋𝑄 (𝑀𝑄), where 𝑋̃𝑄 := NG̃𝐹 (𝑄) × NL̃𝐹 (𝑄)opp. Observe that 𝑀̃𝑄 �

𝐻dim
𝑐 (YNG̃ (𝑄)

CU (𝑄)
,Λ) br𝑄 (𝑒L𝐹

𝑠 ). Let 𝐶̃𝑄 := br𝑄 (𝑐) and 𝐵̃𝑄 := br𝑄 (𝑏̃) be the Harris–Knörr correspon-
dents (in the sense of [37, Corollary 1.18]) of 𝑐 and 𝑏̃ in NÑ𝐹 (𝑄) and NG̃𝐹 (𝑄), respectively. Since 𝑓
corresponds to the block 𝑏̃ under the Morita equivalence given by 𝑀̃ , it follows that 𝑀̃𝑄 𝐹̃𝑄 induces
a Morita equivalence between ΛNL̃𝐹 (𝑄)𝐹̃𝑄 and ΛNG̃𝐹 (𝑄)𝐵̃𝑄; see [37, Theorem 3.10]. Recall that
the stabiliser of the idempotent e in Ñ𝐹 is L̃𝐹 . Consequently, the stabiliser of br𝑄 (𝑒) in NÑ𝐹 (𝑄) is
NL̃𝐹 (𝑄). Therefore, the bimodule 𝑀̃ ′

𝑄 := 𝑀̃𝑄 br𝑄 (𝑒) ⊗ΛNL̃𝐹 (𝑄) ΛNÑ𝐹 (𝑄) is an extension of 𝑀̃𝑄,
and 𝑀̃ ′

𝑄𝐶̃𝑄 � 𝑀̃𝑄 𝐹̃𝑄 ⊗ΛNL̃𝐹 (𝑄) ΛNÑ𝐹 (𝑄) induces a Morita equivalence between ΛNÑ𝐹 (𝑄)𝐶̃𝑄 and
ΛNG̃𝐹 (𝑄)𝐵̃𝑄. We write

𝑅̃𝑄 : Irr(NÑ𝐹 (𝑄), 𝐶̃𝑄) → Irr(NG̃𝐹 (𝑄), 𝐵̃𝑄)

for the associated character bijection. We obtain:

Lemma 1.5. For every 𝜓 ∈ Irr(NÑ𝐹 (𝑄), 𝐶̃𝑄), there exists a unique character 𝜆 ∈ Irr(NL̃𝐹 (𝑄), 𝐹̃𝑄)

such that IndNÑ𝐹 (𝑄)

NL̃𝐹 (𝑄)
(𝜆) = 𝜓, and we have 𝑅NG̃𝐹 (𝑄)

NL̃𝐹 (𝑄)
(𝜆) = 𝑅̃𝑄IndNÑ𝐹 (𝑄)

NL̃𝐹 (𝑄)
(𝜆).

We claim that Ind𝑌̃𝑄𝑌𝑄 (𝑀
′
𝑄) � 𝑀̃ ′

𝑄. This follows as in the proof of [4, Theorem 7.5]. Observe that it

suffices to show that Res𝑌̃𝑄
𝑋̃𝑄

(Ind𝑌̃𝑄𝑌𝑄 (𝑀
′
𝑄)) br𝑄 (𝑒) � Res𝑌̃𝑄

𝑋̃𝑄
(𝑀̃ ′
𝑄) br𝑄 (𝑒). By Mackey’s formula, the left-

hand side is isomorphic to 𝑀̃𝑄 br𝑄 (𝑒). Moreover, we have Res𝑌̃𝑄
𝑋̃𝑄

(𝑀̃ ′
𝑄) br𝑄 (𝑒) � 𝑀̃𝑄 br𝑄 (𝑒), which

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.36


8 Lucas Ruhstorfer

proves the claim. As in the global case, we therefore obtain that 𝑅̃𝑄 restricts to

𝑅̃𝑄 : Irr(NÑ𝐹 (𝑄), 𝜒) → Irr(NG̃𝐹 (𝑄), 𝑅𝑄 (𝜒)),

where 𝑅𝑄 is the character bijection induced by 𝑀𝑄 and 𝜒 ∈ Irr(NN𝐹 (𝑄) | br𝑄 (𝑐)).

2. Descent of scalars

2.1. Restriction of scalars for Deligne–Lusztig varieties

We assume until Section 3 that 𝐹0 : G̃ → G̃ is a Frobenius endomorphism stabilising L that satisfies
𝐹𝑟0 = 𝐹 for some integer r and 𝛾 : G̃ → G̃ is an automorphism commuting with 𝐹0. In what follows, A
will denote the subgroup of Aut(G̃𝐹 ) generated by 𝐹0 and 𝛾.

Let us recall the setup from [37, Section 5]. We consider the reductive group G = G𝑟 with Frobenius
endomorphism𝐹0×· · ·×𝐹0 : G → G, which we also denote by𝐹0. More generally, whenever𝜎 : G → G
is a bijective morphism of G, then we also denote by 𝜎 the induced map 𝜎 × · · · × 𝜎 : G → G on G.
We consider the automorphism

𝜏 : G → G

given by 𝜏(𝑔1, . . . , 𝑔𝑟 ) = (𝑔2, . . . , 𝑔𝑟 , 𝑔1). Consider the projection onto the first component

pr : G → G, (𝑔1, . . . , 𝑔𝑟 ) ↦→ 𝑔1.

The restriction of pr to G𝐹0𝜏 induces an isomorphism pr : G𝐹0𝜏 → G𝐹 of finite groups. For any
connected subset H of G, we set

H := H × 𝐹𝑟−1
0 (H) × · · · × 𝐹0 (H).

Note that if H is F-stable, then H is 𝜏𝐹0-stable, and the projection map pr : H → H induces an
isomorphism H𝜏𝐹0 � H𝐹 . Conversely, one easily sees that any 𝜏𝐹0-stable subset of G is of the form H
for some F-stable subset H of G.

We consider the r-fold product G∗ := (G∗)𝑟 of the dual group G∗ endowed with the Frobenius
endomorphism 𝐹∗

0 := 𝐹∗
0 × · · · × 𝐹∗

0 : G∗ → G∗. Moreover, let

𝜏∗ : G∗ → G∗, (𝑔1, . . . , 𝑔𝑟 ) ↦→ (𝑔𝑟 , 𝑔1 . . . , 𝑔𝑟−1).

We denote by pr : G∗ → G∗ the projection onto the first coordinate.

2.2. Restriction of scalars and Jordan decomposition of characters

We let P be a parabolic subgroup of G with Levi decomposition P = L � U. Then P is a parabolic
subgroup of G with Levi decomposition P = L � U such that 𝜏𝐹0 (L) = L. We can therefore consider
the Deligne–Lusztig variety YG,𝐹0𝜏

U , which is a G𝐹0𝜏 × (L𝐹0𝜏)opp-variety. Under the isomorphism
G𝜏𝐹0 � G𝐹 given by pr, we can consider it as a G𝐹 × (L𝐹 )opp-variety. Endowed with this structure, the
projection map induces an isomorphism

pr : YG,𝐹0𝜏

U → YG
U ,

which is G𝐹 × (L𝐹 )opp-equivariant; see [37, Proposition 5.3].
We consider the unipotent radical U′ := U𝑟 of the parabolic subgroup P′ = P𝑟 of G. Note that we

have a Levi decomposition P′ = L�U′ in G and the parabolic subgroup P′ is 𝜏-stable. In the following,
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we will use the language of parabolic subgroups and Levi subgroups of disconnected reductive groups
as in [37, Section 2.1].

Lemma 2.1. Assume that 𝑒L𝐹

𝑠 is A-stable. If P is 𝛾-stable, then the module 𝐻dim
𝑐 (YG

U ,Λ)𝑒
L𝐹

𝑠 extends
to a G𝐹 × (L𝐹 )oppΔ (L̃𝐹A)-module. If in addition N𝐹/L𝐹 is centralised by A, then 𝐻dim

𝑐 (YG
U ,Λ)𝑒

L𝐹

𝑠

extends to G𝐹 × (N𝐹 )oppΔ (L̃𝐹A).

Proof. The pair (L,P′) is 〈𝜏, 𝛾〉-stable. Therefore, we can consider YG
U′ a G𝜏𝐹0 ×

(L𝜏𝐹0)oppΔ (L̃𝜏𝐹0
〈𝜏, 𝛾〉)-variety. By [4, Theorem 7.2], we have an isomorphism

𝐻dim
𝑐 (YG,𝜏𝐹0

U ,Λ)𝑒
L𝜏𝐹0
𝑠 � 𝐻dim

𝑐 (YG,𝜏𝐹0
U′ ,Λ)𝑒

L𝜏𝐹0
𝑠

of Λ((G𝜏𝐹0 × (L𝜏𝐹0)opp)Δ (L̃𝐹 ))-modules. The projection pr : G → G onto the first coordinate defines
an isomorphism

𝐻dim
𝑐 (YG,𝜏𝐹0

U ,Λ)𝑒L𝜏𝐹0
𝑠 � 𝐻dim

𝑐 (YG,𝐹
U ,Λ)𝑒L𝐹

𝑠

of G𝐹 × (L𝐹 )oppΔL̃𝐹 -modules. By transport of structure, we can endow 𝐻dim
𝑐 (YG,𝐹

U ,Λ)𝑒L𝐹

𝑠 with a
G𝐹 × (L𝐹 )oppΔL̃𝐹 〈𝐹0, 𝛾〉-structure.

Assume now that N/L is centralised byA, and let 𝑛 ∈ N𝐹 be a generator of the quotient group N𝐹/L𝐹 .
Then we have 𝛾(𝑛)𝑛−1, 𝐹0 (𝑛)𝑛

−1 ∈ L𝐹 . Thus, conjugation by 𝑛 defines an automorphism of G〈𝜏, 𝛾〉,
which normalises L〈𝜏, 𝛾〉. Hence, by [37, Lemma 3.1], the Λ((G𝜏𝐹0 × (L𝜏𝐹0)opp)Δ (L̃𝜏𝐹0

〈𝜏, 𝛾〉))-
module 𝐻dim

𝑐 (YG,𝜏𝐹0
U′ )𝑒

L𝜏𝐹0
𝑠 is 𝑛-stable. By transport of structure, we deduce that 𝐻dim

𝑐 (YG,𝐹
U ,Λ)𝑒L𝐹

𝑠 is
N𝐹 -stable as a G𝐹 × (L𝐹 )oppΔ (L̃𝐹A)-module. Thus, it extends to a G𝐹 × (N𝐹 )oppΔL̃𝐹 〈𝐹0, 𝛾〉-module
by [35, Lemma 10.2.13]. �

In the following, we abbreviate N := NG̃𝐹A (L, 𝑒L𝐹

𝑠 ).

Lemma 2.2. Suppose that we are in the situation of Lemma 2.1. Let Q be an ℓ-subgroup of L𝐹 . If N𝐹/L𝐹
is centralised by A, then 𝐻dim

𝑐 (YNG (𝑄)
CU (𝑄)

,Λ)br𝑄 (𝑒L𝐹

𝑠 ) extends to an NG𝐹 (𝑄) × NL𝐹 (𝑄)oppΔNN (𝑄)-
module.

Proof. Recall that the projection map pr : G𝜏𝐹0 → G𝐹 is an isomorphism of finite groups. If H is a
subgroup of G𝐹 , we let 𝐻 := pr−1(𝐻); and if 𝑥 ∈ Λ𝐻, we let 𝑥 := pr−1(𝑥) ∈ Λ𝐻.

The quotient group NN(𝑄)/NL̃𝐹A (𝑄) is cyclic as it embeds into N/L̃𝐹A � N𝐹/L𝐹 . Let 𝑥 ∈

NN𝐹 (𝑄) be a generator of said quotient. Since N𝐹/L𝐹 is centralised by 𝐹0, we have 𝑥𝐹0 (𝑥)
−1 ∈ NL𝐹 (𝑄).

Let 𝑥 := (𝑥, 𝐹𝑟−1
0 (𝑥), . . . , 𝐹0 (𝑥)) ∈ G𝜏𝐹0 such that pr(𝑥) = 𝑥. Consider the bijective morphism 𝜙 :

G̃〈𝜏〉 → G̃〈𝜏〉 given by conjugation with 𝑥. Note that 𝜙 stabilises G̃ and commutes with the Frobenius
endomorphism 𝜏𝐹0 of G̃ � 〈𝜏〉. Moreover, 𝜙 also stabilises the Levi subgroup L̃〈𝜏〉 of G̃ � 〈𝜏〉. We
denote 𝑒 := br𝑄 (𝑒L𝐹

𝑠 ). By [37, Lemma 2.23], we obtain an isomorphism

𝜙
(𝐻dim
𝑐 (Y

NG (𝑄) ,𝜏𝐹0

CU′ (𝑄)
,Λ)𝑒)𝜙 � 𝐻dim

𝑐 (Y
NG (𝑄) ,𝜏𝐹0

C𝜙 (U′) (𝑄)
,Λ)𝑒

of Λ((NG𝜏𝐹0 (𝑄) × NL𝜏𝐹0 (𝑄)
opp)Δ (NL̃𝜏𝐹0 〈𝜏 〉

(𝑄))-modules. We have two Levi decompositions

P̃〈𝜏〉 = L̃〈𝜏〉 � U′ and 𝜙(P̃〈𝜏〉) = L̃〈𝜏〉 � 𝜙(U′)
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with the same Levi subgroup L̃〈𝜏〉 of G̃〈𝜏〉. Therefore, [37, Theorem 5.2] yields

𝐻dim
𝑐 (Y

NG (𝑄) ,𝜏𝐹0

C𝜙 (U′) (𝑄)
,Λ)𝑒 � 𝐻dim

𝑐 (Y
NG (𝑄) ,𝜏𝐹0

CU′ (𝑄)
,Λ)𝑒.

It follows from this that 𝐻dim
𝑐 (Y

NG (𝑄) ,𝜏𝐹0

CU′ (𝑄)
,Λ)𝑒 is (𝜙, 𝜙−1)-invariant. Hence, the bi-

module 𝐻dim
𝑐 (YNG (𝑄)

CU (𝑄)
,Λ)𝑒 is by transport of structure x-invariant as Λ((NG𝐹 (𝑄) ×

NL𝐹 (𝑄)opp)Δ (NL̃𝐹 〈𝐹0 〉
(𝑄)))-module. The claim now follows from [35, Lemma 10.2.13]. �

3. Construction for twisted groups

We generalise the construction of the previous section. This is essentially necessary for working with
automorphisms of twisted groups. We suppose now that 𝐹0 is a Frobenius endomorphism with 𝐹𝑟0 𝜌 = 𝐹
for some integer r and 𝜌 : G → G a graph automorphism of order l that commutes with 𝐹0. We denote
by A the subgroup of Aut(G̃𝐹 ) generated by 𝐹0.

The construction in this section will be done in two separate steps. We first consider the connected
reductive group

G𝜌 := {(𝑔, 𝜌(𝑔), . . . , 𝜌𝑙−1 (𝑔)) | 𝑔 ∈ G}.

We note that the projection onto the first coordinate defines an isomorphism pr1 : G𝜌 → G. Denote by
𝜏 : G𝜌 → G𝜌 the automorphism given by

𝜏(𝑔, 𝜌(𝑔), . . . , 𝜌𝑙−1(𝑔)) := (𝜌(𝑔), 𝜌2(𝑔), . . . , 𝜌𝑙−1(𝑔), 𝑔),

and let 𝜎 be the permutation induced by 𝜏 on the coordinates of G𝜌. With this notation, the projection
onto the first coordinate defines a (𝜏𝐹𝑟0 , 𝐹)-equivariant isomorphism G𝜌 → G.

Now define the group

G𝜌 := G𝜌 × · · · × G𝜌

as the r-fold product of the group G𝜌. We define a permutation 𝜎0 on the set {1, . . . , 𝑟𝑙} as follows:

𝜎0(𝑖) =

{
𝑖 − 𝑙 if 𝑖 > 𝑙,

𝑟𝑙 − 𝑙 + 𝜎(𝑖) if 1 ≤ 𝑖 ≤ 𝑙.

Consider the automorphism 𝜏0 : G𝜌 → G𝜌, which for an element (𝑔1, . . . , 𝑔𝑙𝑟 ) ∈ G𝜌 is given by
𝜏0 ((𝑔1, . . . , 𝑔𝑙𝑟 )) := (𝑔𝜎0 (1) , . . . , 𝑔𝜎0 (𝑟𝑙) ). By construction, it follows that 𝜏𝑟0 = 𝜏 (here 𝜏 is understood
as the permutation 𝜏 × · · · × 𝜏 on G𝜌). In particular, the morphism 𝜏0𝐹0 satisfies (𝜏0𝐹0)

𝑟 = 𝜏𝐹𝑟0 .
Moreover, 𝜏0𝐹0 cyclically permutes the r copies G𝜌 of the group G𝜌. We deduce that the projection

map pr2 : G𝜌 → G𝜌 onto the first factor G𝜌 induces an isomorphism G𝜏𝐹0
𝜌 � G𝜏0𝐹

𝑟
0

𝜌 .

Notation 3.1. Assume that H is a closed connected subgroup of G. Then we define H𝜌 := pr−1
1 (H). We

then define

H𝜌 := H𝜌 × (𝜏0𝐹0)
𝑟−1(H𝜌) × · · · × (𝜏0𝐹0) (H𝜌)

considered a subgroup of G𝜌. Furthermore, we denote H′
𝜌 := (H𝜌)𝑟 .

Remark 3.2. If the subgroup H is 𝜌 and𝐹0-stable, then we obtain H𝜌 = H′
𝜌. Moreover, the automorphism

𝐹0 of the finite group G𝐹 corresponds to the automorphism 𝜏−1
0 of G𝜏0𝐹0

𝜌 .
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Let P be a parabolic subgroup of G with Levi decomposition P = L �U. Then we observe that P𝜌 is
a parabolic subgroup of G𝜌 with Levi decomposition

P𝜌 = L𝜌 � U𝜌 .

Assume now that L is F-stable. It follows that L𝜌 is 𝜏𝐹𝑟0 -stable and consequently the Levi subgroup

L𝜌 is 𝜏0𝐹0-stable. We can therefore consider the Deligne–Lusztig variety Y
G𝜌 ,𝐹0𝜏0

U𝜌
, which is a G𝐹0𝜏0

𝜌 ×

(L𝐹0𝜏0
𝜌 )opp-variety. Under the isomorphism G𝐹 � G𝐹0𝜏0

𝜌 induced by the projection map

pr := pr1 ◦ pr2 : G𝜌 → G,

we will in the following regard it as a G𝐹 × (L𝐹 )opp-variety.
Proposition 3.3. With the assumptions as above, the projection pr : G𝜌 → G onto the first coordinate
defines an isomorphism

Y
G𝜌 ,𝜏0𝐹0

U𝜌
� YG,𝐹

U

of varieties that is G𝐹 × (L𝐹 )opp-equivariant.
Proof. The projection onto the first coordinate defines a (𝜏𝐹𝑟0 , 𝐹)-equivariant isomorphism G𝜌 → G.
Thus, we obtain a G𝐹 × (L𝐹 )opp-equivariant isomorphism YG𝜌 ,𝜏𝐹

𝑟
0

U𝜌
→ YG,𝐹

U .

The morphism 𝜏0𝐹0 satisfies (𝜏0𝐹0)
𝑟 = 𝜏𝐹𝑟0 and cyclically permutes the r copies of G𝜌 of the

group G𝜌. Therefore, by [37, Theorem 5.2], projection onto the first coordinate yields a G𝐹 × (L𝐹 )opp-

equivariant isomorphism Y
G𝜌 ,𝜏0𝐹0

U𝜌
→ YG𝜌 ,𝜏𝐹

𝑟
0

U𝜌
. The composition of these two isomorphisms yields the

required isomorphism. �

We will now explain how we can explicitly construct the dual group of (G𝜌, 𝜏0𝐹0). For this, consider
the connected reductive group G∗

𝜌 := {(𝑔, 𝜌∗(𝑔), . . . , (𝜌∗)𝑙−1(𝑔))}. Now define the group G∗
𝜌 := G∗

𝜌 ×

· · ·×G∗
𝜌 as the r-fold product of the group G∗

𝜌. On this group, we consider the automorphism 𝜏∗0 : G∗
𝜌 →

G∗
𝜌, which for an element (𝑔1, . . . , 𝑔𝑙𝑟 ) ∈ G∗

𝜌 is given by

𝜏∗0 ((𝑔1, . . . , 𝑔𝑙𝑟 )) := (𝑔(𝜎0)−1 (1) , . . . , 𝑔(𝜎0)−1 (𝑙𝑟 ) ).

We then define 𝜏∗ := (𝜏∗0 )
𝑟 . Again we denote by pr1 : G∗

𝜌 → G∗ and pr2 : G∗
𝜌 → G∗

𝜌 the projections
onto the first coordinate and pr = pr1 ◦ pr2.
Lemma 3.4. The group (G∗

𝜌, 𝜏
∗
0𝐹

∗
0 ) is dual to (G𝜌, 𝜏0𝐹0), and for every semisimple element 𝑠 ∈

(G∗
𝜌)
𝜏∗0𝐹

∗
0 , the Lusztig series E(G𝜏0𝐹0 , 𝑠) corresponds to E(G𝐹 , pr(𝑠)) under the isomorphism pr :

G𝜏0𝐹0
𝜌 → G𝐹 of finite groups.

Proof. Recall that we have a (𝜏𝐹𝑟0 , 𝐹)-equivariant isomorphism G𝜌 → G. From this, we deduce
that (G∗

𝜌, 𝜏
∗(𝐹∗

0 )
𝑟 ) is dual to (G𝜌, 𝜏𝐹𝑟0 ). The Lusztig series E(G𝜏𝐹

𝑟
0

𝜌 , pr2(𝑠)) then corresponds to
E(G𝐹 , pr(𝑠)) via the isomorphism pr1 : G𝜏𝐹

𝑟
0

𝜌 → G𝐹 . By applying [44, Corollary 8.8], we then observe
that (G∗

𝜌, 𝜏
∗
0𝐹

∗
0 ) is dual to (G𝜌, 𝜏0𝐹0) and moreover that the Lusztig series E(G𝜏0𝐹0 , 𝑠) corresponds to

E(G𝜏𝐹
𝑟
0

𝜌 , pr2 (𝑠)) via pr2 : G𝜏0𝐹0
𝜌 → G𝜏𝐹

𝑟
0

𝜌 . The claim follows from this. �

Lemma 3.5. Assume that L and 𝑒L𝐹

𝑠 are 𝐹0-stable. If P is 𝜌-stable, then the module𝐻dim
𝑐 (YG

U ,Λ)𝑒
L𝐹

𝑠 ex-
tends to a G𝐹 ×(L𝐹 )oppΔ 〈𝐹0〉-module. If in addition N𝐹/L𝐹 is centralised by 𝐹0, then𝐻dim

𝑐 (YG
U ,Λ)𝑒

L𝐹

𝑠

extends to G𝐹 × (N𝐹 )oppΔ (L̃𝐹 〈𝐹0〉).
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Proof. Since L is 𝐹0-stable, we have L𝜌 = L′
𝜌 and therefore P′

𝜌 is a parabolic subgroup with Levi
decomposition

P′
𝜌 = L𝜌 � U′

𝜌 .

We observe that C◦
G∗

𝜌
(𝑠) ⊆ L∗

𝜌. Therefore, [4, Theorem 7.2] shows that we have an isomorphism

𝐻dim
𝑐 (Y

G𝜌 ,𝜏0𝐹0

U𝜌
)𝑒

L𝜏𝐹0
𝑠 � 𝐻dim

𝑐 (Y
G𝜌 ,𝜏0𝐹0

U′
𝜌

)𝑒
L𝜏𝐹0
𝑠

ofΛ((G𝜏𝐹0
𝜌 ×(L𝜏𝐹0

𝜌 )opp)Δ (L̃𝜏𝐹0
𝜌 ))-modules. According to Proposition 3.3 and Lemma 3.4, the projection

pr : G𝜌 → G onto the first coordinate induces an isomorphism

𝐻dim
𝑐 (Y

G𝜌 ,𝜏0𝐹0

U𝜌
,Λ)𝑒

L𝜏0𝐹0
𝜌
𝑠 � 𝐻dim

𝑐 (YG,𝐹
U ,Λ)𝑒L𝐹

𝑠

of G𝐹 × (L𝐹 )oppΔ (L̃𝐹 )-modules.
Note that since U is 𝜌-stable, the automorphism 𝜏0 stabilises the unipotent radical U′

𝜌. Therefore,

we can consider 𝐻dim
𝑐 (Y

G𝜌 ,𝜏0𝐹0

U′
𝜌

)𝑒
L𝜏0𝐹0
𝑠 a Λ((G𝜏0𝐹0

𝜌 × (L𝜏0𝐹0
𝜌 )opp)Δ (L̃𝜏0𝐹0

𝜌 〈𝜏0〉))-module. By transport

of structure, we can endow 𝐻dim
𝑐 (YG,𝐹

U ,Λ)𝑒L𝐹

𝑠 with a G𝐹 × (L𝐹 )oppΔL̃𝐹 〈𝐹0〉-structure.
Assume now that N𝐹/L𝐹 is centralised by 𝐹0. Let 𝑛 ∈ N𝐹 be a generator of the quotient group

N𝐹/L𝐹 . Since 𝐹0 (𝑛)𝑛
−1 ∈ L𝐹 , we conclude that conjugation by 𝑛 defines an automorphism of G𝜌〈𝜏0〉,

which stabilises the Levi subgroup L𝜌〈𝜏0〉. Thus, conjugation by 𝑛 yields an isomorphism

(𝐻dim
𝑐 (YG,𝜏0𝐹0

U′
𝜌

)𝑒
L𝜏0𝐹0
𝑠 )𝑛 � 𝐻dim

𝑐 (YG,𝜏0𝐹0
𝑛U′

𝜌
)𝑒

L𝜏0𝐹0
𝑠

of Λ((G𝜏0𝐹0 × (L𝜏𝐹0)opp)Δ (L̃𝐹 〈𝜏0〉))-modules. We conclude that 𝐻dim
𝑐 (Y

G𝜌 ,𝜏0𝐹0

U′ )𝑒
L𝜏0𝐹0
𝑠 is 𝑛-stable.

By transport of structure and [35, Lemma 10.2.13], we deduce that 𝐻dim
𝑐 (YG,𝐹

U ,Λ)𝑒𝐿𝑠 extends to a
G𝐹 × (N𝐹 )oppΔ (L̃𝐹 〈𝐹0〉)-module. �

Lemma 3.6. In the situation of Lemma 3.5, let Q be an ℓ-subgroup of L𝐹 . If N𝐹/L𝐹 is centralised
by A, then 𝐻dim

𝑐 (YNG (𝑄)
CU (𝑄)

,Λ)br𝑄 (𝑒L𝐹

𝑠 ) extends to a NG𝐹 (𝑄) × NL𝐹 (𝑄)oppΔNN (𝑄)-module, where
N := NG̃𝐹 〈𝐹0 〉

(L, 𝑒L𝐹

𝑠 ).

Proof. The proof is the same as in Lemma 2.2 with the necessary modifications made in Lemma 3.5. �

4. An equivariant Bonnafé–Dat–Rouquier equivalence

In this section, we give a partial answer to the question of whether the Morita equivalence constructed
by Bonnafé–Dat–Rouquier is automorphism-equivariant. We often use the following well-known
fact.

Lemma 4.1. Let G be a connected reductive group and 𝜙 : G → G a Frobenius endomorphism. The
norm map 𝑁𝜙𝑟 /𝜙 : G → G, 𝑥 ↦→

∏𝑟−1
𝑖=0 𝜙

𝑖 (𝑥), is surjective.

Proof. By Lang’s theorem, we can write 𝑦 ∈ G as 𝑦 = 𝑎−1𝜙𝑟 (𝑎). Then for 𝑥 := 𝑎−1𝜙(𝑎), we have
𝑁𝜙𝑟 /𝜙 (𝑥) = 𝑦. �

Denote by Bij(G) the set of bijective maps on G. In what follows, we will often use that for 𝑥 ∈ G,
we have (𝑥𝜙)𝑟 = 𝑁𝜙𝑟 /𝜙 (𝑥)𝜙

𝑟 in G � Bij(G).
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Theorem 4.2. Let G be a simple, simply connected algebraic group of type 𝐵𝑛, 𝐶𝑛 or 𝐸7 such that
either 𝑛 > 2 or q is odd. Then there exists a Frobenius endomorphism 𝐹0 : G̃ → G̃, which commutes
with F such that 𝐹0 stabilises L and the image of G̃𝐹 � 〈𝐹0〉 in the outer automorphism group of G𝐹
is Out(G𝐹 )

𝑒G𝐹
𝑠

. There exists a Morita equivalence between ΛN𝐹 𝑒L𝐹

𝑠 and ΛG𝐹 𝑒G𝐹

𝑠 , which lifts to a

Morita equivalence between ΛNG̃𝐹 〈𝐹0 〉ℓ′
(L, 𝑒L𝐹

𝑠 )𝑒L𝐹

𝑠 and ΛG̃𝐹 〈𝐹0〉ℓ′𝑒
G𝐹

𝑠 .

Proof. As in the proof of [37, Corollary 4.2], we see that there exists a field endomorphism 𝜙 : G̃ → G̃
such that 𝜙𝑟 = 𝐹 for some integer r and such that 𝜙 together with G̃𝐹 generates Out(G𝐹 )

𝑒G𝐹
𝑠

. Since

𝑒G𝐹

𝑠 is 𝜙-stable, it follows that the Levi subgroup 𝜙(L) is G𝐹 -conjugate to L. Thus, there exists some
𝑦 ∈ G𝐹 such that L is 𝑦𝜙-stable. Since 𝑒G𝐹

𝑠 is 𝜙-stable, there exists some 𝑥 ∈ NG𝐹 (L) such that 𝑒L𝐹

𝑠 is
𝑥𝑦𝜑-stable. Denoting 𝑧 := 𝑥𝑦, we have (𝑧𝜙)𝑟 = 𝑁𝐹/𝜙 (𝑧)𝐹, and therefore 𝑁𝐹/𝜙 (𝑧) ∈ NG𝐹 (L, 𝑒L𝐹

𝑠 ).
Suppose first that 𝑧0 := 𝑁𝐹/𝜙 (𝑧) ∈ L𝐹 . By construction, the Levi subgroup L is stable under the

Frobenius endomorphism 𝑧𝜙. Therefore, by Lemma 4.1, there exists 𝑙 ∈ L such that 𝑧−1
0 = 𝑁𝑧0𝐹/𝑧𝜙 (𝑙).

We define 𝐹0 := 𝑙𝑧𝜙. Then we have

𝐹𝑟0 = (𝑙𝑧𝜙)𝑟 = (𝑙 (𝑧𝜙))𝑟 = 𝑁𝑧0𝐹/𝑧𝜙 (𝑙)𝑧0𝐹 = 𝐹.

Since 𝐹0 = 𝑙𝑧𝜙 and 𝜙 commute with F, we have 𝐹 (𝑙𝑧) (𝑙𝑧)−1 = 𝐹 (𝑙)𝑙−1 = 1: that is, 𝑙 ∈ L𝐹 .
Thus, 𝜙 and 𝐹0 induce the same outer automorphism in Out(G𝐹 ). From this, we conclude that 𝐹0

together with G̃𝐹 generates the stabiliser of 𝑒G𝐹

𝑠 in Out(G𝐹 ). Note that (N/L)𝐹0 = N/L since by the
remarks following [36, Lemma 3], the group N/L is isomorphic to a subgroup of Z(G) that has at most
order 2. We can now apply Lemma 2.1 and conclude that there exists a Λ[G𝐹 × (N𝐹 )oppΔ (〈𝐹0〉)]-
module M extending 𝐻dim

𝑐 (YU,Λ)𝑒L𝐹

𝑠 , which induces a Morita equivalence between ΛN𝐹 𝑒L𝐹

𝑠 and
ΛG𝐹 𝑒G𝐹

𝑠 . In particular, the bimodule 𝑀̃ := IndG̃𝐹 〈𝐹0 〉×(Ñ𝐹 〈𝐹0 〉)
opp

G𝐹×(N𝐹 )oppΔÑ𝐹 〈𝐹0 〉
(𝑀) induces a Morita equivalence

between ΛÑ𝐹 〈𝐹0〉𝑒
L𝐹

𝑠 and ΛG̃𝐹 〈𝐹0〉𝑒
G𝐹

𝑠 .
Assume now that 𝑁𝐹/𝜙 (𝑧) ∉ L𝐹 . Since N/L is isomorphic to a subgroup of Z(G), we conclude that

𝑁𝐹/𝜙 (𝑧) generates the quotient group N/L. Thus, in this case the bijective morphism 𝐹0 := 𝜙 has the
property that the element 𝑧𝐹0 ∈ 𝐺〈𝐹0〉 generates the quotient group N𝐺 〈𝐹0 〉 (L, 𝑒L𝐹

𝑠 )/L𝐹 , which is in
particular cyclic. We conclude by [35, Lemma 10.2.13] that in this case, the Λ(G𝐹 × (L𝐹 )oppΔ (L̃𝐹 ))-
module 𝐻dim

𝑐 (YU,Λ)𝑒L𝐹

𝑠 extends to a G𝐹 × (L𝐹 )oppΔ (NG̃𝐹 〈𝐹0 〉ℓ′
(L, 𝑒𝐿𝑠 ))-module. The claim is now a

consequence of [28, Theorem 3.4] (see also [37, Theorem 1.7]). �

5. Quasi-isolated elements for groups of type A

5.1. Groups of type A

From now until Section 12, we assume that G = SL𝑛+1(F𝑝) is of type 𝐴𝑛. We let G̃ = SL𝑛+1 (F𝑝)
and 𝜄 : G ↩→ G̃ the natural inclusion. For an integer 𝑞 = 𝑝 𝑓 , we let 𝐹𝑞 : G̃ → G̃ be the Frobenius
endomorphism that raises every matrix entry to its qth power. For 𝜀 ∈ {±1}, we define 𝐹 = 𝐹𝑞 (𝛾

′)
1−𝜀

2 .
Here, 𝛾′ : G̃ → G̃, 𝑔 ↦→ 𝑔−tr, denotes the graph automorphism given by transpose inversion. We let T0
be the torus of diagonal matrices and B0 the Borel subgroup of upper triangular matrices. Let Φ denote
the root system of G with base Δ with respect to (T0,B0). For a subset 𝐼 ⊂ Δ , we denote by L𝐼 the
standard Levi subgroup associated to 𝐼 ⊂ Δ .

We denote by𝑊 := NG(T0)/T0 the Weyl group of G and identify W with the symmetric group 𝑆𝑛+1.
Observe that our Frobenius endomorphism F acts trivially on the Weyl group W.

Note that with our choices of F, the torus T0 is not maximally split in the twisted case. This is because
the graph automorphism 𝛾′ doesn’t stabilise the Borel subgroup B0. We also define 𝛾 := ad(𝑛0)𝛾

′, where
𝑛0 ∈ NG(T0) is the signed permutation matrix with entry (−1)𝑙+1 at position (𝑙, 𝑛+1− 𝑙) with 1 ≤ 𝑙 ≤ 𝑛
and 0 elsewhere. In particular, 𝛾 stabilises the pair (T0,B0). Observe that the image of 𝑛0 in 𝑤0 ∈ 𝑊 is
the longest element of W.
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5.2. Dual for groups of type A

To efficiently compute with dual groups, we will use some simplifications specific to the situation in type
A. Since G∗ is adjoint of type A, there exists a surjective morphism 𝜋 : G → G∗. For any closed subgroup
H of G, we denote H∗ := 𝜋(H). Suppose that 𝑓 : G → G is a combination of a graph automorphism
(either 𝛾′ or 𝛾) and a field endomorphism 𝐹𝑝 as above. Then we denote by 𝑓 ∗ : G∗ → G∗ the unique
morphism satisfying 𝜋◦ 𝑓 = 𝑓 ∗ ◦𝜋. Observe that the group (G̃, 𝐹) is self-dual. Therefore, by identifying
its dual with G̃, we obtain a duality isomorphism 𝑌 (T̃0) → 𝑋 (T̃0) that descends via 𝜄 : G ↩→ G̃ and
𝜋 : G̃ → G∗ to an isomorphism 𝑌 (T0) → 𝑋 (T∗

0), which puts the groups (G,T0, 𝐹) and (G,T∗
0, 𝐹

∗) in
duality with each other. We observe that 𝑊∗ := NG∗ (T∗

0)/T∗
0 is the Weyl group of G∗, and we have a

natural anti-isomorphism ∗ : 𝑊 → 𝑊∗, 𝑤 ↦→ 𝑤∗ = 𝜋(𝑤)−1, of Weyl groups induced by duality.
The notion of duality between (G, 𝐹) and (G∗, 𝐹∗) can be further extended to any F-stable Levi

subgroup L of G. For this, we say that 𝑊𝐼𝑤 is the type of the Levi subgroup L if there exists some
𝑔 ∈ G with image 𝑤 := 𝑔−1𝐹 (𝑔)T0 ∈ 𝑊 in the Weyl group such that L = 𝑔L𝐼 . Note that the type of a
Levi subgroup is usually defined with respect to a maximally split torus of (G, 𝐹) (see, for example, [11,
Section 8.2]), but to use similar arguments in the twisted case, it makes more sense to define the type with
respect to the torus T0. The Levi subgroup L∗ = 𝜋 (𝑔)L∗

𝐼 is then of type𝑊∗
𝐼 𝜋(𝑤). Note that N𝑊 (𝑊∗

𝐼 )/𝑊
∗
𝐼

is isomorphic to a product of symmetric groups, and hence the coset𝑊∗
𝐼𝑤 is N𝑊 (𝑊∗

𝐼 )/𝑊
∗
𝐼 -conjugate to

𝐹∗(𝑤∗)𝑊∗
𝐼 = 𝜋(𝑤)

−1𝑊∗
𝐼 . By conjugation with g (resp. 𝜋(𝑔)), the duality isomorphism𝑌 (T0) → 𝑋 (T∗

0)
therefore yields a duality isomorphism 𝑌 (T) → 𝑋 (T∗), where T := 𝑔T0, between (L, 𝐹) and (L∗, 𝐹∗).

5.3. Strictly quasi-isolated elements

We recall the notion of strictly quasi-isolated semisimple elements introduced in [38, Definition 3.1].
This notion will become important when dealing with actual blocks of groups of Lie type.

Definition 5.1. We say that a semisimple element 𝑠 ∈ (G∗)𝐹
∗ is strictly quasi-isolated in (G∗, 𝐹∗) if

CG∗ (𝑠)𝐹
∗C◦

G∗ (𝑠) is not contained in a proper Levi subgroup of G∗.

We denote by 𝐴(𝑠) the component group CG∗ (𝑠)/C◦
G∗ (𝑠). The proof of the following lemma is similar

to the proof of [2, Corollary 2.9].

Lemma 5.2. Recall that G is simple, simply connected of type A. If 𝑠 ∈ (G∗)𝐹
∗ is a semisimple element

that is strictly quasi-isolated, then we have 𝐴(𝑠)𝐹 ∗
= 𝐴(𝑠).

Proof. Let 𝜄∗ : G̃∗ → G∗ be the map dual to the map 𝜄 : G ↩→ G̃, and let 𝑠 ∈ (G̃∗)𝐹
∗ such that

𝜄∗(𝑠) = 𝑠. Consider the injective morphism 𝜔𝑠 : 𝐴(𝑠) → Z(G̃∗) as in [2, Corollary 2.8]. Let e denote
the exponent of the subgroup 𝐴(𝑠)𝐹

∗ of 𝐴(𝑠). Let 𝑔 ∈ C◦
G∗ (𝑠)C(G∗)𝐹

∗ (𝑠) so that 𝑔𝑒 ∈ C◦
G∗ (𝑠). Then

1 = 𝜔𝑠 (𝑔)𝑒 = 𝜔𝑠𝑒 (𝑔), and therefore 𝑔 ∈ Ker(𝜔𝑒𝑠 ) = 𝜄∗(CG̃∗ (𝑠𝑒)). Consequently, 𝜄∗(CG̃∗ (𝑠𝑒)) = C◦
G∗ (𝑠

𝑒)

is a Levi subgroup of G∗ containing C◦
G∗ (𝑠)C(G∗)𝐹

∗ (𝑠). This is a proper Levi subgroup of G∗ unless
𝑠𝑒 = 1. By the classification of quasi-isolated elements of G∗ = PGL𝑛+1 (F𝑝) in [2, Proposition 5.2],
we have o(𝑠) = |𝐴(𝑠) |, which implies that 𝑒 = |𝐴(𝑠) |. Since e is the exponent of 𝐴(𝑠)𝐹∗ , we must
necessarily have 𝐴(𝑠) = 𝐴(𝑠)𝐹

∗ . �

Remark 5.3. We consider G with the Frobenius F as defined above, and we let 𝑠 ∈ (G∗)𝐹
∗ be a

strictly quasi-isolated element. The aim of this remark is to compute the 𝐹∗-type of the Levi subgroup
L∗ := C◦

G∗ (𝑠). We fix a primitive 𝑛 + 1th root of unity 𝜁𝑛+1 ∈ F𝑝
×; and for an integer m dividing 𝑛 + 1,

we let 𝜁𝑚 := 𝜁𝑒𝑛+1, where 𝑚𝑒 = 𝑛 + 1, and define

𝑡𝑚 := (1, 𝜁𝑚, . . . , 𝜁𝑚−1
𝑚 ) ⊗ 𝐼𝑒 .

According to [2, Proposition 5.2], there exists 𝑔 ∈ G∗ and m dividing 𝑛 + 1 such that 𝑡𝑚 = 𝑔𝑠 ∈ T∗
0. As

the integer m will be fixed throughout we often abbreviate 𝑡 := 𝑡𝑚 and 𝜁 := 𝜁𝑚.
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Since s is 𝐹∗-stable, we have 𝐹∗(𝑡) = 𝐹 ∗ (𝑔) 𝑠 = 𝐹 ∗ (𝑔)𝑔−1
𝑡. Hence, t is 𝑤∗𝐹∗-stable, where 𝑤∗ is

the image of 𝑔𝐹∗(𝑔)−1 in 𝑊∗. Since s is assumed to be strictly quasi-isolated, Lemma 5.2 yields
𝐴(𝑠)𝐹

∗
= 𝐴(𝑠). This implies that 𝐴(𝑡)𝑤∗𝐹 ∗

= 𝐴(𝑡). By [2, Proposition 5.2], the component group 𝐴(𝑡)
has order m. On the other hand, 𝐴(𝑠) = 𝐴(𝑠)𝐹

∗ is isomorphic to a subgroup of Z(G𝐹 ) that has order
(𝑛 + 1, 𝑞 − 𝜀). Therefore m divides (𝑛 + 1, 𝑞 − 𝜀). In particular, 𝜁𝑞−𝜀 = 𝜁 , and we deduce that the
element t is 𝐹∗-stable. From this, it follows that 𝑤∗ ∈ 𝑊 (𝑡) := {𝑣 ∈ 𝑊∗ | 𝑣 𝑡 = 𝑡}. Let 𝑣𝑚 ∈ 𝑊∗ be the
permutation defined by

𝑣𝑚(𝑖) :≡ 𝑖 + 𝑒mod (𝑛 + 1) for 𝑖 = 1, . . . , 𝑛 + 1

such that 𝐴(𝑡) is generated by 𝑣𝑚 and has order m.
Denote by𝑊◦(𝑡) the Weyl group of L∗

𝑚 := C◦
G∗ (𝑡) relative to the maximal torus T∗

0 such that we have
𝑊 (𝑡) = 𝑊◦(𝑡) � 𝐴(𝑡); see [2, Proposition 1.3(c)]. To determine the type of L∗, we can change w by an
element of 𝑊◦(𝑡), and we therefore conclude that L∗ is of 𝐹∗-type 𝑊◦(𝑡)𝑤, where 𝑤 ∈ 〈𝑣𝑚〉.

Corollary 5.4. Let s be a strictly quasi-isolated element. Then the Levi subgroup L∗ = C◦
G∗ (𝑠) is d-split

for some integer d dividing 2|𝐴(𝑠) |.

Proof. We keep the notations of Remark 5.3. Assume first that 𝜀 = 1. Let 𝑤 ∈ 〈𝑣𝑚〉 as in Remark 5.3
such that L∗ is of type𝑊◦(𝑡)𝑤. Then w has order d with d dividing 𝑚 = |𝐴(𝑠) |, and we can decompose
𝑤 = 𝑤1 · · ·𝑤𝑟 into disjoint cycles, each 𝑤𝑖 of order d with 𝑑 | 𝑚 and 𝑛 + 1 = 𝑟𝑑. Note that L∗ is d-split
if and only if L̃∗ is d-split; see [11, Proposition 13.2].

Furthermore, L̃𝐹 � L̃𝑤𝐹𝑚 � GL𝑟 (F𝑞𝑑 ) × . . .GL𝑟 (F𝑞𝑑 ). Hence L̃ and therefore also L is d-split; see
[11, Example 13.4]. By Ennola-duality, we obtain that if 𝜀 = −1, then L is 𝑑 ′-split where

𝑑 ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑑 if 𝑑 is odd,
𝑑/2 if 𝑑 ≡ 2 mod 4,
𝑑 if 𝑑 ≡ 0 mod 4.

This also shows the result in the twisted case. �

6. Block stabiliser of quasi-isolated blocks

Until Section 12, s denotes as in Remark 5.3 a fixed strictly quasi-isolated ℓ′-element in (G∗)𝐹
∗ . As

before, we denote by L the Levi subgroup of G dual to L∗ = C◦
G∗ (𝑠) defined as its preimage under the

projection map 𝜋 : G → G∗.
Assume that we are given a different Levi subgroup L′ of G containing L such that CG∗ (𝑠) (L′)∗ =

(L′)∗CG∗ (𝑠). Denote by 𝑁 ′ the common stabiliser of L′ and 𝑒𝐿′𝑠 in G𝐹 . By the results of Bonnafé–Dat–
Rouquier (see Theorem 1.1), there exists a Morita equivalence between Λ𝑁 ′𝑒𝐿

′

𝑠 and Λ𝐺𝑒𝐺𝑠 . We first
make the following observation:

Lemma 6.1. With the notation as above, 𝑁 ′/𝐿 ′ is naturally isomorphic to a quotient of 𝑁/𝐿.

Proof. We have N∗/L∗ = CG∗ (𝑠)/C◦
G∗ (𝑠) and, on the other hand,

(N′)∗/(L′)∗ = (L′)∗CG∗ (𝑠)/(L′)∗ � CG∗ (𝑠)/CL′∗ (𝑠).

Since C◦
G∗ (𝑠) ⊂ CL′∗ (𝑠), we obtain a surjection N∗/L∗ → (N′)∗/(L′)∗. The statement follows by taking

𝐹∗-fixed points and using the duality between (G, 𝐹) and (G∗, 𝐹∗). �

Recall from Remark 5.3 that s is G∗-conjugate to the element 𝑡𝑚, where m is some positive integer
dividing 𝑛 + 1. Therefore, the geometric conjugacy class of a (strictly) quasi-isolated element depends
only on the parameter m. We now use this uniformity of description to our advantage.
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Lemma 6.2. There exists a proper F-stable Levi subgroup L′ of G containing L such that 𝑁 ′/𝐿 ′ is
cyclic of prime order.

Proof. Recall that for a given m with 𝑚 | (𝑛 + 1), we denote 𝑡𝑚 := (1, 𝜁 , . . . , 𝜁𝑚−1) ⊗ 𝐼𝑒, where 𝜁 ∈ F×𝑞
is a fixed primitive mth-root of unity with 𝑚𝑒 = 𝑛 + 1. Consider the Levi subgroup L∗

𝑚 := C◦
G∗ (𝑡𝑚) of

G∗, and let L𝑚 := 𝜋−1(L∗
𝑚) be the standard Levi subgroup of G in duality with L∗

𝑚.
Assume that s is G∗-conjugate to 𝑡𝑚: that is, there exists 𝑔 ∈ G∗ such that 𝑡 = 𝑔𝑠. We let 𝑚′ be a

prime divisor of m so that 𝑚 = 𝑚′𝑒′ for some integer 𝑒′. Our definition of 𝑡𝑚 and 𝑡𝑚′ in Remark 5.3
implies that 𝑡𝑚′ = 𝑡𝑒

′

𝑚, so in particular CG∗ (𝑡𝑚) ⊂ CG∗ (𝑡𝑚′ ).
Denote by 𝑊◦(𝑡𝑚) the Weyl group of C◦

G∗ (𝑡𝑚) relative to the maximal torus T∗
0. By [2, Proposition

5.2], we obtain that 𝑊◦(𝑡𝑚) � (𝑆𝑒)
𝑚, where 𝑣𝑚 transitively permutes the m copies of 𝑆𝑒. Since

𝑊◦(𝑡𝑚′ ) � (𝑆𝑒′ )
𝑚′ and 𝑚′ | 𝑚, it follows that 𝑣𝑚 normalises 𝑊◦(𝑡𝑚′ ). We define L′∗ := 𝑔−1 L∗

𝑚′ . Recall
from Remark 5.3 that the image of 𝑔𝐹∗(𝑔)−1 in 𝑊∗ is in 𝑊◦(𝑡𝑚)𝑤 with 𝑤 ∈ 〈𝑣𝑚〉. Since w normalises
𝑊◦(𝑡𝑚′ ) and 𝐹∗ acts trivially on 𝑊∗, we have 𝑤𝐹𝑊◦(𝑡𝑚′ ) = 𝑊◦(𝑡𝑚′ ). It follows that L′∗ is 𝐹∗-stable
of type 𝑊◦(𝑡𝑚′ )𝑤. Furthermore, 𝐴(𝑡𝑚′ )𝑤𝐹

∗
� 𝐴(𝑡𝑚′ ) � 𝐶𝑚′ , so we observe that 𝑁 ′/𝐿 ′ is cyclic of

𝑚′-order. �

The upcoming sections will provide the necessary knowledge on strictly quasi-isolated elements in
type A.

6.1. Some computations in the Weyl group

Recall that 𝛾 : G → G denotes the graph automorphism stabilising (T0,B0). In this section, we collect
some properties of the Levi subgroup L𝑚, which was defined in the proof of Lemma 6.2.

Lemma 6.3. The Levi subgroup L𝑚 is a 𝛾-stable Levi subgroup and contained in a 𝛾-stable parabolic
subgroup P𝑚 of G. In particular, L𝛾𝑚 is a Levi subgroup in the connected reductive group G𝛾 with
parabolic subgroup P𝛾𝑚.

Proof. Observe that 𝛾 is a quasi-central morphism in the sense of [16, Definition-Theorem 1.15].
According to [16, Remark 1.30], the group G𝛾 is connected. The Levi subgroup L𝑚 is a standard Levi
subgroup of G relative to the 𝛾-stable pair (T0,B0) whose associated set of simple roots is 𝛾-stable.
Thus, L𝑚 is a 𝛾-stable Levi subgroup contained in a 𝛾-stable parabolic subgroup P𝑚 of G. From [16,
Proposition 1.11], it therefore follows that L𝛾𝑚 is a Levi subgroup in the connected reductive group G𝛾
with parabolic subgroup P𝛾𝑚. �

The subgroup V constructed in the proof of the following lemma is sometimes also referred to as the
extended Weyl group; see also [40, Section 2.3].

Lemma 6.4. There exist a subgroup 𝑉 ⊆ NG𝐹𝑝 (T0) and an injective map 𝑟 : 𝑊 → 𝑉 such that
𝑟 (𝑊𝛾) ⊂ 𝑉𝛾 .

Proof. Define 𝑉 := 〈𝑛(𝑖,𝑖+1) | 𝑖 = 1, . . . , 𝑛〉, where 𝑛(𝑖,𝑖+1) is the matrix obtained by taking the
permutation matrix corresponding to (𝑖, 𝑖 + 1) and multiplying its ith row with −1. We have a group
epimorphism 𝑉 → 𝑊, 𝑛(𝑖,𝑖+1) ↦→ (𝑖, 𝑖 + 1). By construction, we have 𝛾(𝑛(𝑖,𝑖+1) ) = 𝑛𝛾 ( (𝑖,𝑖+1)) and
every 𝑛(𝑖,𝑖+1) is 𝐹𝑝-stable. We can write 𝜎 ∈ 𝑊 as a reduced expression 𝜎 = 𝑠1 . . . 𝑠𝑟 with 𝑠𝑖 ∈

{(1, 2), . . . , (𝑛 − 1, 𝑛)}. We define a map 𝑟 : 𝑊 → 𝑉, 𝜎 ↦→ 𝑛𝑠1 . . . 𝑛𝑠𝑟 . By Matsumoto’s Lemma, the
map r is well-defined and injective; see also the proof of [40, Lemma 2.23]. Since the map r is bijective
onto its image and 𝛾-equivariant, it follows that 𝜎 is 𝛾-stable if and only if 𝑟 (𝜎) is 𝛾-stable. �

Lemma 6.5. Every 𝛾-stable element of NG(L𝑚)/L𝑚 has a 〈𝐹𝑝 , 𝛾〉-stable preimage in NG(L𝑚).

Proof. Let 𝑊L𝑚 be the Weyl group of L𝑚 with respect to the maximal torus T0. By duality, 𝑊L𝑚 is
(anti-)isomorphic to the Weyl group 𝑊◦(𝑡𝑚) of L∗

𝑚. Since 𝑊◦(𝑡𝑚) � (𝑆𝑒)
𝑚, by [2, Proposition 5.2], a

computation in𝑊 � 𝑆𝑛+1 shows that N𝑊 (𝑊L𝑚 ) � 𝑆𝑒 � 𝑆𝑚. Using [27, Corollary 12.11], we thus obtain
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NG (L𝑚)/L𝑚 � N𝑊 (𝑊L𝑚 )/𝑊L𝑚 � 𝑆𝑚. The last isomorphism is given by mapping 𝜎 ∈ N𝑊 (𝑊L𝑚 ) to
the associated permutation 𝜋 ∈ 𝑆𝑚 on the set of the m simple components of the Levi subgroup L𝑚.
For any such permutation 𝜋 ∈ 𝑆𝑚, we define an element 𝜎𝜋 ∈ 𝑊 � 𝑆𝑛+1 by defining

𝜎𝜋 ( 𝑗) := 𝜋( 𝑗 − 𝑘𝑚) + 𝑘𝑚 for 𝑗 ∈ {𝑘𝑚 + 1, . . . , (𝑘 + 1)𝑚}.

By direct computation we obtain

𝜎𝛾 𝜋 ( 𝑗) = (𝑚 + 1) − 𝜋((𝑚 + 1) − ( 𝑗 − 𝑘𝑚)) + 𝑘𝑚

and

𝛾𝜎𝜋 ( 𝑗) = 𝑛 + 2 − 𝜋((𝑛 + 2 − 𝑗) − (𝑒 − 𝑘 − 1)𝑚) − 𝑚(𝑒 − 𝑘 − 1).

Comparing these two expressions, we obtain 𝜎𝛾 𝜋 = 𝛾𝜎𝜋 . In particular, 𝜎𝜋 is 𝛾-invariant whenever 𝜋
is. The claim now follows from Lemma 6.4. �

Denote by N𝑚/L𝑚 the subgroup of NG(L𝑚)/L𝑚 generated by 𝑣𝑚.

Lemma 6.6. Let 𝑛 ∈ NG(L𝑚) such that 𝛾(𝑛)𝑛−1 ∈ N𝑚. Then there exists some 𝑦 ∈ N𝑚 such that 𝑦𝑛 is
〈𝐹𝑝 , 𝛾〉-stable.

Proof. We abbreviate 𝑣 := 𝑣𝑚.According to Lemma 6.5, it is enough to show that if 𝑤 ∈ N𝑊 (𝑊L𝑚 )

with 𝛾(𝑤)𝑤−1 ∈ 〈𝑣〉𝑊L𝑚 , then there exists some 𝑦 ∈ 〈𝑣〉 such that 𝛾(𝑦𝑤) (𝑦𝑤)−1 ∈ 𝑊L𝑚 .
Denote by ¯ : N𝑊 (𝑊𝐿𝑚 ) → N𝑊 (𝑊𝐿𝑚 )/𝑊𝐿𝑚 the projection map. In what follows, we identify

N𝑊 (𝑊𝐿𝑚 )/𝑊𝐿𝑚 with 𝑆𝑚 as in the proof of Lemma 6.5. Note that the element 𝑣 corresponds to an
m-cycle of 𝑆𝑚. Assume first that 𝑣 has odd order. Then the map 〈𝑣〉 → 〈𝑣〉, 𝑣 ↦→ 𝛾(𝑣)𝑣−1 = 𝑣−2, is
surjective. Thus, there exists 𝑥 ∈ 〈𝑣〉 such that 𝛾(𝑤)𝑤−1 = 𝛾(𝑥−1)𝑥. In other words, 𝑥𝑤 is 𝛾-stable.

Assume now that 𝑣 has even order. We denote by sgn the sign map on the symmetric group
N𝑊 (𝑊𝐿𝑚 )/𝑊𝐿𝑚 � 𝑆𝑚 and by 𝐴𝑚 its kernel. Since 𝑣 has even order, we have sgn(𝑣) = −1. On the other
hand, sgn(𝛾(𝑤)𝑤−1) = 1, and thus 𝛾(𝑤)𝑤−1 ∈ 〈𝑣−2〉 = 〈𝑣〉 ∩ 𝐴𝑚. However, 𝛾(𝑣)𝑣−1 = 𝑣2. Thus, there
exists 𝑥 ∈ 〈𝑣〉 such that 𝛾(𝑤)𝑤−1 = 𝛾(𝑥−1)𝑥. In other words, 𝑥𝑤 is 𝛾-stable. �

6.2. Stabilisers of blocks

Suppose that 𝑓 : G → G is a combination of a graph automorphism 𝛾′ or a field automorphism 𝐹𝑝 as
above. Recall that we defined 𝑓 ∗ : G∗ → G∗ as the unique morphism satisfying 𝑓 ∗ ◦ 𝜋 = 𝜋 ◦ 𝑓 , where
𝜋 : G → G∗ is the natural surjective map. We denote B′ = 〈𝛾′, 𝐹𝑝〉 ⊂ Aut(G𝐹 ) and B′∗ = 〈𝛾′∗, 𝐹∗

𝑝〉 ⊂

Aut((G̃∗)𝐹
∗
).

The following observation will be used throughout this section:

Lemma 6.7. Duality induces a natural isomorphism between the quotient groups N𝐺B′ (L, 𝑒𝐿𝑠 )/𝐿 and
C(G∗)𝐹

∗B′∗ (𝑠)/(L∗)𝐹
∗ .

Proof. Recall that 𝑠 = 𝑔𝑡 ∈ (G∗)𝐹
∗ is a semisimple element with connected centraliser L∗ = C◦

G∗ (𝑠).
We assume that the element 𝑔 ∈ G has the property that T = 𝑔T0 is a maximally split torus of L = 𝑔L𝐼 .
Denote 𝑤 := 𝑔−1𝐹 (𝑔)T0 ∈ 𝑊 .

Let 𝜙 ∈ NG𝐹B(L, 𝑒L𝐹

𝑠 ). Since 𝜙(T) is a second maximally split torus of L, we can by possibly
multiplying 𝜙 with an element of L𝐹 assume that 𝜙 stabilises T. Denote 𝜙0 := 𝑔−1

𝜙, and observe that
𝜙0 = 𝑛𝑣 𝑓 for some 𝑓 ∈ B′ and 𝑛𝑣 ∈ NG(T0) with image 𝑣 = 𝑛𝑣T0 in W. Since [𝑔𝜙, 𝑔𝐹] = 𝑔 [𝐹, 𝜙] = 1
and f, F centralise W, we conclude that 𝑣 ∈ C𝑊 (𝑤). We observe that the morphism 𝜙0 of L𝐼 is dual to
the morphism 𝜙∗0 := 𝑓 ∗𝑛𝑣∗ of L∗

𝐼 . Let 𝜙∗ := 𝜋 (𝑔)𝜙∗0. Since 𝑣∗ ∈ C𝑊 (𝑤∗), we find that [𝐹∗, 𝜙∗] ∈ T∗.
Hence, by applying Lang’s theorem, we find 𝑡 ′ ∈ T∗ such that 𝑡 ′𝜙∗ and 𝐹∗ commute. Observe that
such an element 𝑡 ′ is unique up to multiplication with (T∗)𝐹

∗ . Therefore, replacing 𝜙∗ by 𝑡 ′𝜙∗, we can
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assume that 𝜙∗ and 𝐹∗ commute. The bijective morphisms 𝜙 : L → L and 𝜙∗ : L∗ → L∗ are therefore
in duality. Since 𝜙(𝑒L𝐹

𝑠 ) = 𝑒L𝐹

𝑠 , it follows that 𝜙∗ stabilises the (L∗)𝐹
∗ -conjugacy class of s: that is,

𝜙∗(𝑠) = 𝑠. Hence, 𝜙∗ ∈ C(G∗)𝐹
∗B′∗ (𝑠). This defines a map between the two quotient groups by sending

the L𝐹 -coset of 𝜙 to the (L∗)𝐹
∗-coset of 𝜙∗.

Assume conversely that 𝜙∗ ∈ C(G∗)𝐹
∗B′∗ (𝑠) (L∗)𝐹

∗ , and we assume again that 𝜙∗(T∗) = T∗. We
set 𝜙∗0 = 𝜋 (𝑔)−1

𝜙∗ and write 𝜙∗0 = 𝑓 ∗𝑛∗𝑣 such that 𝑛∗𝑣T0 = 𝑣∗. Since [𝜙∗, 𝐹∗] = 1, we obtain again
𝑣 ∈ C𝑊 (𝑤). Thus, denoting 𝜙 := 𝑔 (𝑛𝑣 𝑓 ), we find again some 𝑡 ′ ∈ T such that 𝑡 ′𝜙 commutes
with F. �

The most striking property of strictly quasi-isolated blocks (concerning the action of group automor-
phisms) is the following:

Lemma 6.8. Assume that 𝑒G𝐹

𝑠 is 𝛾-stable. Then there exist some 𝑦 ∈ G𝐹 and a parabolic subgroup P
with Levi complement L such that 𝑦𝛾 stabilises (L,P) and the idempotent 𝑒L𝐹

𝑠 .

Proof. Let 𝛾∗ : G∗ → G∗ be the dual of the graph automorphism 𝛾. There exists some 𝑔 ∈ G∗ such
that 𝑔𝑠 = 𝑡. Consider the element

𝑡 = 𝑡𝑚 := (1, 𝜁 , . . . , 𝜁𝑚−1) ⊗ 𝐼𝑒 ∈ G̃∗ = GL𝑛+1 (F𝑝),

a preimage of t under the natural map 𝜄∗ : GL𝑛+1(F𝑝) → PGL𝑛+1(F𝑝). This element satisfies 𝜄∗(𝑡) = 𝑡,
and we observe that 𝛾∗(𝑡) = 𝑡𝑧, where 𝑧 := 𝜁 𝐼𝑛+1 ∈ Z(G̃). So, t is 𝛾∗-stable, and we conclude that
𝑔−1𝛾∗ (𝑔)𝛾∗ 𝑠 = 𝑔−1𝛾∗𝑔𝑠 = 𝑠. Consider the element 𝑥 := 𝑔−1𝛾∗(𝑔). By assumption, there exists some
𝑦 ∈ (G∗)𝐹

∗ such that s is 𝑦𝛾∗-stable. Therefore 𝑥𝑦−1 ∈ CG∗ (𝑠). Since 𝐴(𝑠)𝐹∗
= 𝐴(𝑠) by Lemma 5.2,

we deduce that

𝐹∗(𝑥𝑦−1) (𝑥𝑦−1)−1 = 𝐹∗(𝑥)𝑥−1 ∈ C◦
G∗ (𝑠) = L∗.

Thus, by Lang’s theorem, there exists some 𝑙 ∈ C◦
G∗ (𝑠) such that 𝑙𝑥 is 𝐹∗-stable. We have (𝑔−1𝛾∗𝑔)2 = 1,

which implies that (𝑙𝑥𝛾∗)2 ∈ C◦
G∗ (𝑠). Recall that L∗ = 𝑔

−1 L∗
𝑚 and that 𝑊◦(𝑡𝑚) denotes the Weyl group

of C◦
G∗ (𝑡𝑚) relative to the maximal torus T∗

0. Let P∗
𝑚 be the standard parabolic subgroup associated

with the parabolic subsystem 𝑊◦(𝑡𝑚) of 𝑊∗ with Levi complement L∗
𝑚. We define P∗ := 𝑔−1 P∗

𝑚, and
we observe that the pair (L∗

𝑚,P∗
𝑚) is 𝛾∗-stable. Consequently, 𝑥𝛾∗ stabilises the pair (L∗,P∗); and since

𝑙 ∈ L∗, we observe that 𝑙𝑥𝛾∗ also stabilises this pair. The statement follows now by using duality; see
Lemma 6.7. �

We observe that the conclusion of Lemma 6.8 remains valid for the Levi subgroup L′ constructed in
Lemma 6.2.

Corollary 6.9. With the assumption of Lemma 6.8, there exists a parabolic subgroup P′ whose Levi
complement is the Levi subgroup L′ from Lemma 6.2 such that 𝑦𝛾 stabilises (L′,P′) and the idempotent
𝑒𝐿

′

𝑠 .

Proof. By construction, we have ((L′)∗, (P′)∗) = 𝑔
−1
(L𝑚′ ,P𝑚′ ), where g is as in the proof of Lemma

6.8. The graph automorphism 𝛾 stabilises ((L𝑚′ )∗, (P𝑚′ )∗), and we have L∗ ⊆ (L′)∗. It follows that the
element 𝑙𝑔−1𝛾∗(𝑔)𝛾∗, where 𝑙 ∈ (L∗)𝐹

∗ is as in the proof of Lemma 6.8, stabilises ((L′)∗, (P′)∗) and
the ((L′)∗)𝐹

∗-conjugacy class of s. This yields the claim. �

6.3. Untwisted groups of type A

In the following section, we assume that (G, 𝐹) is untwisted of type A. Consider the subgroup B of
Aut(G̃𝐹 ) generated by the field automorphism 𝐹𝑝 and the graph automorphism 𝛾. Denote by B

𝑒G𝐹
𝑠

the

stabiliser of 𝑒G𝐹

𝑠 in B. We have B𝑒𝐺𝑠 = 〈𝛾0, 𝜙〉, where 𝜙 : G → G is a Frobenius endomorphism (a
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power of 𝐹𝑝 or 𝐹𝑝𝛾) that satisfies 𝜙𝑟 = 𝐹 for some r and 𝛾0 ∈ {idG, 𝛾} is a (possibly trivial) graph
automorphism. As in the proof of Lemma 6.8, we use some explicit properties of the element s to say
something about their structure.
Lemma 6.10. The quotient group N𝐺 〈𝜙〉 (L′, 𝑒𝐿

′

𝑠 )/𝐿
′ is cyclic unless L′ is 1-split.

Proof. We have 𝑡 = 𝑔𝑠 for some 𝑔 ∈ G∗. By the construction in Lemma 6.2, the quotient group
CG∗ (𝑠) (L′)∗/(L′)∗ is cyclic of prime order. In particular, 𝑛′ := 𝑔−1𝐹∗(𝑔) ∈ CG∗ (𝑠), so either 𝑛′
generates CG∗ (𝑠) (L′)∗/(L′)∗ or 𝑛′ ∈ (L′)∗.

Recall that 𝜙 is a power of 𝐹𝑝 or 𝐹𝑝𝛾 and 𝛾 fixes t; see the proof of Lemma 6.8. Consequently, 𝜙
acts as a permutation on the different eigenvalues of 𝑡 ∈ (G̃∗)𝐹

∗ . Therefore, there exists some 𝑧 ∈ 𝑊∗ of
order dividing r such that 𝑧𝜙𝑡 = 𝑡. We let 𝑧0 ∈ NG∗ (T∗

0) be the permutation matrix corresponding to z.
We deduce that s is 𝑥𝜙∗-stable, where 𝑥 := 𝑔−1𝑧0𝜙

∗(𝑔). By assumption, there exists some 𝑦 ∈ (G∗)𝐹
∗

such that s is 𝑦𝜙∗-stable. Therefore 𝑥𝑦−1 ∈ CG∗ (𝑠). Since 𝐴(𝑠)𝐹
∗
= 𝐴(𝑠) by Lemma 5.2, we deduce

that 𝐹∗(𝑥𝑦−1) (𝑥𝑦−1)−1 = 𝐹∗(𝑥)𝑥−1 ∈ C◦
G∗ (𝑠). Thus, by Lang’s theorem, there exists some 𝑙 ∈ C◦

G∗ (𝑠)
such that 𝑙𝑥 is 𝐹∗-stable. We have

(𝑥𝜙∗)𝑟 = (𝑔−1𝑧0𝜙
∗𝑔)𝑟 = 𝑔−1 (𝑧0𝜙

∗)𝑟𝑔 = 𝑔−1𝐹∗(𝑔)𝐹∗ = 𝑛′𝐹∗.

If 𝑛′ generates (N′)∗/(L′)∗ = C(G∗)𝐹
∗ (𝑠) (L′)∗/(L′)∗, then we can conclude by duality that

N𝐺 〈𝜙〉 (L′, 𝑒𝐿
′

𝑠 )/𝐿
′ is cyclic. On the other hand, if 𝑔−1𝐹∗(𝑔) ∈ (L′)∗, then there exists 𝑙 ′ ∈ (L′)∗ such

that 𝑔𝑙 ′ is 𝐹∗-stable. We conclude that (L′)∗ = 𝑔𝑙 (L𝑚′ )∗ is (G∗)𝐹
∗ -conjugate to (L𝑚′ )∗ and therefore

maximally split. �

Lemma 6.11. If L′ is not 1-split, then the quotient group N𝐺B(L′, 𝑒𝐿
′

𝑠 )/𝐿
′ is abelian.

Proof. We keep the notation of Lemma 6.10. As in Lemma 6.10, there exists some permutation 𝑧0 ∈

NG∗ (T∗
0) of order dividing r such that 𝑧0𝜙∗ 𝑡 = 𝑡. The element 𝛾∗(𝑧0)𝑧

−1
0 stabilises t, so 𝛾∗(𝑧0)𝑧

−1
0 ∈ N∗

𝑚.
By Lemma 6.6, we first see that there exists some 𝑦 ∈ N∗

𝑚 such that 𝑦𝑧0 is 〈𝜙∗, 𝛾∗〉-stable. Observe that
we still have 𝑦𝑧0𝜙∗ 𝑡 = 𝑡, and therefore 𝑁 (𝜙∗)𝑟 /𝜙∗ (𝑦𝑧0) = (𝑦𝑧0)

𝑟 ∈ N∗
𝑚 ⊂ N∗

𝑚′ . Furthermore, since 𝑡𝑚′ is a
power of 𝑡𝑚, the element 𝑡𝑚′ is 𝑦𝑧0𝜙

∗-stable as well so that 𝑦𝑧0 ∈ NG∗ (L∗
𝑚′ ). Note that 𝑣𝑚′ corresponds

to an 𝑚′-cycle under the isomorphism NG∗ (L∗
𝑚′ )/L∗

𝑚′ � 𝑆𝑚′ . Since 𝑚′ is a prime number, it follows
that if some power of 𝜎 ∈ 𝑆𝑚′ is an 𝑚′-cycle, then 𝜎 itself must be an 𝑚′-cycle. Since (𝑦𝑧0)

𝑟 ∈ N∗
𝑚′

this argument shows that we must have either 𝑦𝑧0 ∈ N∗
𝑚′ or (𝑦𝑧0)

𝑟 ∈ L∗
𝑚′ . In the first case, we deduce

that 𝑧0 ∈ N∗
𝑚′ = L∗

𝑚′N∗
𝑚. In particular, there exists some 𝑧′0 ∈ L𝑚′ such that 𝑧′0𝜙∗ 𝑡 = 𝑡. In the second case,

we define 𝑧′0 := 𝑦𝑧0. Consider 𝑥𝜙 := 𝑔−1𝑧′0𝜙
∗(𝑔) and 𝑥𝛾0 := 𝑔−1𝛾∗0 (𝑔) so that 𝑥𝜙𝜙∗ and 𝑥𝛾0𝛾

∗
0 stabilise

the semisimple element s. By the construction of 𝑧′0, we have 𝑁 (𝜙∗)𝑟 /𝜙∗ (𝑧
′
0) ∈ L∗

𝑚′ . Therefore, as in
the proof of Lemma 6.10, we deduce that (𝑥𝜙𝜙∗)𝑟 = 𝑛′𝐹∗ for some element 𝑛′ generating the quotient
group N′∗/L′∗. Since 𝛾∗0 (𝑧

′
0)𝑧

′−1
0 ∈ L∗

𝑚′ , it follows moreover that

[𝑥𝜙𝜙
∗, 𝑥𝛾0𝛾

∗
0] =

𝑔 [𝑧′0𝜙
∗, 𝛾∗0] ∈

𝑔L𝑚′ = L′.

As in the proof of Lemma 6.10, we find 𝑙𝜙 , 𝑙𝛾 ∈ L∗ such that 𝑥 ′𝜙 := 𝑙𝜙𝑥𝜙 and 𝑥 ′𝛾0 := 𝑙𝛾0𝑥𝛾0 are 𝐹∗-stable.
We deduce that the morphisms dual to 𝑥 ′𝜙𝜙

∗ and 𝑥 ′𝛾0𝛾
∗
0 generate the quotient group N𝐺B(L′, 𝑒𝐿

′

𝑠 )/𝐿
′.

The statement therefore follows by duality. �

Lemma 6.12. Assume that L′ is 1-split and N𝐺B(L′, 𝑒𝐿
′

𝑠 ) is noncyclic. By possibly replacing s by a
(G∗)𝐹

∗ -conjugate, the following hold:

a) The pair (L′,P′) and the block 𝑒𝐿′𝑠 are 𝛾0-stable.
b) There exists a Frobenius endomorphism 𝐹0 of G̃ with 𝐹𝑟0 = 𝐹 such that 𝐹0 commutes with 𝛾0 and

stabilises both L′ and 𝑒𝐿′𝑠 . Moreover, G̃𝐹 〈𝐹0, 𝛾0〉 is the stabiliser of 𝑒G𝐹

𝑠 in Out(G𝐹 ).

Proof. As in Lemma 6.10, let 𝑔 ∈ G∗ such that 𝑔𝑠 = 𝑡. Our assumption implies that 𝑔−1𝐹∗(𝑔) ∈ (L′)∗.
In particular, there exists some 𝑙 ′ ∈ (L′)∗ such that s and 𝑙′𝑡 are (G∗)𝐹

∗-conjugate. Therefore, we can
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replace s by 𝑙′𝑡. By doing so, we can assume that there exists some 𝑔 ∈ (L𝑚′ )∗ such that 𝑔𝑠 = 𝑡. In
particular, we have L′ = L𝑚′ .

Corollary 6.9 implies the existence of 𝑚𝛾0 ∈ 𝐺 such that 𝑚𝛾0𝛾0 stabilises (L′,P′) and 𝑒𝐿
′

𝑠 . Since
(L′,P′) is 𝛾0-stable, it follows that 𝑚𝛾0 ∈ N𝐺 (L′,P′). Since parabolic subgroups are self-normalising
(see, for example, [27, Exercise 20.3]), we obtain NG(L′,P′) = L′ NU′ (L′). By the proof of [15,
Corollary 1.18], we obtain NU′ (L′) = 1, so 𝑚𝛾0 ∈ N𝐺 (L′,P′) = 𝐿 ′. This yields the first claim.

Now, since L′ and 𝑒G𝐹

𝑠 are 𝜙-stable, there exists some 𝑧 ∈ N𝐺 (L′) such that 𝑧𝜙 stabilises 𝑒𝐿′𝑠 . If
𝑚′ = 2, then N𝐺 (L′) = N𝐺 (L′, 𝑒𝐿

′

𝑠 ), and thus 𝑒𝐿′𝑠 is 𝜙-stable so that we can define 𝐹0 := 𝜙. Assume
now that𝑚′ is odd. We define 𝑧0 := 𝑁𝐹/𝜙 (𝑧) ∈ NG𝐹 (L′, 𝑒𝐿

′

𝑠 ) and claim that we can assume 𝑧0 ∈ (𝐿 ′)𝛾0 .
If 𝑒𝐿′𝑠 is not 𝛾-stable, then we necessarily must have 𝑧0 ∈ 𝐿 ′ since otherwise N𝐺B(L′, 𝑒𝐿

′

𝑠 ) is generated
by 𝑧𝜙 and thus cyclic. On the other hand, if 𝑒𝐿′𝑠 is 𝛾-stable, then we have 𝛾(𝑧)𝑧−1 ∈ 𝑁 ′. By Lemma 6.6,
there exists 𝑦 ∈ N′ such that 𝑦𝑧 ∈ 𝑁 ′ is 𝛾-stable. Replacing z by 𝑦𝑧, we may assume that z is 𝛾-stable.
Since 𝑚′ is odd, however, we have (𝑁𝑚′/𝐿𝑚′ )𝛾 = 1, so 𝑧0 ∈ (𝐿 ′)𝛾 .

By Lemma 6.3, the group (L′)𝛾0 is connected reductive. Consequently, by Lemma 4.1, there exists
𝑙 ∈ (L′)𝛾0 such that 𝑧−1

0 = 𝑁𝑧0𝐹/𝑧𝜙 (𝑙). From this, we deduce that 𝐹0 := ad(𝑙𝑧)𝜙 commutes with 𝛾0 and
satisfies 𝐹𝑟0 = 𝐹. �

The previous lemma, as well as Theorem 4.2, suggest that we should distinguish the cases whether
L′ is 1-split or not.

6.4. Twisted groups

We will now assume that (G, 𝐹) is twisted of type 𝐴𝑛. We consider now the subgroup B of Aut(G̃𝐹 )
generated by the field automorphism 𝐹𝑝 and the graph automorphism 𝛾′. Since 𝐹 = 𝐹𝑞𝛾

′, we observe
that B is generated by 𝐹𝑝 . As the presence of a nontrivial graph automorphism causes some addi-
tional difficulties, we will restrict ourselves to describing only a Sylow 𝑚′-subgroup of the quotient
N𝐺B (L′, 𝑒𝐿

′

𝑠 )/𝐿
′. For this, let 𝜙 be a generator of the Sylow 𝑚′-subgroup of B

𝑒G𝐹
𝑠

such that 𝜙 : G → G
is a Frobenius endomorphism (a power of 𝐹𝑝𝛾0) that satisfies 𝜙𝑟 = 𝐹 if 𝑚′ ≠ 2 and 𝜙𝑟 = 𝐹𝛾′ if 𝑚′ = 2.
Furthermore, we let 𝑃𝑚′ be the unique Sylow 𝑚′-subgroup of the quotient group N𝐺 〈𝜙〉 (L′, 𝑒𝐿

′

𝑠 )/𝐿
′.

In the twisted case, we also refine our choice of 𝑚′. For this, we choose 𝑚′ to be an odd prime
whenever possible: that is, whenever m is not a power of 2; see the proof of Lemma 6.2.

Lemma 6.13. The Sylow 𝑚′-subgroup 𝑃𝑚′ of N𝐺 〈𝜙〉 (L′, 𝑒𝐿
′

𝑠 )/𝐿
′ is cyclic except possibly when L′ is

2-split or 𝑚′ = 2.

Proof. Suppose that 𝑚′ is odd. Hence, 𝜙 is a power of 𝐹𝑝𝛾′ and 𝜙𝑟 = 𝐹 for some integer r. These
properties allow us to use a similar proof as in Lemma 6.10.

We have 𝑡 = 𝑔𝑠 for some 𝑔 ∈ G∗. In particular, 𝑛′ := 𝑔−1𝐹∗(𝑔) ∈ CG∗ (𝑠), so either 𝑛′ generates
C(G∗)𝐹

∗ (𝑠) (L′)∗/(L′)∗ or 𝑛′ ∈ (L′)∗. As in the proof of Lemma 6.10, we find 𝑧 ∈ 𝑊∗ of order dividing
r such that 𝑧𝜙∗ 𝑡 = 𝑡. We deduce that s is 𝑥𝜙𝜙-stable, where 𝑥𝜙 := 𝑔−1𝑧𝜙(𝑔). By assumption, there exists
some 𝑦 ∈ (G∗)𝐹 such that s is 𝑦𝜙∗-stable. Therefore, 𝑥𝜙𝑦−1 ∈ CG∗ (𝑠). Since 𝐴(𝑠)𝐹 ∗

= 𝐴(𝑠) by Lemma
5.2, we deduce that 𝐹∗(𝑥𝜙𝑦

−1) (𝑥𝜙𝑦
−1)−1 = 𝐹∗(𝑥𝜙)𝑥

−1
𝜙 ∈ C◦

G∗ (𝑠). Thus, there exists some 𝑙𝜙 ∈ C◦
G∗ (𝑠)

such that 𝑥 ′𝜙 := 𝑙𝜙𝑥𝜙 is 𝐹∗-stable.
We conclude that if 𝑔−1𝐹∗(𝑔) ∉ (L′)∗, then the quotient group is generated by 𝑥 ′𝜙𝜙

∗ and is thus
cyclic. On the other hand, if 𝑔−1𝐹∗(𝑔) ∈ (L′)∗, then there exists 𝑙 ′ ∈ (L′)∗ such that 𝑔𝑙 ′ is 𝐹∗-stable.
We conclude that (L′)∗ = (𝑔𝑙′)−1

(L′
𝑚)

∗ is 2-split. �

Lemma 6.14. Assume that the Sylow 𝑚′-subgroup 𝑃𝑚′ is not cyclic. Then one of the following holds:

a) There exists 𝑧 ∈ G𝐹 such that 𝐹0 := ad(𝑧)𝜙 satisfies 𝐹𝑟0 = 𝐹𝜌 for some automorphism 𝜌 of G such
that 𝐹0 stabilises L′ and 𝑒𝐿′𝑠 and 𝜌 stabilises (L′,P′).

b) There exists 𝑚𝜙 , 𝑚𝛾′0 ∈ G𝐹 such that 𝑃𝑚′ = 〈𝑚𝜙𝜙, 𝑚𝛾′0𝛾
′
0〉 and 𝑚𝛾′0𝛾

′
0 stabilises (L′,P′).
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Proof. Assume first that 𝑚′ is odd. By Lemma 6.13, we can assume that L′ = L𝑚′ and thus 𝜙 with
𝜙𝑟 = 𝐹 stabilises L′. Arguing as in the proof of Lemma 6.12, we find some 𝑧 ∈ N𝐺 (L′) such that 𝑧𝜙
stabilises 𝑒𝐿′𝑠 and such that 𝑧0 := 𝑁𝐹/𝜙 (𝑧) ∈ 𝐿

′. Consequently, by Lemma 4.1, there exists 𝑙 ∈ L′ such
that 𝑧−1

0 = 𝑁𝑧0𝐹/𝑧𝜙 (𝑙). From this, we deduce that 𝐹0 := ad(𝑙𝑧0)𝜙 satisfies 𝐹𝑟0 = 𝐹. Hence, we are in the
situation of part (a).

Suppose now that𝑚′ = 2: that is,𝑚 = 2 𝑗 for some integer j. By Remark 5.3, we have𝑚 | (𝑞+1, 𝑛), so
in particular, 𝑞 ≡ −1 mod𝑚. For 𝑗 ≥ 2, observe that −1 is not a square modulo𝑚 = 2 𝑗 and consequently
q is not a square in this case. Hence, the Sylow 2-subgroup of B is generated by 𝛾′. By Lemma 6.8,
we therefore obtain 𝑃𝑚′ = 𝑁𝑚′ 〈𝑚𝛾′0𝛾

′
0〉 with 𝑚𝛾′0𝛾

′
0 stabilising (L′,P′). Thus, we are in the situation of

part (b).
It remains to consider the case 𝑚′ = 𝑚 = 2. In particular, t is 𝜙∗-stable and 𝑤0 generates 𝑁𝑚/𝐿𝑚.

Assume first that 𝑔−1𝐹∗(𝑔) ∈ L∗ = C◦
G∗ (𝑠) so that s and t are (G∗)𝐹 -conjugate. We may thus safely

replace s by t. We obtain 𝑃𝑚 = 𝑁𝑚〈𝜙〉. Since 𝑛0 = 𝑛0𝛾
′𝜙𝑟 in G𝐹�B, we therefore obtain 𝑃𝑚 = 〈𝑛0𝛾

′, 𝜙〉,
and 𝑛0𝛾

′ stabilises (L𝑚,P𝑚); see the proof of Lemma 6.8.
Assume finally that 𝑔−1𝐹∗(𝑔) ∉ L∗. It follows that L is a 1-split Levi subgroup. For this case, it will

be more convenient to work in the group G𝐹̃ , where 𝐹̃ := 𝐹𝑞𝛾 = ad(𝑛0)𝐹. Let 𝑥 ∈ G be such that
𝑛0 = 𝐹̃ (𝑥)−1𝑥 and B̃ ⊂ Aut(G𝐹̃ ) the subgroup generated by 𝐹𝑝 . Since 𝑛0 = 𝐹̃ (𝑥)−1𝑥 is 𝐹𝑝-stable, it
follows that 𝑥𝐹𝑝 (𝑥)−1 ∈ G𝐹̃ . We therefore obtain that the map

G𝐹 � B → G𝐹̃ � B̃, 𝑎 ↦→ 𝑥𝑎,

is a well-defined isomorphism. Instead of considering the element 𝑠 ∈ (G∗)𝐹
∗ , we might therefore as

well consider the element 𝑡𝑚 ∈ (G∗)𝐹̃
∗ . We observe that 𝐹∗

𝑝 (𝑡𝑚) = 𝑡𝑚. In particular, L𝑚 and 𝑒G𝐹̃

𝑡𝑚
are

𝜙-stable and 𝜙𝑟 = 𝐹̃𝛾. Using the explicit isomorphism, it is now easy to conclude that situation (a)
holds. �

7. Global equivalences

7.1. Extending modules

Let X be a normal subgroup of a finite group Y. If M is a Λ𝑋-module, then in practice, it is often quite
hard to decide whether M extends to a Λ𝑌 -module if ℓ | |𝑌 : 𝑋 | unless M is simple or projective. We
will therefore often consider the following weaker notion:
Definition 7.1. Let X be a normal subgroup of a finite group Y such that the quotient group 𝑌/𝑋 is
solvable. If M is a Λ𝑋-module, then we say that it almost extends to Y if M extends to a Λ𝐻-module
𝑀 ′, where 𝐻/𝑋 is a Hall ℓ′-subgroup of 𝑌/𝑋 , such that the extension 𝑀 ′ is Y-stable.

We will check almost extendability with the following remark.
Remark 7.2. In the situation of the previous definition, assume that M is Y-stable and 𝐸 :=
EndΛ𝑋 (𝑀)/𝐽 (EndΛ𝑋 (𝑀)) is commutative. If the Hall ℓ′-subgroup 𝐻/𝑋 is normal in 𝑌/𝑋 and M
extends to H, then by [45, Corollary 2.6], the module M automatically almost extends to Y.

We will later use the following result about almost extendability.
Lemma 7.3. Let X be a normal subgroup of a finite group Y such that 𝑌/𝑋 is abelian. Assume that M is
a Λ𝑋-module such that 𝐸 := EndΛ𝑋 (𝑀)/𝐽 (EndΛ𝑋 (𝑀)) is commutative and M almost extends to Y. If
𝑀 ′ is an extension of M to a subgroup 𝑋 ′ of Y such that ℓ � |𝑋 ′ : 𝑋 |, then 𝑀 ′ almost extends to Y as well.
Proof. Let 𝐻/𝑋 be the Hall ℓ′-subgroup of𝑌/𝑋 . By assumption, 𝐻/𝑋 ′ is the Hall ℓ′-subgroup of𝑌/𝑋 ′.
By Remark 7.2, it is therefore enough to show that 𝑀 ′ extends to H.

Assume that U is maximal among the subgroups of H containing 𝑋 ′ with the property that 𝑀 ′ extends
to U. Denote by 𝑀 ′′ an extension of 𝑀 ′ to U. If 𝑀 ′′ is stable under some element 𝑥 ∈ 𝐻 \𝑈, then by
[35, Lemma 10.2.13], the module 𝑀 ′′ extends to 〈𝑈, 𝑥〉. Therefore, the stabiliser of 𝑀 ′′ in H is U.
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Denote by ¯ : 𝑌 → 𝑌/𝑋 the projection map. By the remark following [45, Theorem 2.5], the set of
H-invariant extension of M to U is in bijection with 𝐻1 (𝑈, 𝐸×)𝐻/𝑈 . Since 𝑌/𝑋 is abelian, the action
of 𝐻/𝑈 on this cohomology group is trivial. On the other hand, by [45, Proposition 2.4], the set of
extensions of M to U is in bijection with 𝐻1(𝑈, 𝐸×). From this, it follows that every extension of M to
U is H-stable. In particular, 𝑀 ′′ is H-stable, and we conclude that𝑈 = 𝐻. �

7.2. Some auxiliary results

As before, we consider G = SL𝑛+1 (F𝑝) and a fixed strictly quasi-isolated element 𝑠 ∈ (G∗)𝐹
∗ of ℓ′-

order. Our aim in this section is to show that the cohomology module 𝐻dim
𝑐 (YG

U′ ,Λ)𝑒𝐿
′

𝑠 almost extends
to a Λ(𝐺 × (𝐿 ′)oppΔN𝐺̃A (L′, 𝑒𝐿

′

𝑠 ))-module, where A (defined below in Definition 7.6) is a subgroup of
Aut(G̃𝐹 ) whose image in the outer automorphism group is Out(G𝐹 )

𝑒G𝐹
𝑠

. Thanks to Lemma 6.8, many
situations can be handled by the following lemma.

Lemma 7.4. Assume that there exist 𝑚𝜙 , 𝑚𝛾 ∈ G𝐹 such that N𝐺̃B(L′, 𝑒𝐿
′

𝑠 ) = 𝐿̃ ′〈𝑚𝜙𝜙, 𝑚𝛾𝛾〉.
If 𝑚𝛾𝛾 stabilises P′ and N𝐺̃B (L′, 𝑒𝐿

′

𝑠 )/𝐿̃
′ is abelian, then 𝐻dim

𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 almost extends to
𝐺 × (𝐿 ′)oppΔ (N𝐺̃B(L′, 𝑒𝐿

′

𝑠 )).

Proof. Recall that for disconnected reductive groups, we define parabolic subgroups and Levi subgroups
as in [37, Section 2.1]. Consider the disconnected reductive group Ĝ := G̃ � 〈𝛾〉. Since 𝜙 and F
commute with 𝛾, there exist unique extensions of 𝜙 and F to Ĝ (denoted by the same letter) with
𝜙(𝛾) = 𝛾 and 𝐹 (𝛾) = 𝛾, respectively. We observe that P̂′ = NĜ(P̃′) is a parabolic subgroup of Ĝ with
Levi subgroup L̂′ = NĜ(L̃′, P̃) = NP̂′ (L̃′). We abbreviate 𝐿̂ ′ := (L̂′)𝐹 . The Deligne–Lusztig variety
YG

U′ has a natural 𝐺 × (𝐿 ′)oppΔ ( 𝐿̂ ′)-action. Observe that L̂′ is 𝑚𝜙𝜙-stable since [𝑚𝛾𝛾, 𝑚𝜙𝜙] ∈ L′.
Consider the morphism 𝜙′ := ad(𝑚𝜙)𝜙 of Ĝ. It follows that 𝜙′ : YG

U′ → YG
𝜙′ (U′)

is a bijective morphism
of 𝐺 × (𝐿 ′)oppΔ ( 𝐿̂ ′)-varieties. Since 𝑚𝛾𝛾 stabilises P′ by assumption, it follows that 𝑚𝛾𝛾 ∈ L̂′ and
thus the quotient group L̂′/L′ is generated by 𝑚𝛾𝛾. We therefore obtain that 𝑒𝐿′𝑠 is 𝐿 ′-stable. By [37,
Lemma 3.1], we have 𝐻dim

𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 � 𝐻
dim
𝑐 (YG

𝜙′ (U′)
,Λ)𝑒𝐿

′

𝑠 as 𝐺 × (𝐿 ′)oppΔ𝐿 ′-modules. From this,
we conclude that the cohomology module 𝐻dim

𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 is Δ 〈𝑚𝜙𝜙〉-stable. Hence it almost extends
to 𝐺 × (𝐿 ′)oppΔ ( 𝐿̂ ′〈𝑚𝜙𝜙〉). �

The following corollary is the local version of Lemma 7.4.

Corollary 7.5. Let Q be an ℓ-subgroup of 𝐿 ′. Under the assumptions of Lemma 7.4, the mod-
ule 𝐻dim

𝑐 (YNG (𝑄)
CU′ (𝑄)

,Λ) br𝑄 (𝑒𝐿
′

𝑠 ) almost extends to a Λ(N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (N𝐺̃B(L′, 𝑄, 𝑒𝐿
′

𝑠 ))-
module.

Proof. We have an injective map N𝐺B(L′, 𝑄, 𝑒𝐿
′

𝑠 )/N𝐿′ (𝑄) ↩→ N𝐺B(L′, 𝑒𝐿
′

𝑠 )/𝐿
′. If the quotient group

N𝐺̃B (L′, 𝑄, 𝑒𝐿
′

𝑠 )/N𝐿′ (𝑄) is cyclic, the result follows. We can therefore assume that there exist 𝑙𝜙 , 𝑙𝛾 ∈ 𝐿̃ ′

such that N𝐺̃B(L′, 𝑄, 𝑒𝐿
′

𝑠 ) = N𝐿̃′ (𝑄)〈𝑙𝜙 (𝑚𝜙𝜙)𝑖 , 𝑙𝛾𝑚𝛾𝛾〉 for some i.
The Deligne–Lusztig variety YNG (𝑄)

CU′ (𝑄)
has a natural N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (NL̂′𝐹 (𝑄))-action. Con-

sider the morphism 𝜙′ induced by the action of 𝑙𝜙 (𝑚𝜙𝜙)𝑖 on Ĝ. It follows that 𝜙′ : YNG (𝑄)
C𝜙′ (U′) (𝑄)

→ YNG (𝑄)
CU′ (𝑄)

is a bijective morphism of N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (NL̂′𝐹 (𝑄))-varieties. Since 𝑚𝛾𝛾 ∈ L̂′, we deduce
that the quotient group NL̂′ (𝑄)/NL′ (𝑄) is generated by 𝑙𝛾𝑚𝛾𝛾. We have 𝐻dim

𝑐 (YNG (𝑄)
CU′ (𝑄)

,Λ) br𝑄 (𝑒𝐿
′

𝑠 ) �

𝐻dim
𝑐 (YNG (𝑄)

C𝜙′ (U′) (𝑄)
,Λ) br𝑄 (𝑒𝐿

′

𝑠 ) as N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (NL̂′𝐹 (𝑄))-modules. From this, we conclude

that the cohomology module 𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ) is Δ 〈𝜙′〉-stable as N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (NL̂′𝐹 (𝑄))-

module. It therefore almost extends to a Λ(N𝐺 (𝑄) × (N𝐿′ (𝑄))oppΔ (N𝐺̃B(L′, 𝑄, 𝑒𝐿
′

𝑠 ))-module. �
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7.3. Global equivalences

In the following, we prove an analogue of Theorem 4.2 for strictly quasi-isolated blocks in groups of
type A. To formulate this theorem, we need the following definition.

Definition 7.6. If we are in the situation of Lemma 6.12, then we define A := 〈𝛾0, 𝐹0〉 ⊆ Aut(G̃𝐹 ),
where 𝐹0 is as defined in the proof of Lemma 6.12. Otherwise, we define A := B

𝑒G𝐹
𝑠

⊆ Aut(G̃𝐹 ). In
both cases we abbreviate N := NG̃𝐹A(L′, 𝑒𝐿

′

𝑠 ).

Firstly, observe that A is always abelian by Lemma 6.12. In addition, the Hall ℓ′-subgroup of N/𝐿̃ ′

is always a normal subgroup. This follows from the fact that 𝑁 ′/𝐿 ′ is of ℓ′-order (see [2, Corollary 2.9])
and N𝐺A (L′, 𝑒𝐿

′

𝑠 )/𝑁
′ � A is abelian. We therefore denote by Nℓ′/𝐿̃ ′ the unique Hall ℓ′-subgroup of

N/𝐿̃ ′.

Theorem 7.7. The Λ(𝐺 × (𝐿 ′)oppΔ ( 𝐿̃ ′))-module 𝐻dim
𝑐 (YG

U′ ,Λ)𝑒𝐿
′

𝑠 almost extends to a Λ(𝐺 ×

(𝐿 ′)oppΔN𝐺̃A(L′, 𝑒𝐿
′

𝑠 ))-module, where A ⊆ Aut(G̃𝐹 ) is the group of automorphisms defined in Defi-
nition 7.6.

Proof. We first focus on the more involved case when (G, 𝐹) is untwisted. Moreover, let us first suppose
that L′ is not 1-split. Thanks to the proof of Lemma 6.11 and Lemma 6.13, we know that the quotient
group N/𝐿̃ ′ is generated by 𝑚𝛾0𝛾0, 𝑚𝜙𝜙, which satisfy [𝑚𝛾0𝛾0, 𝑚𝜙𝜙] ∈ 𝐿 ′. We can therefore use
Lemma 7.4 to conclude that 𝐻dim

𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 almost extends.
Assume therefore now that L′ is 1-split. We let 𝑋 := 𝐺 × (𝐿 ′)oppΔ 𝐿̃ ′ and 𝑀 := 𝐻dim

𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 .
According to [4, Theorem 7.5], the module IndG̃𝐹×(L̃′𝐹 )opp

𝑋 (𝑀) is multiplicity free, so M is multiplicity
free as well. Furthermore, the Λ𝑋-module M is Δ (N𝐺A(L′, 𝑒𝐿

′

𝑠 ))-stable. Therefore, [45, Proposition
1.13] and Remark 7.2 are applicable, and we conclude that it is enough to show that for every prime b
with 𝑏 ≠ ℓ, the module M extends to 𝑋Δ (𝑃𝑏), where 𝑃𝑏/𝐿̃ ′ is a Sylow b-group of N𝐺̃A (L′, 𝑒𝐿

′

𝑠 )/𝐿̃
′.

If such a Sylow b-subgroup is cyclic, then the claim follows from [35, Lemma 10.2.13], and hence we
can concentrate on all b such that the Sylow b-subgroup is noncyclic. Therefore, we can assume that
𝑏 ∈ {2, 𝑚′}.

Let us consider the case where 𝑏 = 𝑚′ and𝑚′ ≠ 2. In this case, Lemma 6.12 shows that 𝑃𝑚′ = 𝑁 ′〈𝐹 ′
0〉,

where 𝐹 ′
0 = 𝐹𝑖0 for some 𝑖 | 𝑟 . Since 𝑁 ′/𝐿 ′ � 𝐶𝑚′ and 𝐹 ′

0 has 𝑚′-power order, we obtain that 𝐹 ′
0

centralises 𝑁 ′/𝐿 ′. By Lemma 2.1, we conclude that 𝑀 ′ extends to 𝑋Δ (𝑃𝑚′ ).
It remains to consider the case 𝑏 = 2. Assume first that𝑚′ ≠ 2. By conjugating 𝑃2 with an element of

N, we can assume that 𝑃2 = 𝐿 ′〈𝐹𝑖0, 𝛾0〉. We can therefore use Lemma 7.4 to conclude that 𝑀 ′ extends to
𝑋Δ (𝑃2). Finally, assume that 𝑚′ = 2. This implies that the quotient group 𝑁 ′/𝐿 ′ � 𝐶2 gets centralised
by A. We obtain 𝑃2 = 𝑁 ′〈𝛾0, 𝐹

′
0〉, where 𝐹 ′

0 = 𝐹𝑖0 for some i dividing r. In particular, there exists k such
that (𝐹 ′

0)
𝑘 = 𝐹. We can therefore use Lemma 2.1 to conclude that M extends to a 𝑋Δ (𝑃2)-module.

Now, in the case where (G, 𝐹) is twisted, we see that the Sylow 2-subgroup of A is cyclic. Hence,
with the arguments from above, it suffices to see that the module M extends to an 𝑋Δ (𝑃𝑚′ )-module.
However, the structure of the Sylow 𝑚′-subgroup 𝑃𝑚′ was already considered in Lemma 6.14. Using
the same methods as in the untwisted case also shows the result in this case. �

We let 𝑀̂ be an extension of𝐻dim
𝑐 (YG

U′ ,Λ)𝑒𝐿
′

𝑠 toΛ(𝐺×(𝐿 ′)oppΔNℓ′ ) that isΔN-stable. Furthermore,
we denote by 𝑀 ′ the restriction of 𝑀̂ to 𝐺 × (𝑁 ′)oppΔ 𝑁̃ ′.

Corollary 7.8. Suppose the assumptions and notation as above. Then the bimodule 𝑀 ′ induces a
Morita equivalence between Λ𝑁 ′𝑒𝐿

′

𝑠 and Λ𝐺𝑒𝐺𝑠 , which lifts to a Morita equivalence between ΛNℓ′𝑒𝐿
′

𝑠

and Λ𝐺̃𝐹Aℓ′𝑒𝐺𝑠 given by Ind𝐺̃Aℓ′×(Nℓ′ )
opp

𝐺×(𝐿′)oppΔNℓ′
(𝑀̂).

Proof. The first statement is a consequence of (the proof of) [4, Theorem 7.5]. The second statement
then follows from [28, Theorem 3.4]. �
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8. Local equivalences

Let s be our fixed strictly quasi-isolated element 𝑠 ∈ (G∗)𝐹
∗ of ℓ′-order, where G is simple, simply

connected of type A. In the previous section, we have shown that the bimodule 𝐻dim
𝑐 (YG

U′ ,Λ)𝑒𝐿
′

𝑠 almost
extends to a Λ(𝐺 × (𝐿 ′)oppΔN𝐺̃A (L′, 𝑒𝐿

′

𝑠 ))-module. Our aim is now to prove a corresponding result
for local subgroups.

For the proof of Lemma 8.2, we need the following simple group-theoretic fact.

Lemma 8.1. Let X be a subgroup of a finite group Y and P a Sylow b-subgroup of Y. If [𝑌,𝑌 ] ⊆ 𝑋 , then
𝑃 ∩ 𝑋 is a Sylow b-subgroup of X.

Proof. The hypothesis implies that [𝑃, 𝑋] ⊆ 𝑋 . From this, we deduce that 𝑃𝑋 = 𝑋𝑃, so 𝑃𝑋 is a
subgroup of Y containing P. It follows that |𝑃 |𝑏 = |𝑃𝑋 |𝑏 =

|𝑃 |𝑏 |𝑋 |𝑏
|𝑃∩𝑋 |𝑏

, so |𝑃 ∩ 𝑋 |𝑏 = |𝑋 |𝑏 . �

Lemma 8.2. Let Q be an ℓ-subgroup of 𝐿 ′. If (G, 𝐹) is untwisted, suppose that either N𝑁̃ ′ (𝑄) 𝐿̃ ′ = 𝑁̃ ′

or N/𝐿̃ ′ is abelian. Then the bimodule 𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ) br𝑄 (𝑒𝐿

′

𝑠 ) almost extends to an N𝐺 (𝑄) ×
N𝑁 ′ (𝑄)oppΔ NN(𝑄)-module.

Proof. Let 𝑋𝑄 := N𝐺 (𝑄) × N𝐿′ (𝑄)oppΔN𝐿̃′ (𝑄), and consider the Λ[𝑋𝑄]-module 𝑀𝑄 :=
𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ) br𝑄 (𝑒𝐿

′

𝑠 ). By Lemma 1.2, the module 𝑀𝑄 is multiplicity free. Let 𝑃̃𝑏 be (the preim-
age) a Sylow b-subgroup of NN(𝑄)/N𝐿̃′ (𝑄). We conclude by Lemma 7.2 and [45, Proposition 1.13]
that it is enough to show that for every prime b with 𝑃̃𝑏 noncyclic, the module 𝑀𝑄 almost extends to
𝑋𝑄Δ (𝑃̃𝑏). Arguing as in the proof of Theorem 7.7, we can also assume that 𝑏 ∈ {2, 𝑚′} and 𝑏 = 𝑚′

when (G, 𝐹) is twisted. In the proof of Theorem 7.7, we have shown that 𝐻dim
𝑐 (YG

U′ ,Λ)𝑒𝐿
′

𝑠 almost
extends to a 𝐺 × (𝐿 ′)oppΔ (𝑃𝑏)-module, where 𝑃𝑏/𝐿̃

′ is a Sylow b-group of N/𝐿̃ ′. We claim that
𝑃𝑏 ∩ NN (𝑄) is (the preimage) of a Sylow b-subgroup of NN (𝑄)/N𝐿̃′ (𝑄).

For 𝑏 = 𝑚′, observe that the Sylow𝑚′-subgroup of 𝑃𝑚′ is normal in N. Observe that NN(𝑄)/N𝐿̃′ (𝑄)
embeds as a subgroup of N/𝐿̃ ′. In particular, 𝑃̃𝑚′ = 𝑃𝑚′ ∩ NN(𝑄) is (the preimage) of a Sylow
𝑚′-subgroup of NN (𝑄)/N𝐿̃′ (𝑄). Now suppose that (G, 𝐹) is untwisted and 𝑏 = 2. Since A is abelian,
we have [N,N] ⊆ 𝑁̃ ′. It follows from Lemma 8.1 and our assumption on Q that (𝑃𝑏∩NN(𝑄))/N𝐿̃′ (𝑄)
is a Sylow b-subgroup of NN(𝑄)/N𝐿̃′ (𝑄).

Using the corresponding local results in Lemma 7.5, Lemma 2.2 and Lemma 3.6, now show that
𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ)br𝑄 (𝑒𝐿

′

𝑠 ) almost extends to an 𝑋𝑄ΔN𝑃𝑏 (𝑄)-module. As explained before, this implies
that 𝐻dim

𝑐 (YNG (𝑄)
CU′ (𝑄)

,Λ) br𝑄 (𝑒𝐿
′

𝑠 ) almost extends to N𝐺 (𝑄) × N𝑁 ′ (𝑄)oppΔ NN(𝑄). �

Suppose now that ℓ � |𝐻1 (𝐹,Z(G)) |. As in Lemma 1.3, let C′ be a complex of Λ(𝐺 × (𝑁 ′)oppΔ 𝑁̃)-
modules such that 𝐻𝑑 (C′) � 𝑀 ′ and C′ induces a splendid Rickard equivalence between Λ𝐺𝑒𝐺𝑠 and
Λ𝑁 ′𝑒𝐿

′

𝑠 . According to the proof of [34, Theorem 5.2], there exists a unique complex C′𝑄 of ℓ-permutation
Λ(C𝐺 (𝑄) × C𝑁 ′ (𝑄)oppΔN𝑁̃ ′ (𝑄))-modules that lifts the complex BrΔ𝑄 (C′) of ℓ-permutation modules
from k to Λ. For simplicity, we denote

𝑀 ′
𝑄 := IndN𝐺 (𝑄)×N𝑁 ′ (𝑄)oppΔN𝑁̃ ′ (𝑄)

C𝐺 (𝑄)×C𝑁 ′ (𝑄)oppΔN𝑁̃ ′ (𝑄)
(𝐻𝑑𝑄 (C′𝑄))br𝑄 (𝑒𝐿

′

𝑠 ).

As in the proof of Lemma 1.2, we see that 𝑀 ′
𝑄 is an extension of 𝐻𝑑𝑄𝑐 (YNG (𝑄)

CU (𝑄)
,Λ) br𝑄 (𝑒𝐿

′

𝑠 ).

Lemma 8.3. Suppose that ℓ � |𝐻1 (𝐹,Z(G)) | and (G, 𝐹) is untwisted. Then the bimodule 𝑀 ′
𝑄 almost

extends to N𝐺 (𝑄) × N𝑁 ′ (𝑄)oppΔNN (𝑄).

Proof. We first assume that L′ is 1-split. Then 𝑀 � Λ[G𝐹/U′𝐹 ]𝑒𝐿
′

𝑠 is an ℓ-permutation module and
C � 𝑀 . It follows that C′ � 𝑀 ′ and thus𝐻0(BrΔ𝑄 (C′)) � BrΔ𝑄 (𝑀 ′). The bimodule 𝑀 ′ extends to a𝐺×

(𝐿 ′)oppΔNℓ′-module 𝑀̂ , which is N-stable. Thus, BrΔ𝑄 (𝑀̂) is a 𝑘 (C𝐺 (𝑄) × (C𝐿′ (𝑄))oppΔ NNℓ′
(𝑄))-

module extending BrΔ𝑄 (𝑀 ′). It follows that BrΔ𝑄 (𝑀̂) is an ℓ-permutation module as well. Thus, there
exists a unique ℓ-permutation module 𝑀̂𝑄, which lifts BrΔ𝑄 (𝑀̂) to Λ; see [1, Corollary 3.11.4]. Since
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this lift is unique and BrΔ𝑄 (𝑀̂) is NN(𝑄)-stable, it follows that 𝑀̂𝑄 is NN (𝑄)-stable as well. In other
words,𝐻0(C′𝑄)br𝑄 (𝑒𝐿

′

𝑠 ) almost extends to C𝐺 (𝑄)×C𝑁 ′ (𝑄)oppΔNN(𝑄). The claim follows by applying
the induction functor.

Now let us assume that L′ is not 1-split. By Lemma 8.2, the bimodule 𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ)br𝑄 (𝑒𝐿

′

𝑠 )

almost extends to N𝐺 (𝑄) ×N𝐿′ (𝑄)oppΔNN (𝑄). On the other hand, the bimodule 𝑀 ′
𝑄 is an extension of

𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
,Λ)br𝑄 (𝑒𝐿

′

𝑠 ). The quotient group N/𝐿̃ ′ is abelian by Lemma 6.11. Therefore, Lemma 7.3
shows that𝐻𝑑𝑄 (C′𝑄)br𝑄 (𝑒𝐿

′

𝑠 ) almost extends as well to aΛ(N𝐺 (𝑄)×N𝐿′ (𝑄)oppΔNN (𝑄))-module. �

According to Lemma 8.3, there exists an extension 𝑀̂𝑄 of 𝑀 ′
𝑄 to Λ(N𝐺 (𝑄) ×N𝑁 (𝑄)oppΔNNℓ′

(𝑄)).
With this notation, the following is immediate.

Corollary 8.4. Suppose the assumptions and notation as above. Then the bimodule 𝑀 ′
𝑄𝐶𝑄 induces a

Morita equivalence between ΛN𝑁 ′ (𝑄)𝐶𝑄 and ΛN𝐺 (𝑄)𝐵𝑄, which lifts to the Morita equivalence 𝑀̂𝑄
between ΛNNℓ′

(𝑄,𝐶𝑄)𝐶𝑄 and ΛN𝐺Aℓ′
(𝑄, 𝐵𝑄)𝐵𝑄.

Proof. Note that 𝑀 ′
𝑄 � IndN𝐺 (𝑄)×N𝑁̃ ′ (𝑄)oppΔN𝑁̃ ′ (𝑄)

C𝐺 (𝑄)×C𝑁 ′ (𝑄)oppΔN𝑁 ′ (𝑄)
(𝐻𝑑𝑄 (C′𝑄))br𝑄 (𝑒𝐿

′

𝑠 ). By the proof of Lemma 1.2
and [37, Proposition 1.12], the bimodule 𝑀 ′

𝑄𝐶𝑄 induces a Morita equivalence between ΛN𝑁 ′ (𝑄)𝐶𝑄
and ΛN𝐺 (𝑄)𝐵𝑄. The second claim now follows from this and [28, Theorem 3.4]. �

9. The first reduction

Let b be a block ofΛ𝐺𝑒𝐺𝑠 , where 𝑠 ∈ (G∗)𝐹
∗ is the fixed strictly-quasi isolated element in G = SL𝑛+1 (F𝑝)

from before. By [37, Theorem 1.3], there exists a defect group D contained in N; and since ℓ � |𝑁/𝐿 |, we
have 𝐷 ⊂ 𝐿. In what follows, we let Q be a fixed characteristic subgroup of D. For a given character 𝜒,
we use bl(𝜒) to denote the ℓ-block 𝜒 belongs to. For the language of character triples and the definition
of the order relation ≥𝑏 on character triples, we refer the reader to [38, Section 1.1]. We will use the
following criterion due to Cabanes–Späth to check the inductive Alperin–McKay condition.

Theorem 9.1. Let 𝜒 ∈ Irr(𝐺, 𝑏) and 𝜒′ ∈ Irr(N𝐺 (𝑄), 𝐵𝑄) such that the following holds:

(i) We have (𝐺̃B)𝜒 = 𝐺̃𝜒B𝜒, and 𝜒 extends to (𝐺B)𝜒.
(ii) We have (N𝐺̃ (𝑄)N𝐺B(𝑄))𝜒′ = N𝐺̃ (𝑄)𝜒′N𝐺B(𝑄)𝜒′ , and 𝜒′ extends to N𝐺B(𝑄)𝜒′ .

(iii) (𝐺̃B)𝜒 = 𝐺 (N𝐺̃ (𝑄)N𝐺B(𝑄))𝜒′ .
(iv) There exist 𝜒̃ ∈ Irr(𝐺̃ | 𝜒) and 𝜒̃′ ∈ Irr(N𝐺̃ (𝑄) | 𝜒′) such that the following holds:

◦ For all 𝑚 ∈ N𝐺B(𝑄)𝜒′ , there exists 𝜈 ∈ Irr(𝐺̃/𝐺) with 𝜒̃𝑚 = 𝜈 𝜒̃ and 𝜒̃′𝑚 = Res𝐺̃N𝐺̃ (𝑄)
(𝜈) 𝜒̃′.

◦ The characters 𝜒̃ and 𝜒̃′ cover the same underlying central character of Z(𝐺̃).
(v) The Clifford correspondents 𝜒̃0 ∈ Irr(𝐺̃𝜒 | 𝜒) and 𝜒̃′

0 ∈ Irr(N𝐺̃ (𝑄)𝜒′ | 𝜒′) of 𝜒̃ and 𝜒̃′,
respectively, satisfy bl( 𝜒̃0) = bl( 𝜒̃′

0)
𝐺̃𝜒 .

Let Z := Ker(𝜒) ∩ Z(𝐺). Then

((𝐺̃B)𝜒/𝑍, 𝐺/𝑍, 𝜒) ≥𝑏 ((N𝐺̃ (𝑄)N𝐺B(𝑄))𝜒′/𝑍,N𝐺 (𝑄)/𝑍, 𝜒′),

where 𝜒 and 𝜒′ are the characters that inflate to 𝜒, respectively 𝜒′.

Proof. This is a consequence of [38, Theorem 2.1] and [38, Lemma 2.2]. �

Note that all conditions in Theorem 9.1 except condition (v) only depend on the character theory of
G and 𝐺̃ (together with its associated groups).

Let 𝑀 ′ be the bimodule constructed in Corollary 7.8, which induces a Morita equivalence between
Λ𝐺𝑒𝐺𝑠 and Λ𝑁 ′𝑒𝐿

′

𝑠 . We let c be the block of Λ𝑁 ′𝑒𝐿
′

𝑠 corresponding to b under this equivalence. Recall
the group A from Definition 7.6 and that N = N𝐺̃A(L′, 𝑒𝐿

′

𝑠 ). We denote by N𝑏 the stabiliser of the
block b in N.
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With this notation, we are now ready to state the following theorem, which can be seen as an analogue
of [38, Theorem 2.12].

Theorem 9.2. Let G be a simple, simply connected group of type A and b a strictly quasi-isolated
ℓ-block of Λ𝐺𝑒𝐺𝑠 . Assume that ℓ � 2|𝐻1 (𝐹,Z(G)) |, and suppose that the following hold:

(i) There exists an Irr(𝑁̃ ′/𝑁 ′) � NN(𝑄)-equivariant bijection 𝜑̃ : Irr(𝑁 ′ | Irr0 (𝑐)) → Irr(N𝑁̃ ′ (𝑄) |
Irr0(𝐶𝑄)) such that it maps characters covering the character 𝜈 ∈ Irr(Z(𝐺̃)) to a character
covering 𝜈.

(ii) There exists an NN(𝑄,𝐶𝑄)-equivariant bijection 𝜑 : Irr0 (𝑁
′, 𝑐) → Irr0 (N𝑁 ′ (𝑄), 𝐶𝑄) that satis-

fies the following two conditions:
◦ If 𝜒 ∈ Irr0(𝑁

′, 𝑐) extends to a subgroup H of N𝑏 , then 𝜑(𝜒) extends to N𝐻 (𝑄).
◦ 𝜑̃(Irr(𝑁̃ ′ | 𝜒)) = Irr(N𝑁̃ ′ (𝑄) | 𝜑(𝜒)) for all 𝜒 ∈ Irr0(𝑐).

(iii) For every 𝜃 ∈ Irr0(𝑐) and 𝜃 ∈ Irr(𝑁̃ ′ | 𝜃), the following holds: If 𝜃0 ∈ Irr(𝑁̃ ′
𝜃 | 𝜃) is the Clifford

correspondent of 𝜃 ∈ Irr(𝑁 ′), then bl(𝜃0) = bl(𝜃 ′0)
𝑁̃ ′

𝜃 , where 𝜃 ′0 ∈ Irr(N𝑁̃ ′ (𝑄)𝜑 (𝜃) | 𝜑(𝜃)) is the
Clifford correspondent of 𝜑̃(𝜃).

Then the block b is AM-good.

Proof. According to Corollary 7.8, the bimodule 𝑀 ′ induces an N-equivariant bijection

𝑅 : Irr0(𝑁
′, 𝑒𝐿

′

𝑠 ) → Irr0(𝐺, 𝑒
𝐺
𝑠 ).

Let 𝑀 ′
𝑄 be the bimodule constructed before the proof of Lemma 8.3. By Corollary 8.4, the bimodule

𝑀 ′
𝑄 induces an NN (𝑄,𝐶𝑄)-equivariant bijection

𝑅𝑄 : Irr0(N𝑁 ′ (𝑄), 𝐶𝑄) → Irr0(N𝐺 (𝑄), 𝐵𝑄).

We define Ψ := 𝑅𝑄 ◦𝜑 ◦𝑅−1 : Irr0(𝐺, 𝑏) → Irr0(N𝐺 (𝑄), 𝐵𝑄), which is by construction N𝐺̃A(𝑄, 𝐵𝑄)-
equivariant.

As in the proof of [38, Theorem 2.12], we can assume that the character 𝜒 satisfies condition (i) of
Theorem 9.1. We denote 𝜒′ := Ψ(𝜒) and show that the characters 𝜒 and 𝜒′ satisfy the conditions of
Theorem 9.1.

Since the bijection Ψ : Irr0 (𝐺, 𝑏) → Irr0(N𝐺 (𝑄), 𝐵𝑄) is N𝐺̃A(𝑄, 𝐵𝑄)-equivariant, we deduce that
condition (iii) in Theorem 9.1 is satisfied and we have

N𝐺̃B(𝑄)𝜒′ = N𝐺̃ (𝑄)𝜒′N𝐺B(𝑄)𝜒′ .

The following lemma finishes the verification of condition (ii) in Theorem 9.1:

Lemma 9.3. The character 𝜒′ extends to its inertia group in N𝐺B(𝑄).

Proof. We have N𝐺B(𝑄)𝜒′/N𝐺 (𝑄) � B𝜒. Since the Sylow r-subgroups of B𝜒 for 𝑟 ≠ 2 are cyclic, it
suffices to show that 𝜒′ extends to N𝐺B2 (𝑄), where B2 is the Sylow 2-subgroup of B𝜒. Moreover, B is
cyclic unless (G, 𝐹) is untwisted.

We may assume that B2 = 〈𝜙𝑖 , 𝛾〉 for some i since B2 is cyclic otherwise. By definition of 𝐹0 in
the proof of Lemma 6.12, there exists some 𝑔 ∈ 𝐺𝛾 such that 𝐹0 = ad(𝑔)𝜙. Recall that the character
𝜒 extends to 𝐺B2. It follows that 𝜒 has a 𝜙𝑖-stable extension to 𝐺〈𝛾〉. Consequently, this extension
is 𝐹𝑖0-stable, and the character 𝜒 thus extends to 𝐺〈𝐹𝑖0, 𝛾〉. Let H be the subgroup with 𝑁 ≤ 𝐻 ≤ N
corresponding to 𝐺〈𝐹𝑖0, 𝛾〉 under the isomorphism N/𝑁 � 𝐺̃A/𝐺. By Corollary 7.8, the character
𝑅−1(𝜒) extends to H. By assumption (ii), the character 𝜑(𝑅−1(𝜒)) therefore extends to its inertia group
in N𝐻 (𝑄). Hence, by Corollary 8.4, the character 𝜒′ has an extension to N𝐺 〈𝐹 𝑖

0 ,𝛾〉
(𝑄). We deduce that 𝜒′

has an extension to N𝐺 〈𝛾〉 (𝑄), which is N𝐺 〈𝜙𝑖 ,𝛾〉 (𝑄)-stable. It follows that 𝜒′ extends to N𝐺B2 (𝑄). �
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Fix a character 𝜒̃ ∈ Irr(𝐺̃ | 𝜒). We define 𝜒̃′ := 𝑅̃𝑄 ◦ 𝜑̃ ◦ 𝑅̃−1( 𝜒̃), where 𝑅̃ and 𝑅̃𝑄 are defined as
in 1.8. By the remarks following Lemma 1.4 and Lemma 1.5 together with assumption (ii), we deduce
that 𝜒̃′ ∈ Irr(N𝑁̃ ′ (𝑄) | Ψ(𝜒)).

Recall the description of 𝑅̃ and 𝑅̃𝑄 in terms of the Lusztig induction functors given in Lemma 1.4 and
Lemma 1.5. Using [38, Lemma 2.9] and assumption (i), we can deduce that the first part of condition
(iv) in Theorem 9.1 is satisfied. Moreover, [37, Lemma 2.10] and assumption (i) imply that the second
part of condition (iv) in Theorem 9.1 is satisfied.

We now verify condition (v) in Theorem 9.1. Let 𝜒̃0 ∈ Irr(𝐺̃𝜒 | 𝜒) be the Clifford correspondent of
𝜒̃. Moreover, let 𝜒̃′

0 ∈ Irr(N𝐺̃ (𝑄)𝜒′ | 𝜒′) be the Clifford correspondent of 𝜒̃′. Recall that there exists a
complex C′ of Λ(𝐺 × (𝑁 ′)oppΔ 𝑁̃ ′)-modules such that 𝐻𝑑 (C′) � 𝑀 ′ and C′ induces a splendid Rickard
equivalence between Λ𝐺𝑒𝐺𝑠 and Λ𝑁 ′𝑒𝐿

′

𝑠 ; see Lemma 1.3.

Lemma 9.4. The characters 𝜒̃0 ∈ Irr(𝐺̃𝜒 | 𝜒) and 𝜒̃′
0 ∈ Irr(N𝐺̃ (𝑄)𝜒′ | 𝜒′) satisfy bl( 𝜒̃′

0)
𝐺̃𝜒 = bl( 𝜒̃0).

Proof. Define 𝐽 := 𝐺̃𝜒, and let 𝐽0 be the subgroup of 𝑁̃ ′/𝑁 ′ corresponding to J under the natural
isomorphism 𝑁̃ ′/𝑁 ′ � 𝐺̃/𝐺.

Consider C := 𝐺Γ𝑐 (YG
U′ ,Λ)𝑒𝐿

′

𝑠 as a complex of Λ(𝐺 × (𝐿 ′)oppΔ ( 𝐿̃ ′))-modules, and define C̃ :=
Ind𝐺̃×( 𝐿̃′)opp

𝐺×(𝐿′)oppΔ ( 𝐿̃′)
(C). We have C̃ � 𝐺Γ𝑐 (YG̃

U′ ,Λ)𝑒𝐿
′

𝑠 by [5, Proposition 1.1].
As in 1.8, we let 𝑒 ∈ Z(Λ𝐿̃ ′) be the central idempotent such that

∑
𝑛∈𝑁 ′/𝐿′

𝑛𝑒 = 𝑒𝐿
′

𝑠 . It follows similar
to arguments given in the proof of [4, Theorem 7.5] that the complex C̃′ := C̃𝑒⊗Λ𝐿̃′Λ𝑁̃

′ induces a splendid
Rickard equivalence between Λ𝑁̃ ′𝑒𝐿

′

𝑠 and Λ𝐺̃𝑒𝐺𝑠 . Moreover, we have Ind𝐺̃×( 𝑁̃ ′)opp

𝐺×(𝑁 ′)oppΔ ( 𝐿̃′)
(C′) � C̃′. The

cohomology of C′ is concentrated in degree 𝑑 := dim(YG
U) and 𝐻𝑑 (C̃′0) � Ind𝐽×𝐽

opp
0

(𝐺×(𝑁 ′)opp)Δ𝐽0
𝐻𝑑 (C′). By

[28, Theorem 3.4], the bimodule 𝐻𝑑 (C̃′0) induces a Morita equivalence between O𝐽0𝑐 and O𝐽𝑏. We
denote by

𝑅0 : Irr(𝐽0, 𝑐) → Irr(𝐽, 𝑏)

the associated bijection between irreducible characters. Using [37, Lemma 1.9], we see that the complex
C̃′0 := Ind𝐽×𝐽

opp
0

(𝐺×𝑁 ′opp)Δ (𝐽0)
(C′)𝑐 induces a splendid Rickard equivalence between O𝐽𝑏 and O𝐽0𝑐. Denote

(𝑀 ′
𝑄)0 := IndN𝐽 (𝑄)×(N𝐽0 (𝑄))

opp

N𝐺 (𝑄)×(N𝐿′ (𝑄))oppΔ N𝐽0 (𝑄)
(ResN𝐺 (𝑄)×(N𝐿 (𝑄))

oppΔ N𝑁̃ ′ (𝑄)

N𝐺 (𝑄)×(N𝐿′ (𝑄))oppΔ N𝐽0 (𝑄)
(𝑀 ′
𝑄))

so that the bimodule (𝑀 ′
𝑄)0 induces a Morita equivalence between ON𝐽0 (𝑄)𝐶𝑄 and ON𝐽 (𝑄)𝐵𝑄. We

denote the associated character bijection by

(𝑅0)𝑄 : Irr(N𝐽0 (𝑄), 𝐶𝑄) → Irr(N𝐽 (𝑄), 𝐵𝑄).

By construction, 𝜒̃′ ∈ Irr(N𝐺̃ (𝑄) | 𝜒′). Let 𝜃 := 𝑅−1(𝜒) and 𝜃 := 𝑅̃−1( 𝜒̃). We obtain that
(𝑅0)

−1
𝑄 ( 𝜒̃′

0) ∈ Irr(N𝐽0 (𝑄) | 𝜑(𝜃)) is the Clifford correspondent of 𝜑̃(𝜃). Consequently, we have

bl((𝑅0)
−1
𝑄 (𝜒′

0))
𝐽0 = bl(𝑅−1

0 ( 𝜒̃0))

by assumption (iii). By the definition of 𝑀 ′
𝑄 after Lemma 8.3, we have

𝑀 ′
𝑄 ⊗Λ 𝑘 � IndN𝐺 (𝑄)×N𝑁 ′ (𝑄)oppΔN𝑁̃ ′ (𝑄)

C𝐺 (𝑄)×C𝑁 ′ (𝑄)oppΔN𝑁 ′ (𝑄)
𝐻𝑑𝑄 (BrΔ𝑄 (𝐶 ′))br𝑄 (𝑒𝐿

′

𝑠 )

and therefore

(𝑀 ′
𝑄)0 ⊗Λ 𝑘 � Ind

N𝐺 (𝑄)×N𝑁 ′ (𝑄)oppΔN𝐽0
(𝑄)

C𝐺 (𝑄)×C𝑁 ′ (𝑄)oppΔN𝐽0 (𝑄)
𝐻𝑑𝑄 (BrΔ𝑄 (C′0))br𝑄 (𝑒𝐿

′

𝑠 ).

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.36


28 Lucas Ruhstorfer

Therefore, by [37, Remark 1.21], the equality bl((𝑅0)
−1
𝑄 (𝜒′

0))
𝐽0 = bl(𝑅−1

0 ( 𝜒̃0)) implies that bl( 𝜒̃′
0)
𝐽 =

bl( 𝜒̃0). �

Theorem 9.1 applies, and we obtain

((𝐺̃B)𝜒/𝑍, 𝐺/𝑍, 𝜒) ≥𝑏 (N𝐺̃B(𝑄)𝜒′/𝑍,N𝐺 (𝑄), 𝜒′),

where Z := Z(𝐺) ∩ Ker(𝜒). Using [37, Theorem 1.10], we deduce that the bijection Ψ : Irr0(𝐺, 𝑏) →
Irr0 (N𝐺 (𝑄), 𝐵𝑄) is a strong iAM-bijection in the sense of [38, Definition 1.9], which shows that the
block b is AM-good; see [38, Definition 1.11]. �

Remark 9.5. The statement of the previous theorem remains true for the groups occurring in Theo-
rem 4.2 if we take L′∗ to be the minimal Levi subgroup containing C◦

G∗ (𝑠) and replace A by the group
〈𝐹0〉. To see this, just replace Corollary 7.8 and Corollary 8.4 by Theorem 4.2 (and its local version,
which can be proved as in Corollary 8.4).

Remark 9.6. In the proof of Theorem 9.2, we have shown that there exist a strong iAM-bijection
Ψ : Irr0 (𝐺, 𝑏) → Irr0(N𝐺 (𝑄), 𝐵𝑄) for the characteristic subgroup Q of a defect group D of the block
b. In Section 12.2, it will be important to keep track of the subgroup Q. If such a strong iAM-bijection
exists, we will say that the block b is AM-good relative to the subgroup Q.

10. The reduction for linear primes and twisted groups

10.1. Clifford theory of blocks

In the last section, we needed to assume in Theorem 9.2 that ℓ � 2|𝐻1 (𝐹,Z(G)) | = 2(𝑛 + 1, 𝑞 − 𝜀) and
that (G, 𝐹) is untwisted. Therefore, in this section, we will consider the remaining cases.

Let Y be a finite group and X be a normal subgroup of Y. For an ℓ-block e of X, we denote by 𝑌 [𝑒]
the group of elements in Y, which stabilise e and act as inner automorphisms on the block algebra Λ𝑋𝑒.
This group is called the Dade ramification group of e in Y; see for instance [30].

Lemma 10.1. Let G be a simple, simply connected group of type A, and let b be a (nonnecessarily
quasi-isolated) ℓ-block of G. If ℓ | (𝑞 − 𝜀), then block induction yields a bijective map Bl(𝐺̃ [𝑏] | 𝑏) →
Bl(𝐺̃ | 𝑏).

Proof. Suppose that b is a block of Λ𝐺𝑒𝐺𝑠 for a semisimple element 𝑠 ∈ (G∗)𝐹
∗ of ℓ′-order. Consider a

regular embedding 𝜄 : G ↩→ G̃ with dual map 𝜄∗ : G̃∗ → G∗. Fix an element 𝑠 of ℓ′-order of (G̃∗)𝐹 with
𝜄∗(𝑠) = 𝑠. Let 𝜒̃ ∈ E(𝐺̃, 𝑠) be the unique semisimple character in its Lusztig series; see [3, Theorem
15.10]. Since Λ𝐺̃𝑒𝐺̃𝑠 is a block, there exists a constituent 𝜒 ∈ Irr(𝐺 | 𝜒̃), which lies in the block b. We
have Irr(𝐺̃ | 𝜒) = {𝑧 ⊗ 𝜒̃ | 𝑧 ∈ Z(𝐺̃)} and such a character 𝑧 ⊗ 𝜒̃ lies in the Lusztig series E(𝐺̃, 𝑠𝑧).
Note that Eℓ (𝐺̃, 𝑠) = Irr(𝐺̃, 𝑏̃), where 𝑏̃ is the block of 𝜒̃. Hence, 𝑧 ⊗ 𝜒̃ lies in 𝑏̃ if and only if the
ℓ′-part (𝑠𝑧)ℓ′ of 𝑠𝑧 is G̃∗-conjugate to 𝑠. This is equivalent to 𝑠𝑧ℓ′ being G̃∗-conjugate to 𝑠. In this case
we obtain that 𝜒̃ = 𝑧ℓ′ ⊗ 𝜒̃ since 𝜒̃ is the unique semisimple character in E(𝐺̃, 𝑠). Thus, 𝑏̃ ⊗ 𝑧 = 𝑏̃ if and
only if 𝜒 = 𝑧ℓ′ ⊗ 𝜒. From this, we deduce by Clifford theory that |Bl(𝐺̃ | 𝑏) | = |𝐺̃𝜒 : 𝐺 |ℓ′ .

On the other hand, by [30, Proposition 3.9], we deduce that |Bl(𝐺̃ [𝑏] | 𝑏) | ≤ |𝐺̃ [𝑏] : 𝐺 |ℓ′ .
According to [30, Theorem 3.5] and the Fong–Reynolds reduction block induction yields a surjective
map Bl(𝐺̃ [𝑏] | 𝑏) → Bl(𝐺̃ | 𝑏). This shows that |𝐺̃ [𝑏] : 𝐺 |ℓ′ ≥ |𝐺̃𝜒 : 𝐺 |ℓ′ . On the other hand, by [30,
Theorem 4.1], we deduce that |𝐺̃ [𝑏] : 𝐺 |ℓ′ ≤ |𝐺̃𝜒 : 𝐺 |ℓ′ . Therefore, all inequalities must actually be
equalities. This shows the statement. �

With a little more effort, the assumption on ℓ from the previous lemma can be lifted.

Lemma 10.2. Let G be a simple, simply connected group of type A, and let b be a (nonnecessarily
quasi-isolated) ℓ-block of G. Then block induction yields a bijective map Bl(𝐺̃ [𝑏] | 𝑏) → Bl(𝐺̃ | 𝑏).
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Proof. Our aim is to explicitly construct a character 𝜒 ∈ Irr(𝐺, 𝑏) with |Bl(𝐺̃ | 𝑏) | = |𝐺̃𝜒 : 𝐺 |ℓ′ . As
in Lemma 10.1 fix an element 𝑠 of ℓ′-order of (G̃∗)𝐹

∗ with 𝜄∗(𝑠) = 𝑠. Let 𝑏̃ be a block of 𝑒𝐺̃𝑠 covering
b. We have a Morita equivalence between O𝐿̃𝑒 𝐿̃𝑠 and O𝐺̃𝑒𝐺̃𝑠 given by Deligne–Lusztig induction and
we let 𝑐 be the block corresponding to 𝑏̃ under it. Let 𝑧 ∈ Z(𝐺̃∗) of ℓ′-order such that 𝑒𝐺̃𝑠 = 𝑧 ⊗ 𝑒𝐺̃𝑠 .
By duality, there exists some element 𝑛∗ ∈ (𝜄∗)−1(CG∗ (𝑠)) = 𝑁̃∗ such that 𝑛∗ 𝑠 = 𝑠𝑧. We let 𝑛 ∈ 𝑁̃ be
the element corresponding to 𝑛∗ under the canonical isomorphism 𝑁̃/𝐿̃ � 𝑁̃∗/𝐿̃∗ so that 𝑛𝑒 𝐿̃𝑠 = 𝑒 𝐿̃𝑠𝑧̃ .
Since 𝑧𝑅𝐺̃

𝐿̃
= 𝑅𝐺̃

𝐿̃
𝑧, it follows that the block 𝑛−1

(𝑐 ⊗ 𝑧) corresponds to 𝑏̃ ⊗ 𝑧 under the Bonnafé–Rouquier
Morita equivalence. In particular, 𝑏̃ ⊗ 𝑧 = 𝑏̃ if and only if 𝑛−1

(𝑐 ⊗ 𝑧) = 𝑐. Let 𝑐0 = 𝑐 ⊗ 𝑠−1 be the
corresponding unipotent block of 𝐿̃. Then the latter equality is equivalent to 𝑛𝑐0 = 𝑐0.

Now let 𝜒̃ ∈ Irr(𝐺̃, 𝑏̃) ∩ E(𝐺̃, 𝑠) and 𝜓̃ ∈ E( 𝐿̃, 1) the unipotent character with 𝜒̃ = 𝑅𝐺̃
𝐿̃
(𝑠𝜓̃). A

similar calculation as above now shows that 𝜒̃ ⊗ 𝑧 = 𝜒̃ if and only if 𝑛𝜓̃ = 𝜓̃. Now, write 𝐿̃ as
𝐿̃ = 𝐻̃1 × · · · × 𝐻̃𝑟 , where the 𝐻̃𝑖 are the fixed points of the minimal F-stable components of L̃. Then
we can write 𝑐0 = 𝑐1 ⊗ · · · ⊗ 𝑐𝑟 and 𝜓̃ = 𝜓1 × · · · × 𝜓𝑟 . We can choose a character 𝜒̃ such that the
corresponding character 𝜓̃ satisfies 𝜓𝑖 = 𝜓 𝑗 whenever 𝑐𝑖 = 𝑐 𝑗 . The group 𝑁̃/𝐿̃ acts by permuting the
rational components of L̃. By considering each orbit under this action individually, we can assume that
𝑁̃/𝐿̃ acts transitively. We let 𝑁̃0 be the stabiliser of this permutation action. Observe that all unipotent
characters of E(𝐻̃𝑖 , 1) are Aut(𝐻̃𝑖)-stable by [25, Theorem 2.5]. From this, it follows that every character
in E( 𝐿̃, 1) is 𝑁̃0-stable. We deduce that 𝑁̃𝜓̃ = 𝑁̃𝑐̃0 . This shows that 𝑏̃ ⊗ 𝑧 = 𝑏̃ if and only if 𝜒̃𝑧 = 𝜒̃.
Hence, |Bl(𝐺̃ | 𝑏) | = |𝐺̃𝜒 : 𝐺 |ℓ′ by Clifford theory. The arguments in the second paragraph of Lemma
10.1 now show the result. �

Lemma 10.3. Assume the assumptions of Lemma 10.2 and let 𝜓 ∈ Irr(𝐺, 𝑏). Then every block of 𝐺̃𝜓
covering b is 𝐺̃𝑏-stable.

Proof. Denote 𝐻 := 𝐺̃𝜓𝐺̃ [𝑏]. Since 𝐻 [𝑏] = 𝐺̃ [𝑏], we know by [30, Theorem 3.5] that block induction
yields a surjective map Bl(𝐺̃ [𝑏] | 𝑏) → Bl(𝐻 | 𝑏). Moreover, by [31, Corollary 6.2] block induction
induces a map Bl(𝐻 | 𝑏) → Bl(𝐺̃ | 𝑏). By transitivity of block induction the composition of these maps
is the bijection Bl(𝐺̃ [𝑏] | 𝑏) → Bl(𝐺̃ | 𝑏) from Lemma 10.2. Thus, the map Bl(𝐻 | 𝑏) → Bl(𝐺̃ | 𝑏)
is necessarily bijective as well.

Again, by [31, Corollary 6.2] block induction yields a surjective map Bl(𝐺̃𝜓 | 𝑏) → Bl(𝐻 | 𝑏). We
show that it is actually bijective as well. Every block of Bl(𝐺̃𝜓 | 𝑏) contains a character 𝜓0 extending
𝜓. Two such extensions differ by multiplication by a linear character 𝜆 ∈ Irr(𝐺̃𝜓/𝐺). Moreover, if 𝜆 has
ℓ-power order then 𝜓0 and 𝜓0𝜆 lie in the same ℓ-block. From this, we deduce that ℓ � |Bl(𝐺̃𝜓 | 𝑏) |.

Since blocks in Bl(𝐺̃𝜓 | 𝑏) differ only by multiplication with a linear character in Irr(𝐺̃𝜓/𝐺),
every block 𝑏̃ ∈ Bl(𝐺̃𝜓 | 𝑏) has the same stabiliser 𝐻𝑏̃ in H. Hence the fibres of the surjection
Bl(𝐺̃𝜓 | 𝑏) → Bl(𝐻 | 𝑏) have cardinality |𝐻 : 𝐻𝑏̃ |, so

|𝐻 : 𝐻𝑏̃ | |Bl(𝐻 | 𝑏) | = |Bl(𝐺̃𝜓 | 𝑏) |

and therefore ℓ � |𝐻 : 𝐻𝑏̃ |. Since 𝐻/𝐻𝑏̃ is an ℓ-group by [30, Theorem 4.1], it follows that 𝐻 =
𝐻𝑏̃ . Therefore, block induction yields a bijective map Bl(𝐺̃𝜓 | 𝑏) → Bl(𝐺̃ | 𝑏). This proves the
statement. �

10.2. The first reduction for twisted groups and linear primes

As in Section 9, we let b be an ℓ-block of Λ𝐺𝑒𝐺𝑠 , where 𝑠 ∈ (G∗)𝐹
∗ is a strictly quasi-isolated element

of ℓ′-order. Recall the Levi subgroup L′ of G defined in Lemma 6.2.

Lemma 10.4. With the notation as above, there exists a block 𝑐1 ofΛ𝐿 ′𝑒𝐿
′

𝑠 , unique up to 𝑁 ′-conjugation,
such that 𝑏𝐻dim

𝑐 (YG
U′ ,Λ)𝑐1 ≠ 0.
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Proof. By Theorem 1.1, there exists a bimodule 𝑀0 inducing a Morita equivalence between Λ𝐺𝑒𝐺𝑠 and
Λ𝑁 ′𝑒𝐿

′

𝑠 . We let c be the block of Λ𝑁 ′𝑒𝐿
′

𝑠 corresponding to b under the Morita equivalence induced by
𝑀0. The Λ(𝐺× (𝑁 ′)opp)-bimodule 𝑏𝑀0𝑐 � 𝑏𝑀0 is thus indecomposable. We have Res𝐺×(𝑁 ′)opp

𝐺×(𝐿′)opp (𝑀0) �

𝑏𝐻dim
𝑐 (YG

U′ ,Λ). Observe that 𝑏𝑀0 is a right Λ𝑁 ′𝑐-module. Thus, if 𝑐1 is a block of 𝐿 ′ such that
𝑏𝐻dim
𝑐 (YG

U′ ,Λ)𝑐1 ≠ 0, then 𝑐1 has to lie below c. This determines 𝑐1 up to 𝑁 ′-conjugation. �

We keep the notation of the proof of the previous lemma, and we fix a block 𝑐1 of 𝐿 ′ below c.

Definition 10.5. If (G, 𝐹) is untwisted and ℓ is a nonlinear prime: that is, ℓ � (𝑞 − 1), then we denote
𝑇 := 𝑁 ′ and 𝑐 := 𝑐. Otherwise, we let T be the largest subgroup of 𝑁 ′ containing 𝐿 ′ such that there
exists a unique block 𝑐 covering 𝑐1. Additionally, we set 𝑇 := 𝑇 𝐿̃ ′, and we denote by 𝐶̂𝑄 the Brauer
correspondent of 𝑐 in N𝑇 (𝑄).

The advantage of working with the block 𝑐 (in the second case of the definition) instead of the block
c is that the definition of the former does not depend on the particular choice of the extension of the
bimodule 𝐻dim(YG

U′ ,Λ)𝑒𝐿
′

𝑠 to 𝐺 × (𝑁 ′)opp.
There are also some further simplifications specific to the situation when ℓ | (𝑞 − 𝜀). The block b

of Λ𝐺𝑒𝐺𝑠 is Morita equivalent to a block of Λ𝑁𝑒𝐿1 . This block of N is covered by the principal block
Λ𝐿𝑒𝐿1 of L. Thus, any Sylow ℓ-subgroup D of L is a defect group of b. A Frattini argument therefore
shows that N𝑁̃ ′ (𝑄) 𝐿̃ ′ = 𝑁̃ ′, where Q, as in the previous section, denotes a characteristic subgroup of
D. In particular, the subgroup Q of L satisfies the group-theoretic assumptions of Lemma 8.2. With this,
we now obtain a version of Theorem 9.2 for the cases excluded in this theorem.

Theorem 10.6. Let G be a simple, simply connected group of type A and b a strictly quasi-isolated
ℓ-block of Λ𝐺𝑒𝐺𝑠 . Assume that ℓ | (𝑞− 𝜀) or that (G, 𝐹) is twisted and suppose that the following holds.

(i) There exists an Irr(𝑁̃ ′/𝑁 ′)�NN (𝑄)-equivariant bijection 𝜑̃ : Irr(𝑁̃ ′ | Irr0(𝑇, 𝑐)) → Irr(N𝑁̃ ′ (𝑄) |
Irr0(N𝑇 (𝑄), 𝐶̂𝑄)) such that it maps characters covering the character 𝜈 ∈ Irr(Z(𝐺̃)) to a character
covering 𝜈.

(ii) There exists an NN (𝑄, 𝐶̂𝑄)-equivariant bijection 𝜑 : Irr0 (𝑇, 𝑐) → Irr0(N𝑇 (𝑄), 𝐶̂𝑄), which satis-
fies the following two conditions:
◦ If 𝜒 ∈ Irr0(𝑇, 𝑐) extends to a subgroup H of N𝑏 , then 𝜑(𝜒) extends to N𝐻 (𝑄).
◦ 𝜑̃(Irr(𝑁̃ ′ | 𝜒)) = Irr(N𝑁̃ ′ (𝑄) | 𝜑(𝜒)) for all 𝜒 ∈ Irr0(𝑇, 𝑐).

(iii) For every 𝜃 ∈ Irr(𝑁̃ ′ | Irr0(𝑇, 𝑐)), we have bl(𝜃) = bl(𝜑̃(𝜃)) 𝑁̃ ′ .

Then the block b is AM-good.

Proof. According to the proof of Theorem 7.7, there exists a 𝐾 [𝐺 × (𝐿 ′)oppΔN]-module 𝑀̂ extending
𝐻dim
𝑐 (YG

U′ , 𝐾)𝑒
𝐿′
𝑠 . Denote by 𝑀 ′ the restriction of 𝑀̂ to 𝐺 × (𝑁 ′)oppΔ 𝑁̃ ′.

We claim that the bimodule 𝑏 Res𝐺×(𝑁 ′)oppΔ 𝑁̃ ′

𝐺×𝑇 opp (𝑀 ′)𝑐 induces an N𝑏-equivariant bijection 𝑅 :
Irr(𝑇, 𝑐) → Irr(𝐺, 𝑏). For 𝑇 = 𝑁 ′, we observe that 𝑐 is the unique block of 𝑁 ′ covering the block
𝑐1 of 𝐿 ′. By Lemma 10.4, we deduce that 𝑏𝑀 ′ = 𝑏𝑀 ′𝑐. Observe that 𝐿̃ ′ acts transitively on the set
Irr(𝑁 ′ | 𝜁) for every 𝜁 ∈ Irr(𝐿 ′, 𝑒𝐿

′

𝑠 ) by [13, Lemma 5.8(b)] and 𝑀 ′ is Δ ( 𝐿̃ ′)-stable. Hence, Lemma
1.2 together with 𝑁 ′/𝐿 ′ being cyclic implies that 𝑏𝑀 ′𝑐 is multiplicity free as 𝐾 (𝐺 × (𝑁 ′)opp)-module.
Now Lemma 10.4 together with Theorem 1.1 imply that | Irr(𝐺, 𝑏) | = | Irr(𝑁 ′, 𝑐) |, and thus the Δ (𝑁̃ ′)𝑏-
stable bimodule 𝑏𝑀 ′𝑐 necessarily induces a bijection between these two sets.

Assume therefore now that 𝑇 = 𝐿 ′. Then 𝑐1 is necessarily 𝑁 ′-stable and there are exactly |𝑁 ′/𝐿 ′ |

different blocks covering 𝑐1. Consequently, by [30, Proposition 3.9] and [30, Theorem 4.1] in this
case the block Λ𝑁 ′𝑐 is isomorphic to Λ𝐿 ′𝑐1 via restriction. We have 𝑏 Res𝐺×(𝑁 ′)oppΔ 𝑁̃ ′

𝐺×(𝐿′)opp (𝑀 ′)𝑐 �

𝑏𝐻dim(YG
U′ , 𝐾)𝑐. Hence, Theorem 1.1 shows that 𝑏𝐻dim (YG

U′ ,Λ)𝑐 induces a Morita equivalence between
Λ𝐿 ′𝑐, and Λ𝐺𝑏. The claim thus also follows in this case.

We now construct a local bijection.As explained before the statement of this theorem, the subgroup
Q satisfies the group theoretic requirement in Lemma 8.2. The proof of said lemma therefore shows
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that the bimodule 𝐻dim
𝑐 (YNG (𝑄)

CU′ (𝑄)
, 𝐾) br𝑄 (𝑒𝐿

′

𝑠 ) extends to an N𝐺 (𝑄) ×N𝑁 ′ (𝑄)oppΔ NN(𝑄)-module. Let
𝑀̂𝑄 be such an extension and denote by 𝑀 ′

𝑄 its restriction to N𝐺 (𝑄) × N𝑁 ′ (𝑄)oppΔ N𝑁̃ ′ (𝑄).

Arguing as in the global case we obtain that the bimodule 𝐵𝑄 ResN𝐺 (𝑄)×N𝑁 ′ (𝑄)oppΔ N𝑁̃ ′ (𝑄)

N𝐺 (𝑄)×N𝑇 (𝑄)opp (𝑀 ′
𝑄)𝐶̂𝑄

induces an NN(𝑄, 𝐵𝑄)-equivariant bijection 𝑅𝑄 : Irr0 (N𝑇 (𝑄), 𝐶̂𝑄) → Irr0 (N𝐺 (𝑄), 𝐵𝑄). As in The-
orem 9.2, we define Ψ := 𝑅𝑄 ◦ 𝜑 ◦ 𝑅−1 : Irr0 (𝐺, 𝑏) → Irr0 (N𝐺 (𝑄), 𝐵𝑄), which is by construction
N𝐺̃A (𝑄, 𝐵𝑄)-equivariant.

We fix a character 𝜒 ∈ Irr0 (𝐺, 𝑏) and denote 𝜒′ := Ψ(𝜒). As in Theorem 9.2, we want to show that
the characters 𝜒 and 𝜒′ satisfy the conditions in Theorem 9.1. Moreover, as in the proof of Theorem 9.2,
we fix a character 𝜒̃ ∈ Irr(𝐺̃ | 𝜒), and define 𝜒̃′ := 𝑅̃𝑄 ◦ 𝜑̃ ◦ 𝑅̃−1( 𝜒̃), where 𝑅̃ and 𝑅̃𝑄 are again defined
as in 1.8. One easily sees that conditions (i)-(iv) of Theorem 9.1 can now be verified exactly in the same
way as in Theorem 9.2. However, to show condition (v) we crucially used Lemma 8.3. Nevertheless
according to Lemma 1.5 and assumption (iii) we see that bl( 𝜒̃′)𝐺̃ = bl( 𝜒̃). According to Lemma 10.3,
the Clifford correspondents 𝜒̃0 ∈ Irr(𝐺̃𝜒 | 𝜒) and 𝜒̃′

0 ∈ Irr(N𝐺̃ (𝑄)𝜒′ | 𝜒′) of 𝜒̃ and 𝜒̃′, respectively,
therefore satisfy bl( 𝜒̃0) = bl( 𝜒̃′

0)
𝐺̃𝜒 . In other words also condition (v) is satisfied. �

11. Results on defect groups of blocks of groups of Lie type

In this section, we prove some properties of defect groups of groups of Lie type. These results will be
needed in the proofs of Section 12.2.

11.1. Defect groups of groups of type A

Following the terminology in [21, Section 3.4], we say that an ℓ-group D is Cabanes if it has a unique
maximal abelian normal subgroup Q. Moreover, in this case we say that Q is the Cabanes subgroup of
D. We recall [10, Lemma 4.16]:

Theorem 11.1. Let H be a connected reductive group defined over F𝑝 such that ℓ ≥ 5 and ℓ ≥ 7 if H
has a component of type 𝐸8. Then the defect group of any ℓ-block of H𝐹 is Cabanes.

We keep the notation from the previous section. In particular, G is simple, simply connected of type
A, and b denotes a strictly quasi-isolated block of Λ𝐺𝑒𝐺𝑠 , and we let L′ be the proper Levi subgroup
of G constructed before. Moreover, c denotes the block of Λ𝑁 ′𝑒𝐿

′

𝑠 , which corresponds to b under the
Morita equivalence given by the bimodule 𝑀 ′ defined after the proof of Theorem 7.7.

We fix a defect group D of the block c. If ℓ ≥ 5, we define Q to be the Cabanes subgroup of D and if
ℓ < 5, we let 𝑄 := 𝐷. Let 𝑏̃ be a block of 𝐺̃ covering b with defect group 𝐷̃ satisfying 𝐷̃ ∩ 𝐺 = 𝐷. If
ℓ ≥ 5, let 𝑄̃ be the Cabanes subgroup of 𝐷̃ and otherwise define 𝑄̃ := 𝐷̃.

Lemma 11.2. Suppose that either ℓ ≥ 5 or ℓ = 2 and D is abelian. With the notation as above, we have
C𝐺̃ (𝑄) = C𝐺̃ (𝑄̃) and N𝐺̃ (𝑄) = N𝐺̃ (𝑄̃).

Proof. We may assume that ℓ | (𝑛+1, 𝑞−𝜀) = |G̃𝐹 : Z(G̃𝐹 )G𝐹 | since otherwise we have 𝑄̃ = 𝑄Z(G̃𝐹 )ℓ ,
and the statement follows.

If s has order 𝑛 + 1, then we have ℓ � (𝑛 + 1). As explained at the beginning of the proof, this implies
the statement in this case. Hence, by [17, Lemma 5.2] (see also Lemma 14.1, below), the statement of
the lemma holds for ℓ = 2 and D abelian. We can therefore assume that ℓ ≥ 5.

Suppose first that 𝑠 = 1. Let S be the diagonal torus in G. The Cabanes subgroup of a Sylow
ℓ-subgroup of G𝐹 is given by S𝐹ℓ . Since ℓ ≠ 2, we have CG(S𝐹ℓ ) = S; see [11, Proposition 22.6].
Similarly, S̃𝐹ℓ is the Cabanes subgroup of a Sylow ℓ-subgroup of G̃𝐹 and CG(S̃𝐹ℓ ) = S. From this, the
claim of the lemma follows.

Now, let 1 ≠ 𝑠 and L be a Levi subgroup of G dual to the Levi subgroup C◦
G∗ (𝑠) of G∗. Note that

ΛN𝐹 𝑒L𝐹

1 is Morita equivalent to ΛG𝐹 𝑒G𝐹

𝑠 ; see [4, Example 7.10]. Any block of ΛN𝐹 𝑒L𝐹

1 has the same
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defect group as a block of L𝐹 that is covered by it. It is well known (see [9, Theorem 13]) that since
ℓ | (𝑞 − 𝜀), the algebra ΛL𝐹 𝑒L𝐹

1 consists of only one block: the principal block of L𝐹 .
Therefore, Q is the Cabanes subgroup of a Sylow ℓ-subgroup of L𝐹 . By Corollary 5.4, we have

L̃ � (GL𝑒)𝑑 × · · · × (GL𝑒)𝑑 with the Frobenius endomorphism F transitively permuting the d copies of
each (GL𝑒)𝑑 such that L̃𝐹 � GL𝑒 ((𝜀𝑞)𝑑) × · · · × GL𝑒 ((𝜀𝑞)𝑑) with 𝑒 > 1. Denote 𝑄0 := 𝑄 ∩ [L,L]𝐹 .
We conclude [L,L]𝐹 � SL𝑒 ((𝜀𝑞)𝑑)×· · ·×SL𝑒 ((𝜀𝑞)𝑑). Here, d divides |𝐴(𝑠) |, which is of order prime
to ℓ; see Corollary 5.4. Let S be the diagonal torus in SL𝑒. The subgroup S𝐹𝑑

ℓ is a Cabanes subgroup of
a Sylow ℓ-subgroup of SL𝑒 ((𝜀𝑞)𝑑). Since ℓ � 𝑑 and ℓ | (𝑞− 𝜀), it follows that ((𝜀𝑞)𝑑 −1)ℓ = (𝜀𝑞−1)ℓ .
We deduce that |Δ𝑑 (S)𝐹ℓ | = |S𝐹𝑑

ℓ |, where Δ𝑑 : GL𝑒 → (GL𝑒)𝑑 denotes the d-fold diagonal embedding.
By the proof of [10, Lemma 4.16], we can therefore assume that

𝑄0 = Δ𝑑 (S)𝐹ℓ × · · · × Δ𝑑 (S)𝐹ℓ .

Hence CG̃(𝑄0) ⊆ GL𝑒𝑑 × · · · ×GL𝑒𝑑 . Since ℓ ≠ 2, we have CGL𝑒 (S𝐹
𝑑

ℓ ) = S; see [11, Proposition 22.6].
Therefore, CG̃ (𝑄0) � (GL𝑑)𝑒 × · · · × (GL𝑑)𝑒. A similar calculation shows that this coincides with
CG̃(𝑄̃). This implies that CG(𝑄̃) = CG(𝑄) = CG(𝑄0).

Observe that M := CG̃ (𝑄) is a Levi subgroup of G̃. It follows that NG̃(𝑄) and NG̃(𝑄̃) are both
contained in NG̃ (M). On the other hand, NG̃(M)/M � 𝑆 (𝑛+1/𝑑) given by permuting the 𝑛 + 1/𝑑
components of M = (GL𝑑)𝑒×· · ·×(GL𝑑)𝑒. By the description of𝑄0, it is clear that these automorphisms
stabilise 𝑄0. This shows that NG̃(𝑄) = NG̃(𝑄̃) = NG̃(M). �

Remark 11.3. Suppose that D is the Sylow 2-subgroup of G. Then C𝐺̃ (𝑄) = C𝐺̃ (𝑄̃) unless G is of
type 𝐴1 and 𝑞 ≡ ±3 mod 8; see [23, Theorem 1].

We denote 𝐿0 := [L′,L′]𝐹 , and we fix a block 𝑐0 of 𝐿0 below c such that 𝐷0 := 𝐷 ∩ 𝐿0 is a defect
group of 𝑐0. Additionally, we set 𝑄0 := 𝑄 ∩ 𝐿0.

The induction step in the proof of Theorem 12.4 below requires the following property of Cabanes
subgroups.

Lemma 11.4. Suppose that ℓ ≠ 2 and that 𝐷/Z(𝐺)ℓ is abelian if ℓ = 2. With the notation as introduced
above, we have C𝐿̃′ (𝑄0) = C𝐿̃′ (𝑄) and N𝐿̃′ (𝑄0) = N𝐿̃′ (𝑄).

Proof. Let us first consider the special case where ℓ = 2 and D is nonabelian but 𝐷/Z(𝐺)ℓ is abelian.
According to the proof of [17, Lemma 5.2] and [17, Proposition 3.4(a)], we observe that 𝐷 ⊂ [L,L]𝐹 .
Since L ⊂ L′ by construction, we have 𝐷 ⊂ [L′,L′]𝐹 , so 𝐷0 = 𝐷. Hence, the statement holds trivially
in this case.We can therefore assume that the assumptions of Lemma 11.2 are satisfied.

We only prove the first part of the statement since the same arguments apply when we replace the cen-
traliser subgroups everywhere by their corresponding normaliser subgroups. Consider the composition
[L′,L′] ↩→ L′ ↩→ L̃′. We let 𝑐 be a block of 𝑁̃ ′ covering c. By [31, Theorem 9.26], there exists a defect
group 𝐷̃ of 𝑐 such that 𝐷̃ ∩ 𝑁 ′ = 𝐷̃ ∩ 𝐿 ′ = 𝐷. It follows that the Cabanes subgroup 𝑄̃ of 𝐷̃ satisfies
𝑄̃ ∩ 𝐿 ′ = 𝑄. We have C𝐿̃′ (𝑄̃) ⊆ C𝐿̃′ (𝑄) ⊆ C𝐿̃′ (𝑄0), so it’s enough to show that C𝐿̃′ (𝑄̃) = C𝐿̃′ (𝑄0).

As in the proof of [38, Proposition 3.8], it follows that [L′,L′] = H1 × · · · × H𝑟 ,, where the H𝑖
are simple algebraic groups of simply connected type. The action of the Frobenius endomorphism F
induces a permutation 𝜋 on the set of simple components of [L′,L′]. We let 𝜋 = 𝜋1 · · · 𝜋𝑡 be the
decomposition of this permutation into disjoint cycles. For 𝑖 = 1, . . . , 𝑡 choose 𝑥𝑖 ∈ Π𝑖 in the support
Π𝑖 of the permutation 𝜋𝑖 , and let 𝑛𝑖 = |Π𝑖 | be the length of the cycle 𝜋𝑖 . We then have

𝐿0 := [L′,L′]𝐹 � H𝐹𝑛1
𝑥1 × · · · × H𝐹𝑛𝑡

𝑥𝑡 .

Similarly, we can decompose L̃′ as L̃′ = H̃1 × · · · × H̃𝑟 , where H̃𝑖 ∩ [L′,L′] = H𝑖 . Therefore,
L̃′𝐹 � H̃𝐹𝑛1

𝑥1 × · · · × H̃𝐹𝑛𝑡

𝑥𝑡 .
Denote 𝐻̃𝑖 := H̃𝐹𝑛𝑖

𝑥𝑖 and 𝐻𝑖 := H𝐹𝑛𝑖

𝑥𝑖 . The block 𝑐0 is strictly quasi-isolated and decomposes as a
direct product 𝑐0 = 𝑐1 ⊗ · · · ⊗ 𝑐𝑡 of blocks that are strictly quasi-isolated in 𝐻𝑖; see the proof of [38,
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Proposition 3.8]. It follows that 𝑄0 = 𝑄1 × · · · × 𝑄𝑡 . Similarly, let 𝑐′ be a block of 𝐿̃ ′ below 𝑐 that
covers 𝑐0. We have a decomposition 𝑐′ = 𝑐1 ⊗ · · · ⊗ 𝑐𝑡 , where 𝑐𝑖 is a block of 𝐻̃𝑖 covering 𝑐𝑖 , and we
obtain a decomposition 𝑄̃ = 𝑄̃1 × · · · × 𝑄̃𝑡 with 𝑄̃𝑖 ∩ 𝐻𝑖 = 𝑄𝑖 . It is therefore enough to show that
C𝐻̃𝑖

(𝑄𝑖) = C𝐻̃𝑖
(𝑄̃𝑖). This follows now from Lemma 11.2. �

12. Reduction to isolated blocks

12.1. Defect groups for groups not of type A

Let G be again simple, simply connected, but from now on, not necessarily of type A. Suppose that
ℓ ≥ 5 and ℓ ≥ 7 if G is of type 𝐸8. Fix an ℓ-block b of Λ𝐺𝑒𝐺𝑠 . We let L∗ be the minimal Levi subgroup
containing C◦

G∗ (𝑠). Let c be a block ofΛ𝑁𝑒𝐿𝑠 with defect group D corresponding to b under the Bonnafé–
Dat–Rouquier Morita equivalence. Let 𝑐0 be a block of 𝐿0 = [L,L]𝐹 lying below c with defect group
𝐷0 satisfying 𝐷0 = 𝐷 ∩ 𝐿0. Again we let Q be the Cabanes subgroup of D so that 𝑄0 := 𝑄 ∩ 𝐷0 is the
Cabanes subgroup of 𝐷0.

Proposition 12.1. With the notation and assumptions as above, we have N𝐿̃ (𝑄0) = N𝐿̃ (𝑄).

Proof. We let 𝑐 be a block of 𝐿̃ covering c with defect group 𝐷̃ satisfying 𝐷̃ ∩ 𝐿 = 𝐷. Let 𝑄̃ be the
Cabanes subgroup of 𝐷̃ such that 𝑄̃ ∩ 𝐿 = 𝑄. As in the proof of Lemma 11.4, it suffices to show that
N𝐿̃ (𝑄̃) = N𝐿̃ (𝑄0).

Since L0 = [L,L] is simply connected, we can write 𝐿0 as

𝐿0 � SL𝑛1 (±𝑞
𝑑1 ) × · · · × SL𝑛𝑟 (±𝑞

𝑑𝑟 ) × 𝐻,

where H is a finite group obtained by taking fixed points under a Frobenius endomorphism of a simple,
simply connected group H (of the same Lie type as G). By individually considering each minimal
F-stable component of L0, it is now easy to construct a regular embedding L0 ↩→ L+ such that

𝐿+ � GL𝑛1 (±𝑞
𝑑1 ) × · · · × GL𝑛𝑟 (±𝑞

𝑑𝑟 ) × 𝐻̃.

Observe that L0 ↩→ L̃ is a second regular embedding. Using [11, Problem 15.2], we deduce that there
exist regular embeddings L̃ ↩→ L̃+ and L+ ↩→ L̃+ such that the so-obtained square is commutative.
Note that the centre of L̃ and L+ is already connected. Therefore, it follows that 𝐿̃+ = 𝐿̃ Z( 𝐿̃+) and
𝐿̃+ = 𝐿+ Z( 𝐿̃+) by Lang’s theorem.

We fix a block 𝑐+ of 𝐿̃+ covering 𝑐 and observe that it has a defect group whose Cabanes group
is 𝑄̃+ := 𝑄̃ Z( 𝐿̃+)ℓ . Furthermore, there exists a block 𝑐+ covering the block 𝑐0 such that 𝑐+ has a
defect group whose Cabanes group is 𝑄+ := 𝑄̃+ ∩ 𝐿+. We obtain N𝐿̃+ (𝑄̃) = N𝐿̃+ (𝑄̃+) = N𝐿̃+ (𝑄+)

since all Cabanes groups differ only by a subgroup central in 𝐿̃+. Therefore, it suffices to show that
N𝐿̃+ (𝑄+) = N𝐿̃+ (𝑄0). Since 𝐿̃+ = 𝐿+ Z( 𝐿̃+), this is equivalent to N𝐿+ (𝑄+) = N𝐿+ (𝑄0).

We are now essentially in the situation of Lemma 11.4. The block 𝑐+ is a block of 𝐿+ covering the
strictly quasi-isolated block 𝑐0 of 𝐿0. Again we argue componentwise as in Lemma 11.4. This deals
with all rational components H of 𝐿0 of type A. If the group H is not of type A, then ℓ � | Z(𝐻) | by [11,
Table 13.11]. Therefore, any ℓ-subgroup of 𝐻̃ is contained in 𝐻Z(𝐻̃), and the claim also follows in this
case. �

Remark 12.2. The proof of the previous proposition also shows that [38, Hypothesis 3.3’] is satisfied
for all groups G.

12.2. Reduction to isolated blocks

We first consider certain blocks of simple groups with exceptional Schur multiplier.
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Lemma 12.3. Let ℓ ≥ 5 and S be a simple group of Lie type A, B or C defined over a field of characteristic
≠ ℓ with exceptional Schur multiplier. Then the Sylow ℓ-subgroups of the universal covering group of S
are cyclic. In particular, the inductive Alperin–McKay condition holds for all ℓ-blocks of the universal
covering group of S.

Proof. An examination of the groups S with exceptional Schur multiplier shows that |𝑆 |ℓ ∈ {1, ℓ} and
ℓ � |𝑀 (𝑆) |, where 𝑀 (𝑆) is the Schur multiplier of S. Therefore, the Sylow ℓ-subgroups of the universal
covering group of S are cyclic. Therefore, the inductive Alperin–McKay condition holds for all ℓ-blocks
of S by the work of Koshitani–Späth; see [24]. �

We can now show that ℓ-blocks of groups of type A are AM-good provided that ℓ ≥ 5. The proof
is very similar to the proof of [38, Theorem 3.14] using all the new ingredients proved up to here. For
what follows, recall from Remark 9.6 that a block b of a finite group G is called AM-good relative to a
subgroup Q if there exists a strong iAM-bijection Ψ : Irr0 (𝐺, 𝑏) → Irr0(N𝐺 (𝑄), 𝐵𝑄).

Theorem 12.4. Let ℓ ≥ 5, and assume that all isolated ℓ-blocks of quasi-simple groups of type A defined
over a field of characteristic ≠ ℓ are AM-good relative to the Cabanes subgroup of their defect group.
Then all ℓ-blocks of quasi-simple groups of type A are AM-good.

Proof. Note that for ℓ ≥ 5, all blocks of simple groups of type A with exceptional Schur multiplier
are AM-good (with respect to the prime ℓ) by Lemma 12.3. By [38, Theorem 3.14] and Remark 12.2,
it suffices to show that the strictly quasi-isolated blocks of G𝐹 , where G is of type A, are AM-good
relative to the Cabanes subgroup of their defect group. We show this statement by induction on the rank
of G.

Assume that b is a strictly quasi-isolated block of G𝐹 that is not isolated. Recall that we have a
decomposition 𝐿0 := 𝐻1 × · · · × 𝐻𝑡 , where the finite groups 𝐻𝑖 are either quasi-simple or solvable. In
the former case, our induction hypothesis implies that the blocks 𝑐𝑖 are AM-good with respect to the
Cabanes subgroup of their defect group. By the proof of [38, Proposition 3.8], we therefore obtain an
iAM-bijection 𝜑0 : Irr0(𝐿0, 𝑐0) → Irr0 (N𝐿0 (𝑄0), (𝐶0)𝑄0). Here, 𝑄0 is the Cabanes subgroup of the
defect group 𝐷0 of 𝑐0 and (𝐶0)𝑄0 := br𝑄0 (𝑐0).

Arguing as in the proof of [38, Lemma 3.9], we obtain a bijection

𝜑0 : Irr0(𝐿0, 𝑐0) → Irr0(N𝐿0 (𝑄0), (𝐶0)𝑄0)

that satisfies

(N𝜒, 𝐿0, 𝜒) ≥𝑏 (NN(𝑄0)𝜑0 (𝜒) ,N𝐿0 (𝑄0), 𝜑0(𝜒))

for every character 𝜒 ∈ Irr0(𝐿0, 𝑐0).
Recall the subgroup T and the block 𝑐 from Definition 10.5. Let 𝑐1 be a block of 𝐿 ′ below 𝑐 with

defect group D. Denote by 𝑇 ′ the stabiliser of 𝑐1 in 𝑁 ′. Lemma 11.4 shows that N𝐿 (𝑄) = N𝐿 (𝑄0),
where Q is the Cabanes subgroup of D. Since 𝑇 ′ stabilises 𝑐1, it follows that N𝑇 ′ (𝑄)/N𝐿′ (𝑄) � 𝑇 ′/𝐿 ′.
From these two facts, we deduce that N𝑇 ′ (𝑄) = N𝑇 ′ (𝑄0).

Suppose first that 𝑇 = 𝑇 ′. Since N𝑇 (𝑄) = N𝑇 (𝑄0), we can argue as in the proof of [38, Lemma
1.12] to obtain an NN(𝑄, 𝐶̂𝑄)-equivariant bijection 𝜑′ : Irr0 (𝑇, 𝑐) → Irr0(N𝑇 (𝑄), 𝐶̂𝑄) such that

(N𝜒, 𝑇, 𝜒) ≥𝑏 (NN (𝑄0)𝜑 (𝜒) ,N𝑇 (𝑄), 𝜑(𝜒))

holds for every character 𝜒 ∈ Irr0(𝑇, 𝑐). Using the equality N𝑇 (𝑄) = N𝑇 (𝑄0), we can argue as in the
proof of [38, Lemma 3.12] and obtain NN (𝑄0)𝜑 (𝜒) = NN (𝑄)𝜑 (𝜒) . We thus obtain

(N𝜒, 𝑇, 𝜒) ≥𝑏 (NN (𝑄)𝜑 (𝜒) ,N𝑇 (𝑄), 𝜑(𝜒)).
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Suppose now that 𝑇 ≠ 𝑇 ′: that is, 𝑇 ′ = 𝐿 ′ and 𝑇 = 𝑁 ′. By arguing as above, we obtain an
NN (𝑄, (𝐶1)𝑄)-equivariant bijection 𝜑′ : Irr0(𝐿

′, 𝑐1) → Irr0(N𝐿′ (𝑄), (𝐶1)𝑄) such that

(N𝜒′ , 𝐿 ′, 𝜒′) ≥𝑏 (NN (𝑄)𝜑′ (𝜒′) ,N𝐿′ (𝑄), 𝜑(𝜒′))

holds for every character 𝜒′ ∈ Irr0(𝐿
′, 𝑐1). Clifford theory yields an NN (𝑄, 𝐶̂𝑄)-equivariant bijection

𝜑 : Irr0 (𝑁
′, 𝑐) → Irr0 (N𝑁 ′ (𝑄), 𝐶̂𝑄). Moreover, by applying [32, Corollary 3.14] to the character

𝜒 := Ind𝑁
′

𝐿′ (𝜒
′), we get

(N𝜒, 𝑁 ′, 𝜒) ≥𝑏 (NN (𝑄)𝜑 (𝜒) ,N𝑁 ′ (𝑄), 𝜑(𝜒)).

The proof of [38, Lemma 3.13] now shows the existence of a bijection 𝜑̃ : Irr(𝑁̃ ′ | Irr0 (𝑐)) →

Irr(N𝑁̃ ′ (𝑄) | Irr0(𝐶̂𝑄)) such that 𝜑̃ together with the bijection 𝜑 : Irr0 (𝑇, 𝑐) → Irr0(N𝑇 (𝑄), 𝐶̂𝑄)
satisfies assumptions (i)–(iii) of Theorem 9.2 and Theorem 10.6, respectively.

We can therefore apply Theorem 9.2 (respectively Theorem 10.6) and obtain that the block b is
AM-good with respect to the Cabanes subgroup Q. �

Corollary 12.5. The inductive Alperin–McKay condition holds for all ℓ-blocks of quasi-simple groups
of type A, whenever ℓ ≥ 5 is a nondefining prime.

Proof. By Theorem 12.4, it is enough to show that the isolated (that means unipotent) ℓ-blocks of type
A are AM-good relative to the Cabanes subgroup of their defect group. Let d denote the order of q
modulo ℓ.

Suppose first that ℓ � (𝑞 − 𝜀). Consider a unipotent block b of G𝐹 . We fix a block 𝑏̃ of G̃𝐹 covering
b. We observe that 𝑏̃ has the same defect group as b. There exists a d-cuspidal pair (K, 𝜁) of (G̃, 𝐹)
associated to 𝑏̃. By the proof of [11, Theorem 22.9], it follows that𝑄 := Z(K)𝐹ℓ is the Cabanes subgroup
of a defect group D of b, and we have K = CG̃(𝑄). Since Q is characteristic in K, it follows that
NG̃(K) = NG̃ (𝑄). Note that unipotent blocks satisfy the requirements of [8, Corollary 6.1]. Therefore,
[8, Corollary 6.1] shows that b is AM-good relative to N𝐺 (K) = N𝐺 (𝑄).

Assume now that ℓ | (𝑞 − 𝜀). It is well known (see [11, Example 22.10] and [11, Remark 22.11])
that in this case, G̃𝐹 and also therefore G𝐹 has only one unipotent ℓ-block. This is the principal block
of G𝐹 and therefore has maximal defect group. In particular, this block is AM-good relative to N𝐺 (S),
where S is the centraliser of a Sylow Φ𝑑-torus of G, by the main theorem of [12]. It is thus sufficient to
show that NG(𝑄) = NG(S). Since ℓ | (𝑞 − 𝜀), we know that S is the diagonal torus of G. Again by the
proof of [11, Theorem 22.9], it follows that 𝑄 = S𝐹ℓ is the Cabanes subgroup of a defect group of b and
CG(𝑄) = S = CG(S). This implies NG(𝑄) = NG(S), which proves the claim. �

Theorem 12.6. Let ℓ ≥ 5, and let X be one of the symbols B or C. Assume that all isolated ℓ-blocks of a
quasi-simple group of type X are AM-good relative to the Cabanes subgroup of the defect group. Then
all ℓ-blocks of quasi-simple groups of type X are AM-good.

Proof. Assume first that 𝑛 = 2 and q is even. Then Z(G) is trivial, so the isolated ℓ-blocks of G𝐹 are
precisely the quasi-isolated ℓ-blocks. The statement is then a consequence of the main theorem of [38].
We also observe that for ℓ ≥ 5, all blocks of simple groups of type X with nonexceptional Schur multiplier
are AM-good by Lemma 12.3. We can therefore assume that we are in none of these exceptional cases.

Fix an ℓ-block b of ΛG𝐹 𝑒G𝐹

𝑠 (not necessarily quasi-isolated), where G is of type X and 𝑠 ∈ (G∗)𝐹
∗

is semisimple of ℓ′-order.
In contrast to the proof of Theorem 12.4, we don’t need to argue by induction. We let L∗ be the

minimal Levi subgroup of G∗ containing C◦
G∗ (𝑠) and let L be the Levi subgroup dual to L∗. We let

A := 〈𝐹0〉 as in Theorem 4.2. Let c be the block of ΛN𝐹 𝑒L𝐹

𝑠 corresponding to b under the Bonnafé–
Dat–Rouquier equivalence from Theorem 4.2, and let 𝑐0 be a block of 𝐿0 := [L,L]𝐹 below c. We
conclude that the block 𝑐0 is then an isolated block of 𝐿0. As in the proof of Theorem 12.4, we obtain a
decomposition 𝐿0 = 𝐻1 × · · · × 𝐻𝑡 into groups that are either quasi-simple of type A or X or solvable
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and a corresponding decomposition 𝑐0 = 𝑐1 ⊗ · · · ⊗ 𝑐𝑡 of 𝑐0 into block 𝑐𝑖 , which are isolated in 𝐻𝑖 . Our
assumption together with the proof of Corollary 12.5 implies that these blocks are AM-good relative to
the Cabanes subgroup of their defect group. Following the proof of Theorem 12.4 (using Remark 9.5
instead of Theorem 9.2, and using Proposition 12.1 instead of Lemma 11.4), we deduce that the block
b is AM-good relative to the ℓ-subgroup Q. �

13. A variant of Späth’s reduction theorem

In her paper [42], Späth shows that the Alperin–McKay conjecture holds for every finite group if and
only if the inductive Alperin–McKay condition holds for every simple group. Our aim here is to modify
her proof to get a similar statement involving preferably only blocks with abelian defect. Unfortunately,
in her proof, it is necessary to consider central extensions of groups, and a block might have an abelian
defect group, whereas a block of a central extension dominating it might not. Therefore, we need to
consider blocks whose defect group lies in a slightly larger class of groups.

For the following definition, recall that if G is a finite group, its upper central series is defined
recursively as 𝑍0(𝐺) := 1 and Z𝑖 (𝐺) is the unique subgroup of G containing Z𝑖−1(𝐺) such that
Z𝑖 (𝐺)/Z𝑖−1(𝐺) = Z(𝐺/Z𝑖−1(𝐺)).

Definition 13.1. We say that a subgroup D of a finite group G is almost abelian in G if there exists an i
such that 𝐷 Z𝑖 (𝐺)/Z𝑖 (𝐺) is abelian.

Observe that the property of D being almost abelian can depend on the ambient group G. Moreover,
if one considers the hypercentre Z∞(𝐺) of G (i.e., the union of all Z𝑖 (𝐺) for 𝑖 ≥ 0), then D is almost
abelian in G if and only 𝐷 Z∞(𝐺)/Z∞(𝐺) is abelian.

Lemma 13.2. Suppose that D is almost abelian in G:

(a) Let H be a subgroup of G and 𝐸 ≤ 𝐻 ∩ 𝐷. Then E is almost abelian in H.
(b) For 𝑗 = 1, 2, the groups 𝐷 𝑗 are almost abelian in 𝐺 𝑗 if and only if 𝐷1 × 𝐷2 is almost abelian in

𝐺1 × 𝐺2.
(c) A subgroup E of G is almost abelian in G if and only if 𝐸 Z(𝐺)/Z(𝐺) is almost abelian in 𝐺/Z(𝐺).

Proof. Let us first prove part (a). By assumption, there is an i such that 𝐷 Z𝑖 (𝐺)/Z𝑖 (𝐺) is abelian. By
induction, one easily shows that Z𝑖 (𝐺) ∩𝐻 � Z𝑖 (𝐻). From this, we deduce that (𝐷∩𝐻 ) Z𝑖 (𝐻 )

Z𝑖 (𝐻 )
is abelian.

Therefore, 𝐷 ∩ 𝐻 is almost abelian in H. Consequently, 𝐸 ≤ 𝐷 ∩ 𝐻 is almost abelian as well.
For part (b), we observe that Z𝑖 (𝐺1 × 𝐺2) = Z𝑖 (𝐺1) × Z𝑖 (𝐺2). Thus

(𝐷1 × 𝐷2) Z𝑖 (𝐺1 × 𝐺2)

Z𝑖 (𝐺1 × 𝐺2)
�
𝐷1 Z𝑖 (𝐺)

Z𝑖 (𝐺)
×
𝐷2 Z𝑖 (𝐺)

Z𝑖 (𝐺)
,

and the claim follows from this.
For part (c), one first shows by induction that Z𝑖−1(𝐺/Z(𝐺)) = Z𝑖 (𝐺)/𝑍 (𝐺) for all i. Hence,

𝐷 Z(𝐺)/Z(𝐺) is almost abelian in 𝐺/Z(𝐺) if and only if there exists an i such that

Z𝑖 (𝐺/Z(𝐺))𝐷 Z(𝐺)/Z(𝐺)

Z𝑖 (𝐺/Z(𝐺))
�

Z𝑖+1(𝐺)𝐷

Z𝑖+1(𝐺)

is abelian. From this, is follows that 𝐷 Z(𝐺)/Z(𝐺) is almost abelian in 𝐺/Z(𝐺) if and only if D is
almost abelian in G. �

The aim of this section is to prove the following variant of [42, Theorem C]. We closely follow the
proof of [12, Proposition 2.5].

Proposition 13.3. Let X be a finite group and ℓ a prime. Assume that for every nonabelian simple
subquotient S of X with ℓ | |𝑆 |, the following holds: Every ℓ-block of the universal covering group H
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of S with almost abelian defect group satisfies the iAM-condition. Then the Alperin–McKay conjecture
holds for any ℓ-block of X with an almost abelian defect.

For a finite group X, let 𝐹∗(𝑋) be its generalised Fitting subgroup.

Proposition 13.4. Let X be a finite group and b an ℓ-block of X with an almost abelian defect. Suppose
that the Alperin–McKay conjecture is true for any ℓ-block with almost abelian defect group of any group
H with |𝐻 : Z(𝐻) | < |𝑋 : Z(𝑋) | and such that H is isomorphic to a subquotient of 𝑋/Z(𝑋). Then one
of the following holds:

(i) The Alperin–McKay conjecture holds for b.
(ii) For any noncentral normal subgroup K of X, we have 𝑋 = 𝐾 N𝑋 (𝐷)𝐹∗(𝑋).

Proof. Let 𝐾 � 𝑋 be a noncentral normal subgroup of X. Replacing K by 𝐾 Z(𝑋) if necessary, we can
assume that Z(𝑋) ≤ 𝐾 . By assumption, the Alperin–McKay conjecture is true for every block with
almost abelian defect of any central extension of 𝑋/𝐾 . An analysis of the proof of [29, Theorem 6]
then shows that the proof of said theorem can be adapted, and we obtain | Irr0 (𝐵) | = | Irr0 (𝑏) |, where
𝐵 ∈ Bl(𝐾 N𝑋 (𝐷)) is the unique block with 𝐵𝑋 = 𝑏. If 𝐾 N𝑋 (𝐷) is a proper subgroup of X, then our
assumption implies that the Alperin–McKay conjecture holds for the block B of 𝐾 N𝑋 (𝐷). Therefore,
| Irr0(𝐵) | = | Irr0 (𝐵𝐷) |, where 𝐵𝐷 is the Brauer correspondent of b. This would imply that the Alperin–
McKay conjecture holds for b. Since the generalised Fitting subgroup 𝐹∗(𝑋) is such a noncentral normal
subgroup of X, this argument shows in particular that 𝑋 = 𝐹∗(𝑋) N𝑋 (𝐷). �

Proof of Proposition 13.3. The proof of the statement is by induction on |𝑋 : Z(𝑋) |. We let b be an
ℓ-block of X with almost abelian defect group D. We let 𝐵𝐷 be its Brauer correspondent in N𝑋 (𝐷).

According to Proposition 13.4, we may assume that X and b satisfy the statement in Proposition
13.4(ii). Consequently, any normal ℓ-subgroup of X is central. As in [42, Section 6 and 7], we distinguish
two cases.

Assume that there exists a normal noncentral subgroup 𝐾 � 𝑋 with 𝐾 ≤ 𝐹∗(𝑋). If 𝐾 ∩ 𝐷 ≤ Z(𝑋),
then | Irr0 (𝑏) | = | Irr0 (𝐵𝐷) |, according to [42, Proposition 6.6].

Assume otherwise that the Fitting subgroup is central in X and 𝐸 (𝑋), the group of components of X, is
noncentral. Inside 𝐸 (𝑋), we can take a normal subgroup 𝐾 �𝑋 such that 𝐾 = [𝐾, 𝐾] and 𝐾/Z(𝐾) � 𝑆𝑟
for a nonabelian simple group S and an integer 𝑟 ≥ 1. The proof of [29, Proposition 9(ii)] shows that
the block b covers a unique block 𝑏0 of K. Note that 𝐷0 := 𝐷 ∩ 𝐾 is a defect group of 𝑏0, which is
almost abelian by Lemma 13.2(a). Let 𝐺̃ = 𝐺𝑟 be the universal covering group of 𝐾/Z(𝐾) � 𝑆𝑟 , where
G is the universal covering group of S. Let 𝜋 : 𝐺̃ → 𝑆𝑟 be the associated quotient map. Let 𝑏̃0 be a
block of 𝐺̃ dominating 𝑏0. Again Lemma 13.2 ensures that 𝑏̃0 has an almost abelian defect group 𝐷̃.
Following the proof of [42, Theorem 7.9], we obtain a bijection Ω̃ : Irr(𝐺̃, 𝑏̃0) → Irr(𝑀̃, 𝐵̃0). Here,
𝑀̃ is a suitably defined subgroup of 𝐺̃ containing N𝐺̃ (𝐷̃) and 𝐵̃𝐺̃0 = 𝑏̃0. From this, the proof of [42,
Theorem 7.9] then yields a bijection Ω̂ : Irr(𝐾, 𝑏0) → Irr(𝑀 N𝐾 (𝐷0), 𝐵0) having the properties of
the bijection in the statement of [42, Theorem 7.9]. Here, 𝑀 := 𝜋(𝑀̃) and 𝐵0 is the unique block of
𝑀 N𝐾 (𝐷0) with 𝐵𝐾0 = 𝑏0. Using the counting argument in the proof of [42, Theorem C], we can then
deduce that | Irr0 (𝑋, 𝑏) | = | Irr0 (𝑀 N𝑋 (𝐷0), 𝐵) |.

Since |𝑀 N𝑋 (𝐷0)/Z(𝑋) | < |𝑋/Z(𝑋) |, we can apply the induction hypothesis, and we conclude that
| Irr0(𝑀 N𝑋 (𝐷0), 𝐵) | = | Irr0 (N𝑋 (𝐷), 𝐵𝐷) |, where 𝐵𝐷 is the Brauer correspondent of b. �

14. The Alperin–McKay conjecture for 2-blocks with abelian defect group

14.1. Classification of 2-blocks with abelian defect group

We start by recalling the following classification of quasi-isolated 2-blocks of finite groups of Lie type
(see [17, Lemma 5.2]):

Lemma 14.1. Assume that p is odd and G is simple, simply connected. Let b be a quasi-isolated 2-block
of G with semi-simple label 𝑠 ∈ G∗.

https://doi.org/10.1017/fms.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.36


38 Lucas Ruhstorfer

(a) Suppose that b has abelian defect groups. Then one of the following holds:
(i) G is of type 𝐴𝑛, n is even and 𝐶◦

G∗ (𝑠) is a torus.
(ii) G is of type 𝐺2, 𝐹4, 𝐸6 or 𝐸8, 𝑠 = 1 and b is of defect 0.

(b) Suppose that b has nonabelian defect groups, but for some central 2-subgroup Z of G𝐹 , the image
𝑏 in 𝐺/𝑍 has abelian defect group. Then Z is cyclic of order 2 and one of the following holds:

(i) G is of type 𝐴𝑛, 𝑛 ≡ 1 mod 4 and the defect groups of 𝑏 are 𝐶2 × 𝐶2.
(ii) G is of type 𝐸7 and the defect groups of 𝑏 are 𝐶2 × 𝐶2.

In the following remark, we collect some additional information from the proof of [17, Lemma 5.2].

Remark 14.2.

(a) If we assume additionally that the blocks in part (b)(i) are isolated (i.e., unipotent), then the proof
of [17, Lemma 5.2] shows that G𝐹 � 𝐴1(𝑞) and 𝑞 ≡ ±3 mod 8. Moreover, their defect groups are
isomorphic to the quaternion group 𝑄8.

(b) The blocks in (b)(ii) occur only if 4 | | (𝑞 − 1). These blocks are unipotent, and their defect groups
are isomorphic to the dihedral group 𝐷8. They correspond to lines 3 and 7 of the table on page 354
of [18].

Our aim is now to show the iAM-condition for all isolated blocks of positive defect occurring in the
classification of Lemma 14.1.

14.2. On a certain 2-block of 𝐸7 (𝑞)

In this subsection, we consider the block b of 𝐸7(𝑞) occurring in part (b)(ii) of the classification of
Lemma 14.1. The author is very grateful to Gunter Malle for pointing out the proof of the following
proposition to him.

Proposition 14.3. Let b be one of the blocks of 𝐺 = 𝐸7 (𝑞) occurring in Lemma 14.1(b)(ii). Then we
have | Irr0(𝑏) | = 4 and | Irr(𝑏) | = 5. Furthermore, the height zero characters of b have Z(𝐺) in their
kernel and are as follows:

(i) Two unipotent characters 𝜒1, 𝜒2.
(ii) Two nonunipotent characters 𝜒3, 𝜒4 that are conjugate under the diagonal automorphism of G.

Proof. Let q be a prime power such that 4| | (𝑞 − 1). Set 𝐺 = 𝐸7(𝑞)𝑠𝑐 and 𝑆 = 𝐺/𝑍 (𝐺), the simple
group of type 𝐸7(𝑞). We consider the unipotent 2-block b of G parametrised by the 1-cuspidal pair
(𝐸6, 𝐸6 [𝜃]) (and its Galois conjugate block (𝐸6, 𝐸6 [𝜃

2]) for which all arguments apply similarly).
Firstly, we note that according to the description in [18, 3.2], the defect group of b is isomorphic to the

dihedral group 𝐷8. By [39, Theorem 8.1], we can therefore deduce that | Irr0 (𝑏) | = 4 and | Irr(𝑏) | = 5.
Moreover, the unique block 𝑏 of S dominated by b has defect group 𝐶2 × 𝐶2. Hence, by [39, Theorem
8.1], we know that 4 = | Irr(𝑏) | = | Irr0 (𝑏) |; thus the unique character in Irr(𝑏) with positive height is
nontrivial on Z(𝐺), and it is unique with this property among the irreducible characters of b. We will
now describe the character of Irr(𝑏) in more detail.

According to [18, Theorem B], the ordinary characters in b are described as follows: let 𝑡 ∈ 𝐺∗ =
𝐸7 (𝑞)ad be a (semisimple) 2-element such that 𝐶◦

G∗ (𝑡) has a Levi subgroup of type 𝐸6. Then b contains
those elements of E(𝐺, 𝑡) that under Jordan decomposition correspond to characters in the 1-Harish-
Chandra series of C◦

G∗ (𝑡) above (𝐸6, 𝐸6 [𝜃]), and moreover, these are the only characters in b.
In our particular case, the only centraliser in G∗ that can possibly contain a Levi subgroup of type 𝐸6

is, apart from G∗ itself, also of type 𝐸6. Now the centraliser of 𝐸6 (𝑞) in 𝐸7 (𝑞) is 𝐾 := 𝐸6(𝑞) (𝑞 − 1),
so its centre has order (𝑞 − 1). Given that 4| | (𝑞 − 1), there are hence only four 2-elements t in Z(𝐾):
the identity, an involution and two elements of order 4. Clearly the centraliser of the identity is all of
𝐺∗. Now 𝑁 (𝐾) = 𝐾.2 (by a calculation in the Weyl group), so for the involution 𝑡 ∈ Z(𝐾), we have
C𝐺∗ (𝑡) = 𝐾.2 (that is, the centraliser of t in G∗ is disconnected). Thus there are two characters, say
𝜒3 and 𝜒4, of b in that geometric Lusztig series Ẽ(𝐺, 𝑠) fused by the diagonal automorphism of G. On
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the other hand, 𝑁 (𝐾) acts nontrivially on Z(𝐾) (again by a calculation in the Weyl group), so the two
elements t of order 4 in Z(𝐾) are 𝐺∗-conjugate and moreover C𝐺∗ (𝑡) = 𝐾 . So here, E(𝐺, 𝑡) contains
one character 𝜒5 in b, which is left invariant under the diagonal automorphism.

From these calculations, it necessarily follows from | Irr(𝑏) | = 5 that E(𝐺, 1) contains two characters
𝜒1 and 𝜒2 of b (in fact, these are the irreducible characters lying in the Harish-Chandra series of 𝐸6 (𝜃)).
These characters have Z(𝐺) in their kernel. The characters 𝜒3 and 𝜒4 are 𝐺̃-conjugate and thus have the
same underlying character of the centre. From this, we deduce that 𝜒5 has to be the unique character of
b, which is nontrivial on Z(𝐺). From this, our arguments above show that Irr0 (𝐺, 𝑏) = {𝜒1, 𝜒2, 𝜒3, 𝜒4}.

An entirely similar argument applies when 4| | (𝑞 + 1); here all groups 𝐸6(𝑞) have to be replaced by
2𝐸6(𝑞) and all (𝑞 − 1) by (𝑞 + 1). �

To prove the iAM-condition for the block b, we also need to compute the action of group automor-
phisms on the height zero characters of its Brauer correspondent. The information given in [18] does
not seem sufficient for this. Instead, we will try to obtain all the necessary local information from the
invariants of the block b.

The following proposition is a consequence of [39, Proposition 10.26].

Proposition 14.4. Let H be a group isomorphic𝐶2×𝐶2 or 𝐷8, and for 𝑛 ≥ 1, consider a group extension

1 −→ 𝐻 −→ 𝐷 −→ 𝐶2𝑛 −→ 1.

Then the invariants for every block of a finite group with defect group D are known.

Proof. We must show that the exceptions listed in [39, Proposition 10.26] do not occur if H is as in the
statement of our proposition. The first assumption on the coupling 𝜔 in [39, Proposition 10.26] can be
easily verified by examining the automorphism group structure of 𝐶2 ×𝐶2 and 𝐷8, respectively. We are
therefore left to show that D is not isomorphic to 𝐶2𝑚 � 𝐶2 for all 𝑚 ≥ 3. For 𝐻 � 𝐶2 × 𝐶2, this follows
from the proof of [39, Proposition 10.26].

Assume therefore that 𝐻 � 𝐷8 and 𝐻 � (𝐶2𝑚 ×𝐶2𝑚 ) �𝐶2. There exists an element 𝑎 ∈ 𝐻 that is not
contained in the base group 𝐶2𝑚 ×𝐶2𝑚 . This element must act on the base group by interchanging both
components. Let 𝑔 ∈ 𝐶2𝑚 be a generator. Then it follows that 𝑎 (𝑔,1) = (𝑔, 𝑔−1)𝑎, so (𝑔, 𝑔−1) ∈ 𝐷8. This
implies that 𝑚 ≤ 2. �

Lemma 14.5. Let b be a block of a finite group G with defect group D. Suppose that B is a block
of a subgroup M of G containing N𝐺 (𝐷) with 𝐵𝐺 = 𝑏. Let 𝐴 ⊆ Aut(𝐺) be a finite cyclic subgroup
stabilising M. Assume that the Alperin–McKay conjecture holds for every block of 𝐺 � 𝐴 and 𝑀 � 𝐴
covering b and B, respectively.

(a) If A is a simple cyclic group or an ℓ-group, then the number of A-invariant characters in Irr0 (𝑏) is
equal to the number of A-invariant characters of Irr0(𝐵).

(b) We have Irr0(𝑏) = Irr0 (𝑏)
𝐴 if and only if Irr0 (𝐵) = Irr0(𝐵)

𝐴.

Proof. This follows from the proof of [42, Lemma 8.1]. �

Proposition 14.6. Let b be one of the blocks of 𝐺 = 𝐸7(𝑞) occurring in Lemma 14.1(b)(ii). Then b is
AM-good relative to its defect group.

Proof. Let Gad be the adjoint quotient of G. There exists a Frobenius endomorphism F on Gad that
commutes with the quotient map 𝜋 : G → Gad. Then 𝜋 induces an injective map 𝜋 : 𝑆 → 𝐺ad, where
𝐺ad := G𝐹ad and𝐺ad induces all diagonal automorphisms on S. More precisely, we have 𝐺̃/Z(𝐺̃) � 𝐺ad.

Let D be a defect group of b and B be its Brauer correspondent in N𝐺 (𝐷). We first construct
an Aut(𝐺)𝑏,𝐷-equivariant bijection Irr0(𝐺, 𝑏) → Irr0(N𝐺 (𝐷), 𝐵). Let 𝛿 : 𝐺 → 𝐺 be a diagonal
automorphism induced by the action of an element of𝐺ad, and let 𝐹0 : 𝐺 → 𝐺 be a generator of the group
of field automorphisms of G that together generate Out(𝐺). We first observe that the characters 𝜒1, 𝜒2
are 〈𝛿, 𝐹0〉-stable by [25, Theorem 2.5]. Moreover, Proposition 14.3 together with [38, Theorem 2.11]
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implies that 〈𝛿, 𝐹0〉𝜒𝑖 = 〈𝐹0〉 for 𝑖 = 3, 4. In particular, the block b is 〈𝛿, 𝐹0〉-stable, and thus we can
assume (by possibly replacing these automorphisms by a G-conjugate) that D is 〈𝛿, 𝐹0〉-stable.

We denote by c either block b or B. Moreover, we let 𝑐 be the unique block of 𝑆 := 𝐺/𝑍 (𝐺),
respectively N𝐺 (𝐷)/Z(𝐺), which is dominated by c. As in the proof of Proposition 14.3, we find
that | Irr0(𝑐) | = 4 and | Irr(𝑐) | = | Irr0(𝑐) | = 4. Therefore, the quotient map induces a bijection
Irr0 (𝑐) → Irr(𝑐). Note that the defect group 𝐷 := 𝐷/Z(𝐺) of the block c has a defect group isomorphic
to 𝐶2 × 𝐶2. According to Proposition 14.4, we can therefore apply Lemma 14.5 to the automorphisms
𝛿 and 𝐹0. Using Proposition 14.3, we find that every character of Irr0(𝐵) is 𝐹0-stable. Moreover, there
exist two characters 𝜓1, 𝜓2 ∈ Irr0 (𝐵) that are 𝛿-stable, and the other two characters 𝜓3, 𝜓4 ∈ Irr0(𝐵) are
𝛿-conjugate. We therefore obtain that the bijection Irr0(𝑏) → Irr(𝐵), 𝜒𝑖 ↦→ 𝜓𝑖 , is 〈𝛿, 𝐹0〉-equivariant.

We now show that the characters of Irr0 (𝑏) and Irr0 (𝐵) extend to their inertia groups in 𝐺ad〈𝐹0〉 and
N𝐺ad 〈𝐹0 〉 (𝐷), respectively. Since 𝜒1, 𝜒2 are unipotent characters, it follows that they extend to 𝐺ad〈𝐹0〉;
see, for example, [25, Theorem 2.4]. For 𝑖 = 3, 4 the stabiliser quotient (𝐺ad〈𝐹0〉)𝜒𝑖/𝑆 of 𝜒𝑖 is cyclic,
so 𝜒𝑖 extends to its inertia group in 𝐺ad〈𝐹0〉. Similarly, for 𝑖 = 3, 4 the local character 𝜓𝑖 also extends
to its inertia group in N𝐺ad 〈𝐹0 〉 (𝐷). It is therefore left to show that 𝜓1 and 𝜓2 extend to 𝐺ad〈𝐹0〉 as well.
We let 𝑏2 be a block of 𝐺ad〈𝐹0〉 covering 𝑏. Let 𝐷2 be a defect group of 𝑏2 such that 𝐷2 ∩ 𝑆 = 𝐷. We
observe that 𝐷1 := 𝐷2 ∩𝐺ad is a defect group of the unique block 𝑏1 of 𝐺ad covering 𝑏. Since Brauer’s
height zero conjecture holds for blocks with defect group of order 8 (see, e.g., [39, Theorem 13.1] and
[39, Theorem 8.1]), it follows that 𝐷1 is nonabelian. Since | Irr(𝑏1) | = 5, we must have 𝐷1 � 𝐷8; see
for instance [39, Theorem 8.1]. From this, it follows that 𝐷2 is a cyclic extension of 𝐷8. Let 𝐵1 be the
Harris–Knörr correspondent of 𝑏1 in N𝐺ad (𝐷). Again, Proposition 14.4 ensures that Lemma 14.5 is
applicable to the automorphism 𝐹0. Since every character of Irr0 (𝑏1) is 𝐹0-stable, the same is true for
every character of Irr0 (𝐵1). Since Irr0(𝐵1) consists of the four extensions of 𝜓1 and 𝜓2 to𝐺ad, it follows
that 𝜓1 and 𝜓2 must necessarily extend to 𝐺ad〈𝐹0〉.

It is now easy to show that the above information is enough to verify the inductive conditions.
For this, we observe that we can choose extensions 𝜒̂𝑖 ∈ Irr((𝐺ad〈𝐹0〉)𝜒𝑖 ) of 𝜒𝑖 and extensions 𝜓̂𝑖 ∈
Irr((N𝐺ad 〈𝐹0 〉 (𝐷))𝜓𝑖 ) of 𝜓𝑖 lying in Harris–Knörr corresponding blocks. It follows from [43, Lemma
2.15] and [43, Proposition 4.4] that the inductive Alperin–McKay condition (in the version of [43,
Definition 4.2]) is satisfied for the block b of G. �

14.3. The inductive Alperin–McKay condition for SL2(F𝑞)

Proposition 14.7. The iAM-condition holds for the principal 2-block of G𝐹 = SL2(F𝑞) relative to its
defect group.

Proof. By [6], we can assume that G𝐹 has nonexceptional Schur multiplier. We follow the proof (and
notation) of Proposition 14.6. Using [11, Theorem 21.14], it’s easy to see that the principal block b is
the unique 2-block of maximal defect. Hence, Irr0 (𝑏) = Irr2′ (𝐺) and Irr0(𝐵) = Irr2′ (N𝐺 (𝐷)), where B
is the Brauer correspondent of b.

We place ourselves in the situation of [19, Section 15], where it was shown that 𝑆 = 𝐺/Z(𝐺) is
McKay-good. More precisely, it was shown that there exist an intermediate subgroup N𝐺 (𝐷) ⊂ 𝐻 and an
Aut(𝐺)𝐻 -equivariant bijection Irr2′ (𝐺) → Irr2′ (𝐻). Modifying their bijection, we obtain an Aut(𝐺)𝐷-
equivariant bijection Irr0(𝐺, 𝑏) → Irr0(N𝐺 (𝐷), 𝐵). This bijection preserves central characters since
every 2′-character of G, respectively N𝐺 (𝐷), has the 2-group Z(𝐺) in its kernel. One then checks that
all characters of Irr0(𝑆, 𝑏) extend to their inertia group in 𝐺ad〈𝐹0〉 (the stabiliser is either cyclic or the
characters are unipotent). Similarly, one also checks that the characters of Irr0 (N𝑆 (𝐷), 𝐵) extend to their
inertia group: If D is self-normalising, then every character in Irr0(N𝑆 (𝐷), 𝐵) is linear, and one can
check the claim by explicit computations. Otherwise, both characters of Irr0(N𝐺 (𝐷), 𝐵) with noncyclic
inertia group in Out(𝐺) are unipotent characters of N𝐺 (𝐷) � SL2(3), and their extension to the inertia
group follows again from explicit computations. Now, using similar arguments as in Proposition 14.6
shows that the block b is AM-good. �
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14.4. Groups with exceptional Schur multiplier

After having checked the iAM-condition for all quasi-isolated 2-blocks of groups of Lie type with
almost abelian defect group in nondefining characteristic, we are left to show the iAM-condition for the
remaining simple groups and blocks under consideration.

Proposition 14.8. Suppose that S is a finite simple nonabelian group that is not a group of Lie type in
odd characteristic with generic Schur multiplier. Then the inductive Alperin–McKay condition holds for
all 2-blocks with almost abelian defect group of the universal covering group X of S.

Proof. Observe first that the iAM-condition holds for all simple sporadic groups by [6]. Assume that S
is a simple group of Lie type in characteristic different from 2 with exceptional Schur multiplier, and let
X be its universal covering group. Then S is one of the following groups: 𝐴1(9), 2𝐴3(3), 𝐵3(3) or𝐺2(3).
According to [6], both 𝐴1(9) � 𝐴6 and 𝐺2(3) are AM-good. Observe that the blocks of the universal
covering groups of 2𝐴3(3) and 𝐵3 (3) with maximal defect have a defect group that is not almost abelian.
Recall that every defect group of X contains Z(𝑋)ℓ . An inspection of the blocks of the universal covering
group of 2𝐴3(3) using [7] now shows that all 2-blocks with almost abelian defect groups have central
defect. Therefore, there is nothing to check in this case. For the universal covering group of 𝐵3 (3), the
same arguments easily rule out all blocks except the blocks denoted by 2, 3, 8 and 9 in [7].

We claim that the blocks 2, 8 and 9 of X have a defect group that is not almost abelian. For this, let
b be any of these blocks. Consider a central extension 𝑋 → 𝑋 ′ whose kernel is of order 2. According
to [33, Theorem 9.10], we obtain a bijection 𝑏 → 𝑏 between blocks of X and 𝑋 ′. The block of 𝑋 ′

corresponding to b under this bijection has, according to [33, Theorem 9.10], a defect group of order 8
and still two Brauer characters. The groups 𝐶8 and 𝐶2 × 𝐶4 admit no automorphisms of odd order. By
the remarks following [39, Theorem 1.30], we therefore deduce that these groups arise as defect groups
of nilpotent blocks only. Moreover, any block with defect group 𝐶2 × 𝐶2 × 𝐶2 can’t have exactly two
Brauer characters; see [39, Theorem 13.1]. Since the block 𝑏 is not nilpotent (it has 2 Brauer characters),
its defect group is therefore not abelian. Since 𝑋 ′ is a 3-cover of S, we deduce that the block b cannot
have an almost abelian defect group.

It therefore remains to consider the block labeled 3 in [7]. This block can, however, be considered
a block of the 2-cover of S – that is, as a block of G𝐹 – and can therefore be treated as a block with
nonexceptional covering group. Using the reduction theorem in [38], we can thus conclude that this
block is AM-good.

For alternating groups, the inductive AM condition is known to hold by the main result of [14] and
[42, Corollary 8.3]. By [26], the iAM-condition holds for Suzuki and Ree groups.

Finally, let us assume that S is a simple group of Lie type defined over a field of characteristic 2. Let
G𝐹 be such that G𝐹/Z(G𝐹 ) � 𝑆. As before, let X be the universal covering group of S. Then there
exists a surjective homomorphism 𝑋 → G𝐹 whose kernel is the Sylow 2-group Z of Z(𝐺̂). According
to [33, Theorem 9.10], we obtain a bijection 𝐵 → 𝐵 between blocks of 𝐺̂ and G𝐹 that maps blocks
with almost abelian defect to each other.

It is known (see [11, Theorem 6.18]) that the only 2-blocks of G𝐹 are blocks of maximal defect
and blocks of height zero. Therefore, we must consider the cases where a Sylow 2-subgroup of S is
abelian. However, this is precisely the case when 𝑆 � 𝐴1(±2 𝑓 ). Again by the work of Breuer [6], we
know that S is AM-good whenever S has an exceptional Schur multiplier. Using the properties of the
bijection constructed in [41] in conjunction with [12, Theorem 4.1] shows that the principal block of S
is AM-good. �

Theorem 14.9. Suppose that S is a finite simple group of Lie type in characteristic unequal to 2 with
nonexceptional Schur multiplier. Then the inductive Alperin–McKay condition holds for all 2-blocks
with almost abelian defect group of the universal covering group X of S.

Proof. Let G be a simple, simply connected algebraic group and 𝐹 : G → G a Frobenius endomorphism
such that 𝑆 = G𝐹/Z(G𝐹 ). We fix a 2-block b of G𝐹 with an almost abelian defect group. We want to
show that b is AM-good relative to its defect group.
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Using the proof of [38, Theorem 3.14], we see that the statement of [38, Theorem 3.14] can be
adapted to our situation as follows: If [38, Hypothesis 3.3] holds for all blocks with almost abelian
defect groups, then the block b is AM-good. In other words, we can assume that the 2-block b of G𝐹 is
strictly quasi-isolated. According to Lemma 14.1, all these blocks are unipotent unless G is of type A.
Suppose therefore that G is of type A and 𝑠 ≠ 1. The assumptions of Lemma 11.2 apply. We can therefore
use the proof of Theorem 12.4 to show that we can also assume in this case that the block is unipotent.
It therefore suffices to check that the iAM-condition holds for the unipotent blocks occurring in Lemma
14.1. Using Remark 14.2, we see that this was checked in Proposition 14.6 and Proposition 14.7. �

Theorem 14.10. The Alperin–McKay conjecture holds for all 2-blocks of almost abelian defect.

Proof. According to Proposition 13.3, to show the theorem, it is sufficient to prove the iAM-condition
for all ℓ-blocks with almost abelian defect of the universal covering group of a simple finite group. The
iAM-condition in these cases has been verified in Theorem 14.9 and Proposition 14.8. �
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