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Abstract. There are infinitely many fundamentally distinct families of polarized Abelian fourfolds of
Weil type with multiplication from the cyclotomic field of cube roots of unity. The Hodge conjecture
is shown to hold at a sufficiently general fiber in any of these families.
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Let K be an imaginary quadratic field and letA be a complex Abelian variety.
We say thatA is of Weil type, if there is a unitary ring homomorphism,� : K !
End(A)
Q. In this situation A. Weil [We] identified a rational Hodge substructure
of the middle dimensional cohomology ofA which will be refered to here as the
Weil cohomology. A generalized Prym variety for anétaleZ=3-cover of a genus
3 curve is an example of an Abelian variety of Weil type withK = Q(�3). The
paper mentioned in the title establishes that the Hodge conjecture holds for the Weil
cohomology in this case. The purpose of this addendum is to extend this result to
cover the Weil cohomology of infinitely many modular families of Abelian varieties
of Weil type. Precisely, we prove

THEOREM. Suppose thatA is a four dimensional Abelian variety of Weil type
for the fieldK = Q(�3). Assume that theK�-moduleH1;0(A) decomposes as a
direct sum, �2

1 � �2
2 , where i:K ! C are distinct field homomorphisms. Then

the Weil cohomology is generated by the fundamental classes of two dimensional
algebraic cycles.

Abelian varieties which satisfy the hypotheses of the theorem admit polariza-
tions which are compatible with the action ofK (see (1.1) and 9 below). A general
Abelian variety of this type has only one polarization up to positive scalar mul-
tiples. It is possible to distinguish infinitely many families of polarized Abelian
varieties which satisfy the hypotheses of the theorem by means of an invariant
of the polarization which may take any value in the infinite group(Q+)

�=NK
Q Q

�
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(Q+ := positive rational numbers). We note that this invariant was overlooked in
[Sch]. A hypothesis regarding the polarization should have appeared in the state-
ment of [Sch, Theorem 3.2] since the proof implicitly assumes that the polarization
invariant ofA coincides with that of the generalized Prym.

The proof of the theorem proceeds in three steps. First, the theory of moduli of
Abelian varieties of Weil type is recalled with special emphasis on the polarization
invariant. Next the Hodge conjecture for the Weil cohomology of infinitely many
families of Weil type Abelian 4-folds is deduced from the assumption that the
Hodge conjecture holds for a single family of Weil type Abelian 6-folds. Finally
the Hodge conjecture for a family of Weil type Abelian 6-folds is proved using the
methods of [Sch, Sect. 3].

I am indebted to the referee for drawing attention to the very relevant article
of van Geemen [vG]. One may use [vG, 4.11, 6.12] to deduce the assertion in the
abstract from the theorem. In [vG, 7.3] one finds an approach to Sections 11–13 of
the present paper based on a calculation of Faber [F, Theorem 3.1] which is closely
related to Section 13.

Notation

Weil cohomology = Weil Hodge structure. This is defined in [Sch, p. 24], where it
is denotedU 0.
cl(z) denotes the cohomology class of an algebraic cycle,z.
K denotes an arbitrary imaginary quadratic field in Sections 1–10.

1. We begin the discussion of moduli of Weil type Abelian varieties with the notion
of a Weil pair of rankg. This consists of a torsion free, rankg module,VZ, over
some order,R � K, and an alternating form

�:VZ� VZ! Z;

whose extension toVQ is non-degenerate and satisfies

�(kv1; v2) = �(v1; �kv2); 8k 2 K: (1.1)

2. Given(VZ; �) and a homomorphism of fields, : K ! C , there is an associated
invariant(b; f) 2 f0;1;2; :::; gg � (Q�=NK

QK
�) which satisfies sign(f) = (�1)b.

(Here the sign off is the sign of an arbitrary lift off to Q� .) To define(b; f)
we first fix � 2 K such that (�) is a positive multiple ofi 2 C and note that
�( ; ) := �(� ; )+ ��( ; ) is a non-degenerateK=Q-Hermitian form. Define
b to be the dimension of the largestK 
 R-subspace ofVR := VZ
 R on which�
is negative definite. Setf = disc(�). Observe that(b; f) remains unchanged when
� is replaced by a positive rational multiple.

3. Starting with(VZ; �) we may construct a polarized Abelian variety by choos-
ing an ‘admissible complex structure’ onVR; that is by choosingJ 2 End(VR)
satisfying
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(1) J2 = �Id,
(2) J isK 
 R-linear,
(3) �(J ; J ) = �( ; ),
(4) �( ; J ) is positive definite.

Polarized Abelian varieties constructed in this way are called Abelian varieties of
Weil type.

4. LEMMA

(1) The admissible complex structures onVR are parametrized byb-dimensional
K 
 R-subspaces ofVR on which� is negative definite. These in turn are
in bijective correspondence with the points of the connected manifoldJ :=
SU(V; �)=S(U(a) � U(b)).

(2) The multiplicity with which the character appears in the representation of
K� on the global holomorphic 1 forms of the Abelian variety(VR=VZ; J) is
g � b.

(3) the Hodge level of the Weil cohomology isjg � 2bj.
(4) The invariant (b; f) is independent of the choice of field homomorphism

 :K ! C exactly wheng = 2b.

Proof. (1) If J is admissible, it is diagonalizable overK 
 R and we write
T� � VR for the subspace whereJ acts by multiplication by the scalar��
j�j�1.
By 3(3)T� = (T+)? and by 3(4)� is negative definite onT+ and positive definite
onT�. Conversely, given anyb-dimensionalK 
R-subspaceT � VR on which�
is negative definite, define

J := � 
 j�j�1�IdjT ��� 
 j�j
�1�IdjT?:

ThenJ satisfies 3(1-4). For the second assertion note that the stabilizer ofT in
SU(V; �) is a maximal compact subgroup isomorphic toS(U(a) � U(b)). The
action ofSU(V; �) on the set of allT ’s as above is transitive because maximal
compact subgroups are conjugate [H–N].

(2) The vector space of global holomorphic 1 forms is canonically identi-
fied with HomC ((VR; J); C ). The subspace whereK� acts by the character is
HomC (T

?; C ).
(3) This follows directly from the explicit basis for the Weil cohomology given

in [Sch, p. 24].
(4) Changing amounts to replacing� by �� which changes(b; f) to

(g � b; (�1)gf).

5. The manifoldJ has a unique complex structure such that the data(VZ; �; J) is a
polarized variation of Hodge structure [De, 1.1.14(i)]. This gives rise to a structure
of complex manifold onJ � VR. The action ofVZ by translation is holomorphic.
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The quotient is a holomorphic family of Abelian varieties overJ which we refer
to as the ‘universal’ family of Weil Abelian varieties associated to the Weil pair
(VZ; �).

6. Given two Weil pairs(VZ; �), (V 0
Z; �

0)and an isometry of the associated Hermitian
inner product spaces�: (VQ; �) ! (V 0Q; �

0), there is an integerN 6= 0 such that
N�(VZ) � V 0Z. The map,

J� VR! J0 � V 0R; (J; v)! (�J��1; N�v);

gives rise to an isogeny between the associated ‘universal’ families. Pulling back
with respect to this isogeny gives an isomorphism on Weil cohomology.

7. Two g-dimensional Hermitian inner product spaces(VQ; �) and (V 0Q; �
0) are

isometric exactly when the signatures and discriminants of� and �0 coincide
[De-M, p. 50]. Furthermore, given(b; f) 2 f0;1;2; :::; gg � Q�=NK

QK
� satisfying

sign(f) = (�1)b, there exists a non-degenerate Hermitian inner product space
(VQ; �) with signature(g � b; b) and discriminantf [De–M, p. 50].

8. Let (VZ; �) be a Weil pair of rankg. By replacing� by a� with a a positive
integer, we change the discriminant invariant fromf to agf . If g is even, this
operation has no effect onf . However ifg is odd, any elementh 2 Q�=NK

QK
�

with sign(h) = sign(f) has the formagf for an appropriate choice ofa.

9. The Abelian varietyA in the statement of the theorem may be given a polar-
ization�A which satisfies (1.1). In fact, if�0 is any polarization, choose a non-zero
integerM such thatM� � R and define

�A(v1; v2) =M2j�j2�0(v1; v2) + �0(M�v1;M�v2):

The invariant of the Weil pair(H1(A;Z); �A) has the form(2; fA) for somefA 2
Q�=NK

QK
� with sign(fA) = 1 by 4(2).

10. PROPOSITION. Let (A; �A) be a Weil type Abelian four-fold with polar-
ization invariant (2; fA) for somefA 2 Q�=NK

QK
� with sign(fA) = 1. Fix

f 2 Q�=NK
QK

� with sign(f) = �1 and a Weil pair of rank6, (VZ; �), with invari-
ant (3; f). Suppose that for each Abelian variety in the associated ‘universal’
family, the Weil cohomology is generated by classes of codimension3 algebraic
cycles. Then the Weil cohomology ofA,WA, is generated by classes of codimension
2 algebraic cycles.

Proof. Choosef 0 2 Q�=NK
QK

� such thatf 0fA = f . By 7 there exists a Weil
pair of rank 2,(V 0Z; �

0) with invariant(1; f 0). The choice of an admissible complex
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structureJ 0 2 End(V 0R) gives rise to a Weil type Abelian surfaceA0, whose Weil
cohomology,WA0 , has Hodge type(1;1).WA0 is generated by cohomology classes
of divisors. The Weil pair associated to the productA�A0 is (H1(A;Z)�V

0
Z; �A�

�0). By 7 there is an isometry of Hermitian inner product spaces

�: (H1(A;Q) � V 0Q; �A � �0)! (VQ; �)

which leads to an isogeny of Abelian varieties of Weil type

A�A0
N�
�! (VR=VZ; J)

for an appropriate choice of admissible complex structureJ . It follows from 6 and
the hypotheses of the proposition that the Weil cohomology,WA�A0 , is generated
by cohomology classes of algebraic cycles. We claim thatWA is generated by
cohomology classes of algebraic cycles of the form prA�(z � (A � D)) where
cl(z) 2 WA�A0 and cl(D) 2 WA0 . To check this, it is only necessary to show that
the cup product in the following diagram is surjective:

WA�A0 
 (H0(A)
WA0)
[
�!WA 
H4(A0)

prA��!WA:

This follows from an explicit computation with differential forms. Using the nota-
tion of [Sch, p. 24], we write down bases for the following vector spaces:

H1(A; C ) i : f!1; i ; :::; !4; ig; i 2 f1;2g

H1(A0; C ) i : f!5; i ; !6; ig; i 2 f1;2g

H1(A�A0; C ) i : f!1; i ; :::; !6; ig; i 2 f1;2g

WA 
Q C : f!1; i ^ � � � ^ !4; ig16i62;

WA0 
Q C : f!5; i ^ !6; ig16i62;

WA�A0 
Q C : f!1; i ^ � � � ^ !6; ig16i62:

Since!5; 1 ^!6; 1 ^!5; 2 ^!6; 2 is a basis forH4(A0; C ) the desired surjectivity
is clear.

11. In order to prove the theorem it remains only to construct the appropriate
family of 6 dimensional Abelian varieties and to show that the Weil cohomology is
generated by classes of algebraic cycles. This is done by applying the methods of
[Sch, Sect. 3] to a family of generalized Prym varieties which we now construct.

LetMbe the moduli space of smooth genus 4 curves. There is anétale morphism
& : N !M and a family of genus 4 curvesf : X ! N satisfying:

(1) the moduli map associated tof is &;
(2) f has a section;
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(3) there is a finitéetale morphism�: C ! X , which is Galois with groupZ=3
and whose fibers over closed pointsm 2 N are (irreducible) genus 10 curves.

Recall that the generalized Prym,B, for C=X is defined to be the connected
component of the identity in the kernel of the norm map

Pic0(C=N ) ! Pic0(X=N ):

After replacingN by a furtherétale cover if necessary, we may assume that

(4) all the 5-torsion in Pic0(X=N ) and inB is rational overN .

The group Gal(C=X ) acts onB=N and respects the polarization which is pulled
back from the canonical polarization on Pic0(C=N ). ThusB is a family of Abelian
varieties of Weil type. The Weil cohomology of each fiber is generated by classes
of codimension 3 algebraic cycles [Sch, 3.1].

12. Associated to the integral homology of this family is a Weil pair(VZ; �) of
rank 6. The invariant is(3; f) for somef 2 Q�=NK

QK
� with sign(f) = �1 [Sch,

1.6a]. Let� denote the Hermitian form (uniquely defined up to scalar multiplica-
tion byQ� ) which was associated to(VZ; �) in 2. Define

� := GL(VZ) \ SU(VQ; �); �1 := Ker[�! GL(VZ=5VZ)]:

Now �1 acts freely onJ and the quotient is canonically a smooth quasi-projective
variety [Ba–Bo]. The holomorphic family of polarized Abelian varieties

�1 n VZnJ� VR! �1nJ :=W (12.1)

is canonically a projective morphism [Chai, 2.4]. Fix aZ[�3]=5-isomorphism
between the 5-torsion sections ofB=N and1

5VZ=VZwhich respects the symplectic
pairings. Then there is a holomorphic period map':N !W such thatB is pulled
back from (12.1). This map comes from a morphism of varieties [Bo, Sect. 10].
To show that the Weil cohomology of every fiber of the ‘universal’ family, (12.1)
is generated by classes of algebraic cycles, we need only verify that' is dominant
and apply the specialization argument given in [Sch, p. 30].

13. LEMMA. ' is dominant.

Proof. The lemma will follow if the tangent mapTm' can be shown to be
surjective at one pointm 2 N . Because the deformation functors have been
rigidified by the imposition of level structure, the tangent spaces have there usual
cohomological descriptions. In fact, ifC ! X is theZ=3-cover corresponding to
m, the map dual toTm' may be identified with the multiplication map [Sch, p.
29–30]

H0(C;!C)
� 
H0(C;!C)

��1
! H0(C;!
2

C )Gal(C=X); (13.1)
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where� : Gal(C=X) ! C � is a non-trivial character.
We will check that (13.1) is injective in the special case thatC is the maximal

Abelian, exponent 3 cover ofP1 which is unramified outside the set of four distinct
pointsfa1; a2; a3;1g. The function field of this genus 10 curve is given by

C (x)[t1; t2; t3]=(t
3
1 � (x� a1); t

3
2 � (x� a2); t

3
3 � (x� a3)):

Clearly Gal(C=P1) ' (Z=3)3 and


i(tj) =

(
exp(2�i=3)tj ; if j = i

tj; if j 6= i;
i 2 f1;2;3g

is a minimal set of generators. ForX we take the quotient ofC by the subgroup
generated by
1
2. The inertia groups above the four branch points ofC=P1 are
easily seen to be generated by
1; 
2; 
3, and
0 := (
1
2
3)

�1. Since
1
2 is not
contained in any of these inertia groups,C=X is unramified.

The map (13.1) is Gal(C=P1)-equivariant. The left hand side may be decom-
posed into irreducible Gal(C=P1)-modules with the help of the Chevalley–Weil
formula [C–W]. This says that the multiplicity with which a non-trivial character
� : Gal(C=P1)! C � appears in the representationH0(C;!C) is given by

�� = �1+
3X
j=0

*
��j

3

+
;

where�(
j) = exp(2�i�j=3) andhui = u � [u] is the fractional part ofu. It is
now straightforward to check that the left hand side of (13.1) decomposes as a sum
of one dimensional spaces

�16i;j63H
0(C;!C)

�i 
H0(C;!C)
�0j ; (13.2)

with the property that the nine charactersf�i��0jg16i;j63 are distinct. Since each
of the factors in the tensor product (13.2) is one dimensional, the multiplication
map (13.1) restricted to each summand in (13.2) is injective. The distinctness of
the characters now implies that (13.1) itself is injective.
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