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Given the large anisotropy of transport processes in magnetized plasmas, the magnetic
field structure can strongly impact heat diffusion: magnetic surfaces and cantori form
barriers to transport while chaotic layers and island structures can degrade confinement.
When a small but non-zero amount of perpendicular diffusion is included, the structure
of the magnetic field becomes less important, allowing pressure gradients to be supported
across chaotic regions and island chains. We introduce a metric for the effective volume
over which the local parallel diffusion dominates based on the solution to the anisotropic
heat diffusion equation. To validate this metric, we consider model fields with a single
island chain and a strongly chaotic layer for which analytic predictions of the relative
parallel and perpendicular transport can be made. We also analyse critically chaotic
fields produced from different sets of perturbations, highlighting the impact of the mode
number spectrum on the heat transport. Our results indicate that this metric coincides
with the effective volume of non-integrability in the limit κ⊥ → 0, where κ⊥ is the
perpendicular diffusion coefficient. We propose that this metric be used to assess the
impact of non-integrability on the heat transport in stellarator equilibria.
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1. Introduction

The heat transport in irregular magnetic fields is critical for understanding magnetic
confinement experiments and astrophysical systems. Tokamak experiments exploit control
coils which produce resonant magnetic perturbations for control of edge localized
modes (ELMs) (Evans et al. 2005). Such perturbations must induce a small amount of
stochasticization near an edge resonant surface to suppress ELMs without significant
degradation of the core confinement. These coils can impart structure in the field outside
the last-closed flux surface, resulting in homoclinic tangles (Evans et al. 2005) and
stochastic layers (Punjabi et al. 2008) which can impact the heat flux deposition at the
divertor. Reversed field pinches (RFPs) provides confinement through magnetic fields
generated largely by the plasma current. The transport in an RFP is often dominated
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by parallel diffusion due to stochastic magnetic fields which form due to tearing mode
activity (Sarff et al. 2013). The presence of a transport barrier (Biewer et al. 2003;
Lorenzini et al. 2009) can enable the support of a temperature gradient. As
stellarators provide confinement with three-dimensional magnetic fields, the impact of
non-integrability is critical for heat transport in both the core and divertor regions. For
example, the stochastic edge of the Large Helical Device (LHD) features island remnants,
stochastic layers and partial barriers. Due to the long connection lengths, both the parallel
and perpendicular transport are important for determining the heat flux impacting the
divertor plates in a stellarator (Feng et al. 2011). Stochastic magnetic fields are also
expected to exist in several astrophysical environments. For example, the stochasticity of
the galactic magnetic field may impact the transport of cosmic rays (Jokipii & Parker 1969;
Chuvilgin & Ptuskin 1993).

Given the Hamiltonian nature of magnetic field line flow (Cary & Littlejohn 1983), there
are a number of tools from the field of dynamical systems that enable the quantification of
the transition to chaos. At the most granular level, the linear stability of a single resonance
is quantified through Greene’s residue (Greene 1979), R, where R < 0 or R > 1 indicates
unstable (hyperbolic or hyperbolic-with-reflection) orbits and R ∈ [0, 1] indicates stable
(elliptic) orbits. Thus one technique to reduce the stochasticity and island size in a
stellarator is through minimization of the magnitude of the residue (Hanson & Cary 1984;
Cary & Hanson 1986). Similarly, the island width under the small island approximation
can be evaluated through a linearization about the island centre (Cary & Hanson 1991).
A shortcoming of these approaches is their limitation to a single resonance rather
than a volumetric measure of non-integrability. One can also evaluate the existence or
non-existence of a Kolmogorov–Arnold–Moser (KAM) surface to determine the transition
to chaos in a given region. To estimate the value of the perturbation required to destroy the
last KAM surface between two primary resonances, one may compute the Chirikov overlap
criterion (Chirikov 1979), obtained from the overlap of resonances and their second-order
island chains. Greene has also conjectured a procedure for determining the existence of a
KAM surface by evaluating the residues of the high-order rational convergents of a given
irrational. By examining the stability of the neighbouring periodic orbits to the most stable
KAM surface, one can determine the transition to stochasticity (Greene 1979; Falcolini &
de La Llave 1992; MacKay 1992). In a similar way, one can evaluate Mather’s �W, the
difference in action between the X and O points associated with a given rational rotation
number, p/q for integers p and q. If�W → 0 as p/q approaches a given irrational, then the
corresponding KAM surface survives (Mather 1986). Furthermore, converse KAM theory
(Mather 1984; MacKay & Percival 1985; MacKay 2018) provides a sufficient condition
for non-existence of a KAM surface by considering the rotation of nearby trajectories with
respect to a given foliation.

While each of these techniques may shed light on the existence or non-existence of a
KAM surface in a given region, another set of techniques are required to provide insight
into the relative impact of non-integrability on the transport in a dynamical system (Meiss
2015). For example, Mather’s�W is related to the flux of trajectories across a given curve
in phase space, providing a bound on the transport (MacKay, Meiss & Percival 1984). One
can then partition phase space into subvolumes bounded by KAM surfaces or cantori and
model transport between states, such as with a Markov model (Meiss & Ott 1986).

Rather than using nonlinear dynamical surrogates of transport, one could directly
evaluate the transport in a given magnetic field line flow. A logical tactic for studying the
transport is by introducing a tracer, such as the temperature, T(x), which diffuses along
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the magnetic field subject to some initial condition T0(x),

∂T(x, t)
∂t

− ∇ · (κ‖b̂b̂ · ∇T) = 0, (1.1a)

T(x, 0) = T0(x), (1.1b)

where κ‖ is the parallel diffusion coefficient and b̂ is a unit vector in the direction
of the magnetic field. The temperature at a given point, T(x, t), can be computed by
integrating over all contributions of the initial condition along the magnetic field line path
(del Castillo-Negrete & Chacon 2012). In the steady-state t → ∞ limit, the temperature
becomes constant on magnetic field lines; it is simply the average of the initial condition
along the magnetic field line path,

T(x, t → ∞) = lim
L→∞

∫ L

0
dl T0(x(l))∫ L

0
dl

, (1.2)

where l measures length along a field line and L is the total length of integration.
Because the temperature is constant along field lines, in a chaotic magnetic field this
leads to a fractal-like structure in the temperature profile (Hudson & Breslau 2008; del
Castillo-Negrete & Chacon 2012). In this way, local flattening of the temperature profile
can be used as a measure of the local stochasticity.

While the structure of the magnetic field itself can give rise to transport, in a plasma
a non-zero amount of perpendicular transport exists due to the gyromotion, cross-field
drifts, collisions and fluctuations. Although the effective perpendicular diffusion can be
extremely small in a magnetic confinement device (experimental measurements on the
TEXTOR, DIII-D and ASDEX tokamaks indicate κ⊥/κ‖ ∼ 10−9 − 10−7 (Meskat et al.
2001; Hölzl et al. 2009; Bardóczi et al. 2016), where κ⊥ is the perpendicular diffusion
coefficient), non-zero perpendicular diffusion can substantially alter the heat transport.
For example, in the LHD a β = 4.8 % (where β is the ratio of the plasma pressure
to the magnetic pressure) discharge demonstrated a 32 % reduction in nested magnetic
surfaces in comparison with the vacuum magnetic field. However, significant flattening of
the temperature profile was not observed (Sakakibara et al. 2008), indicating the relative
importance of the perpendicular transport. The perpendicular diffusion becomes even
more critical in the stochastic edge, where the collisionality is enhanced.

In the steady-state limit, the transport equation (1.1) can be modified to include the effect
of perpendicular diffusion

∇ · (κ‖∇‖T + κ⊥∇⊥T
) = 0, (1.3)

where the parallel gradient is ∇‖ = b̂b̂ · ∇ and the perpendicular gradient is ∇⊥ = ∇ −
∇‖. We will discuss important properties of this anisotropic diffusion equation (ADE) in
§ 2. The relative importance of the structure of the magnetic field on transport can then be
quantified by comparing the parallel diffusion,

D‖ = 1
2

∫
V

d3x κ‖
∣∣∇‖T

∣∣2 , (1.4)
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with the perpendicular diffusion,

D⊥ = 1
2

∫
V

d3x κ⊥ |∇⊥T|2 , (1.5)

where V is the volume of the domain of interest. In this way, the non-integrability of the
magnetic field can be quantified by its impact on the transport in a volume rather than
through the analysis of individual resonances or the existence of a given KAM surface.
This allows us to define an effective volume of perpendicular diffusion in § 3, which we
conjecture converges to the effective volume of non-integrability in the limit κ⊥ → 0. In
§ 4 we present the numerical methods used to solve the diffusion equation and the model
field used for our calculations. In §§ 5 and 6 we perform calculations of the transport in
the presence of a single island chain and a strongly chaotic layer to justify our metric. We
then apply the metric to a critical chaotic layer created from resonances of different mode
numbers in § 7. We then conclude in § 8.

2. Properties of the anisotropic diffusion equation

The ADE can be expressed as

∇ · (κ · ∇T) = 0, (2.1)

with the diffusion tensor
κ = κ⊥I + (κ‖ − κ⊥)b̂b̂, (2.2)

where the perpendicular, κ⊥, and parallel, κ‖, diffusion coefficients are taken to be
constants. We compute solutions to (2.1) in an annular volumeΩ bounded by two toroidal
surfaces, S− and S+ with constant Dirichlet boundary conditions T− and T+.

2.1. Ellipticity
We note that κ is positive–definite for κ⊥ > 0 and κ‖ ≥ κ⊥ since

∇T · κ · ∇T = κ⊥|∇T|2 + (κ‖ − κ⊥)(b̂ · ∇T)2 > 0, (2.3)

for all ∇T 	= 0. (While the assumption κ‖ ≥ κ⊥ is not necessary for ellipticity, it is
sufficient according to (2.3) and not too restrictive since we are interested in strong
anisotropy, κ‖ 
 κ⊥.) We can furthermore see that the anisotropic diffusion operator is
elliptic, as it can be expressed as∑

i,j

∂i
(
κij∂jT

) =
∑

i,j

κij∂i∂jT + (
∂iκij

)
∂jT. (2.4)

Ellipticity of the anisotropic diffusion operator (2.1) follows from the symmetric positive–
definiteness of the tensor which multiplies the second derivatives, κij. Ellipticity implies
the existence of a maximum principle (Appendix A),

max
Ω̄

T = max
∂Ω

T. (2.5)

The corresponding statement also holds for the minimum. In words, the maximum
(minimum) temperature must be obtained on the boundary. Furthermore, no local minima
or maxima can occur within Ω . As a further consequence of ellipticity, the topology of
the isotherms is constrained (Appendix B). Specifically, an isotherm cannot enclose a net
volume, but instead must link the domain toroidal and poloidally as the boundaries (with
the possible addition of a handle).
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2.2. Variational principle
The ADE can be obtained (Helander, Hudson & Paul 2021) from a variational principle
involving the functional

W[T] = 1
2

∫
Ω

d3x ∇T · κ · ∇T. (2.6)

The first variation of W with respect to T is computed to be

δW[δT] =
∫
Ω

d3x ∇δT · κ · ∇T = −
∫
Ω

d3x δT∇ · (κ · ∇T) , (2.7)

upon application of the boundary condition δT|∂Ω = 0. Thus stationary points of W with
respect to T correspond to solutions of (2.1). We can now compute the second variations
as

δ2W[δT, δT ′] =
∫
Ω

d3x ∇δT · κ · ∇δT ′. (2.8)

We note that δ2W[δT, δT] ≥ 0 under the assumption that κ⊥ < κ‖. Therefore, W is a
convex function, implying that any stationary point of W is a global minimum. We will
refer to the functional W that appears in this variational principle as the diffusion integral

D = 1
2

∫
Ω

d3x
(
κ‖|∇‖T|2 + κ⊥|∇⊥T|2) , (2.9)

as it is related to the entropy production functional (Hameiri & Bhattacharjee 1987).
Thus the temperature profile minimizes the entropy production subject to the boundary
conditions.

We note that the total diffusion is related to the heat flux through the boundaries

Q = −
∫

S+
d2x n̂ · q = −

∫
S−

d2x n̂ · q, (2.10)

through

Q = 2D[T]
T+ − T−

, (2.11)

where q = −κ‖∇‖T − κ⊥∇⊥T and n̂ is the unit normal oriented in the direction from S−
to S+. This relation follows from

0 =
∫
Ω

d3x T∇ · q = −
∫
Ω

d3x q · ∇T +
∫

S+
d2x Tn̂ · q −

∫
S−

d2x Tn̂ · q

= 2D[T] − Q(T+−T−). (2.12)

Thus the total diffusion quantifies the heat flux required to support a given temperature
gradient across a volume. In this work we will consider T+ and T− to be fixed such that D
measures the required heat flux to support the prescribed temperature gradient. Since the
perpendicular transport is relatively insensitive to the structure of the field, we can assess
the impact of non-integrability on the transport through the local parallel diffusion

d‖ = 1
2κ‖|∇‖T|2, (2.13)

in comparison with the local perpendicular diffusion,

d⊥ = 1
2κ⊥|∇⊥T|2. (2.14)

https://doi.org/10.1017/S0022377821001306 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001306


6 E.J. Paul, S.R. Hudson and P. Helander

3. The effective volume of parallel diffusion

Motivated by comparing d‖ to d⊥ in order to determine the impact of non-integrability
on transport, we propose the following metric:

VPD =
∫
Ω

d3xΘ
(
κ‖|∇‖T|2 − κ⊥|∇⊥T|2)∫

Ω
d3x

, (3.1)

where Θ is the Heaviside step function. In words, VPD measures the fraction of volume
over which the local parallel transport is larger than the perpendicular transport. While one
could imagine many ways in which to compare the parallel and perpendicular diffusion,
the above definition is easy to interpret as it is a positive scalar in [0, 1].

While the definition of VPD is not intrinsic to the field structure as it depends on κ⊥/κ‖,
we can infer general trends in the limit of small κ⊥/κ‖. In the limit of an integrable
magnetic field with sufficiently small κ⊥, the isotherms will largely coincide with magnetic
surfaces, |b̂ · ∇T| will be relatively small, and thus the local parallel transport will be
negligible. Thus VPD will be small in the limit of integrability. Since the topology of the
isotherms is constrained, isotherms will not be able to completely align to the structure
of the field in regions of non-integrability, and |b̂ · ∇T| will be consequently larger, as
measured by VPD.

We can consider the metric VPD to be a ‘diffusive’ analogue of a metric based on
converse KAM theory. With a converse KAM approach, the non-existence of an invariant
torus at a given point in phase space is determined from the rotation of nearby trajectories
with respect to a chosen foliation. This allows one to determine regions of phase space
over which invariant surfaces do not exist with the topology of the chosen foliation, i.e.
a given class of tori (MacKay & Percival 1985; MacKay 2018). Similarly, by comparing
the local parallel and perpendicular diffusion, we can assess whether a given region of
physical space is ‘effectively non-integrable’ (indicated by enhanced parallel diffusion)
with respect to its impact on the transport. This assessment similarly depends on the
topology of the isotherms, which foliate the volume. Since the isotherms must link
the domain as the boundaries do, the ADE similarly provides an assessment of the
non-integrability with respect to a limited class of tori. For instance, an island chain will
impact the parallel transport if the boundary surfaces are chosen to have the same topology
as the unperturbed Hamiltonian, given that isotherms cannot have the same linking as the
island. If instead the boundary surfaces have the same linking as the surfaces within the
island chain, the parallel transport will not be impacted.

To assess this metric, we consider two cases for which analytic predictions for the
parallel transport can be employed: diffusion across a single island chain (§ 5) and across a
strongly chaotic layer (§ 6). In § 7 we then consider a model field for which such prediction
is more challenging, namely a critically chaotic field with remnants of island chains and
partial barriers.

4. Numerical methods
4.1. Linear solution

We compute the numerical solution to the ADE (2.1)–(2.2) using a Fourier Galerkin
discretization in θ and ζ and a fourth-order finite-difference radial discretization. The
resulting sparse linear system is solved with the PETSc library (Balay et al. 1997, 2021a,b)
using the MUMPS package (Amestoy et al. 2001, 2019) to compute the lower-upper
(LU)-factorization. Throughout we will normalize calculations such that T− = 0, T+ = 1
and κ‖ = 1.
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4.2. Model magnetic field
We consider a model Hamiltonian,

χ(ψ, θ, ζ ) = ι′ψ2

2
+
∑
m,n

εm,nψ(ψ − ψ̄) cos(mθ − nζ ), (4.1)

which yields the magnetic field,

B = ∇ψ × ∇θ − ∇χ × ∇ζ, (4.2)

where ψ = ψ̄ρ/ρ̄ and (ρ, θ, ζ ) forms an orthogonal coordinate system (ρ̂ × θ̂ · ζ̂ = 1)
with ρ ∈ [0, ρ̄], θ ∈ [0, 2π), ζ ∈ [0, 2π), |∇ρ| = 1, |∇θ | = 1/ρ̄ and |∇ζ | = 1/Lζ . We
will use the notation ε̃m,n(ψ) = εm,nψ(ψ − ψ̄) to denote the strength of the perturbation
modes. In the limit εm,n → 0 we recover an integrable magnetic field lying on surfaces
of constant ρ with rotational transform ι = ι′ψ and constant shear ι′(ψ) = ι′. The
perturbation is chosen to vanish at the upper (ρ = ρ̄) and lower (ρ = 0) boundaries
such that there is no parallel flux into the volume. For all of the following numerical
calculations, we will take ψ̄ = ρ̄ = Lζ = ι′ = 1.

5. Transport across an island chain

In this section, we consider the relative perpendicular and parallel transport in the
presence of a single island chain generated by a resonance ι = n/m. We consider the case
in which κ⊥ remains small but non-zero such that perpendicular diffusion competes with
parallel diffusion.

To analyse the behaviour of the transport in such a field, in Appendix C we perform a
perturbation analysis in the smallness of the amplitude εm,n. Due to the smallness of κ⊥,
outside of a small boundary layer of width

Wc = κ
1/4
⊥

(
1 + n2ρ̄2

m2L2
ζ

)1/4 (
Lζ ρ̄
mι′ψ̄

)1/2

, (5.1)

the perpendicular diffusion becomes unimportant. The solution is evaluated both inside
and outside the boundary layer. We conclude that for both the inner and outer solution, the
parallel and perpendicular diffusion can only be comparable within the island separatrices
when Wm,n/Wc � 1, where the island half-width is

Wm,n = 2ρ̄
ψ̄

√
ε̃m,n(ψ)

ι′(ψ)

∣∣∣∣
ψ=n/(mι′)

. (5.2)

In the limit that κ⊥ → 0, Wm,n/Wc 
 1, and the parallel transport can compete with
perpendicular transport throughout the volume within the separatrices. In this sense, an
island can be considered unimportant to the transport if

Wm,n � Wc. (5.3)

In figure 1 we present the numerically computed values of the effective volume (3.1) for
a single island chain created with resonance ε2,1 with varying amplitudes and values of κ⊥.
The critical value, εcrit

2,1 = √
κ⊥/2, predicted for the parallel transport to compete with the

perpendicular transport, is indicated by the vertical dashed line. We see that, as expected,
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(a) (b)

(c)

FIGURE 1. The numerically computed value of the effective volume (3.1) is shown (blue) for
the model field (4.2) with the displayed values of ε2,1 and κ⊥. Also displayed is the scaling of
the island width with ε2,1 (orange), and the critical value of ε2,1 for which the parallel transport
may compete with perpendicular transport (black). The numerically computed value is predicted
to approach the ε1/2

2,1 scaling in the limit κ⊥ → 0; (a) κ⊥ = 10−6,(b) κ⊥ = 10−7, (c) κ⊥ = 10−8.

when the island is smaller than the critical width Wc, the computed effective volume
vanishes. The point at which VPD becomes positive is within an order of magnitude of εcrit

2,1 .
For large values of ε2,1, the effective volume approaches the expected scaling of the total
volume enclosed by the separatrices, W2,1 ∼ √

ε2,1, shown in orange. At non-zero values
of the perpendicular diffusion, the scaling of VPD is shallower than the scaling of the total
island width since the entire island chain is not dominated by parallel diffusion.

In figure 2 we present the isotherms (red) computed with the displayed values of
κ⊥ on the Poincaré section of the model magnetic field (4.2) with ε2,1 = 0.008. As κ⊥
decreases, the isotherms conform more strongly to the structure of the magnetic field.
We note the presence of isotherms which cut across the island chain at smaller values
of κ⊥ due to the topological restrictions. On the right we display the Poincaré section
with colour highlighting the region over which the local parallel diffusion is dominating.
The colour scale indicates the ratio of the local parallel to perpendicular transport. The
parallel transport is strongest near the X-points, where the misalignment of the isotherms
with the local field is the strongest. The parallel transport is relatively weak at the top
and bottom of the island chain, where the isotherms are more strongly aligned with the
magnetic field and the resonant field is weaker. As κ⊥ decreases, we see the area over
which the parallel transport dominates increase as well as its magnitude in comparison
with the perpendicular transport.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. The Poincaré section of the model field (4.2) with ε2,1 = 0.008 is displayed with
isotherms (red) on the left computed with the three values of κ⊥ displayed. On the right, the
Poincaré section is displayed with the ratio of the parallel (2.13) to perpendicular (2.14) diffusion.
The colour scale is set to white where the parallel diffusion is smaller than the perpendicular
diffusion; (a,b) κ⊥ = 10−6, (c,d) κ⊥ = 10−7, (e, f ) κ⊥ = 10−8.

6. Transport across a strongly chaotic layer

In this section we consider the relative impact of perpendicular and parallel transport
in the presence of strong chaos. We will assume a quasilinear model (Chirikov 1979;
Hazeltine & Meiss 2003; Lichtenberg & Lieberman 2013) to obtain a parallel diffusion
coefficient. We will assume that the parallel transport at a given location will be dominated
by nearby resonances within an island width and that the phase of the resonances is
decorrelated after one toroidal transit. We assume strong chaos such that the Chirikov
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island overlap parameter is large,

Wm,n + Wm′,n′

(�ρ)m,n;m′,n′

 1, (6.1)

where Wm,n is the island half-width associated with resonances (5.2) and (�ρ)m,n;m′,n′ is
the distance between the resonances.

Under the assumption that the resonances are strongly overlapping but εm,n is sufficiently
small that a perturbation analysis is appropriate, the motion in the field can be treated as a
random walk

∂T
∂ζ

∼ D‖
∂2T
∂ψ2

, (6.2)

with a quasi-linear diffusion coefficient given by

D‖ ≈ π

2

∑
m

m2

(∑
n

Θ(Wm,n/2 − |ρ − ρr|)ε̃m,n(ψ0)

)2

. (6.3)

See Appendix D for details. The local parallel transport then scales as

|∇‖T|2 ∼ D2
‖|∇2

⊥T|2 ρ̄4

ψ̄4L2
ζ

. (6.4)

We can estimate |∇2
⊥T| ∼ |∇⊥T|/L⊥ for some perpendicular length scale L⊥. Given the

analysis in § 5 and Appendix C, we can note several relevant length scales. Within the
boundary layer, L⊥ ∼ Wc. Outside a width Wm,n of a given resonance and outside the
boundary layer,
L⊥ ∼ ρ̄. Within a width Wm,n and outside the boundary layer, L⊥ ∼ |ρ − ρr|. Given that
the resonances are strongly overlapping, the perpendicular temperature gradient will be
dominated by nearby resonances. Thus we can estimate L⊥ � Wm,n and,

|∇‖T|2 � D2
‖
|∇⊥T|2
W2

m,n

ρ̄4

ψ̄4L2
ζ

. (6.5)

We conclude that the parallel transport may compete with the perpendicular transport
when,

D2
‖ρ̄

4

W2
m,nψ̄

4L2
ζ

∼ κ⊥. (6.6)

To test the expected scaling, we consider the model field (4.2) with m = 12 and n =
[2, . . . , 10]. We evaluate three strongly chaotic fields with amplitudes εm,n chosen such
that the Chirikov parameter (6.1) is 2, 2

√
2 and 4. We compute solutions to the ADE for a

range of κ⊥. The effective volume (3.1) is shown in figure 3 along with the critical value
of κ⊥ (vertical dashed) at which the parallel diffusion may compete (6.6). We note that
the point at which the effective volume becomes non-zero is within an order of magnitude
of that expected from quasilinear theory for each value of the overlap parameter. As κ⊥
decreases, the effective volume computed from the three model fields approach each other.

In figure 4 we display the Poincaré section with isotherms (left) and with the
parallel-transport-dominated regions highlighted in colour (right). Although the field is
strongly chaotic, we note several isotherms near the boundaries which adapt to the m = 12
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FIGURE 3. The numerically computed value of the effective volume (3.1) is shown for the
model field (4.2) with m = 12 resonances with amplitudes chosen to provide strong island
overlap (values of the overlap parameter (6.1) are indicated). Also displayed is the critical value of
κ⊥ for which the parallel transport is predicted to compete with perpendicular transport (vertical
dashed).

structure of the residual island chains. For κ⊥ = 10−4, we note only a very small volume
over which the parallel transport dominates. As we decrease the value of κ⊥, we see that
the parallel transport dominates over much of the volume contained within the outermost
island separatrices and the temperature gradient across the chaotic layer is significantly
reduced. We note an n = 6 variation in the structure of the parallel diffusion due to the
poloidal dependence of the radial field (4.2). Near the edges of the chaotic layer, the
isotherms become strongly shaped in comparison with the relatively flat isotherms in
the chaotic layer. Given that the magnitude of the radial field is smaller than the toroidal
field by the amplitude of the perturbation, this feature enhances the parallel diffusion near
the boundaries of the chaotic layer.

7. Transport across a critically chaotic layer

Although simple analytic scalings can be derived in the case of a single island chain
or strong chaos, in reality a magnetic field may possess a complicated mixture of KAM
surfaces, partial barriers, chaos and island chains. In this case, we can use the metric
defined in § 3 to assess the relative impact of non-integrability on the transport through
the volume of parallel diffusion.

As a point of comparison, we will consider four marginally chaotic magnetic fields
generated by resonances with different poloidal mode numbers. The amplitude of
the perturbation will be chosen to achieve critical island overlap with a comparable
volume enclosed by the outermost separatrices. For the first field, we choose n/m =
[1/4, 2/4, 3/4]. Since the resonances are equally spaced with �ψ = 1/4, we choose the
perturbation amplitudes εm,n such that the associated half-island widths (5.2) are 1/8. We
similarly consider fields with n/m = [2/12, . . . , 10/12], n/m = [3/20, . . . , 17/20], and
n/m = [5/36, . . . , 31/36] with critical island overlap. The separatrices associated with
the outermost island chains for each of these model fields are located at ρ = 1/8 and
ρ = 7/8 such that they have a comparable ‘volume’ of chaos.

If the remnants of the island chains are dominating the transport, we anticipate the
parallel transport to dominate when

ε2
m,nm2 ∼ κ⊥, (7.1)
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. The Poincaré section of the model field (4.2) with m = 12 resonances chosen to
provide an overlap parameter (6.1) of 4 is displayed with isotherms (red) on the left for the
three values of κ⊥ displayed. On the right, the Poincaré section is displayed with the ratio of
the parallel (2.13) to perpendicular (2.14) diffusion. The colour scale is set to white where the
parallel diffusion is smaller than the perpendicular diffusion; (a,b) κ⊥ = 10−4, (c,d) κ⊥ = 10−5,
(e, f ) κ⊥ = 10−6.

from (5.3), while if strong chaos is dominating the transport

ε3
m,nm4 ∼ κ⊥, (7.2)

from (6.6). Since we have chosen εm,n ∼ 1/m2 to achieve critical overlap, we expect the
parallel transport to be relatively more impactful when m is small. In figure 5 we compare
the effective volume between the model fields. Since the volume contained within the
outermost separatrices differs slightly between the two model fields, we compute the
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(a) (b)

FIGURE 5. (a) The effective volume (3.1) is computed for the model field (4.2) with the
displayed mode number perturbations with amplitudes εm,n chosen for critical island overlap.
The effective volume is computed over a subset of the entire volume, ρ ∈ [0.25, 0.75]. (b) The
total temperature difference between ρ = 0.75 and ρ = 0.25 upon averaging over the angles.

effective volume only for ρ ∈ [0.25, 0.75]. As anticipated, the m = 4 resonances produce
a larger effective volume of parallel diffusion, and the relative difference between the
model fields increases with increasing κ⊥. To quantify the effect of the field structure
on temperature flattening, we also compare the total temperature differential between
ρ = 0.75 and ρ = 0.25. At large values of κ⊥, each of the model fields can support a
significant temperature gradient, although it is reduced for the m = 4 field.

As can be seen from figure 6, each of the fields are visually chaotic with secondary
island chains as well as stochastic regions. We furthermore note that the magnitude of the
parallel transport, in addition to the volume over which it dominates, is considerably larger
in the m = 4 field. For the m = 36 perturbation, we note that the temperature gradient is
not markedly reduced in the chaotic layer when κ⊥ = 10−6, although all of the flux surfaces
are destroyed. Thus while all of the fields would be classified as very far from integrability
by traditional measures such as the Chirikov overlap criterion or converse KAM theory, the
impact of the magnetic field structure on the overall transport at non-zero κ⊥ is remarkably
distinct.

8. Conclusions

We have proposed a metric, the effective volume of parallel diffusion, which quantifies
the fractional volume over which the parallel transport is dominant over the perpendicular
transport. This enables one to determine if a magnetic field is sufficiently integrable
with regards to its impact on the transport of heat. We validate this metric for two
model fields: a single island chain and strongly chaotic layer. We then consider a
critically chaotic magnetic field generated by resonances of different mode numbers.
We find that even if no KAM surfaces exist, the relative parallel transport can vary
widely between these critically chaotic fields, especially at larger values of κ⊥. This
highlights the importance of quantifying non-integrability not only through the stability
of a given orbit or the non-existence of a given KAM surface, but through the resulting
impact on the transport. We anticipate many applications of this analysis, such as for
the optimization of stellarator magnetic fields and analysis of transport in the stochastic
edge.

As discussed in § 3, our metric appears to be related to the converse KAM approach,
which enables a quantification of the volume of phase space that does not contain KAM
surfaces of a given foliation. We expect that the effective volume of parallel diffusion
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 6. The ADE is solved for the model field (4.2) with critically overlapping resonances
of m = 4, m = 12 and m = 36 with κ⊥ = 10−6. On the left are the isotherms (red), and on the
right is the ratio of the parallel (2.13) to perpendicular (2.14) diffusion. The colour scale is set to
white where the parallel diffusion is smaller than the perpendicular diffusion; (a,b) m = 4, (c,d)
m = 12, (e, f ) m = 36.

might agree with such a calculation in the limit of small perpendicular diffusion. We
reserve such a comparison for future publication.
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Appendix A. Maximum principle for ADE

We can now prove a maximum principle for the ADE (Fraenkel 2000). Let T satisfy the
ADE. We define a function w = T + εeKx·c for constant scalars K > 0, ε > 0, and constant
vector c. Applying the ADE operator to w, we obtain

∇ · (κ · ∇w) = ε
(
c · κ · cK2 + (∇ · κ) · cK

)
eKx·c. (A1)

From the positive definiteness of κ , we note that c · κ · c ≥ λ0|c|2 where λ0 > 0 is the
smallest eigenvalue of κ . This yields the inequality

∇ · (κ · ∇w) ≥ ε
(
λ0|c|2K2 − max

Ω
|(∇ · κ) · c| K

)
eKx·c. (A2)

We choose K > maxΩ |(∇ · κ) · c|/(λ0|c|2) so that ∇ · (κ · ∇w) > 0.
Suppose now that the maximum value of w is obtained within the domain,Ω , at a point

x0. This implies that ∇w|x0 = 0 and the Hessian matrix ∇∇w|x0 is negative semi-definite.
This implies that

∇ · (κ · ∇w)|x0 =
∑

i,j

κij(x0)∂i∂jw(x0) = tr (κ∇∇w)x0
≤ 0. (A3)

The final inequality follows from expressing κ in terms of the eigenvalues, μi, and
eigenvectors, −→x i, of ∇∇w with μi ≤ 0

κ =
∑

i

ωi
−→x i

−→x T
i . (A4)

From the positive–definiteness of κ , we find that ωi > 0. We can then note that

tr (κ∇∇w)x0
= tr

(∑
i

ωiμi
−→x i

−→x T
i

)
≤ 0. (A5)

As this is in contradiction with the choice we have made for K, we conclude that the
maximum of w must occur on ∂Ω and

T < w ≤ max
Ω̄

(w) = max
∂Ω

w ≤ max
∂Ω

T + εmax
∂Ω

eKx·c. (A6)

This implies that maxΩ̄ T = max∂Ω T . Otherwise, we would have maxΩ T = max∂Ω T + δ
for some δ > 0. As we are free to choose ε < δ/max∂Ω eKx·c, this would lead to a
contradiction. A similar argument can be constructed to show that the minimum value
of T must occur on the boundary.
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(a) (b)

(c) (d)

(e)

FIGURE 7. Possible linking of closed isotherms (blue) which are periodic and do not intersect
the boundaries (red); (a) ‘spherical’ (not closed toroidally or poloidally), (b) poloidally closed
‘island’ structure, (c) toroidally closed ‘island’ structure, (d) toroidally and poloidally closed
(deformable to boundary) and (e) a toroidally and poloidally closed surface with the addition of
a handle.

Appendix B. Topology of isotherms

In this appendix, we discuss the possible topology of the isotherms given properties of
the ADE.

To begin, we consider the region near the boundaries. We first note that the normal
derivative of the temperature must be sign definite on the boundaries unless T is constant
in Ω . In other words, n̂ · ∇T > 0 on S− and S+ assuming T+ > T− and n̂ is oriented
in the direction of increasing ρ. This result is known as the Hopf lemma (Fraenkel
2000). Intuitively, the flux through the boundary cannot change sign since S− and S+
are isotherms. As a result, in a small neighbourhood of the boundary ∂T/∂ρ 	= 0, and
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isotherms close with the same topology as the boundary. We conclude that at least within
a small neighbourhood of S− and S+, isotherms must be deformable to the boundaries.

We now argue that the temperature gradient cannot vanish within a subvolume of Ω
if the specified temperature differential T+ − T− is non-zero. To see this, suppose that
the temperature is constant within a subvolume, V . We remark that under the assumption
that the coefficients appearing in the elliptic problem (2.4), κ and ∇ · κ , are analytic,
T must also be analytic due to the ellipticity of the ADE operator. If T is analytic and is
constant within V , this implies that T is constant inΩ . Since such a solution is inconsistent
with the boundary conditions, we conclude that the temperature gradient can only vanish
on isolated lines, surfaces or points. These must be saddle points given the maximum
principle.

We now consider the possible linking of isothermal surfaces (figure 7). Suppose that
there exists an isotherm, S , with the linking of a sphere (i.e. does not close toroidally or
poloidally) or the linking of an ‘island’ (i.e. closes toroidally or poloidally but not both). In
that case, we can integrate the ADE over a volume V bounded by one of these isotherms,
S = ∂V ∫

V
d3x ∇ · (κ · ∇T) =

∫
∂V

d2x n̂ · κ · ∇T = 0. (B1)

We note that ∇T ∝ n̂ and n̂ · ∇T is sign definite on ∂V . Because κ is positive–definite,
n̂ · κ · ∇T will also be sign definite on ∂V . This leads to a contradiction unless ∇T = 0.
Given that the temperature gradient cannot vanish within a finite volume, we conclude that
the isotherms must link as the boundaries such that they do not enclose a net volume.

Now that we have argued that the isotherms must link toroidally and poloidally as
the boundaries, we now discuss their topology. We consider an isotherm which links as
the boundaries but with the addition of a small handle (figure 7d). Such an isotherm is
consistent with the integral condition (B1) as it does not enclose a volume. We conclude
that the isotherms must link toroidally and poloidally, with the possible addition of
a handle. However, isotherms cannot enclose a net volume, as an ‘island’ or ‘sphere’
structure.

Appendix C. Single island chain analysis

In this appendix we analyse the ADE for the case of a single small island chain,
as discussed in § 5. We perform a perturbation analysis in the small parameter ε =
|χ1|/|χ0| � 1 where χ0 = ι′ψ2/2 and χ1 = χ − χ0. In the limit χ = χ0, the solution of
the ADE is given by,

T0(ρ) = T−+ρ(T+−T−)
ρ̄

. (C1)

We will call this the unperturbed temperature. In computing the first-order correction,
the perturbed temperature, we apply the ansatz T1(ρ, θ, ζ ) = T̂(ρ) cos(mθ − nζ ). The
first-order perturbation to the ADE reads

κ⊥∇2T1 + (1 − κ⊥)b̂0 · ∇(b̂0 · ∇T1 + b̂1 · ∇T0) = 0, (C2)

where b̂0 and b̂1 are the unit vectors in the direction of the magnetic field at O(ε0) and
O(ε1). Applying the ansatz for T1 results in the ordinary differential equation (ODE)
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κ⊥

(
T̂ ′′(ρ)− T̂(ρ)

(
m2

ρ̄2
+ n2

L2
ζ

))

− (1 − κ⊥)
m2ι′2ψ̄2

L2
ζ ρ̄

2

(
1 + n2ρ̄2

m2L2
ζ

) (T̂(ρ) (ρ − ρr)
2 − W2

m,n(ρ − ρr)

4ρ̄
(T+−T−)

)
= 0,

(C3)

where Wm,n is the island half-width (5.2). In obtaining the above expression, we focus
on a region near the n/m rational surface such that the unperturbed field strength can be
approximated as |B0| = (ψ̄/ρ̄2)(1 + (ι′ψ̄ρ/Lζ )2)1/2 ≈ (ψ̄/ρ̄2)(1 + (nρ̄/(mLζ ))2)1/2. Due
to the smallness of κ⊥, outside of a small boundary layer of width Wc, the perpendicular
diffusion becomes unimportant. We can express the first-order perturbation to the ADE
in terms of the layer variable X = (ρ − ρr)/Wc, where ρr = ρ̄n/(mι′ψ̄) is the location of
the resonant surface

κ⊥

(
T̂ ′′(X)
W2

c

− T̂(X)

(
m2

ρ̄2
+ n2

L2
ζ

))

− (1 − κ⊥)
m2ι′2ψ̄2

L2
ζ ρ̄

2

(
1 + n2ρ̄2

m2L2
ζ

) (T̂(X)W2
c X2 − W2

m,nWcX
4ρ̄

(T+−T−)
)

= 0. (C4)

We will analyse the solution both inside and outside of the layer, similar to the analysis in
Fitzpatrick (1995).

C.1. Inner solution
Inside the boundary layer, the second term in (C4) is unimportant as Wc/ρ̄ � 1 by
assumption. Thus the first and third terms must balance each, allowing us to obtain the
scaling for the boundary layer width as (5.1). Balance between the first and last terms
yields a scaling for the temperature perturbation as

T̂(X) ∼ W2
m,n

ρ̄Wc
(T+−T−). (C5)

This matches the scaling in (32) of Fitzpatrick (1995). This implies that |∇⊥T1| ∼
(Wm,n/Wc)

2|∇⊥T0|. When Wm,n � Wc, |∇⊥T0| 
 |∇⊥T1| and the ratio of parallel to
perpendicular diffusion scales as

|∇‖T|2
κ⊥|∇⊥T|2 ∼ W4

m,n

W4
c

� 1, (C6)

since |∇‖T1| ∼ W−1
c κ

1/2
⊥ T1. Otherwise, if Wm,n/Wc � 1, the ratio can be ∼ 1.
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C.2. Outer solution
Outside of the boundary layer, the perpendicular diffusion can be ignored to a good
approximation, and the ADE reduces to

∇ · (b̂b̂ · ∇T) = 0. (C7)

Outside of the island separatrix, we apply a perturbation analysis to obtain

b̂0 · ∇(b̂0 · ∇T1 + b̂1 · ∇T0) = 0. (C8)

This yields the solution

T̂ (0)(ρ) = W2
m,n

T+−T−
4ρ̄(ρ − ρr)

, (C9)

where the superscript (0) indicates the solution which neglects perpendicular diffusion.
This matches the scaling of (38) in Fitzpatrick (1995). Given (C8), the parallel temperature
gradient is negligible in this region if perpendicular diffusion is ignored. Now retaining
the perpendicular diffusion terms from (C4), the correction to T̂(ρ) scales as T̂ (1)(ρ) ∼
T̂(ρ)W4

c /(ρ̄
2(ρ − ρr)

2), and the parallel diffusion will scale as |∇‖T| ∼ κ
1/2
⊥ W−2

c (ρ −
ρr)T̂ (1)(ρ). Given that |∇⊥T0| 
 |∇⊥T1| in this region, the ratio of the parallel to
perpendicular diffusion will have the scaling

|∇‖T|2
κ⊥|∇⊥T|2 ∼ W4

m,nW4
c

ρ̄4(ρ − ρr)4
� 1. (C10)

Within the island separatrix, (C7) implies that the temperature must be a function of
the island flux surfaces. This is not possible unless the temperature is flattened across the
island chain given the maximum principle. At non-zero κ⊥, a finite temperature gradient
is allowed. Given that the temperature is flattened within the separatrices if perpendicular
diffusion is not included, both the parallel and perpendicular temperature gradients will be
driven by T̂ (1)(ρ) with scaling given by |∇‖T| ∼ κ

1/2
⊥ W−2

c (ρ − ρr)T̂ (1)(ρ) and |∇⊥T| ∼
T̂ (1)(ρ)/(ρ − ρr). This yields the scaling for the ratio of the parallel to perpendicular
diffusion as

|∇‖T|2
κ⊥|∇⊥T|2 ∼ (ρ − ρr)

4

W4
c


 1. (C11)

We conclude that, for the outer solution, the ratio |∇‖T|2/(κ⊥|∇⊥T|2) can only be � 1
if |ρ − ρr| <Wm,n and Wc � Wm,n.

Appendix D. Strong chaos analysis

In this appendix we analyse the ADE for the case of strong chaos, as discussed in § 6. If
we assume that εm,n is sufficiently small, we can linearize the trajectories with respect to
the small parameter ε = |χ1|/|χ0| � 1 where χ0 = ι′ψ2/2 and χ1 = χ − χ0

ψ = ψ0 + ψ1(ζ )+ O(ε2) (D1a)

θ = θ0 + ι(ψ0)ζ + θ1(ζ )+ O(ε2), (D1b)
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where ι(ψ0) = ι′ψ0 is the rotational transform associated with the unperturbed
Hamiltonian (4.2). The linearized trajectories satisfy

dψ1

dζ
=
∑
m,n

mε̃m,n(ψ0) sin(m(θ0 + ι(ψ0)ζ )− nζ ), (D2a)

dθ1

dζ
= ι′ψ1 +

∑
m,n

ε̃ ′
m,n(ψ0) cos(m(θ0 + ι(ψ0)ζ )− nζ ), (D2b)

and are computed to be

ψ1(ζ ) = −
∑
m,n

mε̃m,n(ψ0)
cos(m(θ0 + ι(ψ0)ζ )− nζ )

mι(ψ0)− n
, (D3a)

θ1(ζ ) =
∑
m,n

[ −mι′ε̃m,n(ψ0)

(mι(ψ0)− n)2
+ ε̃ ′

m,n(ψ0)

mι(ψ0)− n

]
sin(m(θ0 + ι(ψ0)ζ )− nζ ). (D3b)

Thus we can see that the resonant terms in θ1(ζ ) within a width Wm,n/2 (5.2) of a
given rational surface will be O(1/m) and will thus dominate the evolution. We can then
approximate the trajectories as

dψ1

dζ
≈
∑
m,n

Θ(Wm,n/2 − |ρ − ρr|)mε̃m,n(ψ0) sin(mθ0), (D4a)

dθ1

dζ
≈ ι′ψ1 +

∑
m,n

Θ(Wm,n/2 − |ρ − ρr|)ε̃ ′
m,n(ψ0) cos(mθ0), (D4b)

where Θ is the Heaviside step function. In one toroidal period, the flux changes by an
amount given by �ψ ≈ 2π dψ1/dζ and the poloidal angle changes by an amount given
by�θ ≈ 2π dθ1/dζ . We note that the uncertainty in the poloidal angle will be O(1) if the
resonances are strongly overlapping. In this way, with every toroidal period, the poloidal
angle will be kicked by an amplitude that depends on the surrounding resonances. We
assume that θ0 can, therefore, be treated as a random variable, and we approximate the
motion in such a field as a random walk

∂T
∂ζ

∼ D‖
∂2T
∂ψ2

, (D5)

with a diffusion coefficient given by

D‖ ∼ 〈(�ψ)2〉
2�ζ

, (D6)

where 〈· · · 〉 indicates an average over the possible initial conditions, θ0. The full expression
for D‖ is given in (6.3).
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