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CLASS FORCING
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Abstract. We prove two general results about the preservation of extendible and C (n)-extendible
cardinals under a wide class of forcing iterations (Theorems 5.4 and 7.5). As applications we give new
proofs of the preservation of Vopěnka’s Principle andC (n)-extendible cardinals under Jensen’s iteration for
forcing the GCH [17], previously obtained in [8, 27], respectively. We prove that C (n)-extendible cardinals
are preserved by forcing with standard Easton-support iterations for any possible Δ2-definable behaviour of
the power-set function on regular cardinals. We show that one can force proper class-many disagreements
between the universe and HOD with respect to the calculation of successors of regular cardinals, while
preserving C (n)-extendible cardinals. We also show, assuming the GCH, that the class forcing iteration of
Cummings–Foreman–Magidor for forcing ♦+

κ+ at every κ [10] preservesC (n)-extendible cardinals. We give
an optimal result on the consistency of weak square principles and C (n)-extendible cardinals. In the last
section prove another preservation result for C (n)-extendible cardinals under very general (not necessarily
definable or weakly homogeneous) class forcing iterations. As applications we prove the consistency of
C (n)-extendible cardinals with V = HOD, and also with GA (the Ground Axiom) plus V �= HOD, the
latter being a strengthening of a result from [14].

§1. Introduction. The present paper is a contribution to the long-standing
program in set theory of studying the robustness of strong large-cardinal notions
under forcing extensions. Specifically, we are interested in the section of the large-
cardinal hierarchy ranging between extendible cardinals and Vopěnka’s Principle
(VP).

In a groundbreaking work, Laver [19] proved that supercompactness, one of the
most prominent large-cardinal properties, can be made indestructible under a wide
range of forcing notions. Indeed, given a supercompact cardinalκ, Laver showed that
there is a forcing notion (the Laver preparation) that preserves the supercompactness
of κ and makes it indestructible under further <κ-directed closed forcing.

Inspired by the work of Laver, several authors subsequently obtained similar
results for other classical large-cardinal notions. For instance, Gitik and Shelah
[13] show that a strong cardinal κ can be made indestructible under so-called κ+-
weakly closed forcing satisfying the Prikry condition; Hamkins [15] uses the lottery
preparation forcing to make various types of large cardinals indestructible under
appropriate forcing notions. More recently, Brooke-Taylor [8] shows that VP is
indestructible under reverse Easton forcing iterations of increasingly directed-closed
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forcing notions, without the need for any preparatory forcing. In the present paper
we are concerned with the preservation by forcing ofC (n)-extendible cardinals. This
family of large cardinals was introduced in [2] (see also [1]) as a strengthening of the
classical notion of extendibility and was shown to provide natural milestones on the
road from supercompact cardinals up to VP. Extendible cardinals have experienced
a renewed interest after Woodin’s proof of the HOD-Dichotomy [29]. Also, C (n)-
extendible cardinals have had remarkable applications in category theory and alge-
braic topology (see [2]). Thus, the investigation of the preservation of such cardinals
under forcing is a worthwhile project, which may lead to further applications.

Recall (see [1]) that, for each n < �, the class C (n) is the Πn-definable closed
unbounded proper class of all ordinals α that are Σn-correct, i.e., such that Vα is
a Σn-elementary substructure of V. Also, recall that a cardinal κ is C (n)-extendible
if for every � > κ there is an ordinal � and an elementary embedding j : V� → V�
such that crit(j) = κ, j(κ) > �, and j(κ) ∈ C (n).

It turns out that VP(Πn+1), namely VP restricted to classes of structures that are
Πn+1-definable, is equivalent to the existence of aC (n)-extendible cardinal. Hence VP
is equivalent to the existence of a C (n)-extendible cardinal for each n ≥ 1 (see [1] for
details). It is in this sense thatC (n)-extendible cardinals are canonical representatives
of the large-cardinal hierarchy in the region between the first supercompact cardinal
and VP.

In general, the preservation of very large cardinals by forcing is a delicate issue
since it imposes strong forms of agreement between the ground model and the
generic forcing extension. For example, suppose κ ∈ C (n) is inaccessible and P is a
<κ-distributive forcing notion. If �P “κ ∈ Ċ (n)” then Vκ ≺Σn V

P. This underlines
the fact that the more correct a large cardinal is, the harder it is to preserve its
correctness under forcing, and therefore the more fragile it becomes. Indeed, one runs
into trouble when seeking a result akin to Laver’s indestructibility for supercompact
cardinals for stronger large cardinals such as extendible. This phenomenon was first
pointed out by Tsaprounis in his Ph.D. thesis [26] and it was afterwards extensively
studied in [4], where the following theorem illustrates the fragility we just described.

Theorem 1.1 [4]. Suppose that Vκ ≺Σ2 V� and G ⊆ P is a V-generic filter for
nontrivial strategically <κ-closed forcing P ∈ V�, where � ≤ �. Then for every � ≥ �,

Vκ = V [G ]κ ⊀Σ3 V [G ]� .

In particular, if κ is an extendible cardinal and P is any nontrivial strategically
<κ-closed set forcing notion, then forcing with P destroys the extendibility of κ.
Moreover, the theorem implies that there is no hope to obtain indestructibility results
for Σ3-correct large cardinals. Thus, if one aims for a general theory of preservation
of C (n)-extendible cardinals one should concentrate on class forcing notions.

The structure of the paper is as follows: In Section 2 we prove that C (n)-
extendible cardinals are uniformly characterizable in a Magidor-like way, i.e.,
similar to Magidor’s characterization of supercompact cardinals. This reinforces
the fact that C (n)-extendible cardinals are a natural model-theoretic strengthening
of supercompactness, first shown in [2] (see also [1]). This characterization of C (n)-
extendibility is used in later sections for carrying out preservation arguments under
class forcing. The same characterization has been independently given by Boney in
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292 JOAN BAGARIA AND ALEJANDRO POVEDA

[6], and also in [3] for the virtual forms of higher-level analogs of supercompact
cardinals (i.e., n-remarkable cardinals) and virtual C (n)-extendible cardinals.

Section 3 is devoted to the analysis of some reflection properties of class forcing
iterations that will be useful in later sections for the study of the preservation
of C (n)-extendible cardinals. Two key notions are that of adequate iteration and
P- Σk-reflecting cardinal. For the same purpose, in Section 4 we introduce the notion
of P- Σk-supercompact cardinal and show how it relates toC (n)-extendible cardinals.

In Section 5 we define the notion of suitable iteration and prove a general result
about the preservation of C (n)-extendible cardinals under a wide class of ORD-
length forcing iterations (cf. Theorem 5.4). The prize we pay for considering such
general iterations is that we just prove that any C (n+1)-extendible cardinal retains its
C (n)-extendibility (cf. Corollary 5.14).

Section 6 is focussed on applications of Theorem 5.4. We give a new proof of
Brooke-Taylor’s theorem on the preservation of VP [8]. The main advantage with
respect to the original proof is that our technique allows for a finer control over the
amount of Vopěnka’s Principle that is preserved.

In Section 7 we concentrate on a more concrete class of forcing iterations
we call fitting and improve the results obtained in Section 5. Our main result
here is Theorem 7.5. In Section 8 we give several applications of this theorem.
First, we show that C (n)-extendible cardinals are preserved by standard Easton
class-forcing iterations for any Δ2-definable possible behaviour of the power-set
function on regular cardinals. This extends the main result of [28]. Second, with an
eye on Woodin’s HOD Conjecture, we explore briefly the connections between
C (n)-extendible cardinals (and thus also VP) with the principle V = HOD. In
particular, we prove that it is possible to force a complete disagreement, and in many
possible forms, between V and HOD with respect to the calculation of successors of
regular cardinals, whileC (n)-extendible cardinals are preserved. Third, we show that,
assuming the GCH, the class forcing iteration of Cummings–Foreman–Magidor
that forces ♦+

κ+ at every κ ([10]) preserves C (n)-extendible cardinals. Finally, we
prove that C (n)-extendible cardinals are consistent with ��,cof(�) for a proper class
of singular cardinals �. This result is optimal in the sense explained in Section 8.4.

In Section 9, we address the question of the preservation of C (n)-extendible car-
dinals under general (non-weakly homogeneous, non-definable) suitable iterations.
As applications of our analysis we prove the consistency ofC (n)-extendible cardinals
with V = HOD, and also with GA + V 	= HOD. This latter is a strengthening of a
result of Hamkins, Reitz, and Woodin [14].

§2. A Magidor-like characterization of C (n)-extendibility. We shall prove that
C (n)-extendible cardinals (defined in page 6 of the Introduction) can be character-
ized in a way analogous to the following characterization of supercompact cardinals
due to Magidor.1

Theorem 2.1 [21]. For a cardinal 	, the following statements are equivalent:
(1) 	 is a supercompact cardinal.

1Magidor’s original characterization does not require that � and �̄ are inC (1), or that for every a ∈ V�
there is ā ∈ V�̄ with j(ā) = a.
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(2) For every � > 	 in C (1) and for every a ∈ V�, there exist ordinals 	̄ < �̄ < 	
and there exist some ā ∈ V�̄ and an elementary embedding j : V�̄ −→ V� such
that:
• crit(j) = 	̄ and j(	̄) = 	.
• j(ā) = a.
• �̄ ∈ C (1).

The existence of a supercompact cardinal is thus characterized by a form of
reflection for Σ1-correct strata of the universe, for it implies that any Σ1-truth (i.e.,
any Σ1 sentence, with parameters, true in V) is captured (up to some change of
parameters) by some level below the supercompact cardinal. The following notion
generalizes this reflection property to higher levels of complexity.

Definition 2.2 (Σn-supercompact cardinal). Let n ≥ 1. A cardinal 	 is said to
be Σn-supercompact if for every � > 	 in C (n) and a ∈ V�, there exist 	̄ < �̄ < 	 and
ā ∈ V�̄, and there exists an elementary embedding j : V�̄ −→ V� such that:

• crit(j) = 	̄ and j(	̄) = 	.
• j(ā) = a.
• �̄ ∈ C (n).

Lemma 2.3. For n ≥ 1, every Σn-supercompact cardinal belongs to the classC (n+1).

Proof. We prove the lemma by induction on n ≥ 1. The base case n = 1 follows
by combining Magidor’s theorem (cf. Theorem 2.1) with the well-known fact that
supercompact cardinals are Σ2-correct [18, Proposition 22.3]. Thus, we shall assume
by induction that the lemma holds for n and prove it for n + 1.

Let 	 be a Σn+1-supercompact cardinal, and let ϕ(x, y) be a Πn+1 formula with
a ∈ V	 . Suppose first that V	 satisfies the sentence ∃xϕ(x, a) and let b ∈ V	 be a
witness for it. Since 	 is Σn-supercompact, the induction hypothesis guarantees that
	 ∈ C (n+1), so that ϕ(b, a) is true.

Conversely, suppose that ∃xϕ(x, a) is true. Let � < 	 be such that a ∈ V�. Let
b be a witness for this formula and let � ∈ C (n+2) \ 	+ be such that b ∈ V�. Then,
V� |= ∃xϕ(x, a). By the Σn+1-supercompactness of 	 we may find �̄, 	̄ < �̄ < 	,
�̄ ∈ C (n+2), ā ∈ V�, and j : V�̄ → V� such that crit(j) = 	̄, j(	̄) = 	, j(�̄) = �, and
j(ā) = a. In particular,V�̄ |= ∃xϕ(x, ā). Notice that, by elementarity, �̄ < 	̄, hence
a = j(ā) = ā, and thus V�̄ |= ∃xϕ(x, a). Finally, since �̄ < 	 and �̄ ∈ C (n+2), our
induction hypothesis yields V�̄ ≺Σn+1 V	 . From this latter assertion it is clear that
V	 |= ∃xϕ(x, a), as wanted. �

Theorem 2.4. For n ≥ 1, 	 is a C (n)-extendible cardinal if and only if 	 is Σn+1-
supercompact.

Proof. Suppose that 	 isC (n)-extendible. Fix any � > 	 inC (n+1) and a ∈ V�. By
C (n)-extendibility, let� > � inC (n+1), and let j : V� −→ V� be such that crit(j) = 	,
j(	) > � and j(	) ∈ C (n), for some ordinal �. Notice that j � V� ∈ V� .

Claim 2.4.1. V� satisfies the following sentence:

∃�̄ < j(	) ∃	̄ < �̄ ∃ā ∈ V�̄ ∃j∗ : V�̄ −→ Vj(�)
(j∗(ā) = j(a) ∧ j∗(	̄) = j(	) ∧ V�̄ ≺Σn+1 Vj(�)).

https://doi.org/10.1017/jsl.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.73


294 JOAN BAGARIA AND ALEJANDRO POVEDA

Proof of claim. It is sufficient to show that V� ≺Σn+1 Vj(�), for then the claim
follows as witnessed by �, 	, a, and j � V�.

On the one hand, notice that V	 ≺Σn+1 V�, because C (n)-extendible cardinals are
Σn+2-correct. By elementarity, this implies Vj(	) ≺Σn+1 V� . On the other hand, since
j(	) > � and j(	) ∈ C (n), it is true that V� ≺Σn+1 Vj(	) and thus V� ≺Σn+1 V� . In
addition, since � and � were both Σn+1-correct, it is the case that V� ≺Σn+1 V�.
Hence, V� ≺Σn+1 V� . Also, by elementarity, Vj(�) ≺Σn+1 V� . Combining these two
facts, we have that V� ≺Σn+1 Vj(�). �

By elementarity, V� satisfies the above sentence with the parameters j(	) and
j(�) replaced by 	 and �, respectively. Hence, since � ∈ C (n+1), the sentence is true
in the universe. Since � was arbitrarily chosen in C (n+1), this implies that 	 is a
Σn+1-supercompact cardinal.

For the converse implication, let �be greater than 	 and let us show that there exists
an elementary embedding j : V� −→ V� , for some ordinal �, such that crit(j) = 	,
j(	) > �, and j(	) ∈ C (n). Take � > � in C (n+1) and let 	̄, �̄ < �̄ and j : V�̄ −→ V�
be such that crit(j) = 	̄, j(	̄) = 	, j(�̄) = �, and �̄ ∈ C (n+1). Now notice that the
sentence

∃α ∃j∗ : V�̄ −→ Vα (crit(j∗) = 	̄ ∧ j∗(	̄) > �̄ ∧ j∗(	̄) ∈ C (n)) (1)

is Σn+1-expressible. Moreover, it is true in V as witnessed by � and j because j(	̄) =
	 > �̄ and 	 ∈ C (n) (cf. Lemma 2.3). Thus, since V�̄ is Σn+1-correct and contains 	̄
and �̄, it is also true in V�̄. By elementarity, V� thinks that the sentence

∃α ∃j∗ : V� −→ Vα (crit(j∗) = 	 ∧ j∗(	) > � ∧ j∗(	) ∈ C (n))

is true. Since � ∈ C (n+1), the above displayed sentence is true in V and so 	 is
�- C (n)-extendible. As � was arbitrarily chosen, 	 is a C (n)-extendible cardinal. �

Remark 2.5. For � ∈ C (n), a cardinal 	 is called �-C (n)+-extendible if it is �-C (n)-
extendible, witnessed by some elementary embedding j : V� → V� with � ∈ C (n).
Likewise, 	 is called C (n)+-extendible if it is �- C (n)+-extendible for every � > 	 in
C (n) (see [1, Section 4]). A close inspection of the preceding argument reveals that
Σn+1-supercompactness is actually equivalent to C (n)+-extendibility. This gives an
alternative proof of [28, Corollary 3.5].

Corollary 2.6. A cardinal is extendible if and only if it is Σ2-supercompact.

A close inspection of the proof of Theorem 2.4 shows that the following holds:

Corollary 2.7. For n ≥ 1, a cardinal 	 isC (n)-extendible if and only if for a proper
class of � in C (n+1), for every α < � there exist 	̄, ᾱ < �̄ and an elementary embedding
j : V�̄ −→ V� such that:

• crit(j) = 	̄ and j(	̄) = 	.
• j(ᾱ) = α.
• �̄ ∈ C (n+1).

In the light of the above results it is natural to define the class of C (0)-
extendible cardinals as the class of supercompact cardinals. Note that since
every C (n+1)-extendible cardinal is a limit of C (n)-extendible cardinals (see [1]),
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every Σn+1-supercompact cardinal is a limit of Σn-supercompact cardinals. It will
become apparent in the following sections that the notion of Σn+1-supercompactness
is a useful reformulation of C (n)-extendibility in the context of class forcing.

§3. Some reflection properties for class forcing iterations. In the sequel we will only
work with ORD-length forcing iterations, since extendible cardinals are generally
destroyed by set-size ones (see Theorem 1.1 and the related discussion).

If P is a forcing iteration, and G is P-generic over V, then for every ordinal �, we
denote as customary by G� the P�-generic filter induced by G, i.e., G� := G ∩ P�.
Also, as usual we denote by iG�(�) the interpretation of the P�-name � by the
filter G�.

For the main preservation results given in the following sections we will need to
ensure that there are many cardinals � that satisfy V�[G�] = V [G ]�.

Definition 3.1. Let P be a forcing iteration. A cardinal � is P-reflecting if P forces
that V [Ġ ]� = V�[Ġ�].

Remark 3.2. Note that since the rank of iG�(�) in V [G�] is never bigger than the
rank of � in V, for any � ∈ V P� , we clearly have

V�[G�] ⊆ V [G�]� ⊆ V [G ]�.

Thus, P always forces “V�[Ġ�] ⊆ V [Ġ ]�.” Hence a cardinal � is P-reflecting if and
only if P forces “V [Ġ ]� ⊆ V�[Ġ�].”

Proposition 3.3. K := {� | � is P-reflecting} is closed.

Proof. Let κ be an accumulation point of K. Let p ∈ P and � ∈ V P be such
that p �P � ∈ V [Ġ ]κ. Since κ is a limit cardinal there is q ≤P p and � < κ such that
q �P � ∈ V [Ġ ]�. Extending q if necessary, we may find � ∈ K ∩ κ above � such that
q �P � ∈ V [Ġ ]� ⊆ V� [Ġ� ]. Thus, κ ∈ K , as wanted. �

The following proposition gives some sufficient conditions for a cardinal to be
P-reflecting.

Proposition 3.4. Suppose � is an inaccessible cardinal and P is a forcing iteration
such that : P� is a �-cc forcing which preserves the inaccessibility of �, P� ⊆ V�, and
�P�

“ Q̇ is �-distributive,” where P ∼= P� ∗Q. Then � is P-reflecting.

Proof. On the one hand, by induction on the rank and using the fact that P� is
�-cc and preserves the inaccessibility of �, one can easily show thatV [G�]� ⊆ V�[G�].

On the other hand, as P� preserves the inaccessibility of �, |V [G�]�| = �. Hence,
since �P�

“ Q̇ is �-distributive, ” and so iG�(Q̇) does not add any new subsets of
V [G�]�, we have

V [G ]� ⊆ V [G�]�.

Hence, V [G ]� ⊆ V�[G�]. �

Let L denote the language of set theory augmented with an additional unary
predicate P. We will denote by ΣL

k (resp. ΠL
k ) the class of Σk (resp. Πk) formulae of

L. This choice of language will be useful when working with expressions involving
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a given iteration P. For instance, we shall need to compute the complexity of the
notion

〈Vα,∈,P ∩ Vα〉 ≺ΣL
k
〈V,∈,P〉

as a property of α, when P is a definable ORD-length forcing iteration.

Remark 3.5. For such P and α, since we are dealing with iterations it would
perhaps seem more natural to consider the predicate Pα instead of P ∩ Vα . However,
if Pα ⊆ Vα (and so α is a limit ordinal and the direct limit is taken at stage α of the
iteration), then we have P ∩ Vα = Pα .

It is a well-known fact (see, e.g., [16, Section 13]) that the truth predicate (in
the language of set theory) for Σ0 formulae is Δ1 definable (i.e., both Σ1 and Π1-
definable); and in general, the truth predicate for Σk (resp. Πk) formulae, for k ≥ 1,
is Σk-definable (resp. Πk). However, if P is a definable predicate, then the complexity
(in the language of set theory) of the truth predicate for formulae in the language L
depends naturally on the complexity of the definition of P.

Proposition 3.6. If P is either Σm or Πm-definable, then the truth predicate �ΣL
0

for ΣL
0 formulae is Δm+1 (i.e., both Σm+1 and Πm+1). In general, for k ≥ 1, the truth

predicate �ΣL
k

for ΣL
k formulae (resp. �ΠL

k
for ΠL

k formulae) is Σm+k (resp. Πm+k). If

P is Δm-definable (withm ≥ 1), then �ΣL
0

is Δm, and �ΣL
k

(resp. �ΠL
k

) is Σm+k–1 (resp.

Πm+k–1).

Proof. Note first that the only atomic formulas in the language L are of the
form “x ∈ y,” “x = y,” or “x ∈ P ,” where x and y are variable symbols. Hence, if
P is Σm (resp. Πm) definable, then the formula “x ∈ P ” is equivalent to a Σm (resp.
Πm) formula of the language of set theory. It follows that a Boolean combination
of atomic formulas of the language L is equivalent to a Boolean combination of
Σm and Πm formulas in the language of set theory. Hence, the truth predicate for
Boolean combinations of atomic formulas in the language L is Δm+1 definable. The
same applies to formulas with bounded quantifiers. By induction on k one can now
show (as in [16, Section 13]) that �ΣL

k
(resp. �ΠL

k
) is Σm+k (resp. Πm+k) definable.

If P is Δm-definable, with m ≥ 1, then “x ∈ P” is both Σm and Πm-expressible.
It easily follows that �ΣL

0
is Δm-definable, and by induction on k one readily shows

that �ΣL
k

(resp. �ΠL
k

) is Σm+k–1 (resp. Πm+k–1) definable. �

Definition 3.7. For k ≥ 0 and a predicate2 P, we shall denote by C (k)
P

the class
of all ordinals α such that

〈Vα,∈,P ∩ Vα〉 ≺ΣL
k
〈V,∈,P〉.

It is easily seen that C (k)
P

is a closed unbounded proper class, and C (k+1)
P

⊆ C (k)
P

,

for each k ≥ 0. Notice that C (0)
P

is the class of all ordinals. Let us compute next the

complexity of C (k)
P

, in the language of set theory, when P is a definable predicate.

2We are interested in the case P is a class-forcing iteration, but the definition as well as the next
proposition make sense and hold also for any predicate P.
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Notation 3.8. For m < �, we will denote by Γm (resp. Γm) the collection of
all the formulas in the language of set theory that are either Σm or Πm (resp. with
parameters). In the sequel, expressions such as “X is Γm” should be read as “X is
definable by a formula in Γm.”

Proposition 3.9. The class C (k)
P

is

Πm+k, if k ≥ 1 and P is Γm,
Πm+k–1, if k,m ≥ 1 and P is Δm.

Proof. The classC (0)
P

is Π0, being the class of all ordinals. If k ≥ 1, then we have

that α ∈ C (k)
P

if and only if α ∈ C (k–1)
P

and

∀X,Y (X = Vα ∧ Y = P ∩ X → ∀ā ∈ X ∀ϕ ∈ ΣL
k (�ΣL

k
ϕ(ā) →

〈X,∈, Y 〉 � ϕ(ā))).

Now using induction on k and Proposition 3.6 the complexity of the class C (k)
P

is
easily seen to be as desired. �

It is well-known that if P is a set-forcing notion, then for every condition p ∈ P,
and P-names �1, ... , �n, if ϕ(x1, ... , xn) is a Σk (resp. Πk) formula of the language
of set theory, with k ≥ 1, then the sentence “p �P ϕ(�1, ... , �n)” is also Σk (resp.
Πk), in the parameters P and �1, ... , �n. We shall see next that for definable ORD-
length forcing iterations that satisfy some mild conditions the complexity of the
forcing relation for P depends only on the complexity of the definition of P. Thus,
if, e.g., P is Γm-definable, then the forcing relation for Σk formulae is Σm+k-definable
(Proposition 3.13).

Definition 3.10. Let P be a definable ORD-length forcing iteration. Then P is
adequate if there is a sufficiently rich finite fragment ZFC ∗ of ZFC which allows
to define the forcing relation �P for Δ0-formulae of the language of set theory and
proving the Forcing Theorem for such formulae, and there is a proper class of
ordinals κ such that Vκ |= ZFC ∗ and PVκ = Pκ (hence also Pκ = P ∩ Vκ).3

Although there are examples of definable class forcing notions P for which
the forcing relation �P is not definable (see [20, Section 7]), if P satisfies certain
conditions, e.g., is either pretame (see [12]), progressively-closed [23], or suitable
(Definition 5.1), then the forcing relation �P is definable and the Forcing Theorem
holds for P.

Proposition 3.11. Let P be adequate and let ZFC ∗ be a finite fragment of ZFC
which is sufficient for defining the forcing relation �P for Δ0-formulae of the language
of set theory and proving the Forcing Theorem for such formulae. Suppose M is a
transitive set and κ ∈M is such that Mκ |= ZFC ∗ and PMκ = Pκ. Then, for every
Δ0-formula ϕ of the language of set theory, every p ∈ P, and every P-name � such that
p, � ∈Mκ,

p �P ϕ(�) iff Mκ |= “p �Pκ ϕ(�).”

3See Remark 3.5.
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Proof. Assume p �P ϕ(�). Suppose, for a contradiction, that q ∈ Pκ is such that
q ≤Pκ p and Mκ |= “q �Pκ ¬ϕ(�).” Suppose G is P-generic over V, with q ∈ G .
Then

V [G ] |= ϕ(iG(�)).

Note that, since PMκ = Pκ, a direct limit is taken at κ (for otherwise some conditions
in Pκ would be proper classes in Mκ), and therefore being a dense subset of Pκ is
absolute between M and V. Thus, Gκ := G ∩ Pκ is Pκ-generic overMκ. Also, since
� ∈Mκ, hence � ∈MPκ

κ , iGκ (�) ∈Mκ[Gκ] and iG(�) = iGκ (�). Since ϕ is Δ0, hence
absolute for transitive classes,Mκ[Gκ] |= ϕ(iGκ (�)). But as q ∈ Gκ, this contradicts
Mκ |= “q �Pκ ¬ϕ(�).”

A similar argument proves the converse. �
Corollary 3.12. Let P be adequate. Then, for every Δ0-formula ϕ, every p ∈ P,

and every P-name �, the sentence “p �P ϕ(�)” is:

(1) ΔL
1 ,

(2) Δm+1, if P is Γm-definable (some m ≥ 1),
(3) Δm, if P is Δm-definable (some m ≥ 1),

with p and � as parameters.

Proof. The proof of Proposition 3.11 shows that “p �P ϕ(�)” holds if and only
if

∀M ∀κ(M is a transitive set ∧ κ ∈M ∧Mκ |= ZFC ∗ ∧ PMκ = Pκ ∧
p, � ∈Mκ →Mκ |= “p �Pκ ϕ(�)”)

and also if and only if

∃M∃κ(M is a transitive set ∧ κ ∈M ∧Mκ |= ZFC ∗ ∧ PMκ = Pκ ∧
p, � ∈Mκ ∧Mκ |= “p �Pκ ϕ(�)”).

Now the two displayed sentences above are easily seen to be ΠL
1 and ΣL

1 , respectively,
with p and � as parameters.

Items (2) and (3) now follow easily from (1) and Proposition 3.6. �
Proposition 3.13. Let P be adequate. Let k ≥ 1. Then, for every Σk (resp. Πk)

formula ϕ(t) of the language of set theory, every p ∈ P, and every P-name �, the
sentence “p �P ϕ(�)” is:

(1) ΣL
k (resp. ΠL

k ).
(2) Σm+k (resp. Πm+k), if P is Γm-definable (some m ≥ 1).
(3) Σm+k–1 (resp. Πm+k–1), if P is Δm-definable (some m ≥ 1).

Proof. First, note that the class V P of P-names is ΔL
1 . Now given a Σk formula

∃x∀y∃z ... �(x, y, z, ... , t) of the language of set theory, and given a condition p ∈ P
and � ∈ V P,

p �P ∃x∀y∃z ... �(x, y, z, ... , �)

if and only if

∃( ∈ V P ∧ ∀′(′ ∈ V P → ∃′′(′′ ∈ V P ∧ ... p �P �(, ′, ′′, �)))).
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Since p �P �(, ′, ′′, �) is ΔL
1 (Corollary 3.12), the last displayed sentence is ΣL

k ,
as wanted.

Items (2) and (3) follow easily from (1) and Proposition 3.6. �
Let us compute next the complexity of the notion of P-reflecting cardinal, for

adequate P.

Proposition 3.14. Let P be adequate. Then the sentence “κ is a P-reflecting
cardinal” is:

(1) ΠL
2 , with κ as a parameter.

(2) Πm+2, if P is Γm-definable, with m ≥ 1.
(3) Πm+1, if P is Δm-definable, with m ≥ 1.

Proof. Note that P forces V [Ġ ]κ ⊆ Vκ[Ġκ] if and only if the L-sentence

∀p, � (� ∈ V P ∧ p �P “rk(�) < κ” →
∃, q ( ∈ V P ∧ q ≤ p ∧ rk() < κ ∧ q �P “ = �”))

holds in 〈V,∈,P〉. Thus, since V P is a ΔL
1 -definable class, and the expressions “p �P

rk(�) < κ” and “q �P  = �” are also ΔL
1 (Corollary 3.12), it is easily seen that the

sentence “κ is a P-reflecting cardinal” is ΠL
2 , with κ as an additional parameter.

Items (2) and (3) follow easily from (1) using Proposition 3.6. �
Let us consider, for the sake of conciseness, the following strengthening of the

notion of P-reflecting cardinal (cf. Definition 3.1).

Definition 3.15. If k ≥ 1 and P is an ORD-length forcing iteration, then a
cardinal κ is P- Σk-reflecting if it is P-reflecting, belongs to C (k)

P
, and P ∩ Vκ = Pκ.

The next lemma will be crucial in future arguments.

Lemma 3.16. Suppose P is adequate. Then for every k ≥ 0, if κ is P- Σk-reflecting
and Vκ |= ZFC ∗, then P forces V [Ġ ]κ ≺Σk V [Ġ ].

Proof. The claim is clear for k = 0. So, assume inductively that P forces
V [Ġ ]κ ≺Σk–1 V [Ġ ]. Notice that, as κ is P-reflecting, any member of V [Ġ ]κ is given
by a P-name in Vκ. Let ϕ(x) be a Σk formula in the language of set theory and let
� ∈ Vκ be a Pκ-name such that p �P ϕ(�), for some p ∈ P. We only need to show
that p �P “V [Ġ ]κ |= ϕ(�).”

Claim 3.16.1. The set of conditions q ∈ Pκ such that q �P ϕ(�) is dense below
p � κ.

Proof of claim. Suppose, aiming for a contradiction, that p′ ≤Pκ p � κ is such
that q 	�P ϕ(�), for all q ≤Pκ p

′. Since 〈Vκ,∈,Pκ〉 ≺Σk 〈V,∈,P〉, and for every q ∈ Pκ
the sentence “q 	�P ϕ(�)” is ΠL

k (Proposition 3.13), we have that “q 	�Pκ ϕ(�)” holds
in 〈Vκ,∈,Pκ〉. Therefore,

〈Vκ,∈,Pκ〉 |= “p′ �Pκ ¬ϕ(�).”

Again, since 〈Vκ,∈,Pκ〉 ≺Σk 〈V,∈,P〉, and the quoted displayed sentence is ΠL
k ,

〈V,∈,P〉 |= “p′ �P ¬ϕ(�), ”

which yields the desired contradiction to the fact that p �P ϕ(�). �
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By the claim, p � κ �P ϕ(�), and since 〈Vκ,∈,Pκ〉 ≺Σk 〈V,∈,P〉 and the above
sentence is ΣL

k we have

〈Vκ,∈,Pκ〉 � “p � κ �Pκ ϕ(�).”

Thus, if G is P-generic over V, with p ∈ G , then Vκ[Gκ] |= ϕ(iGκ (�)). Hence, since
iGκ (�) = iG(�), and κ is P-reflecting, V [G ]κ |= ϕ(iG(�)), as wanted. �

For future use, let us calculate the complexity of the predicate “κ is a P-Σk-
reflecting cardinal” for definable forcing iterations.

Proposition 3.17. Let P be adequate. Then the predicate “κ is P- Σk-reflecting”
is:

Πm+2, if k = 1 and P is Γm.
Πm+k, if k > 1 and P is Γm.
Πm+1, if k = 1 and P is Δm.
Πm+k–1, if k > 1 and P is Δm.

Proof. First, the assertion “P ∩ Vκ = Pκ” is Πm+1 (in the parameter κ) if P is
Πm-definable, and Πm if P is Σm-definable. For the quoted sentence holds if and
only if:

∀x(x ∈ P → (rk(x) < κ ↔ lh(x) < κ)).

Second, by Proposition 3.14, the sentence “κ is a P-reflecting cardinal” is Πm+2 if P
is Γm-definable; and it is Πm+1 if P is Δm-definable. Finally, as shown in Proposition
3.9, for k ≥ 0 the class C (k)

P
is Πm+k if P is Πm or Σm-definable; and it is Πm+k–1 if

P is Δm-definable.
An easy calculation now shows that the predicate “κ is a P- Σk-reflecting cardinal”

has the claimed complexity. �

§4. P-Σn-supercompactness. The following definition gives a refinement of the
notion of Σn-supercompact cardinal, relative to definable iterations.

Definition 4.1 (P-Σn-supercompactness). If n ≥ 1 and P is an ORD-length
forcing iteration, then a cardinal 	 is P- Σn-supercompact if there exists a proper
class of P- Σn-reflecting cardinals, and for every such cardinal � > 	 and every
a ∈ V� there exist 	̄ < �̄ < 	 and ā ∈ V�̄, together with an elementary embedding
j : V�̄ −→ V� such that:

(i) crit(j) = 	̄ and j(	̄) = 	.
(ii) j(ā) = a.

(iii) �̄ is P- Σn-reflecting.

The next proposition and corollary unveil the connection between the notions of
Σn-supercompact and P- Σn-supercompact cardinals. For conciseness, let us denote
by SΣn , SΣn

P
, and E (n) the classes of Σn-supercompact, P- Σn-supercompact, and

C (n)-extendible cardinals, respectively.
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Proposition 4.2. Let P be an ORD-length forcing iteration, and suppose there is
a proper class of P- Σn-reflecting cardinals. Then,

(1) SΣn
P

⊆ SΣn .
(2) If P is adequate and Δ2-definable, then SΣ3 ⊆ SΣ1

P
.

(3) If P is adequate and Δm+1-definable, somem ≥ 1, and either m or n are greater
than 1, then SΣm+n ⊆ SΣn

P
.

In particular, if P is adequate and Δ2, then every Σ2-supercompact cardinal is P- Σ1-
supercompact; and for every n > 1, a cardinal is Σn-supercompact if and only if it is P-
Σn-supercompact.

Proof. (1): Assume 	 is P- Σn-supercompact. Let � > 	 be a Σn-correct cardinal
and let a ∈ V�. Letκ > �be aP- Σn-reflecting cardinal. Notice thatVκ � “� ∈ C (n).”
By P- Σn-supercompactness, there are 	̄ < κ̄ < 	, with κ̄ being P- Σn-reflecting, and
there are ā ∈ Vκ̄ and �̄ < κ̄, together with an elementary embedding j : Vκ̄ −→ Vκ
such that crit(j) = 	̄ j(	̄) = 	, j(ā) = a, and j(�̄) = �. By elementarity, Vκ̄ thinks
that �̄ is a Σn-correct cardinal. Since κ̄ ∈ C (n), it follows that �̄ ∈ C (n).

(2) and (3): Assume 	 is Σ3-supercompact (in case (2), i.e., m = n = 1) or Σm+n-
supercompact, in case (3). Let � > 	 be P- Σn-reflecting, and let κ > � be a Σm+n-
correct cardinal. Since being a P- Σn-reflecting cardinal is a Π3 property (case (2)),
and a Πm+n property otherwise (case (3)), Vκ thinks that � is P- Σn-reflecting (cf.
Proposition 3.17). By our assumption, there exist 	̄ < �̄ < κ̄ < 	 with κ̄ ∈ C (3) (case
(2)), or κ̄ ∈ C (m+n), otherwise, and there exists an elementary embedding j : Vκ̄ −→
Vκ such that crit(j) = 	̄, j(	̄) = 	, and j(�̄) = �. By elementarity, Vκ̄ thinks that
�̄ is P- Σn-reflecting. Since Vκ̄ ≺Σ3 V (case (2)), or Vκ̄ ≺Σm+n V , otherwise, �̄ is P-
Σn-reflecting in V. Thus, the restriction j � V�̄ witnesses the P- Σn-supercompactness
of 	. �

The proposition above together with Theorem 2.4 yields the following:

Corollary 4.3. SupposeP is an ORD-length forcing iteration and there is a proper
class of P- Σn+1-reflecting cardinals. Then,

(1) SΣn+1
P

⊆ E (n).
(2) If P is adequate and Δm+1-definable, some m ≥ 1, then E (m+n) ⊆ SΣn+1

P
.

In particular, if P is adequate and Δ2-definable, then for every n ≥ 1, every C (n+1)-
extendible is P- Σn+1-supercompact.

§5. Suitable iterations. The following is a property enjoyed by many well-known
ORD-length forcing iterations, such as Jensen’s canonical class forcing for obtaining
the global GCH [17], or the McAloon class-forcing iteration for forcing V = HOD
[22]. The property will be needed to prove a general result (Theorem 5.4) about the
preservation of C (n)-extendibility.

Definition 5.1 (Suitable iterations). An ORD-length forcing iteration P is
suitable if it is the direct limit of an Easton support iteration4 〈〈Pα : α ∈

4Recall that an Easton support iteration is a forcing iteration where direct limits are taken at
inaccessible stages and inverse limits elsewhere.
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ORD〉, 〈Q̇α : α ∈ ORD〉〉 with the property that for each � ∈ ORD there is some
� ∈ ORD greater than � such that

�P� “ Q̇� is �-directed closed ”

for all � ≥ �.

It is well-known that for suitable ORD-length forcing iterations P, the forcing
relation�P is definable, the forcing theorem holds, and forcing withP preserves ZFC
(see [12] or [23]). The condition of eventual �-directed closedness in the definition
above can be strengthened on a club proper class. Namely,

Proposition 5.2. Let P be a suitable iteration. The class

C (P) := {� : ∀� ≥ �,�P� “Q̇� is �-directed closed”}

is a club class.

Proof. Closedness is obvious. As for unboundedness, fix any � and build
inductively a sequence {�n}n∈� of ordinals greater than � such that for all � ≥ �n+1,

�P� “Q̇� is �n-directed closed.”

Notice now that �∗ := supn �n is an element of C. �

The next theorem establishes some sufficient conditions for the preservation of
C (n)-extendible cardinals under definable iterations. Recall that a partial ordering
P is weakly homogeneous if for any p, q ∈ P there is an automorphism � of P such
that �(p) and q are compatible.

In the case of definable ORD-length forcing iterations we define weak homogene-
ity as follows:

Definition 5.3. A Γm-definable ORD-length forcing iteration P is weakly
homogeneous if there exists a Γm formula ϕ(x, y, z1, z2, z3) such that for every α,
Pα forces that for every ṗ, q̇ ∈ Q̇α , ϕ(x, y, ṗ, q̇, α) defines an automorphism � of Q̇α
such that �(ṗ) and q̇ are compatible.

Let us note that if P is a weakly homogeneous Γm-definable iteration, and � is P-
Γm-reflecting, then P� is also a weakly homogeneous iteration in V�, with the same
formula witnessing it. Also notice that, for everyα, Pα forces that the remaining part
of the iteration is weakly homogeneous. Indeed, in V Pα , for every p, q ∈ P[α,ORD),
the map � given by: �(x) = y iff for all � > 0,

�P[α,α+�)
“ϕ(x(�), y(�), p(�), q(�), �)”

is a definable automorphism of Ṗ[α,ORD) (with parameters ṗ and q̇) such that 1Pα

forces �(ṗ) and q̇ to be compatible.

Theorem 5.4. Let m, n ≥ 1 and m ≤ n. Let P be an adequate Δm+1-definable and
weakly homogeneous suitable iteration. Suppose there is a proper class of P- Σn+1-
reflecting cardinals. If 	 is a P- Σn+1-supercompact cardinal, then

�P “	 is C (n)-extendible.”
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Proof. Suppose G is P-generic over V. By Corollary 2.7 and Lemma 3.16, it is
sufficient to take an arbitrary P- Σn+1-reflecting cardinal � > 	 and any α < �, and
find a P- Σn+1-reflecting cardinal �̄, ordinals 	̄, ᾱ < �̄, and an elementary embedding
j : V [G ]�̄ −→ V [G ]� such that crit(j) = 	̄, j(	̄) = 	, and j(ᾱ) = α.

So pick a P- Σn+1-reflecting cardinal � > 	 and any α < �. Since 	 is P-
Σn+1-supercompact there exist 	̄ < �̄ < 	 and ᾱ < �̄, together with an elementary
embedding j : V�̄ −→ V� such that:

(i) crit(j) = 	̄ and j(	̄) = 	.
(ii) j(ᾱ) = α.

(iii) �̄ is P- Σn+1-reflecting.

It will then suffice to show that j can be lifted to an elementary embedding
j : V�̄[G�̄] −→ V�[G�], for then, since both � and �̄ are P-reflecting, we have that
V�[G�] = V [G ]� and V�̄[G�̄] = V [G ]�̄.

The iterations P�̄ and P� factorize as follows:

(i) P�̄
∼= P	̄ ∗Q with |Q| ≤ �̄.

(ii) P� ∼= P	 ∗Q∗ with

�P	
“Q∗ is weakly homogeneous and 	-directed closed.”

Indeed, (i) is clear since �̄ is a �-fixed point. For (ii), since P is weakly homogeneous
and � is P- Σn+1-reflecting, P� is weakly homogeneous in V�, and therefore P	 forces
that Q∗ is weakly homogeneous. Thus, we only need to see that �P	

“Q∗ is 	-directed
closed.”

Recall from Proposition 5.2 that the class

C (P) := {� : ∀� ≥ �, �P� “Q̇� is �-directed closed”}

is a club class. Thus, it will be sufficient to show that 	 is a limit point of C (P),
and therefore it belongs to C (P). So, let � < 	 and notice that since P is a suitable
iteration, the sentence ϕ(�) asserting:

∃� > �∀� ≥ � ( �P� “Q̇� is �-directed closed”)

holds in V. Since P is Δm+1-definable, ϕ(�) is easily seen to be equivalent to the Σm+2

sentence

∃� > �∀� ≥ � ∀α > � (α ∈ C (m) →
Vα � “ �P� ‘ Q̇� is �-directed closed ′”).

Since 	 is a Σn+2-correct cardinal (by Lemma 2.3 and Proposition 4.2), and m ≤ n,
there must be a witness for ϕ(�) below 	. Arguing inductively, we define an �-
sequence of ordinals above�with limit inC (P). This shows thatC (P) is unbounded
in 	, as wanted.

Since 	 ∈ C (n+2), and j is elementary with j(	̄) = 	, we have that j(P	̄) = P	 .
Also, since 	̄ is the critical point of j, we have that j“G	̄ = G	̄ ⊆ G	 , and so j � V�̄
can be lifted to an elementary embedding

j : V�̄[G	̄ ] −→ V�[G	 ].
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Let us denote byG[	̄,�̄) andG[	,�) the filtersG ∩Q andG ∩Q∗, respectively. Notice
that these filters are generic for Q and Q∗ over V�̄[G	̄ ] and V�[G	 ], respectively. In
order to lift the embedding j to the further generic extensionV�̄[G�̄] = V�̄[G	̄ ][G[	̄,�̄)],

notice first that j“G[	̄,�̄) is a directed subset of Q∗ of cardinality ≤ �̄. Also, since
j � V�̄ ∈ V�[G	 ], and j“G[	̄,�̄) can be computed from j � V�̄ and G[	̄,�̄), we have
that j“G[	̄,�̄) ∈ V�[G	 ]. Therefore, since Q∗ is a 	-directed closed forcing notion in
V�[G	 ], there is some condition p ∈ Q∗ such that p ≤ q, for every q ∈ j“G[	̄,�̄).
Thus, p is a master condition in Q∗ for the embedding j and the generic filter G[	̄,�̄).
So, if H ⊆ Q∗ is a generic filter over V�[G	 ] containing p, then j can be lifted to an
elementary embedding

j : V�̄[G�̄] −→ V�[G	 ∗H ].

Claim 5.4.1. In V [G ] there exists some generic filter H ⊆ Q∗ over V�[G	 ]
containing p such that V�[G	 ∗H ] = V�[G�].

Proof of claim. By (ii) above, Q∗ is a weakly homogeneous class forcing in
V�[G	 ]. Thus, the set of conditions r ∈ Q∗ for which there is an automorphism �
of Q∗ that is definable in V�[G	 ] and such that �(r) ≤ p is dense. Pick such an r in
G[	,�) and such an automorphism �. Now, notice that the filter H generated by the
set �“G[	,�) contains �(r) and therefore it contains p. Since H is definable by means
of � and G[	,�), and also � is definable in V�[G	 ], we conclude that V�[G	 ∗H ] =
V�[G�]. �

By taking H ⊆ Q∗ as in the claim above, we thus obtain a lifting

j : V�̄[G�̄] −→ V�[G�],

as wanted. �

Remark 5.5. Note that the above proof shows more than what is stated in The-
orem 5.4. Specifically, what is proved is the following local result: every elementary
embedding (in V) witnessing some partial degree of P- Σn+1-supercompactness lifts
to an elementary embedding (in V P) witnessing the same partial degree of C (n)-
extendibility.

Corollary 5.6. Suppose n ≥ 1. Let P be an adequate Δ2-definable and weakly
homogeneous suitable iteration. Suppose there is a proper class of P- Σn+1-reflecting
cardinals. If 	 is a C (n+1)-extendible cardinal, then

�P “ 	 is C (n)-extendible .”

Proof. Since P is adequate, Δ2-definable, and there exists a proper class of P-
Σn+1-reflecting cardinals, Corollary 4.3 implies that 	 isP- Σn+1-supercompact. Now,
Theorem 5.4 applies to get the desired result. �

Let P be an adequate Δm+1-definable suitable iteration. Let us look next into
the conditions under which, for some n ≥ 1, there exists a proper class of P- Σn+1-
reflecting cardinals (this was one of the assumptions of Theorem 5.4).

First, the class C (n)
P

is closed, unbounded, and Πm+n-definable (Proposition 3.9).
Also, the class D of ordinals α such that Pα = P ∩ Vα is Πm+1-definable (cf. the
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proof of Proposition 3.17). Observe that D is a proper class by assumption, hence
D (the closure of D) is a club proper class. Further, the following holds:

Lemma 5.7. The class K of P-reflecting cardinals is unbounded.

Proof. We begin with the following auxiliary claim:

Claim 5.7.1. For each α ∈ ORD there is a P-name �α such that

�P “�α = V [Ġ ]α.”

Proof. By induction on α. If α = 0, then the result is clear. So, assume that
〈�� | � < α〉 has already been found, and let us find �α . If α is a limit ordinal, then
let �α :=

⋃
�<α �� . Clearly, �α is as desired.

Now suppose that α is a successor ordinal; say, α = ᾱ + 1. Let ϕ : 	 → �ᾱ be a
bijection, some cardinal 	. Thus, �P “ϕ̌ : 	̌ → �ᾱ is onto.” Since by the induction
hypothesis, �P “�ᾱ = V [Ġ ]ᾱ , ” we have that �P “ϕ̌ : 	̌ → V [Ġ ]ᾱ is onto.” As P is
suitable we can find a cardinal � such that �ᾱ is a P� -name and, moreover,

�P�
“Ṗ[�,ORD) is 	+-closed.”

As the remaining part P[�,ORD) of the iteration does not add any new subsets of 	,
hence no new elements of V [Ġ ]α , we have that

�P “V [Ġ ]α = V [Ġ� ]α.”

So we can just take �α to be aP� -name forV [Ġ� ]α , where Ġ� is the standardP� -name
for the generic. �

We are now in conditions to show that the class K of P-reflecting cardinals
is unbounded. To this aim fix any ordinal α and define inductively a sequence
of ordinals 〈αn : n < �〉 in D, with α0 = α and �P “V [Ġ ]αn ⊆ Vαn+1[Ġαn+1 ], ” as
follows: Suppose that αn has already been defined. By the above claim there is a
P-name � such that P forces “� = V [Ġ ]αn .” Let � be an ordinal such that p ∈ P�
and P� = P ∩ V� . Then, �P “� ∈ V� [Ġ� ]” and thus �P “V [Ġ ]αn ⊆ Vαn+1[Ġαn+1 ], ”
where � := αn+1. Finally, let � be the supremum of the αn’s. In this case we have
that �P “V [Ġ ]� ⊆ V�[Ġ�], ” and so � is P-reflecting. �

Thus, K is a Πm+2-definable club proper class (see Propositions 3.3 and 3.14).
For each n ≥ 1, set Kn := C (n)

P
∩K ∩D.

Proposition 5.8. Let P be an adequate Δm+1-definable suitable iteration. Then
Kn+1 (resp. K1) is a Πm+n+1-definable (resp. Πm+2) club class such that Kn+1 ∩
Reg (resp. K1 ∩ Reg) is contained in the class of P- Σn+1-reflecting cardinals (resp. P-
Σ1-reflecting cardinals).

Proof. Clearly, Kn+1 is a club class. Also, by the above discussion, Kn+1 is
Πm+n+1, and K1 is Πm+2. Let κ ∈ Kn+1 ∩ Reg. To show that κ is P- Σn+1-reflecting
it is enough to verify that κ ∈ D.

Since κ is an accumulation point of D, P ∩ Vκ ⊆ Pκ. Conversely, κ is inaccessible,
hence Pκ is the direct limit of the previous stages, and so Pκ ⊆ P ∩ Vκ. Hence κ ∈ D.
The proof for K1 is the same. �
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Recall that if κ is a cardinal and α an ordinal,

• κ is 0-Mahlo if κ is inaccessible;
• κ is (α + 1)-Mahlo iff {� < κ | � is α-Mahlo} is stationary;
• In case α > 0 is a limit ordinal, κ is α-Mahlo iff κ is �-Mahlo for every � < α.

Definition 5.9. For n < � and α ∈ ORD, the class ORD is Γn- (α + 1)-Mahlo
if every Γn-definable5 club proper class of ordinals contains an α-Mahlo cardinal.

Note that a cardinal is Mahlo if and only if it is 1-Mahlo, hence ORD is Γn-Mahlo
if and only if ORD is Γn-1-Mahlo.

Definition 5.10. A proper class S of ordinals is Γn-stationary if S intersects every
Γn-definable club proper class of ordinals.

Proposition 5.11. Let P be an adequate Δm+1-definable suitable iteration. If ORD
is Πm+n+1-Mahlo, then the class of P- Σn+1-reflecting cardinals is Πm+n+1-stationary,
so it is a proper class.

Proof. Let C be a Πm+n+1 club proper class of ordinals. By Proposition 5.8,
C ∩ Kn+1 is a Πm+n+1 club proper class such that C ∩ Kn+1 ∩ Reg is contained in the
class of P- Σn+1-reflecting cardinals. Thus, the class of P- Σn+1-reflecting cardinals
is Πm+n+1-stationary. To show the class is unbounded, given any cardinal κ, let
C := C (n+m) \ κ+. Then C is a Πm+n+1-definable club proper class which, as before,
contains a P- Σn+1-reflecting cardinal. �

Lemma 5.12. Let P be a Δm+1-definable suitable iteration. If ORD is Πm+1-Mahlo,
then P is adequate.

Proof. Since P is Δm+1-definable, PVκ = P ∩ Vκ for every κ ∈ C (m+1). Since
ORD is Πm+1-Mahlo, and direct limits are taken at inaccessible stages of the
iteration, the class of inaccessible cardinals κ such that PVκ = Pκ is a proper class.
Thus, P is adequate. �

The following corollaries now follow immediately from Theorem 5.4, Corollary
5.6, Proposition 5.11, and Lemma 5.12:

Corollary 5.13. Let m, n ≥ 1 and m ≤ n. Let P be Δm+1-definable weakly
homogeneous suitable iteration. Suppose ORD is Πm+n+1-Mahlo. If 	 is a P- Σn+1-
supercompact cardinal, then

�P “	 is C (n)-extendible.”

Corollary 5.14. Let n ≥ 1 and letP be Δ2-definable weakly homogeneous suitable
iteration. Suppose ORD is Πn+2-Mahlo. If 	 is a C (n+1)-extendible cardinal, then

�P “ 	 is C (n)-extendible .”

§6. Vopěnka’s principle and suitable iterations. Let us recall the following
characterizations of Vopěnka’s Principle, as well as of its restriction to definable
classes of structures of a given complexity, in terms of C (n)-extendible cardinals.

5That is, Γn-definable with parameters (see Notation 3.8).
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Theorem 6.1 [2]. The following are equivalent:

(1) VP.
(2) For every n ≥ 1 there exists a C (n)-extendible cardinal.

Theorem 6.2 [1]. Let n ≥ 1. The following are equivalent:

(1) VP(Πn+1), i.e., VP restricted to proper classes of structures that are Πn+1-
definable with parameters.

(2) There exists a proper class of C (n)-extendible cardinals.

For n = 0, the equivalence is between VP(Π1) and the existence of a proper class
of supercompact cardinal. The lightface version also holds. Namely, VP(Πn+1) is
equivalent to the existence of a C (n)-extendible cardinal (see [1]).

Vopěnka’s Principle can be also characterized in terms of the existence of P- Σn-
supercompact cardinals (cf. Theorems 6.4 and 6.5). The following lemma will be
useful for this purpose.

Lemma 6.3. Let n ≥ 1. Then VP(Πn) implies that ORD is Σn+1-(κ + 1)-Mahlo,
for every cardinal κ.6

Proof. Let us prove the lemma for n > 1. The case n = 1 is similar, using the
fact that VP(Π1) is equivalent to the existence of a proper class of supercompact
cardinal, and that every supercompact cardinal belongs to C (2). So, let n > 1 and
assume that VP(Πn) holds.

Let C be a Σn+1-definable club proper class of ordinals and let ϕ(x, �a) be some
Σn+1-formula defining it. Let κ be a cardinal and � be a C (n–1)-extendible cardinal
with �a ∈ V� and κ < �. Note that this � exists by virtue of Theorem 6.2. We claim
that C ∩ � is unbounded in �. For if α < �, then the sentence “∃� > α(� ∈ C)” is
Σn+1 (with �a as parameters), hence it is true in V� because � is C (n–1)-extendible
and so it belongs to C (n+1) [1, Proposition 3.4]. Since C is closed, � ∈ C. Since � is
�-Mahlo, hence also κ-Mahlo, the result follows. �

Theorem 6.4. The following are equivalent:

(1) VP holds.
(2) For every n ≥ 1 and every definable weakly homogeneous suitable iteration P,

there is a proper class of P- Σn-reflecting cardinals and there exists a proper
class of P- Σn-supercompact cardinal.

Proof. (1) ⇒ (2): Let n ≥ 1 and let P be Δm+1-definable weakly homogeneous
suitable iteration, somem ≥ 1. By Lemma 5.12, P is adequate. By Lemma 6.3, ORD
is Πm+n+1-Mahlo and so Proposition 5.11 yields a proper class of P- Σn+1-reflecting
cardinals. Also, by Corollary 4.3 and Theorem 6.2 we infer that there is a proper
class of P- Σn-supercompact cardinal.

(2) ⇒ (1): Since (2) holds, by Corollary 4.3 there exists a proper class of C (n)-
extendible cardinals, for every n ≥ 1, hence by Theorem 6.2, VP holds. �

The following gives more precise information about the relationship between
P- Σn-supercompact cardinals and fragments of VP.

6The lightface version of the statement also holds.
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Theorem 6.5. Let m, n ≥ 1 and let P be an ORD-length forcing iteration. Then,
(1) Assume there is a proper class of P- Σn+1-reflecting cardinals. If there is a P-

Σn+1-supercompact cardinal, then VP(Πn+1) holds; and if there is a proper class
of P- Σn+1-supercompact cardinals, then VP(Πn+1) holds.

(2) If P is Δm+1-definable, some m ≥ 1, suitable, and weakly homogeneous, then
VP(Πm+n+1) implies the existence of a proper class of P- Σn+1-reflecting
cardinals and a proper class of P- Σn+1-supercompact cardinals.

Proof. Item (1) is a direct consequence of Corollary 4.3 and our remarks
following Theorem 6.2. As for (2), Theorem 6.2 shows that VP(Πm+n+1) is equivalent
to the existence of a proper class of C (m+n)-extendible cardinals. Also, Lemma 6.3
shows that VP(Πm+n+1) implies that ORD is Σm+n+2-Mahlo, hence Lemma 5.12
implies that P is adequate. Thus, by Proposition 5.11, there exists a proper class of
P- Σn+1-reflecting cardinals. By Corollary 4.3 there exists also a proper class of P-
Σn+1-supercompact cardinals. �

We end this section by proving a level-by-level version of Brooke-Taylor’s result
on the preservation of Vopěnka’s Principle under definable suitable iterations.

Theorem 6.6. Let m, n ≥ 1 and m ≤ n. Let P be a Δm+1-definable weakly
homogeneous suitable iteration. If VP(Πm+n+1) holds, then

�P “VP(Πn+1) holds.”

Proof. By Theorem 6.5(2), there is a proper class of P- Σn+1-reflecting cardinals,
as well as a proper class of P- Σn+1-supercompact cardinals. Also, by Lemma 5.12,
P is adequate. Now the result follows combining Theorem 5.4 and the remarks just
after Theorem 6.2. �

Corollary 6.7 [8]. Let P be a definable weakly homogeneous suitable iteration. If
VP holds in V, then VP holds in V P.

Our version of Brooke-Taylor’s result differs from the original one in that we
require the weak homogeneity of P. However, our proof shows more than Brooke-
Taylor’s, for it shows that every relevant elementary embedding from the ground
model lifts to an elementary embedding in the forcing extension (recall Remark
5.5). Even though weak homogeneity holds for a wide family of forcing notions, it
puts some restrictions on the sort of statements that can be forced. One example is
“V = HOD.” In Section 9.1 we will address this problem and will prove Theorem
6.6 without the weak homogeneity assumption (Theorem 9.6). We are very grateful
to Brooke-Taylor for his valuable comments on this matter.

§7. C (n)-extendible cardinals and fitting iterations. While our main corollary from
Section 5 (cf. Corollary 5.14) applies to a wide class of forcing iterations, it requires
that the cardinal we begin with is C (n+1)-extendible. In this section we argue that
this extra assumption can be avoided by restricting to a certain subclass of forcing
iterations, which nevertheless are still general enough.

Definition 7.1. An ORD-length forcing iteration P is fitting if it is Δ2-definable,
suitable, and weakly homogeneous, and there is a Δ2-definable Σ2-stationary class
KP of regular P-reflecting cardinals κ such that P ∩ Vκ = Pκ.
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Remark 7.2. Note that every fitting iteration is adequate. Also notice that KP ∩
C (1) is a Δ2-definable proper class of inaccessible cardinals.

Theorem 7.3. Suppose that P is a fitting iteration. If 	 is a supercompact cardinal
in C (P), then �P “	 is supercompact.”7

Proof. Let 	 be a supercompact cardinal in C (P) and suppose G is a P-generic
filter over V. It will be sufficient to verify that for each � ∈ KP ∩ C (1) there are
�̄ ∈ KP ∩ C (1) and 	̄ with 	̄ < �̄ < 	, and an elementary embedding

j : V�̄[G�̄] → V�[G�]

with crit(j) = 	̄ and j(	̄) = 	. For since � and �̄ are P-reflecting we then have
V�̄[G�̄] = V [G ]�̄ and V�[G�] = V [G ]�.

So let � be as above. Since 	 is Σ1-supercompact, given � ∈ C (1) with � > �,
there is �̄ ∈ C (1) and 	̄ < �̄ < �̄, and an elementary embedding j : V�̄ → V� with
crit(j) = 	̄, j(	̄) = 	, and j(�̄) = �.

Since KP is Δ2-definable, V� |= � ∈ KP ∩ C (1). Hence, by elementarity and Σ1-
correctness of �̄, �̄ ∈ KP ∩ C (1).

We only need to show how to lift j � V�̄ : V�̄ → V� to an elementary embedding
V�̄[G�̄] → V�[G�]. Since P is Δ2-definable, PV� = P ∩ V� = P�, where the rightmost
equality follows from � ∈ KP. Analogously, the same holds for PV�̄ . Thus, we have:

(i) P�̄
∼= P	̄ ∗ Q̇, with |Q̇| = �̄.

(ii) P� ∼= P	 ∗ Q̇∗ and �P	
“Q̇∗ is weakly homogeneous.”

Since 	 ∈ C (P), �P	
“Q̇∗ is 	-directed closed.” We may now proceed as in the proof

of Theorem 5.4 to get the desired elementary embedding j : V�̄[G�̄] → V�[G�]. �
Lemma 7.4. Suppose that P is a fitting iteration and 	 is an extendible cardinal.

Then, �P “	 is extendible.”

Proof. Suppose G is a P-generic filter over V. It suffices to verify that for each
� ∈ KP greater than 	, there is � ∈ KP and an elementary embedding

j : V�[G�] → V� [G� ]
with crit(j) = 	 and j(	) > �. For since � and � are P-reflecting we then have
V�[G�] = V [G ]� and V� [G� ] = V [G ]� .

So let � be as above. Since 	 is extendible, hence C (1)+-extendible, given � ∈ C (1),
� > �, there is � ∈ C (1) and an elementary embedding j : V� → V� with crit(j) = 	
and j(	) > �. Since KP is Δ2-definable, V� |= � ∈ KP, hence by elementarity and
since � ∈ C (1), j(�) ∈ KP.

Let � := j(�). We will show how to lift j � V� : V� → V� to an elementary
embedding V�[G�] → V� [G� ]. Since P is Δ2-definable, PV� = P ∩ V� = P�, where
the rightmost equality follows from � ∈ KP. Analogously, the same holds for PV� .
Thus, we have:

(i) P� ∼= P	 ∗ Q̇, with |Q̇| = �.
(ii) P� ∼= Pi(	) ∗ Q̇∗ and �Pi(	)

“Q̇∗ is weakly homogeneous.”

7For the definition of C (P), see Proposition 5.2.
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Claim 7.4.1. �Pi(	)
“Q̇∗ is i(	)-directed closed.”

Proof of claim. We first show that 	 is an accumulation point of C (P), hence it
belongs to C (P). So, fix an ordinal 0 < 	. Since P is suitable the Σ3-formula ϕ(0)

∃∀�∀α∀X (0 <  ≤ � < α ∧ α ∈ K (1)
P

∧
X = Vα → X |= �P� “Q̇� is 0-directed closed”)

holds. Since 	 ∈ C (3) and 0 < 	, there is a witness 0 < 1 < 	 for ϕ(0). Arguing
inductively we define a sequence 〈n | n < �〉 of ordinals <	 such that n+1 is a
witness for ϕ(n). Setting � := supn<� n one can easily see that � ∈ C (P) ∩ 	.

Since 	 ∈ C (P), for each  ∈ [	, �), �P	
“Ṗ[	,] is 	-directed closed.”8 Since � is

inaccessible, <	V� ⊆ V�, and therefore the same is true in V�, namely V� |= “ �P	

Q̇ is 	-directed closed.” By elementarity,

V� |= “ �Pi(	)
Q̇∗ is i(	)-directed closed.”

Since � is inaccessible, <i(	)V� ⊆ V� , and therefore the quoted sentence displayed
above also holds in V, as desired. �

From this point on the argument for the lifting of j � V� to an elementary
embedding V�[G�] → V� [G� ] is essentially the same as in Theorem 5.4. �

Theorem 7.5. Suppose that P is a fitting iteration such that C (P) contains all
supercompact cardinals, in case there are any. Then forcing with P preserves C (n)-
extendible cardinals, for all n < �.9

Proof. We prove the theorem by induction over n. The case n = 1 is covered by
Lemma 7.4. So, suppose that n ≥ 2 and for each 0 ≤ k < n forcing with P preserves
C (k)-extendible cardinals.

We argue similarly as in the proof of Lemma 7.4. So, let 	 be a C (n)-extendible
cardinal and suppose G is a P-generic filter over V. Let � ∈ K (1)

P
be greater than

	, and let � ∈ C (n) be greater than �. Then, there is � ∈ C (n) and an elementary
embedding

j : V� → V�

with crit(j) = 	, j(	) > �, and j(	) ∈ C (n). Actually, j(	) isC (n–2)-extendible. Since
n ≥ 2 and KP is Δ2-definable, V� |= � ∈ KP. Hence, by elementarity and since � ∈
C (n), j(�) ∈ KP.

Arguing exactly as in the proof of Theorem 7.4, we can lift j � V� to an elementary
embedding V [G ]� → V [G ]� , where � := j(�).

It only remains to show that j(	) ∈ C (n). Suppose first n = 2. Since j(	) is
supercompact and every supercompact belongs to C (2), it is enough to show that
j(	) is supercompact in V [G ]. By our assumption, j(	) ∈ C (P), hence j(	) is
supercompact in V [G ] (cf. Theorem 7.3).

8Here Ṗ[	,] is a P	 -name for the iteration Q up to .
9By convention, a cardinal is C (0)-extendible iff it is supercompact (cf. page 20).
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For 1 ≤ n – 2 and j(	) being C (n–2)-extendible, our induction hypothesis implies
that i(	) is C (n–2)-extendible in V [G ]. In particular, V [G ]j(	) ≺Σn V [G ]. Thus, 	 is
C (n)-extendible in V [G ]. �

In the next section we provide several applications of this theorem.

§8. Some applications.

8.1. Forcing the GCH and related combinatorial principles. LetP = 〈Pα ; Q̇α : α ∈
ORD〉 be the standard Jensen’s proper class iteration for forcing the global GCH.
Namely, P is the direct limit of the iteration with Easton support where P0 is the
trivial forcing and for each ordinal α, if �Pα “α is an uncountable cardinal,” then
�Pα “Q̇α = Add, ” and �Pα “Q̇α is trivial” otherwise.

Lemma 8.1. Assume ORD is Σ2- 2-Mahlo. Then P is fitting and C (P) contains all
supercompact cardinals, in case there are any.

Proof. Clearly, P is a suitable and weakly homogeneous iteration. Also, P is
Δ2-definable, as “p ∈ P” if and only if Vα |= “p ∈ P, ” for (some) every α ∈ C (1)

such that p ∈ Vα .
Let KP denote the class of all Mahlo cardinals. Clearly, KP is Δ2-definable. Also,

since ORD is Σ2- 2-Mahlo, KP is a Σ2-stationary proper class. Let κ ∈ KP. Thus, κ
is regular and, clearly, P ∩ Vκ = Pκ.

Claim 8.1.1. κ is P-reflecting.

Proof of claim. Clearly, κ is inaccessible and �Pκ “Q̇ is κ-distributive,” where
P ∼= Pκ ∗ Q̇. Also, Pκ ⊆ Vκ. Let � < κ be forced by Pκ to be a cardinal. For every
inaccessible cardinal � < κ, � ∈ C (P), hence

�P�
“Q̇[�,κ) is �-distributive”

and P� = P ∩ V� . Since κ is Mahlo and {� < κ | P� = P ∩ V�} is unbounded, Pκ
is κ-cc. Also, standard arguments show that Pκ forces “|Ṗ(�)| < κ̌.” Altogether, P
forces κ to be inaccessible. Finally, we appeal to Proposition 3.4 to get that κ is
P-reflecting, as wanted. �

The claim about C (P) containing all supercompacts is obvious. �
In [28, Section 5], Tsaprounis shows that P preserves C (n)-extendible cardinals.

The following theorem gives an improvement of his result:

Theorem 8.2. (1) If ORD is Σ2- 2-Mahlo, and 	 is supercompact then

�P “	 is supercompact.”

(2) If for some n ≥ 1, 	 is C (n)-extendible then

�P “	 is C (n)-extendible.”

In10 particular, if there is a proper class of supercompact cardinals (equivalently, if
VP(Π1) holds), then forcing with P preserves C (n)-extendible cardinals, for all n < �.

10An ad hoc argument for Jensen’s iteration can be composed to show that it preserves supercompact
cardinals without the assumption, used in Lemma 8.1, of ORD being Σ2-2-Mahlo. Nevertheless, the
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Proof. This follows from Theorem 7.5 and Lemma 8.1. The particular case can
be proved using Lemma 6.3. �

Recall that a class function E from the class Reg of infinite regular cardinals
to the class of cardinals is an Easton function if it satisfies König’s theorem (i.e.,
cf(E(κ)) > κ, for all κ ∈ Reg) and is increasingly monotone. Let PE be the direct
limit of the iteration 〈Pα, Q̇α : α ∈ ORD〉 with Easton support where P0 is the
trivial forcing and for each ordinal α, if �Pα “α is a regular cardinal,” then �Pα

“Q̇α = Add(α,E(α)), ” and �Pα “Q̇α is trivial” otherwise. Standard arguments [16,
Section 15] show that if the GCH holds in the ground model, then PE preserves all
cardinals and cofinalities and forces that 2κ = E(κ), for each κ ∈ Reg.

Lemma 8.3. Let E be a Δ2-definable Easton function and assume that ORD is Σ2-
2-Mahlo. Then PE is fitting and C (P) contains all supercompact cardinals, in case
there are any.

Proof. Arguing as in Lemma 8.1, PE is a Δ2-definable, weakly homogeneous
suitable iteration. Set P := PE and let

KP := {κ | κ is Mahlo and E[κ] ⊆ κ}.
Clearly, every κ ∈ KP is regular and witnesses P ∩ Vκ = Pκ. The argument for the
verification that each κ ∈ KP is P-reflecting is analogous to the one given in Lemma
8.1. The claim about C (P) is obvious. Also, since E is Δ2-definable, so is KP.
Moreover, KP is Σ2-stationary, for if C is a Σ2-definable club class of ordinals, then
CE := {α ∈ C | E[α] ⊆ α} is a Σ2-definable proper club class, and since ORD is Σ2-
2-Mahlo, KP ∩ C 	= ∅. �

Similarly as in Theorem 8.2, we now obtain the following:

Theorem 8.4. Assume the GCH holds and let E be a Δ2-definable Easton function.11

Then the following hold:
(1) If ORD is Σ2- 2-Mahlo and 	 is supercompact then

�PE
“	is supercompact.”

(2) If n ≥ 1 and 	 is C (n)-extendible then

�PE
“	 is C (n)-extendible.”

In particular, if the GCH holds and there is a proper class of supercompact cardinals
(equivalently, VP(Π1) holds), then forcing with PE preservesC (n)-extendible cardinals,
for all n < �.

Corollary 8.5. Let E be a Δ2-definable Easton function and assume the GCH
holds. Then the following are true:

(1) If VP(Π1) holds, then �PE
“VP(Π1).”

arguments given in the lemma also apply to other class forcing iterations considered in the subsections
below.

11The GCH assumption is superfluous if we are only interested in preservingC (n)-extendible cardinals,
n ≥ 1, for in that case we may first force the GCH while preservingC (n)-extendible cardinals (cf. Theorem
8.2).
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(2) If VP(Πn+1) holds, then �PE
“VP(Πn+1).” Also, if VP(Πn+1) holds then �PE

“VP(Πn+1).”

The next corollary shows that VP is also consistent with any possible behaviour
of the power-set function given by an arbitrary definable Easton function.

Corollary 8.6. If VP holds, then in some class forcing extension, for every definable
Easton function E there is a further class forcing extension that preserves VP and where
2κ = E(κ), for every κ ∈ Reg.

Proof. First force with the standard Jensen’s iteration for forcing the GCH and
call the resulting generic extension V. By Corollary 6.7, V |= VP. Then, given a
V -definable Easton function E, force over V with PE . Once again by Corollary 6.7,
V PE |= VP. Finally, since V |= GCH, it follows that PE forces 2κ = E(κ), for every
κ ∈ Reg. �

8.2. A remark on Woodin’s HOD Conjecture. The HOD Dichotomy theorem
of Woodin states that if there exists an extendible cardinal, then either V is close
to HOD or is far from it. Specifically, if κ is an extendible cardinal, then either
(1): for every singular cardinal � > 	, � is singular in HOD and (�+)HOD = �+,
or (2): every regular cardinal � > κ is �-strongly measurable in HOD (see [29]).
Woodin’s HOD Hypothesis asserts that there is a proper class of regular cardinals
that are not �-strongly measurable in HOD, and therefore that the first option
of the HOD Dichotomy is the true one. Woodin’s HOD Conjecture asserts that
the HOD Hypothesis is provable in the theory ZFC + “There exists an extendible
cardinal.” Our arguments may be used to show that if the HOD Conjecture holds,
and therefore it is provable in ZFC + “There exists an extendible cardinal” that
above the first extendible cardinal every singular cardinal � is singular in HOD and
(�+)HOD = �+, there may still be no agreement at all between V and HOD about
successors of regular cardinals. Moreover, many singular cardinals in HOD need
not be cardinals in V. Let us give some examples.

LetPbe the direct limit of the iteration 〈Pα ; Q̇α : α ∈ ORD〉with Easton support,
where P0 is the trivial forcing and for each ordinal α, if �Pα “α is regular” then
�Pα “Q̇α = ˙Coll(α, α+), ” and �Pα “Q̇α is trivial” otherwise. Arguing essentially as
in Lemma 8.1 we obtain the following:

Lemma 8.7. Assume ORD is Σ2- 2-Mahlo. Then, P is fitting and C (P) contains all
supercompact cardinals, in case there are any.

Theorem 8.8. (1) If ORD is Σ2- 2-Mahlo, and 	 is supercompact then

�P “	 is supercompact.”

(2) If n ≥ 1 and 	 is C (n)-extendible, then

�P “	 is C (n)-extendible.”

Moreover, P forces “∀� ∈ Reg ((�+)HOD < �+).”

Proof. For the preservation of C (n)-extendible cardinals we combine Lemma
8.7 and Theorem 7.5. To prove the claim about successors of regular cardinals,
note that if � is a regular cardinal in V P, then it was also a regular cardinal at
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stage � of the iteration, hence its successor was collapsed at stage �+ 1. Thus, on
the one hand, (�+)V < (�+)V

P

. On the other hand, P is weakly homogeneous and

ordinal definable, hence HODV
P

⊆ HODV (see, e.g., [16] for details). Hence, inV P,
(�+)HOD < �+, as wanted. �

Corollary 8.9. Forcing with P preserves VP and forces (�+)HOD < �+ for every
regular cardinal �.

Theorem 8.8 yields the parallel of the main theorem from [11], at the level of
C (n)-extendible cardinals.

Suppose now that K is a function on the class of infinite cardinals such that
K(�) > �, and K is increasingly monotone, for every �. Let PK be the direct limit of
an iteration 〈Pα ; Q̇α : α ∈ ORD〉with Easton support, whereP0 is the trivial forcing
and for each ordinal α, if �Pα “α is regular” then �Pα “Q̇α = ˙Coll(α,K(α)), ” and
�Pα “Q̇α is trivial” otherwise. Notice that for each α such that �Pα “α is regular,”
the remaining part of the iteration after stage α is α-closed, hence it preserves α.
Also note that if K is Δm-definable (m ≥ 1), then PK is also Δm-definable. Clearly,
PK is suitable and weakly homogeneous.

Lemma 8.10. Assume ORD is Σ2- 2-Mahlo. Let K be a Δ2-definable class function
as above. Then, PK is a fitting iteration and C (P) contains all supercompact cardinals,
in case there are any.

Proof. LetKP := {κ | κ is Mahlo and K [κ] ⊆ κ}. The proof thatKP is a witness
for the fittingness of P is similar to those given in Lemmas 8.3 and 8.7. The claim
about C (P) is obvious. �

Theorem 8.11. Let K be a Δ2-definable class function as above.
(1) If ORD is Σ2- 2-Mahlo, and 	 is supercompact then

�PK
“	 is supercompact.”

(2) If 	 is C (n)-extendible, for some n ≥ 1, then

�PK
“	 is C (n)-extendible.”

Moreover, PK forces

(�+)HOD ≤ K(�) < �+

for all infinite regular cardinals �.

Proof. The preservation of C (n)-extendible cardinals, n < �, follows from
Lemma 8.10 and Theorem 7.5.

If G is PK -generic over V and � is regular in V [G ], then it is also regular at the
�-stage of the iteration. Hence, Q� = Coll(�,K(�)), and thereforeK(�) < �+ holds
inV [G ]. The other inequality (i.e., (�+)HOD ≤ K(�)) follows from the fact thatPK is
weakly homogeneous and ordinal definable, and thus that HODV [G ] ⊆ HODV . �

The theorem above implies that many kinds of disagreement between successors of
regulars in HOD and in V may be forced while preservingC (n)-extendible cardinals.
It also implies that one can destroy many singular cardinals in HOD while preserving
C (n)-extendible cardinals. For example, let K be such that K(�) is the least singular
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cardinal in HOD greater than �, i.e., K(�) = (�+�)HOD. It is easily seen that K, and
therefore also PK as defined above, are Δ2-definable. Then we have the following.

Corollary 8.12. For each n ≥ 1, PK preserves C (n)-extendible cardinals and
forces “∀� ∈ Reg ((�+�)HOD < �+).”

8.3. On diamonds. Other combinatorial statements that we can force while
preserving C (n)-extendible cardinals are the diamond principles ♦S . Namely, given
a stationary set S ⊆ κ, a sequence 〈Aα : α ∈ S〉 is a ♦S -sequence if Aα ⊆ α and for
every A ⊆ κ the set {α ∈ S : A ∩ α = Aα} is stationary. We say that ♦S holds if
there is a ♦S -sequence.

It is well-known that Add(κ+, 1) automatically forces ♦S , for every stationary
S ⊆ κ+ in V Add(κ+,1). Thus, from Theorem 8.2, we obtain:

Corollary 8.13. (1) If ORD is Σ2- 2-Mahlo and 	 is a supercompact cardinal,
then there is a generic extension where 	 is still supercompact and ♦S holds for
every cardinal κ and every stationary S ⊆ κ+.

(2) If n ≥ 1 and 	 is a C (n)-extendible cardinal, there is a generic extension where
	 is C (n)-extendible and ♦S holds for every cardinal κ and every stationary
S ⊆ κ+.

Hence, if VP holds in V, there is a generic extension where VP holds together with
♦S , for every κ and every stationary S ⊆ κ+.

Another relevant diamond principle is the so-called ♦+
κ+-principle.

A sequence 〈Aα : α ∈ κ+〉 is a ♦+
κ+-sequence if Aα ∈ [P(α)]≤κ and for every

A ⊆ κ+ there is a club C ⊆ κ+ such that

C ⊆ {α ∈ κ+ | A ∩ α ∈ Aα ∧ C ∩ α ∈ Aα}.
We say that ♦+

κ+ holds if there is a ♦+
κ+-sequence.

In [10, Theorem 12.2] it is shown that, assuming 2κ = κ+ and 2κ
+

= κ++, there
is a κ+-closed and κ++-cc forcing notion that forces ♦+

κ+. The forcing is an iteration
D+
κ++ = 〈Pα, Q̇� : � < α ≤ κ++〉 with supports of size ≤ κ, where P0 is the natural

forcing notion that introduces a sequence �A of the right form whereas the rest of
the iterates forces the club sets C ⊆ κ+ witnessing that �A is a ♦+

κ+-sequence.
Arguing as in Lemma 8.1 one has the following:

Lemma 8.14. Assume the GCH holds and that ORD is Σ2- 2-Mahlo. Let D be the
standard Easton support iteration of the forcings D+

κ++ , for κ a cardinal. Then D is
fitting and C (P) contains all supercompact cardinals, in case there are any.

Theorem 8.15. Assume the GCH holds.
(1) If ORD is Σ2- 2-Mahlo and 	 is a supercompact cardinal, then forcing with D

preserves the supercompactness of 	 and yields a generic extension where ♦+
κ+

holds, for every cardinal κ.
(2) If n ≥ 1 and 	 is a C (n)-extendible cardinal, then forcing with D preserves the
C (n)-extendibility of 	 and yields a generic extension where ♦+

κ+ holds, for every
cardinal κ.

Hence, if VP and the GCH hold in V, then VP also holds in V D, together with ♦+
κ+ ,

for every cardinal κ.
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The claim of the theorem above referring to VP was first proved by Brooke-Taylor
in [8, Corollary 26]

8.4. On weak square sequences. A classical result due to Solovay is that Jensen’s
square principle �� must fail for every cardinal � greater than or equal to the first
strongly compact cardinal [25]. This result was subsequently refined by Jensen, who
proved that �� fails for any subcompact cardinal �, a much weaker notion than
supercompactness. Further sharper results are due to Brooke-Taylor and Friedman
[9] and to Bagaria and Magidor [5]. In our context, namely with the existence
of extendible cardinals, and therefore with the failure of �� for a tail of �’s, we
shall consider ��,�-principles, a weak form of the square principle introduced by
Schimmerling in [24].

Following up on Solovay’s work, Shelah proved that if κ is supercompact and
cof(�) < κ < �, then ��,� (also known as �∗

�) fails [10, Section 2]. Also, Burke and
Kanamori showed that if κ is �+-strongly compact, then ��,<cof(�) fails [10].12 The
remaining cases, namely ��,� with κ ≤ cof(�) ≤ � ≤ � turned out to be consistent
with the existence of a supercompact cardinal κ [10, Section 9]. Specifically, in [10,
Theorem 9.2], the authors define, for each κ ≤ cof(�) < �, a forcing notion S� which
forces ��,cof(�) and is cof(�)-directed closed and �-strategically closed. Thus, if κ is
Laver-indestructible, then forcing with S� preserves the supercompactness of κ. In
this section we shall extend this result to C (n)-extendible cardinals.

Let K be the class function with dom (K) = Card \ ℵ1, such that K(�) :=
“The first singular cardinal of cofinality �+.” Observe that K is Δ2-definable. Now
let PK be denote the direct limit of 〈Pα ; Q̇α : α ∈ ORD〉, the iteration with Easton
support where P0 is the trivial forcing and for every α, if �Pα “α ∈ ˙Card \ ℵ̇1, ” then
�Pα “Q̇α = ṠK(α), ” and �Pα “Q̇α = {1}, ” otherwise.

Remark 8.16. For every α, if �Pα “α ∈ ˙Card \ ℵ̇1, ” then P[α,ORD) is α+-directed
closed and K(α)-strategically closed.

We now prove that PK forces class many instances of �K(�),�+.

Lemma 8.17. �P “∀� ≥ ℵ̇1 (�K(�),�+ holds).”

Proof. Suppose � is an uncountable cardinal in V P. Then, by the above remark,
� is also an uncountable cardinal in V P� , hence �P�

“Q̇� = ṠK(�).” Thus, �K(�),�+

holds in V P�+1 . Again, by the above remark, P[�+1,ORD) is distributive enough to
preserve �K(�),�+. �

Arguing as in Lemma 8.3 we can show that PK is a fitting iteration. Precisely, we
have the following:

Lemma 8.18. Assume ORD is Σ2-2-Mahlo. Then PK is fitting and C (P) contains
all supercompact cardinals, in case there are any.

Theorem 8.19. (1) If ORD is Σ2-2-Mahlo, then PK preserves supercompact
cardinals.

(2) For each n ≥ 1, forcing with PK preserves C (n)-extendible cardinals.

12Note that this is interesting only for cof(�) ≥ κ.
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Moreover, in any generic extension by PK the following holds: for every uncountable
cardinal �, if K(�) is the first singular cardinal of cofinality �+, then �K(�),�+ holds.

Corollary 8.20. If VP holds, then there is a class forcing iteration that preserves
VP and forces ��,cof(�), for a proper class of singular cardinals �.

§9. General class forcing iterations. In this section we follow up the discussion
at the end of Section 6 about nonweakly homogeneous suitable iterations. One
prominent example is the iteration P that forces V = HOD by coding the universe
into the power-set function pattern. This iteration is suitable but not weakly
homogenous. One may also want to consider class forcing iterations P over some
model M such that P is not definable in M. To deal with such general class forcing
notions we shall work within the theory ZFCP, namely ZFC with the axiom schemata
of Separation and Replacement allowing for formulas in the language of set theory
with the additional predicate symbol P.

Definition 9.1 (P- C (n)-extendible cardinal). For n ≥ 1, we say that a cardinal
	 is P- C (n)-extendible if for every cardinal � ∈ C (n)

P
, � > 	, there is an ordinal � and

an elementary embedding

j : 〈V�,∈,P ∩ V�〉 → 〈V�,∈,P ∩ V�〉

with crit(j) = 	, j(	) > �, and j(	) ∈ C (n). If, moreover, we can pick � ∈ C (n)
P

, then
we say that 	 is P- C (n)+-extendible.

Similarly, we may also consider the notion of P- Σn-supercompactness, for a
general class P which is not necessarily definable.

Definition 9.2 (P- Σn-supercompactness). If n ≥ 1, then a cardinal 	 is P- Σn-
supercompact if for every � ∈ C (n)

P
greater than 	, and every a ∈ V� there exist

	̄ < �̄ < 	 and ā ∈ V�̄, and there exists an elementary embedding j : V�̄ −→ V�
such that:

• crit(j) = 	̄ and j(	̄) = 	.
• j(ā) = a.
• �̄ ∈ C (n)

P
.

The same arguments as in the proof of Theorem 2.4 yield the following
equivalence.

Theorem 9.3. For every n ≥ 1, every class P, and every cardinal κ, the following
are equivalent:

(1) κ is P- C (n)-extendible.
(2) κ is P- Σn+1-supercompact.
(3) κ is P- C (n)+-extendible.13

We will say that a cardinal 	 is P- C (n)-extendible with P- Σn-reflecting target if in
Definition 9.1 we may moreover require that j(	) is P- Σn-reflecting (cf. Definition

13See Remark 2.5.
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3.15). Likewise, one defines the notion of P- C (n)+-extendible with P- Σn-reflecting
target. Arguing as usual one can check that both notions are equivalent.

Clearly, any P- C (n)+-extendible with P- Σn-reflecting target is C (n)-extendible.
Moreover, if the predicate P is definable with low complexity and satisfies some
minor requirements, then, as the next proposition shows, a cardinal is P- C (n)+-
extendible with P- Σn-reflecting target if and only if is C (n)-extendible.

Proposition 9.4. Letn,m ≥ 1 withm ≤ n. LetP be a Δm+1-definable ORD-length
forcing iteration and assume that

{κ | P ∩ Vκ = Pκ ∧ κ is P-reflecting}

is a proper class containing all C (n–2)-extendible cardinals.14 Then, every C (n)-
extendible cardinal belonging to C (m+n+1) is P- C (n)+-extendible with P- Σn-reflecting
target.

In particular, if P is Δ2-definable, a cardinal is C (n)-extendible if and only if it is P-
C (n)+-extendible with P- Σn-reflecting target.

Proof. Let 	 be a C (n)-extendible cardinal in C (m+n+1).

Claim 9.4.1. 	 is P- C (n)-extendible.

Proof of claim. Let � > � > 	 be with � ∈ C (n)
P

and � ∈ C (n). Since 	 is actually
C (n)+-extendible (cf. Remark 2.5) we may pick � ∈ C (n) together with an elementary
embedding j : V� → V� with crit(j) = 	, j(	) > �, and j(	) ∈ C (n). Observe that
Vj(�) ≺Σn V� ≺Σn V , hence

j(〈V�,∈,PV�〉) = 〈Vj(�),∈,PVj(�)〉 = 〈Vj(�),∈,P ∩ Vj(�)〉,
where the right-most equality follows from Δm+1-definability of P and m ≤ n.
Altogether, j � 〈V�,∈,P ∩ V�〉 yields the desired embedding. �

By Theorem 9.3, 	 is actually P- C (n)+-extendible, so we concentrate on proving
the other assertion. Let � ∈ C (n)

P
with � > 	, together with an elementary embedding

j : 〈V�,∈,P ∩ V�〉 → 〈V�,∈,P ∩ V�〉,

with crit(j) = 	, � ∈ C (n)
P

, j(	) > �, and j(	) ∈ C (n). Note that j(	) is C (n–2)-
extendible hence P-reflecting and a witness for P ∩ Vj(	) = Pj(	).

Claim 9.4.2. j(	) ∈ C (n)
P

.

Proof of claim. Since P is Δm+1-definable, C (n)
P

is a Πn+m-definable club class
(cf. Proposition 3.9). In particular, as 	 ∈ C (n+m+1), 	 is an accumulation point of
C (n)

P
and thus a member of C (n)

P
.

Since P is Δm+1, m ≤ n and 	, � ∈ C (n)
P

, 〈V	,∈,PV	 〉 ≺Σn 〈V�,∈,PV�〉. By

elementarity, 〈Vj(	),∈,PVj(	)〉 ≺Σn 〈V�,∈,PV� 〉 and so, since � ∈ C (n)
P

, 〈Vj(	),∈
,PVj(	)〉 ≺Σn 〈V,∈,P〉. Once again, sinceP is Δm+1-definable,m ≤ n and j(	) ∈ C (n),
PVj(	) = P ∩ Vj(	), hence j(	) ∈ C (n)

P
. �

14By convention, a C (–1)-extendible cardinal is a Mahlo cardinal.
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The above claims combined give the proof of the proposition. �
The main result of the section is the following:

Theorem 9.5. Let P be a (not necessarily definable) suitable iteration. Assume that
there is a proper class of P-reflecting cardinals � such that P� = P ∩ V�.15 For each
n ≥ 1, if 	 is P- C (n)-extendible with P- Σn-reflecting target then

�P “	 is C (n)-extendible.”

Actually for n = 1 the above is true by just assuming that 	 is P- C (1)-extendible.

Proof. Let � > 	 be P-reflecting and such that P� = P ∩ V�. It will be sufficient
to prove that if G� is P�-generic over V, then in the generic extension V [G�], the set
D of conditions r ∈ P[�,Ord ) that force the existence of an elementary embedding

j : V [G�][Ġ[�,Ord )]� → V [G�][Ġ[�,Ord )]� ,

some �, with crit(j) = 	, j(	) > �, and j(	) ∈ C (n), is dense in P[�,Ord ).

In V [G�], let r be a condition in P[�,Ord ). Back in V, let � ∈ C (n)
P

be greater than
� and such that

�P� “P[�,Ord ) is |P�|+-directed closed.”

Since 	 is P- C (n)+-extendible with P- Σn-reflecting target, in the ground model V
there exists an elementary embedding

j : 〈V�,∈,P ∩ V�〉 → 〈V�,∈,P ∩ V�〉

with crit(j) = 	 such that j(	) > �, � ∈ C (n)
P

, and j(	) being P- Σn-reflecting.
For each q ∈ P� there is an ordinal α < 	 such that supp (q) ∩ 	 ⊆ α. Hence,

supp (j(q)) ∩ j(	) ⊆ α, and so j(q) is a Pj(�)-condition such that

j(q)(�) =
{
q(�) if � < α,
1 if � ∈ [α, j(	)).

Since � < j(	) we have that supp (j(q)) ∩ [�, �) = ∅. So, by our choice of the
ordinal �, in V [G�] we can take r∗ ∈ P[�,Ord ) such that

�P[�,�)
“r∗ ≤ j(q) � [�, j(�))”

for all q ∈ G�. Then, the condition r ∧ r∗ such that

(r ∧ r∗)(�) :=
{
r(�) if � ∈ [�, �),
r∗(�) if � ∈ [�, j(�))

is well-defined and works as a master condition for j and the forcing Pj(�)/G�,
because

r ∧ r∗ �Pj(�)/G�
j“G� ⊆ Ġj(�).

15In particular, P is adequate (cf. Definition 3.10).
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Thus, for any Pj(�)-generic filter Gj(�) over V extending G� and containing r ∧ r∗,
the elementary embedding

j � V� : 〈V�,∈,P ∩ V�〉 → 〈Vj(�),∈,P ∩ Vj(�)〉

lifts to an elementary embedding

j∗ : 〈V�[G�],∈,P ∩ V�[G�]〉 → 〈Vj(�)[Gj(�)],∈,P ∩ Vj(�)[Gj(�)]〉.

Now, since � is P-reflecting, P forces that V�[Ġ�] = V [Ġ ]�. Hence, by the choice of
�, the same is forced by P�. By the elementarity of j, the structure 〈V�,∈,P ∩ V�〉
thinks that the forcing P ∩ V� forces Vj(�)[Ġj(�)] = V [Ġ ]j(�). So, since � ∈ C (n)

P
, P

forces the same. Also, since j(	) is P- Σn-reflecting in V and Vj(	) |= ZFC, Lemma
3.16 yields

�P “j∗(	) ∈ Ċ (n).”

We have thus found a condition below r, namely r ∧ r∗, forcing the existence of
an elementary embedding

j∗ : 〈V [Ġ ]�,∈,P ∩ V [Ġ ]�〉 → 〈V [Ġ ]j(�),∈,P ∩ V [Ġ ]j(�)〉

with crit(j∗) = 	, j∗(	) > �, and j∗(	) ∈ C (n), as wanted. �

9.1. VP and non-homogeneous suitable iterations. We now use Theorem 9.5 to
prove Theorem 6.6 without the homogeneity assumption on P, hence yielding the
desired refinement of Brooke-Taylor’s main theorem of [8].

Theorem 9.6. Let n,m ≥ 1 with m ≤ n. Let P be a Δm+1-definable suitable
iteration. If VP(Πm+n+1) holds then V P |= VP(Πn+1).

In particular, if VP holds and P is a definable suitable iteration, then

V P |= VP.

Proof. By Theorem 6.2, VP(Πm+n+1) yields the existence of a proper class of
C (m+n)-extendible cardinals. Also, by Theorem 6.5, it entails the existence of a proper
class of P- Σn+1-reflecting cardinals, hence a proper class of P-reflecting cardinals �
such that P� = P ∩ V�. In particular, the assumptions of Theorem 9.6 are met.

Claim 9.6.1. For each n ≥ 2, every C (m+n)-extendible is P- C (n)-extendible with
P- Σn-reflecting target.

Proof of claim. If 	 is C (m+n)-extendible then it is C (n)-extendible and Σm+n+2-
correct. Thus, Claim 9.4.2 implies that 	 is P- C (n)-extendible.

Let � ∈ C (n)
P

be with � > �. By P- C (n)+-extendibility of 	, there is � ∈ C (n)
P

and
an elementary embedding

j : 〈V�,∈,P ∩ V�〉 → 〈V�,∈,P ∩ V�〉,

with crit(j) = 	, j(	) > �, and j(	) ∈ C (n).

Subclaim 9.6.1.1. j(	) is P- Σn-reflecting.
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Proof of subclaim Proof of subclaim. Since 	 isC (n+m)-extendible, henceC (n)-
extendible and 	 ∈ C (n+m+1), Claim 9.4.2 yields j(	) ∈ C (n)

P
. Let us now check that

Pj(	) = P ∩ Vj(	) and that j(	) is P-reflecting.
For each α < j(	) the formula

∃� ∃X (� > α ∧ X = V� ∧ Pα ⊆ V�)

is Σm+1, with parameter α. Since j(	) ∈ C (n+m), for each α < j(	) there is α < � <
j(	) witnessing the above. Combining this with the Δm+1-definability of P and with
1 ≤ m ≤ n it follows that

Pj(	) = P ∩ Vj(	) = PVj(	) .

Let us now prove that j(	) is P-reflecting by showing that all the assumptions of
Proposition 3.4 are met. First, j(	) is inaccessible (actually, Mahlo) and by the above
displayed expression P is a forcing iteration such that Pj(	) ⊆ Vj(	). Second, thanks
to the Mahloness of j(	), the iteration Pj(	) is j(	)-cc and so it is not hard to show
that Pj(	) preserves the inaccessibility of j(	). Finally, we claim that j(	) ∈ C (P),
and so that �Pj(	)

“P[j(	),ORD) is j(	)-distributive.”
Indeed, arguing as in the proof of Theorem 5.4 and using that the cardinal j(	)

is Σm+n-correct, hence Σm+2-correct, one infers that j(	) is an accumulation point
of C (P), hence j(	) ∈ C (P).16 �

This shows that 	 is P- C (n)-extendible with P- Σn-reflecting target. �
For simplicity let us assume that n ≥ 2, as the argument for n = 1 is the same.

The above claim alongside the previous comments implies the existence of a proper
class of P- C (n)-extendible cardinals with P- Σn-reflecting target, hence Theorem
9.5 yields the existence of a proper class of C (n)-extendible cardinals in V P and so
V P |= VP(Πn+1).

9.2. On V = HOD and the Ground Axiom. The first forcing iteration producing
a generic extension where V = HOD holds was defined by McAloon [22]. The idea
is to code the universe into the power-set function pattern so that all sets become
definable using ordinals as parameters. For more sophisticated codings see [7].

For the purposes of the current section we may also assume that the GCH holds,
for otherwise we can force it while preservingC (n)-extendible cardinals (cf. Theorem
8.4).

Let P be the class forcing notion from [23, Theorem 3.3]. It is easy to see that
P is Δ2-definable and that the class of P-reflecting cardinals κ such that P ∩ Vκ =
Pκ contains all Mahlo cardinals, if there are any. Moreover, if there is a C (n)-
extendible cardinal, there are class many Mahlo cardinals, hence the above class
is proper, and every C (n)-extendible cardinal is also P- C (n)-extendible with P- Σn-
reflecting target (see Proposition 9.4). Thus P fulfils the assumptions of Theorem
9.5. As the GCH holds, P yields a cardinal-preserving generic extension in which the
Continuum Coding Axiom (CCA) holds, hence where V = HOD holds [23, Theorem
3.3]. Altogether, we obtain the following, which extends [23, Theorem 3.9].

16Note that here we have used that n ≥ 2.
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Corollary 9.7. Forcing withP produces a generic extension of CCA + ¬GCH and
preserves C (n)-extendible cardinals, for n ≥ 1. In particular, C (n)-extendible cardinals
are consistent with V = HOD.

Likewise, the following extends [14, Corollary 4]:

Corollary 9.8. There is a class iteration forcing “V 	= HOD + GA” and
preserving C (n)-extendible cardinals, for n ≥ 1.

Proof. Let P be the forcing iteration of Corollary 9.7 and let Q̇ be a P-name for
the iteration with Easton support that forces with Add(κ, 1) at each regular cardinal
κ such that 2<κ = κ. Set R := P ∗ Q̇. By the argument in [14, Theorem 3], V R |=
“V 	= HOD + GA.” Since R is Δ2-definable and the class of R-reflecting cardinals κ
such that R ∩ Vκ = Rκ contains all Mahlo cardinals, every C (n)-extendible cardinal
is P- C (n)-extendible with P- Σn-reflecting target. As R satisfies the hypotheses of
Theorem 9.5, the result follows. �
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the weak proper forcing Axiom. Archive for Mathematical Logic, vol. 56 (2017), nos. 1–2, pp. 1–20.

[4] J. Bagaria, J. D. Hamkins, K. Tsaprounis, and T. Usuba, Superstrong and other large cardinals
are never Laver indestructible. Archive for Mathematical Logic, vol. 55 (2016), nos. 1–2, pp. 19–35.

[5] J. Bagaria and M. Magidor, On �1-strongly compact cardinals, this Journal, vol. 79 (2014),
no. 1, pp. 266–278.

[6] W. Boney, Model theoretic characterizations of large cardinals. Israel Journal of Mathematics, vol.
236 (2020), pp. 133–181.

[7] A. D. Brooke-Taylor, Large cardinals and definable well-orders on the universe, this Journal, vol.
74 (2009), no. 2, pp. 641–654.
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