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Abstract. Information theory, as first introduced by Claude Shannon
(Shannon & Weaver 1949) quantitatively evaluates the organizational
complexity of communication systems. At the same time George Zipf was
examining linguistic structure in a way that was mathematically similar
to the components of the Shannon first-order entropy (Zipf 1949). Both
Shannon’s and Zipf’s mathematical procedures have been applied to an-
imal communication and recently have been providing insightful results.
The Zipf plot is a useful tool for a first estimate of the characterization of
a communication system’s complexity (which can later be examined for
complex structure at deeper levels using Shannon entropic analysis). In
this paper we shall discuss some of the applications and pitfalls of using
the Zipf distribution as a preliminary evaluator of the communication
complexity of a signaling system.

1. Introduction to Information Theory and Zipf’s Law

Recognizing and characterizing a communication system of unknown structure
and function is a challenge that is difficult to meet even qualitatively. In the
animal and plant kingdoms, communication comes in such a variety of forms
that it is difficult to specify overlying principles that can characterize intelligent
and sophisticated communication. Fortunately the mathematical approach of
information theory, as first developed by Shannon (1948), does allow the quan-
tification of a signal system’s structure regardless of qualitative considerations
such as what the individual signal meanings and usages might be. At the same
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time that information theory was being developed, Zipf (1949) developed a math-
ematical tool for examining human languages that was, essentially, a detailed
examination of components of the first-order Shannon entropies. Although Zipf
did not specifically establish his work in this area as a branch of information
theory, it has been recognized as one of the important tools of communication
analysis (see the review in McCowan, Hanser & Doyle 1999). This paper will
briefly discuss the application of Zipf’s statistic in light of information theory,
and its possible application to SETI signals.
The Shannon zero-order entropy,

Hy =logyn (1)

where n is the number of signals in the communication system, characterizes
the diversity of the communicative repertoire by indicating how many binary
decisions are required to characterize a single choice. The zero order entropy
for the English alphabet is log, 27 = 4.75 bits/signal (26 letters 4 space = 27
components), for example.

The first order entropy,

Zp ) log, p(4;) (2)

is a measure of the distribution of the probabilities of occurrence, p(4;), of each
signal — a measure of repertoire complexity. The component log, p(A4;) represents
the information, and its product with the probability gives the entropy of that
signaling unit (which could be phonemes, letters, words, whistles, gestures, color
changes, dance directions/steps, facial expressions, chemical signals, etc.; see
Hanser, McCowan, & Doyle 2000). The entropy of each signaling unit is summed
in Equation 2 to give the overall first order entropy of that communication
system (the minus sign being required to ensure that the entropic value is positive
since probabilities are always <1, giving a negative logarithm).

The term information is synonymous with entropy, or uncertainty, in virtu-
ally all information theory literature (see the review in McCowan et al. (1999)
and Hanser et al. 2000). One must be cautioned, therefore, that the term “in-
formation” is not used in its usual sense in information theory. As Weaver puts
it, “Information theory is not concerned so much with what one does say as
much as what one could say,” using a given communication system (Shannon
& Weaver 1949). Obtaining information, in the sense of knowledge, usually
constrains choices (as in making an “informed decision”) whereas in informa-
tion theory “information” stands for the maximization of a number of choices.
Herein we will use the clearer term “entropy” to represent this maximization
since it aligns, conceptually, with the term as it is used in thermodynamics
(with “choices” replacing “microstates.”)

The second order entropy,

n n

Hy=—3 % p(AiB;)log, p(A;:B;) ®3)

1=1j5=1

introduces conditional probabilities into the concept of entropy (1st-order Markov
chains). This has sometimes been used to calculate the transmission of informa-
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tion between individuals, but has also sometimes been confused with a trans-
mission of knowledge (see Doyle, McCowan, & Hanser 2003). The terms of the
third order entropy,

n n n

H3=—3 """ p(AiB;Cy)log, p(4iB;Cs) (4)

i=1j=1k=1

take into account the conditional probabilistic dependence of the occurrence of
the third signal on the preceding two. This pattern continues on to higher-order
entropies that measure the complexity (i.e. nested dependence) of the signals
on each other.

A special case of the Shannon first-order entropy, as mentioned, is sometimes
known as Zipf’s principle of least effort (Zipf 1949). He chose to rank components
of human language repertoires by their probabilities of occurrence. Plotting the
logarithm, base-10, of the frequencies of occurrence of each signal against the
logarithm of their rank (1st, 2nd, 3rd, etc.) he found that most of the dozens of
languages he plotted in this way yielded a slope of —1.

This plot has been extended to several non-human signaling systems includ-
ing porpoises, chickadees, orcas, squirrel monkeys, dolphins, ground squirrels,
and even the chemical signals from cotton plants (see reviews in McCowan et
al. 1999; Hanser et al. 2000; McCowan, Doyle, & Hanser 2002; Doyle et al.
2003). For human languages, the Zipf relationship was found to be robust for
phonemes, letters, and words, but it also fits many other phenomena that rely
upon optimization. Because it cannot take into account the complexity of a
communication system (i.e. the higher entropic orders) it has been generally
discarded as a useful linguistics tool. However, it can be applied both for ob-
taining a first estimate of the potential complexity of a communication system
as well as for measuring the evolution of this complexity. To date, this has
been done for bottlenose dolphins and squirrel monkeys (McCowan et al. 2002).
Adult bottlenose dolphins show a Zipf slope of -0.95 indicative of additional
complexity in their signaling systems (which is being explored at present) while
adult squirrel monkey chucks produce a Zipf slope of no greater than about —
0.6, indicative of a less complex signaling system. McCowan et al. (1999, 2002)
have also demonstrated that one can use Zipf’s technique to study the evolution
of complexity of communication with age; the progression of infant babbling
to adolescent redundancy to adult complexity (slopes of 0.8 to -1.1, to —1.0)
in bottlenose dolphins follows a developmental path identical to that of human
speech.

2. Possible Applications to ETI Signals

We have stated above that a -1 slope indicates that the communication system
may be approaching optimization (i.e. a kind of Huffman coding optimization;
Press et al. 1992). It is true that many phenomena can produce such a rela-
tionship, but this, too, is often the result of optimization. (While a completely
random process should produce a slope of 0, even the natural distribution of
numbers produces a minimum slope of about 0.2, sometimes referred to as
“Benford’s Law”; Hill 1995).
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Slopes approaching —1 may also be generated by random, processes ordered
in an optimized way. For example, if one combines the orders of entropy of a ran-
dom process, one can generate a Zipf slope that indicates more complexity than
is actually present. (A Zipf plot of single die throws combined with two, three,
and four dice throws will approach a -1 slope, for example; see also Hailman &
Ficken 1986; Hailman, Ficken, & Ficken 1986). Finally, if the signaling units are
undersampled (such as plotting only the dots and dashes of Morse Code instead
of combinations of 3 or 4 at a time) one will get an indication of less communi-
cation complexity in the signaling system than is actually present (i.e. a slope
of about -0.3). In this sense, a Zipf plot of parts-of-signals, whole signals, and
sequential combinations of signals may be helpful in distinguishing the primary
signaling units, under the assumption that the communication system is fairly
well optimized. Undersampling (i.e. not enough signals to be statistically stable
or ergodic) will conversely tend to indicate more complexity than is present.

A slope of -1, however, need not reflect that the system has used up all, or
even most, of the possibilities for combinations of repertoire components. Con-
sider written English: the average word size is about five letters, allowing (via
the binomial equation) for 101583 combinations or choices (i.e. microstates)
for 27 components (26 letters and a space). Those combinations are all possi-
ble when we are not following the constraints of English spelling, but overlying
rules are applicable, such as ’u’ always follows ‘q,’ never three or more of the
same letter in a row, etc. The result is that we have an optimized communi-
cation system despite the fact that we use a fraction of the possible five letter
microstates. The number of words (some, of course, greater than 5-letters) used
by the King James Bible compared to the theoretical pool of possible five-letter
words is about 8%, and Shakespeare’s word choice represents roughly 30% of
the total theoretical pool.

Present radio searches for ETI signals look for a narrow-band (i.e. 1 Hz
bandpass) carrier wave signal (see many articles in this volume addressing the
SETI.) The modulated signal, with the actual information in it, may require
an increase in sensitivity of about 4x to detect. Once the modulated signals
are picked up and correctly classified, a log-log plot might immediately reveal
whether the signal is random or worth investigating for higher level of complexity
(i.e. higher-order entropic values). Early human language symbols were close
to whole words, but as the need to translate and then to transmit emerged, the
more efficient way to communicate was to nest information in higher orders of
complexity. There is a hierarchy of signaling system complexity, quantified by
the highest degree of Shannon entropy, emerging in studies of non-human animal
communication systems compared with human communication systems. Many
animals (and plants, for that matter) will likely show a first-order entropic value
only. Bottlenose dolphins (and many others, possibly) show structure to at least
2nd and likely 3rd-order entropic values. Humans, depending on the signaling
system used, show a great degree of “nested” complexity-8th or 9th order for
words (i.e. 30 - 40th order letter entropy) (Yaglom & Yaglom 1983). Although
meaning might be illusive for some time, one might nevertheless immediately
test any ETI signaling system for the highest-order of entropic complexity. It
would be sobering to discover a species communicating at an entropic order of
50 or more. We would at least be able to calibrate where our species stands on
the evolutionary line of communication complexity.
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