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Summary

10.1 Equilibrium States

Equilibrium states are exact solutions of the equations of motion with all occur-
rences of the time derivative d/d¢ set to zero. Such solutions are normally possible
only after extreme simplification of the flow geometry, although for generality
this is desirable (i.e., we want to focus on features common to a broad class of
flows while ignoring the details that distinguish individual instances). Intrepid
analysts often apply normal modes to states that are not exactly in equilibrium
— the “frozen flow” hypothesis. The validity of this hypothesis must be checked
after the fact to ensure that the instability grows faster than the background flow
changes.

10.1.1 Mass Conservation

In most cases we have assumed that, if the equilibrium state involves a nonzero
current, that current will be directed in one and only one of the coordinate direc-
tions.! Such a unidirectional current can be incompressible (see 1.17) only if its
speed does not vary in the direction of flow. In Cartesian coordinates, this invari-
ance of the equilibrium flow implies that the nonlinear self-advection term in the
momentum equation (1.16, 1.14) must vanish:

[ii - V]i =0, 10.1)

a major simplification. The single exception to (10.1) is circular flow in cylindri-
cal coordinates (Chapter 7), where the self-advection term is not zero but instead
contributes the centrifugal force.

1 We have found ways to accommodate some other classes of flow, e.g., veering flows (section 4.12) and flows
that are not quite in equilibrium (sections 5.2 and 6.1.3).
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Table 10.1 Summary of equilibrium states. In each case
the named force balances the pressure gradient force.

Force Equilibrium Chapter(s)
none 3

gravity hydrostatic 2,4,8,9
viscosity frictional 5,6
Coriolis geostrophic 8
Coriolis+gravity thermal wind 8
centrifugal cyclostrophic 7

10.1.2 Force Balances

In equilibrium, the momentum equation (1.19) reduces to a statement that the sum
of forces must be everywhere zero. Each of the force terms on the right-hand side
of the momentum equation can be neglected under certain plausible assumptions,
with the exception of the pressure gradient force. The gravitational term can be
zero either in a zero-gravity environment where g = 0 or in a fluid with uniform
density such that b = 0. The viscous term can be zero if the fluid is assumed to
be inviscid, v = 0, or if the flow is such that the Laplacian of the velocity field is
everywhere zero. The same is true of the diffusion term in the buoyancy equation.
The Coriolis term can be zero in a non-rotating environment, f = 0, or in a state
of no motion. The centrifugal force vanishes in a parallel flow.

In each of the equilibria considered here, most (or all) of these “optional” force
terms are assumed to be zero, and that the pressure field is arranged so as to balance
whichever force terms remain. We can therefore classify equilibria in terms of the
force that the pressure gradient must balance (see Table 10.1).

10.2 Instabilities
10.2.1 Mechanisms

The mechanism of convective instability is intuitively simple: gravity drives verti-
cal accelerations that must overcome the damping effects of viscosity and diffusion.
An analogous mechanism was identified for centrifugal, inertial, and symmetric
instabilities.

Shear and baroclinic instabilities are understood in terms of wave resonances:
vortical waves in the case of parallel shear flow (section 3.12); Eady waves in the
case of baroclinic instability. In a stratified environment, gravity waves can also
take part in a resonant interaction. Barotropic instability of a circular vortex also
falls into this category.
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Table 10.2 Rules of thumb. Double asterisks ** indicate that the wavelength
pertains to the critical state. Otherwise it is the wavelength of the fastest-growing

mode.
instability wavelength  growth rate criterion chapter
convection, B; < 0 2.8H** Ra > 657.5 2
shear layer, U = u( tanh % 7 %x2h 0.2 % inflection point 3
jet (sinuous mode), 3.5 x2h 0.16 il inflection point 3
22 h
U = ug sech”—
stratified shear flows (all) Riyin < 1/4 4
vortex (barotropic) inflection point 7
vortex (axisymmetric) min, 2QQ0 < 0 7
plane Poiseuille flow, 3n** Re > 11600 5
z z
U = dup> (1 - —)
Ou T
inertial, U = Uyy none V=f(f=Uy) f(f-Uy) <0 8
1
symmetric, U = Uyy + U,z none [ f] i % Ri < % 8
baroclinic (Eady), U = U,z 2H 0.3 /] 8
P ~/ Ri
. Br; -1
salt fingering 2 <R, <1 9
VKT

10.2.2 Rules of Thumb

Table 10.2 includes a (non-exhaustive) list of properties of stability boundaries,
critical states and fastest-growing instabilities in the simplest more or less accurate
form. See the chapter listed for details.

https://doi.org/10.1017/9781108640084.011 Published online by Cambridge University Press


https://doi.org/10.1017/9781108640084.011



