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From an elongated cavity to funnel by the impact
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The impact of a drop train, a series of identical liquid drops separated by a constant
distance, on a liquid pool initially generates a long slender cavity. However, the cavity
soon collapses and turns into a shallow funnel. Here we theoretically model the dynamic
profile of the elongated cavity and the steady shape of the funnel, which are then shown
to agree well with experiment. When the liquid inertia plays a dominant role, the cavity
assumes a parabolic profile that depends only on the drop diameter and the centre-to-centre
spacing of adjacent drops. We consider the capillary forces as well as the drop impact
force to obtain the shape of the funnel that persists once the elongated cavity collapses.
Our study allows for predicting the interfacial morphology by the impact of a drop train
and designing impact conditions useful for semiconductor cleaning processes.
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1. Introduction

The impact of a drop on a liquid pool has served as one of the canonical problems of
free surface flows for over a century since the pioneering work of Worthington (1882),
which explored the dynamics of an impacting drop and the subsequent jet using high-speed
photography. The studies on the classical impacts of a single liquid drop (Engel 1966;
Prosperetti & Og̃uz 1993; Leng 2001) and a solid object (Gilbarg & Anderson 1948;
Aristoff & Bush 2009; Truscott, Epps & Belden 2014) onto a liquid pool have revealed a
variety of fascinating dynamic processes of liquid splashes and air cavities. In addition,
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prior investigations on the impacts of fragmented shaped charges onto a solid target
(Birkhoff et al. 1948) and multiple drops on a liquid pool (Bick et al. 2010) have shown
how the interaction of multiple incoming bodies affect the dynamic responses of the target
surfaces. Here, we study the dynamic response of a water surface to the impact of a drop
train, i.e. a series of identical liquid drops with a constant frequency. The impact of a
drop train not only generates interfacial phenomena distinct from those by a single drop
impact, but is also practically relevant to a semiconductor cleaning process. The successive
collision of microdrops with a liquid film covering a semiconductor wafer continually
generates pressure waves, which are supposed to remove the contaminant particles from
the solid surface (Kondo & Ando 2019).

When drops impact successively on a liquid pool with a sufficiently high frequency, a
slender cavity is generated (Hurd et al. 2015). Six different types of cavities were identified
by Speirs et al. (2018) depending on the drop impact frequency, the maximum expansion
time of a crater owing to a single drop impact and the Weber number. Bouwhuis et al.
(2016) numerically computed the shape and growth rate of the slender cavity produced by
micrometre-sized drops and compared the results with experiment. The elongation rate of
the cavity was found to be constant during its growth and to depend on the impact velocity
of drops and a dimensionless frequency, φ = fd/U, which corresponds to a ratio of the
drop diameter (d) to the centre-to-centre spacing of adjacent drops (U/f ). Here, U and f
are the impact velocity and generation frequency of drops, respectively.

The elongation of the cavity ceases when it closes, owing to pinch-off near the free
surface. The pinch-off occurs when capillary forces near the cavity neck prevail over
inertia of the growing cavity. Speirs et al. (2018) obtained the maximum depth of the cavity
before the pinch-off by balancing the surface potential energy with the kinetic energy.
However, no account has been given yet to the shape of the liquid surface after pinch-off
under a continual impact of the drop train.

The goal of our study is to provide physical insights and experimental results to further
our understanding of the dynamics of a liquid surface under the impact of a drop train.
First, we aim to construct an analytical model to predict the growth rate and the profile of
the cavity arising from the impact of a drop train when inertia dominates over viscosity,
gravity and capillarity. The model will explain the dynamics of cavity growth by going
beyond the prior numerical (Bouwhuis et al. 2016) and simple (Speirs et al. 2018) models.
Second, we describe the shape of the liquid surface after a collapse of the cavity and
mathematically elaborate the interfacial topography. This corresponds to the steady-state
response of the liquid surface to the impact of the drop train.

2. Experimental

Figure 1 shows the experimental set-up to generate a stream of uniform drops and to
investigate the deformation of a liquid surface upon impact of the drops. The liquid tank
was pressurised by nitrogen to produce a jet of liquid from a nozzle, which was vibrated
using a piezoelectric transducer driven by an amplifier connected to a function generator
(Kim, Park & Min 2003). The jet was broken up into uniform drops at a frequency set by
the function generator (AFG3021B, Tektronix). The drop train then impacted on a pool of
the identical liquid. The dynamic interaction of the drops and the liquid pool was recorded
by a high-speed camera (Fastcam SA-Z, Photron) at a frame rate of 60 000 s−1.

We used water, ethanol, and aqueous solutions of ethanol and sucrose, whose density
(ρ), viscosity (μ) and surface tension coefficient (σ ) are listed in table 1. The diameter of
the drops (d), determined by the nozzle diameter and the vibration frequency (f ), ranged
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Impact of a drop train

Liquid pool High-speed cameraAmplifier
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Figure 1. Schematic of the experimental set-up to generate a train of uniform liquid drops that impact on a
liquid pool.

No. Liquid Density (kg m−3) Surface tension (mN m−1) Viscosity (mPa·s)

I Water 997 72.8 1
II 4 wt% ethanol in water 991 57.3 1.2
III 13 wt% ethanol in water 970 44.9 1.7
IV 30 wt% ethanol in water 956 34.2 2.6
V 100 wt% ethanol 780 21.9 1.2
VI 50 wt% sucrose in water 1230 61.5 15.4

Table 1. Properties of liquids used in the experiments at 20 ◦C.

from 20 to 500 μm with f varying from 5 to 725 kHz. The impact velocity U ranged
from 4 to 44 m s−1. As a result, the Weber number, a ratio of inertia to surface tension; the
Reynolds number, a ratio of inertia to viscosity; and the Froude number, a ratio of inertia to
gravity ranged respectively as We = ρU2d/σ ∈ (100–1700); Re = ρUd/μ ∈ (700–4700);
and Fr = U2/(gd) ∈ (103–107), where g is the gravitational acceleration. Hence, inertia
dominated over capillary, viscous and gravitational effects in our experiments.

3. Growth of elongated cavity

When a drop train collides with an initially unperturbed free surface of a liquid pool, a
cavity starts to grow in the longitudinal direction, as shown in figure 2(a). Upon reaching
a depth 20–150 times the diameter of the impacting drop, the slender cavity experiences
pinch-off at a neck near the free surface, figure 2(b). The sealed air cavity breaks up
into tiny air bubbles under the action of capillarity. The upper part of the cavity in a
funnel shape (indicated in figure 2b) shrinks with time as its cusp ascends toward the free
surface. Then the cavity assumes a steady-state shape except for a central region subjected
to a continuous impact of drops, as shown in figure 2(c). The incoming drops afterwards
merely penetrate the funnel to generate air cavities.

Such evolution of the cavity with impact of a drop train can be simply quantified as in
figure 2(d), where the distance of the apex of the cavity from the unperturbed interface,
H, is plotted with time. Upon pinch-off of the elongated cavity near t = 7 ms, H drops
rapidly corresponding to the formation of a funnel, whose depth reaches a constant value
after t ≈ 15 ms. We theoretically model the profile of the elongating cavity in this section,
and rationalise the constant topography of the funnel in the next section.
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Figure 2. Temporal evolution of the cavity formed by the impact of 30 wt% ethanol (liquid IV) drops on a pool
of the same liquid with d = 270 μm, f = 18 kHz and U = 7.6 m s−1. (a) Elongated cavity at t = 3.6 ms with
a magnified image of the tip crater. (b) Pinch-off of the neck of the cavity at t = 6.3 ms. (c) Steady funnel and
air bubbles at t = 116 ms with a magnified image of the funnel. (d) The depth of the cavity, H, versus time, t.

3.1. Growth of tip crater
The growth of a cavity is an accumulative result of the successive creation of unit craters
arising from impacts of individual drops, as can be seen through the striations of the
elongated cavity in figure 2(a). Hence, we start our analysis with the evolution of a crater
forming at the tip of the cavity by the impact of a single drop, referred to as a tip crater
henceforth. As shown in figure 3(a), the impact of a single drop onto a liquid pool generates
a crater which resembles a cylinder in the early stages but turns hemispherical afterwards
(Fedorchenko & Wang 2004). The hemispherical growth of the crater, which begins after
t = 5 ms in figure 3(a), follows the power law, h = R ∼ t2/5 with h and R being the depth
and radius of the crater, respectively. Leng (2001) rationalised this power law by balancing
the kinetic energies of the impacting drop and the liquid surrounding the growing crater.
In our experiments with drop trains, however, it takes only 1/f ∈ (1–300) μs for the tip
crater to grow before the arrival of the next drop. Thus, the crater tip assumes a cylindrical,
rather than hemispherical, shape, consistent with the magnified image in figure 2(a).

To find the temporal evolution of the depth of the tip crater, h, we consider the
momentum conservation for a cylindrical control volume (CV) surrounding the impacting
drop as shown in figure 4(a,b). The velocity of the drop upon colliding with the liquid (at
the cavity tip) is denoted as u. The CV moves with the interface between the drop and the
liquid, and its velocity is v. The optically identifiable tip location corresponds to the red
dot on the side of the CV, as indicated in figure 4(b). We assume that the crater tip moves
with the CV, so that v � dh/dτ . Here, τ is the time measured from the collision of the drop
with the elongating cavity, which should be discriminated from t, the time measured from
the first impact of the drop train on an unperturbed liquid pool. For the CV moving with
the time-varying velocity v, we write the z-directional momentum conservation equation
for a non-inertial coordinate system accelerating with dv/dτ :

d
dτ

[m(u − v)] = F − m
dv
dτ
, (3.1)

where m is the mass of the CV, and the external force acting on the CV is given by
F = −ρAv2, with ρ being the liquid density and A the base area of the CV, under our
assumption of inertia-dominant flow. Here, we ignored the z-directional momentum flux
because the drainage from the impacting drop owing to the difference between u and v
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Figure 3. (a) The depth (h) and the radius (R) of a crater versus time after a single water drop impact on an
unperturbed free surface. The diameter and impact velocity of the drop are respectively 4.5 mm and 3.3 m s−1.
(b) The experimentally measured temporal evolution of the depth of tip craters formed by the impact of the
tenth drop in each experiment. (c) The depth of tip craters plotted according to the theoretical model, (3.3). (d)
Experimental conditions for symbols in (b) and (c).
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Figure 4. (a) Schematic of an elongated cavity. A drop hitting the tip of the cavity generates a tip crater. (b)
Schematic of a tip crater whose depth is indicated as h. The colliding drop is coloured yellow. The control
volume is represented with dashed lines. (c) Schematic of liquid flow with radial expansion of an elongated
cavity. (d) Schematic of a funnel, whose depth L is maintained constant despite continual impacts of drops.
The cross-section of the funnel is illustrated in the box with the dashed lines.

occurs dominantly in the r-direction (Og̃uz, Prosperetti & Kolaini 1995; Bisighini et al.
2010). The mass drainage rate is given by dm/dτ = −ρA(u − v). Then (3.1) becomes

m
du
dτ

= ρA(u − v)2 − ρAv2. (3.2)
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We suppose that the discrepancy between u and v cannot grow significantly during
the brief growth of the tip crater, which allows us to write u ≈ v ≈ dh/dτ . Then (3.2)
is simplified to a differential equation for h: d2h/dτ 2 + (dh/dτ)2/d = 0, where we used
ρA/m ≈ 1/d. It is readily solved with the initial conditions of h = 0 and dh/dτ = U at
τ = 0, to give

h
d

= ln
(

1 + Uτ
d

)
. (3.3)

We measured the tip crater depth versus time for various impact conditions and plotted
the results in figure 3(b). The figure shows the experimental results for f < 22 kHz, which
could be temporally resolved with the current high-speed camera. Still, the measurement
duration is fairly short (τ < 0.3 ms) because of the quick arrival of the subsequent drop.
Figure 3(c) shows that the scattered raw data in figure 3(b) are collapsed onto a single
line with the slope of unity when plotted according to (3.3), which verifies our theoretical
model. The vertical growth of tip crater gets faster with the increase of the drop diameter
and impact velocity.

The growth of h with τ given in (3.3) allows us to obtain the maximum depth (h0) of the
tip crater for each drop impact. The time interval between the impacts of two successive
drops is given by Δt = 1/f + h0/U. Substituting Δt for τ in (3.3) yields an equation for
h0:

h0

d
= ln

(
1 + U

fd
+ h0

d

)
, (3.4)

which can be solved numerically. We see that the maximum depth of a tip crater scaled by
the drop diameter, h0/d, depends only on φ = fd/U.

3.2. Growth of entire cavity
The entire depth of the elongated cavity, H, at time t measured from the first impact of
drop is determined by superposing h0 of all the previous tip craters. Thus, we write H =
h0N, where N = t/Δt is the number of drops that have arrived for the total time t. The
elongation rate of the cavity can be expressed as Ḣ = dH/dt ≈ h0/Δt, so that the rate
scaled by the drop impact velocity U is given by

Ḣ
U

= φh0/d
1 + φh0/d

, (3.5)

Because h0/d is a function of φ in (3.4), Ḣ/U is also a function of φ only. Consequently,
the depth of elongated cavity grows linearly with time.

Figure 5(a) plots our experimental data of the scaled elongation rate of the cavity
as a function of φ along with our theoretical result from (3.5). We have also included
previously reported experimental data and theoretical prediction in the figure. Speirs et al.
(2018) modelled the drop train as a continuous liquid stream rather than separate drops
and balanced the pressures of the two media (pool and stream) at the stagnation point,
to yield a simple relationship of Ḣ/U = √

φ/(1 + √
φ). We find that the experimental

results using drop diameters of tens of micrometres (Bouwhuis et al. 2016), hundreds of
micrometres (ours) and millimetres (Speirs et al. 2018) follow the same trend. Both of the
theoretical models predict the experimental results well, which confirms that the impact
inertia of drops is dominantly converted to the momentum of the surrounding liquid.

We go beyond the mere prediction of the cavity depth, by analytically modelling the
temporal evolution of the entire shape, i.e. radius as well as depth, of the cavity. We first
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Figure 5. (a) The scaled penetration speed of the elongated cavity, Ḣ/U, versus φ = fd/U. The black solid
line corresponds to (3.5), and the red dashed line to the model from Speirs et al. (2018). (b) The radius of
a cavity R at a fixed z versus time, τr. (c) The experimental cavity radius plotted according to (3.8). (d) The
experimentally measured cavity profiles for various experimental conditions at t = 3 ms. (e) The experimental
cavity profile plotted according to (3.9), where ψ is the right-hand side of (3.9). ( f –h) Comparison of the
experimentally imaged cavity shapes and the theoretical predictions given by the red line: ( f ) 30 wt% ethanol
in water, d = 410 μm, U = 10.6 m s−1 and f = 17 kHz; (g) 4 wt% ethanol in water, d = 340 μm, U = 9.4
m s−1 and f = 17 kHz; (h) water, d = 430 μm, U = 6.4 m s−1 and f = 7 kHz. Experimental conditions
for symbols in (a–e) are given in figure 3(d). The code and data necessary to plot ( f –h) are available at
https://github.com/Jay-JaeHongLee/JFMdroptrain.git.

consider the radial growth of each crater comprising the entire cavity. The crater formed by
the drop impact at the cavity tip dominantly grows axially as a tip crater in the beginning,
but it grows only radially once the next drop arrives to form a new tip crater. The radial
expansion of the old crater implies the radially outward recession of the surrounding liquid
as illustrated in figure 4(c). The corresponding kinetic energy of the liquid is written as

El = πρh0

∫ R∞

R
rv2

r dr, (3.6)

where R is the radius of the crater of interest at time τr measured from the moment it
begins radial expansion, R∞ is a characteristic distance of the far field unaffected by the
expansion of the crater and vr is the radial velocity of liquid at a distance r from the
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centre of the cavity. Using the continuity equation, vr = RṘ/r with Ṙ = dR/dτr, we find
El = πρh0R2Ṙ2 ln (R∞/R).

Because El comes from the kinetic energy of the impacting drop, Ed = πρd3U2/12,
after a fairly brief period of tip crater formation, we estimate El ∼ Ed, where ∼ signifies
‘is scaled as’:

ln
(

R∞
R

)
∼ 1

12
d3U2

h0R2Ṙ2
. (3.7)

Bouwhuis et al. (2016) showed that the radius of the elongated cavity R ∼ τ
1/2
r via

the two-dimensional Rayleigh equation. Then, R2Ṙ2 is independent of time, and so is
ln(R∞/R) approximately. Solving (3.7), we find

R2 = kdU
(h0/d)1/2

τr + R2
0, (3.8)

where k is a time-independent prefactor to be empirically determined, and R0 is the initial
radius of the cavity, which corresponds to the radius of the tip crater at the moment the
next drop arrives.

Figure 5(b) shows the experimental results of the radius of a single crater (at fixed z)
versus time, τr, for varying drop size, velocity, frequency and surface tension. The radius
tends to increase rapidly in the initial stages but its growth slows down in the late stages,
consistent with a power-law behaviour, R ∼ τ

1/2
r . We see in figure 5(c) that the scattered

raw data are collapsed onto a single line when plotted according to our theoretical model,
(3.8). The slope of the best fitting line by the least squares method gives k = 0.3.

With the axial elongation and radial expansion of the cavity given by (3.5) and (3.8),
respectively, we can reconstruct the temporal evolution of the cavity profile. The depth
and radius of the cavity profile with its tip descending at a rate of Ḣ are respectively given
by z = Uφ(h0/d)τ/[1 + φ(h0/d)] from (3.5) and r2 = kdUτr/(h0/d)1/2 + R2

0 from (3.8),
where τr = τ − Δt. Eliminating τ in the equations, we obtain an equation of the cavity
profile:

z
d

= φ(h0/d)3/2

k(1 + φh0/d)
r2 − R2

0
d2 + φh0/d

1 + φh0/d

(
1
φ

+ h0

d

)
. (3.9)

We can draw the cavity profile using (3.9) while the origin (the cavity tip) is descending at
a rate given by (3.5). Two interesting observations follow (3.9). First, the parabolic profile
of the elongated cavity is preserved as an observer travels with the cavity tip. Second, the
profile depends only on φ when the lengths (z and r) are scaled by the drop diameter d.

In figure 5(d), we plot the measured cavity profiles for various experimental conditions
including types of liquid, drop diameter and impact velocity. Figure 5(e) shows that the
scattered raw data are collapsed onto a single line with the slope of unity, when plotted
according to (3.9). We overlap the actual cavity images with the theoretical profiles
in figure 5( f –h), to find their good agreement. The theoretical results tend to slightly
overestimate the cavity radius as the maximum radius is approached before sealing because
our model is based on the Rayleigh equation which considers only inertial expansion of
the cavity.

4. Steady shape of funnel

Once the elongated cavity is sealed by necking near the unperturbed free surface,
the cusp-shaped liquid–air interface above the pinch-off point retreats upward until it

921 A8-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.503


Impact of a drop train

reaches a steady funnel shape, as shown in figure 2(c). Here, we theoretically model
the steady profile of the funnel, which has rarely been discussed thus far, except for the
air cavity around a liquid jet plunging into a liquid bath (Sheridan 1966; Zhu, Og̃uz &
Prosperetti 2000; Lorenceau & Quéré 2004; Kiger & Duncan 2012). Considering that the
initial transient of elongated cavity formation and collapse takes less than 10 ms in our
experiments, it is the steady funnel that is likely to play more important roles in practical
applications.

As schematically illustrated in figure 4(d), the interfacial profile of the funnel arises as
the downward force from the drop impact is balanced with the capillary forces. For the
cylindrical control volume around the funnel, a dashed box in the figure, the drop impact
force Fi is scaled as Fi ∼ ρU2d2φ, where φ = fd/U has been included to account for the
duration that the drop passes through the lower neck of the funnel (d/U) relative to a
period between successive drops (1/f ). The control volume is extended radially from the
lower neck of funnel by the capillary length lc = [σ/(ρg)]1/2, a characteristic length scale
over which a static meniscus develops under the gravitational field. The vertical length of
the control volume corresponds to the funnel depth L. The downward and upward capillary
forces are respectively given by Fd = πdσ and Fu = 2πσ(r sinα)|z=L with sinα = [(1 +
(dr/dz)2]−1/2. We note that the vertical origin (z = 0) is positioned at r = d/2, the deepest
point of the funnel. Balancing Fi and Fu − Fd with r′ = dr/dz 
 1 at z = L, we get

r
r′ − d

2
∼ 1

16
φdWe. (4.1)

Integrating (4.1) from z = 0 to L and r = d/2 to lc, we find a relationship between the
funnel depth, L, and the drop train impact conditions:

L
d

− 1
2

ln
(

2lc
d

)
∼ 1

16
φWe ln

(
2lc
d

)
. (4.2)

Figure 6(a) displays the experimental results of the funnel depth L versus the impact
velocity U of drops with various conditions. The funnel depth tends to increase with the
impact velocity for drops with similar sizes (hundreds of micrometres in diameter) but
are also sensitive to the drop size as seen in the lower right corner of the plot (d = 20
μm). However, plotting the raw data according to (4.2) collapses them onto a single
line, as shown in figure 6(b). Then we can write L/d = 1

2 (1 + cφWe/8) ln(2lc/d), with
c = 0.015. In figure 6, the results of the additional experiments have been included, where
the atmospheric gas was substituted by SF6 with a density five times greater than air
(6.1 kg m−3) to check the effects of the momentum of gas entrained with the drops. The
agreement of the experimental results with our theoretical model confirms a negligible
effects of entrained gas on the funnel shape.

Now we can obtain the meniscus profile of the funnel by integrating (4.1) from z = 0 to
z and r = d/2 to r:

z
d

= 1
2

(
1 + c

8
φWe

)
ln

(
2r
d

)
. (4.3)

We see that the scaled funnel profile depends on We as well as φ, unlike the elongated
cavity that depends only on φ, as seen in (3.9). Figure 6(c) plots interfacial profiles of the
funnels for various experimental conditions. In figure 6(d), the scattered profiles are seen to
collapse onto a single line when plotted according to (4.3). We further see in figure 6(e–g)
that the theoretically predicted meniscus profiles match well with experimental images
under different impact conditions. The funnel profiles corresponding to r > d/2 are kept
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Figure 6. (a) Experimental results of a funnel depth L versus the velocity of drops with varying conditions.
(b) The data in (a) plotted according to (4.2). The slope of the best fitting line is 0.015. (c) Interfacial profiles of
funnels for a range of drop train impact conditions. (d) The scaled profiles of funnel interface plotted according
to (4.3), which are collapsed onto a straight line with the slope unity. (e–g) Experimental images of funnels
formed by impact of drop trains: (e) water, d = 20 μm, U = 32.9 m s−1 and f = 635 kHz; ( f ) ethanol, d = 180
μm, U = 4.6 m s−1 and f = 14 kHz; (g) ethanol, d = 220 μm, U = 9.7 m s−1 and f = 17.2 kHz; (h) water,
d = 240 μm, U = 9.5 m s−1 and f = 27.7 kHz. The red lines correspond to the theoretical prediction (4.3),
and they extend up to r = lc in ( f –h).

steady despite interfacial oscillations arising from drop impacts in the inner region (r <
d/2).

5. Conclusions

We have theoretically modelled and experimentally corroborated the dynamic evolution of
an elongated cavity that is formed by impact of a drop train on a liquid pool. Although the
prior works obtained a scaling law for cavity elongation rate and numerically simulated the
cavity shape, our model with experiments allows us to find the temporal evolution of the
cavity profile in a closed form. We have also analysed the liquid interface profile, a funnel,
which arises after the elongated cavity is collapsed owing to capillary action. The funnel
geometry has been shown to depend on the Weber number as well as the dimensionless
frequency φ.

Although the funnel has been largely ignored in the previous studies of a drop train
impact, it is indeed one of the most important interfacial phenomena that discriminates
the impact of a drop train from relatively scattered impacts of drops onto a liquid pool
(Bick et al. 2010; Ray et al. 2013). Although such a funnel was observed when a liquid jet
plunges into a liquid pool, the effects of jet inertia on the steady shape of the funnel have
been rarely considered because major attention has rather been paid to air entrainment
behaviour arising from jet impacts (Sheridan 1966; Zhu et al. 2000; Lorenceau & Quéré
2004; Kiger & Duncan 2012). In practice, understanding the fields of flow and pressure
around the elongated cavity and funnel is essential in designing effective semiconductor
cleaning processes. For such applications, it is worth further investigation to elucidate
how the kinetic energy of the incoming drops is transferred within a liquid to dislodge
contaminant particles attached to the bottom surface.
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