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Abstract
The data volumes generated by theWidefield ASKAP L-band Legacy All-sky Blind surveY atomic hydrogen (HI) survey using the Australian
Square Kilometre Array Pathfinder (ASKAP) necessitate greater automation and reliable automation in the task of source finding and
cataloguing. To this end, we introduce and explore a novel deep learning framework for detecting low signal-to-noise ratio (SNR) HI
sources in an automated fashion. Specifically, our proposed method provides an automated process for separating true HI detections from
false positives when used in combination with the source finding application output candidate catalogues. Leveraging the spatial and depth
capabilities of 3D convolutional neural networks, ourmethod is specifically designed to recognize patterns and features in three-dimensional
space, making it uniquely suited for rejecting false-positive sources in low SNR scenarios generated by conventional linear methods. As
a result, our approach is significantly more accurate in source detection and results in considerably fewer false detections compared to
previous linear statistics-based source finding algorithms. Performance tests using mock galaxies injected into real ASKAP data cubes reveal
our method’s capability to achieve near-100% completeness and reliability at a relatively low integrated SNR ∼ 3− 5. An at-scale version of
this tool will greatly maximise the science output from the upcoming widefield HI surveys.
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1. Introduction

The Widefield ASKAP L-band Legacy All-sky Blind surveY
(WALLABY; Koribalski et al. 2020) using the Australian SKA
Pathfinder (ASKAP) is expected to map a large portion of the
southern sky in the 21-cm line emission of neutral hydrogen (HI).
WALLABY expects to detect HI from over 200 000 galaxies out
to a redshift of z ≈ 0.1, amounting to approximately 1 petabyte in
data volume.

Given the very large amount of imaging data anticipated from
WALLABY, the detection and characterisation of galaxies will
need to occur in a fully automated fashion with minimal man-
ual intervention. To this end, dedicated HI source finding soft-
ware such as DUCHAMP (Whiting 2012), SELAVY (Whiting &
Humphreys 2012), and the Source Finding Application (SoFiA;
Serra et al. 2015) have been developed. SoFiA encapsulates the
outcomes and technical knowledge from previous generations of
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large HI surveys and their development of automated source-
finding methods (Popping et al. 2012). Parallel processing and
multithreading has been built into SoFiA2 (Westmeier et al. 2021)
to enable more efficient source-finding in very large HI survey
datasets, such as those fromWALLABY.

However, it is imperative to acknowledge the limitations of
current automated methodologies, especially in the case of non-
Gaussian noise characteristics. At low signal-to-noise ratios (SNR
< 5), these algorithms are susceptible to generating significant
numbers of false detections. The manual vetting required to sep-
arate false positives from true HI detections, especially in the
context of WALLABY’s extensive dataset, poses a considerable
challenge and bottleneck in efficiency.

In radio astronomy, convolutional neural networks (CNNs)
have been used to classify galaxies based on optical and infrared
imaging (Aniyan & Thorat 2017; Wu et al. 2019; Gupta et al. 2023;
Cornu et al. 2024). However, it is important to note that these
applications in astronomy have predominantly focused on 2D
image processing of radio continuum observations. In HI surveys,
the datasets are almost always three-dimensional, capturing both
two-dimensional spatial and one-dimensional spectral, and a new
approach is necessary. The third dimension in radio astronomical
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images provides critical spectral information, adding a layer of
complexity to the analysis (Tolley et al. 2022). Recently, Barkai
et al. (2023) found that SoFiA (in combination with the random
forest algorithm) outperforms their V-Net network (plus ran-
dom forest) HI source finder. Recent attempts to apply machine
learning to the entire source-finding process in radio astron-
omy, such as using 3D U-Net for detection by Håkansson et al.
(2023), have encountered challenges at the bright end of the
flux range. This issue primarily arises from a scarcity of galaxies
within that specific region of the parameter space in the training
dataset. However, results from the SKA Data Challenge 2 indi-
cate that integrating traditional source finders like SoFiA with
machine learning can enhance HI source-finding performance by
up to 20 percent (Hartley et al. 2023), highlighting the potential
of combining conventional and machine learning approaches for
improved outcomes in HI surveys.

In this paper, we present a companion machine learning-
based model that is more effective at differentiating between the
false positives and the true HI detections from SoFiA2’s output
candidate catalogues. We posit that the implementation of our
proposed complementary model will improve upon the efficiency
of source finding in large HI surveys, as the number of false pos-
itives will be reduced significantly. Our proposed model employs
a three-dimensional (3D) CNN to fully leverage the original 3D
data, significantly enhancing the detection and characterisation
of astronomical sources by exploiting the correlation of true HI
emission in the spectral dimension.

The outline of this paper is as follows. Section 2 provides an
overview of our method and workflow. In Section 3, we test our
proposed workflow by training and testing on a simulated dataset.
This ensures that we are able to quantify the efficacy of ourmethod
prior to applying our workflow to ASKAP WALLABY observa-
tions. We describe the application of our method to ASKAP data
cubes in Section 4. We then discuss the limitations and implica-
tions of our work in Section 5. Section 6 presents our conclusions
and summarises our key results.

2. Machine learning-based workflow

Machine learning has proven to be exceptionally adept at han-
dling image processing tasks, with architectures like graph neural
networks (Wang et al. 2022), Residual neural network (ResNet,
He et al. 2016) and transformer models (Chen et al. 2022) show-
casing remarkable success in complex visual recognition chal-
lenges. The versatility of machine learning extends beyond image
analysis, with widespread applications across diverse fields such as
environmental science (Wang et al. 2023) and medical diagnos-
tics (Chen, Ma, and Zheng 2019), showcasing its versatility and
effectiveness in interpreting complex datasets.

In this section, we outline our methodology, encompassing
data preprocessing, neural network architecture, and training
techniques. We detail how we prepare and optimise our dataset,
describe our model’s structure and layers, and discuss our training
strategy, focusing on loss functions, optimization, and overfitting
prevention.

2.1 Pipeline overview

Our approach represents a crucial step in the search for HI sources.
While utilising SoFiA, a highly modular and automated tool,
proves effective in filtering out the majority of noise, the output
from SoFiA still necessitates scrutiny by astronomers to discern

genuine sources from processing artifacts or other forms of noise
systematics. This is where our machine learning method comes
into play, serving to recognize and categorize outputs from SoFiA
as either true HI sources, or not.

As illustrated in Fig. 1, our machine learning model is designed
to supplement and potentially replace themanual inspection phase
in the SoFiA workflow, particularly during the initial source list
evaluation. By automating this aspect of the process, our method
not only streamlines the workflow but also significantly reduces
the potential for human error and bias (which are often difficult to
quantify).

2.2. Pre-processing

In this section, we describe the preparation of the data used to train
and test our model.

2.2.1. DBSCAN clustering

In our data cleaning process, we addressed the challenge of
closely spaced two-dimensional coordinate points in astronomi-
cal data, which often represent the same celestial object. Utilizing
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm (Ester et al. 1996), we identified and
excluded sources within a 30 arcsec radius from each other (con-
sistent with the synthesised beam of the ASKAPWALLABY image
cubes). This crucial step of removing redundant data is important
for our subsequent analysis.

2.2.2. Data augmentation

To increase the sample size and diversity, we perform standard
data augmentation processes such as random cropping, rotation,
flipping, and resizing. Data augmentation is important for devel-
oping robust models that can recognise sources which are not
necessarily centred or symmetric within the input training data. In
our study, we employed various data augmentation techniques to
enhance the robustness of our model. These techniques included
rotation, scaling, flipping, and noise addition, which are well docu-
mented in the literature as effective methods for improving model
generalization (Shorten & Khoshgoftaar 2019).

2.2.3. Normalisation

Similarly, we implemented common techniques to scale and trans-
form our dataset into a format more suitable for neural network
processing. This process is critical to avoid potential biases or
misinterpretations caused by the varying scales of raw data val-
ues. We employed min-max normalisation, which rescales the
data into a fixed range of 0–1. This approach ensures that each
feature contributes proportionately to the final analysis, prevent-
ing any single feature from dominating due to scale differences.
By normalising the data, we enhance the efficiency and stabil-
ity of the neural network’s learning process, as normalised data
typically result in faster convergence during training (Santurkar
et al. 2018). Additionally, this step reduces the complexity of the
model’s underlying structure, making it less susceptible to overfit-
ting and improving its generalisation capabilities on new, unseen
data. This normalisation approach aligns with standard practices
in computer science (Singh & Singh 2020; Patro & Sahu 2015) and
is pivotal in ensuring that our neural network operates on a con-
sistent and standardised dataset, thereby enhancing the robustness
and reliability of our findings.
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Figure 1. Integration of Machine Learning into SoFiA Workflow. On the left, the diagram depicts the comprehensive workflow of SoFiA, within which the right segment illustrates
our integrated machine learning approach. The right-hand section details the machine learning pipeline, starting from the HI Input derived from SoFiA’s process, proceeding
through Data Preprocessing, detailing the feature map extraction strategy, outlining the Optimization Objective, showcasing the Classifier stage, and culminating in the Output
Results. This visualisation demonstrates how our machine learning methodology fits into and enhances the existing SoFiA workflow.

Figure 2. Residual block. Shortcut connections bypass a signal from the top of the
block to the tail. Signals are summed at the tail.

2.3. 3D convolutional network

A convolutional neural network (CNN) (O’shea & Nash 2015) is
a type of deep learning model particularly effective for process-
ing grid-like data, such as images. It consists of layers of neurons
that use convolutional kernels to detect features within the data.
During training, the network adjusts its kernel parameters to min-
imize the error in predicting the correct labels for the data. Our
architecture utilizes ResNets (He et al. 2016) as its foundation.
ResNets incorporate shortcut connections, allowing a signal to
skip directly from one layer to another. These connections enable
gradients to flow more effectively from later layers back to ear-
lier ones, simplifying the training of particularly deep networks.
Fig. 2 illustrates the residual block, a fundamental component of
ResNets. In this block, signals are directly channeled from the
beginning to the end. ResNets are composed of numerous such
residual blocks.

Table 1 describes the architecture of the 3D ResNet net-
work (Fan et al. 2017). The primary distinction between our
version and the original ResNets lies in the dimensions of the
convolutional kernels and pooling operations. Our 3D ResNets
utilize 3D convolution and 3D pooling. The 3D convolutional

layer can be described as the output value of the layer with
input size (N, Cin,D,H,W). The output (N, Cout ,Dout ,Hout ,Wout)
is described as

out(Ni, Coutj)= bias(Coutj )+
Cin−1∑

k=0

weight(Coutj , k) ∗ input(Ni, k),

(1)

where ∗ is the valid 3D cross-correlation operator, and N is a
batch size, C stands for the number of channels, and D,H,W is
the depth, height, and width of input planes, respectively. The
convolutional kernels measure [3, 3, 3], and the temporal stride
for the ‘Conv3d_0’ layer is set at 1. The network processes input
cubes with dimensions of [1, 70, 40, 40]. The sizes of these input
clips are determined by the median value from the cube size
statistics output by SoFiA. Down-sampling is executed by layers
‘Conv3d_2.0.1’, ‘Conv3d_3.0.1’, and ‘Conv3d_4.0.1’, each using a
stride of 2. When the number of feature maps escalates, we imple-
ment identity shortcuts combined with zero-padding to prevent
an increase in parameter count.

The output of each block serves as the input for the subse-
quent block. This stacking mechanism is crucial, as it augments
the number of non-linear activations. Each convolutional layer
comes equipped with its own rectified linear unit (ReLU)a (Agarap
2018),which integrates non-linearities into the system. These non-
linear activations enable the network to model complex patterns
and relationships within the data, thereby enhancing its ability to
extract distinctive features. In the context of neural networks, a
neuron refers to a computational unit that receives input, pro-
cesses it through a non-linear activation function, and passes

aThe ReLU activation function is widely used in computer vision and deep learning for
more effective training.
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Table 1. The network architecture of the 3D ResNetmodel used in this work. Each convolutional layer is followed
by batch normalization and ReLU. Downsampling is performed by conv3_1, conv4_1, conv5_1 with a stride of 2.

Layer Function Kernel size Input size Output size Stride Activation No. of params

1 Conv3d_0 7, 7, 7 1,40,40,70 64,40,20,35 1, 2, 2 ReLu 21.95 k

2 maxpool – 64,40,20,35 64,20,10,18 – – –

3 Conv3d_1.0.1 3, 3, 3 64,20,10,18 64,20,10,18 1, 1, 1 ReLu 110.59 k

4 Conv3d_1.0.2 3, 3, 3 64,20,10,18 64,20,10,18 1, 1, 1 ReLu 110.59 k

5 Conv3d_1.1.1 3, 3, 3 64,20,10,18 64,20,10,18 1, 1, 1 ReLu 110.59 k

6 Conv3d_1.1.2 3, 3, 3 64,20,10,18 64,20,10,18 1, 1, 1 ReLu 110.59 k

7 Conv3d_2.0.1 3, 3, 3 64,20,10,18 128,10,5,9 2, 2, 2 ReLu 221.18 k

8 Conv3d_2.0.2 3, 3, 3 128,10,5,19 128,10,5,9 1, 1, 1 ReLu 442.37 k

9 Conv3d_2.1.1 3, 3, 3 128,10,5,9 128,10,5,9 1, 1, 1 ReLu 442.37 k

10 Conv3d_2.1.2 3, 3, 3 128,10,5,9 128,10,5,9 1, 1, 1 ReLu 442.37 k

11 Conv3d_3.0.1 3, 3, 3 128,10,5,9 256,5,3,5 2, 2, 2 ReLu 884.74 k

12 Conv3d_3.0.2 3, 3, 3 256,5,3,5 256,5,3,5 1, 1, 1 ReLu 1.77 M

13 Conv3d_3.1.1 3, 3, 3 256,5,3,5 256,5,3,5 1, 1, 1 ReLu 1.77 M

14 Conv3d_3.1.2 3, 3, 3 256,5,3,5 256,5,3,5 1, 1, 1 ReLu 1.77 M

15 Conv3d_4.0.1 3, 3, 3 256,5,3,5 512,3,2,3 2, 2, 2 ReLu 3.54 M

16 Conv3d_4.0.2 3, 3, 3 512,3,2,3 512,3,2,3 1, 1, 1 ReLu 7.08 M

17 Conv3d_4.0.1 3, 3, 3 512,3,2,3 512,3,2,3 1, 1, 1 ReLu 7.08 M

18 Conv3d_4.0.1 3, 3, 3 512,3,2,3 512,3,2,3 1, 1, 1 ReLu 7.08 M

19 AdaptiveAvePool3d – 512,3,2,3 512,1,1,1 – – –

20 Linear – 1,512 1,2 – – 1.03 k

the result to the next layer (LeCun, Bengio, and Hinton 2015).
It is worth highlighting that the receptive field size of an individual
neuron does not restrict our proposed method from identifying
sources that are more expansive. This is attributed to the fact
that a feature map is an aggregation of several neurons, which,
when combined, have the capacity to detect considerably larger
entities.

Fig. 1(d) presents the feature maps generated by the concluding
convolutional layer, specifically, ‘layer18

Conv3d_4.0.1’ as referenced in Table 1. These features are
derived from the input cube labeled ‘WALLABY J133032-211729’
shown in Fig. 3. Our model outputs a 3D feature map, effec-
tively capturing the spectral features of the data. The feature map
is updated after comprising 20 000 iterations of forward compu-
tation paired with backward propagation. This rigorous process
was essential to pinpoint the optimal values for all kernel weights
within themodel. Detailed insights into the training and optimiza-
tion phases are described in the next section. A cursory visual
evaluation indicates a noticeable similarity between the original
input image and each of the feature maps, particularly in terms
of the source morphology. Every individual feature map unveils
unique attributes, each a product of a specific kernel set. Each ker-
nel within this set has been trained to discern and align with a
distinct pattern from its respective input tensors.

The efficiency and effectiveness of the training pipeline are
largely determined by the training loss, which can be expressed
as follows:

Loss= −
C∑

i=1

yi · log(ŷi), (2)

where C is the total number of classes, y is the one-hot encoded
vector,b and ŷ is the model’s predicted output. The goal during
training is to reduce the training error on the training set using
various optimisation techniques without compromising themodel
generality on future unseen datasets.

3. Verifying our workflow

We first validate our machine learning-based approach using sim-
ulated data which ensures that we have an excellent ‘ground truth’
dataset down to low SNR – not typically available in real datasets.
This section outlines the creation of our simulated dataset, the
implementation details, and a concise analysis of the outcomes.

3.1. Dataset generation

To evaluate our model’s effectiveness regarding completeness,
and reliability, we produced 4 000 simulated galaxies utilising the
GALMOD function in the GIPSY data processing software (Allen
et al. 2011). We varied several galaxy parameters randomly within
a reasonable range to ensure a diverse array of observational char-
acteristics. These parameters included peak HI column density
(1020−1021 cm−2), rotation velocity (ranging 30–220 kmp s−1),
scale length on the sky (4.5–36 arcsec), disc inclination (0–85
degrees), and position angle (0–360 degrees). Consistent with the
WALLABY restoring beam, these model galaxies were convolved
with a 30 arcsec Gaussian beam. Each galaxy’s flux density was

ba binary vector with all zero values except for a single one at the position corresponding
to the class.
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Figure 3. Based on the input WALLABY image WALLABY J133032-211729, examples of derived datasets. The panels are HI contours overlaid on optical image (Top left), HI con-
tours overlaid on multiwavelength image (top right), velocity map showing the galaxy rotation (middle right), pixel-by-pixel SNR maps (bottom right), spectra without noise
(bottom left).

uniformly adjusted to ensure most integrated SNRs would lie in
the 0–10 range.

We also generated a corresponding number of negative sam-
ples, totaling 4 000. These negative cubes were randomly sampled
from a master data cube featuring authentic noise from ASKAP
WALLABY observations. The master data cube was produced fol-
lowing a procedure similar to that detailed in Westmeier et al.
(2021). We extracted the noise from a 1 501× 1 501 spatial pixel
and 1 501 spectral channel section of a WALLABY pre-pilot data
cube from the Eridanus cluster pointing, creating a file around
12.6 GB in size. The simulated cube has pixel sizes of 6 arcsec
(synthesised beam of 30 arcsec) and a spectral channel width of

18.5 kHz, translating to a velocity resolution of about 4 kmp s−1

at a redshift of 0. To reduce the likelihood of contamination
from actual HI emissions, the noise cube was sourced from the
1 323–1 351 MHz frequency range, where very few HI sources are
found. These positive and negative samples directly constituted
the model’s dataset and were not further processed by SoFiA.

3.2. Implementation and evaluation

We implement the method using PyTorch (Paszke et al. 2019).
Both training and testing require GPU resources, and we deploy
the model to run on NVIDIA RTX A5000 (16 GB RAM) GPU.
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To train our network, we employ stochastic gradient descent
(SGD) combined with momentum (Ruder 2016) and set the ini-
tial learning rate to 0.001. The training speed is about 0.03 s per
iteration on A5000. Thus, a pipeline instructed to execute 20 000
iterations requires 600 s of training time on provisioned GPU
resources. For testing, it takes the learned model 45–220 ms per
subject to generate detected radio sources and probabilities. As is
typical, this time cost is highly dependent on I/O performance.

Here, we divided the simulated dataset into training, valida-
tion, and test subsets in a 0.8, 0.15, and 0.05 ratio. This split
was strategically chosen to ensure ample data for comprehensive
model training while maintaining separate, untouched datasets for
validation and unbiased testing. Allocating 80% to training pro-
vides the model with extensive learning opportunities. The 15%
validation set enables effective tuning and overfitting prevention,
and the 5% test set ensures the model’s performance is evalu-
ated on completely new data, reflecting its real-world applicability
and accuracy. This approach ensures a balanced and rigorous
assessment of the model’s capabilities.

To evaluate the proposed method against the testing set, we
use the evaluation metrics of accuracy and the F1 score. Accuracy
represents the fraction of classifications that are correct, as
shown in equation (3). Precision and completeness are defined in
equation (4) as follows:

Accuracy= TP+ TN
TP+ TN+ FP+ FN

(3)

Precision= TP
TP+FP

and Completeness= TP
TP+FN

, (4)

where true positive (TP) is the number of items correctly identi-
fied as true, false positives (FP) is the number of items incorrectly
identified as true, and false negatives (FN) is the number of items
incorrectly identified as false. Then, the F1 score is defined as

F1= 2× 2TP
2TP+ FP+ FN

(5)

3.3. Results

The results from themock galaxy dataset, obtained using three dif-
ferent random seed runs, demonstrate the robustness and reliabil-
ity of ourmodel under varying conditions. As shown in Table 2, we
find high test accuracy, averaging∼96% across all three runs, indi-
cating a strong performance in source identification. Furthermore,
the low variance associated with this accuracy, despite the different
random seeds, underscores the model’s stability and predictabil-
ity. The validation F1 Score of ∼96% further confirms the model’s
balanced precision and completeness, a critical aspect in astro-
nomical data analysis where imbalanced classes may influence the
accuracy scores. In summary, our experiment with the simulated
dataset verifies ourmodel’s ability to deliver consistent and reliable
outcomes.

The confusion matrix (Fig. 4) generated from the model’s
predictions demonstrates excellent performance in differentiating
between simulated galaxies from noise. We find a high true pos-
itive rate (TPR) of 92.28% and a high true negative rate (TNR)
of 99.88%, suggesting that our model is reasonably complete and
reliable. On the other hand, the false-positive rate (FPR) and the
false-negative rate (FNR) are at 0.12% and 7.72%, respectively.
The very low FPR is reassuring, but the FNR suggests that a small

Table 2. Performance metrics of our method on mock galaxy
dataset

Metric Mean (%) Variance

Best test accuracy 95.82 0.2291

Best train accuracy 98.67 0.1846

Test F1 score 95.71 0.2248
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Figure 4. The confusion matrix illustrates the model’s performance in classifying data
as either ‘Galaxy’ or ‘Noise.’

percentage of true HI detections have been missed by the model,
lowering our method’s accuracy.

In order to further analyse the completeness of the source find-
ing run as a function of SNR, we establish a way of characterising
the integrated SNR of a source in the same fashion as Westmeier
et al. (2021). Specifically, the SNR is calculated by taking the ratio
of the peak signal intensity of the source to the standard devia-
tion of the noise in the data. From the injection of simulated HI
sources into real ASKAP WALLABY noise cubes, we are able to
compare the relationship between completeness and SNR. While
astronomers often find visual identification of HI sources at low
SNR (SNR≈3–5) to be challenging (and often rely on additional
multiwavelength information tomakemore accurate judgements),
we find the model generated by our machine learning workflow
to be remarkably accurate, even down to low SNRs of ∼ 2− 3
(Fig. 5). Therefore, we have demonstrated here that our method
is able to generate a quantifiably reliable catalogue of true sources
from the extensive SoFiA candidate catalogues.

4. Application to WALLABY DR2 pilot data

In this section, we assess our model’s performance on real HI
sources from the ASKAP WALLABY DR2 pilot observations
(Murugeshan et al. in preparation) observations. This direct com-
parison ensures consistency in performance evaluation, as we
analyse a dataset of 11 121 candidate sources. The section delves
into the dataset specifics, evaluates the model quantitatively, and
includes a visual review of the findings. Through this approach,
we verify our model’s capability to effectively interpret and work
with real observations, and if our model’s robustness on real
observations is comparable to that of the simulated datasets.

4.1. Dataset preparation for ASKAP observations

In order to ensure no potential galaxies are overlooked, the SoFiA
algorithm is tuned to operate with a high degree of sensitivity.

https://doi.org/10.1017/pasa.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.14


Publications of the Astronomical Society of Australia 7

Figure 5. Histogram of detected (blue) and undetected (orange) mock galaxies and
the completeness (black) as a function of SNR, demonstrating that themodel is able to
achieve 100 percent completeness at SNR�2.

We refer to the outputs from SoFiA, which include a large num-
ber of false-positive objects, as candidate sources. However, this
increased sensitivity results in generating a significant number of
false positives. Taking the NGC 5044 pointings (from DR2) as
an example, SoFiA identifies 11 121 candidate sources. Despite
efforts to manually adjust parameters and other methods to elimi-
nate false positives, these adjustments are relatively biased towards
retaining all possible objects to minimise the risk of missing actual
objects. Yet, upon further analysis by astronomers, only 1 326
(11.92%) of these sources have been confirmed as actual galaxies.

We begin with the candidate catalogue from SoFiA, which con-
tains 11 121 sources. To clean the dataset, we use the density-based
spatial clustering of applications with noise (DBSCAN) algorithm
as described in Section 2.2.1. Please note that DBSCAN is used
solely for data cleaning and is not a part of our model.

Upon applying the cleaning criteria, we obtain a datasetD that
has 5889 HI sources. We show the SNR distribution of these 5889
HI sources in Fig. 6. We find a unimodal distribution centered at
SNR≈4 and an asymmetric tail that is extended towards higher
SNR, indicating that brighter sources are rarer. The majority of
sources have SNRs between 2.5 and 7.5, with fewer having SNRs
greater than 10. The input layer dimension in our model was con-
figured to be [40, 40, 70], a decision informed by comprehensive
data analysis. The input layer size is determined based on the 95th
percentile of the spatial data distribution and 90th percentile of the
spectral data distribution, meaning that 95% or 90% of the data
is smaller than this size. In practice, due to preprocessing, cubes
that are larger or smaller than this size are resized using interpo-
lation to fit this size. We random split this dataset into 3 subsets
(equal portions of positive and negative) for the training set (80%),
the validation set (15%), and the test set (5%). The model was
not exposed to the test set before testing, adhering to standard
machine learning practices.

4.2. Results of our model on WALLABY DR2 pilot data

We employed both Adam and SGD optimisers to perform gradi-
ent descent on the neural network, aiming to improve the training
accuracy on the training dataset while preserving the model’s gen-
eralisation capability on unseen datasets. To illustrate the variation
in loss during the training process, we plotted the training curves
in Fig. 7, where the Y-axis represents model accuracy training set

Figure 6. The distribution of the SNR in the dataset that consists of 5,889 potential
subjects selected from DR2.

Figure 7. Learning curves monitor the change of training (blue curve) and validation
(orange curve) accuracies (Y-axis) as the training progresses by number of iterations
(X-axis).

and the X-axis indicates training iterations. As the training pro-
gresses, the training accuracy increases progressively, rising from
0.45 to 0.80. The accuracy exhibits a rapid increase during the first
7 000 iterations, followed by a more gradual improvement. After
approximately 20 000 iterations, the upwards trend in both curves
begins to plateau, suggesting that the model has attained its accu-
racy limit given the existing network configuration and dataset.
To prevent overfitting, we employed the early stopping technique
(Smale & Zhou 2007) to halt the training process.

To determine the optimal ResNet architecture for our specific
purpose, we test and compare the performance of three ResNet
architectures: ResNet18, ResNet34, and ResNet50. The different
version numbers describe the number of convolutional layers in
each of them. Table 3 compares our performance across all three
ResNet versions. In general, without sufficient data, the model
may struggle to learn more complex patterns, even as its capacity
increases with more layers.

These results highlight ResNet18’s efficacy, particularly note-
worthy given its computational efficiency relative to more com-
plex models. These quantitative outcomes indicate that the com-
putationally lighter ResNet18 model is not only capable of provid-
ing high accuracy in distinguishing true galaxies from artefacts in
SoFiA data but does so with a consistency that rivals or exceeds
that of its more complex counterparts. This suggests that for tasks
requiring the identification of HI sources where computational
resources may be a constraint, ResNet18 offers a balanced solution
between performance and resource utilisation.
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Table 3. Comparative performance metrics of ResNet architectures on SoFiA
output data.

Method Resnet18 Resnet34 Resnet50

Train Acc 79.77± 0.15 77.50± 1.58 80.80± 1.72

Val Acc 76.73± 2.91 75.78± 4.20 75.62± 1.91

Test Acc 76.92± 0.77 76.39± 3.20 76.41± 2.22

Test F1 78.92± 1.46 77.56± 4.70 78.35± 3.56
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Figure 8. Confusion Matrix showcasing the performance of our model on real astro-
nomical data. The matrix quantifies the model’s ability to distinguish between actual
galaxies and noise/artifacts, reflecting the real-world complexities such as lower SNR
and the presence of artifacts.

Fig. 8 presents the confusion matrix from the application of
our model to ASKAP data and presents insightful outcomes. This
confusion matrix demonstrates that our model is able to correctly
identify true positives (actual galaxies) and true negatives (actual
noise or artifacts). The high TPR of 77.78% suggests that themodel
is effectively identifying a large portion of genuine galaxies in the
data. Similarly, the TNR of 74.63% indicates that the model is
proficient at recognizing noise or artifacts, which is crucial in a
real-world astronomical setting where noise levels are higher and
SNR is lower compared to simulated data.

The FPR of 25.37%, though higher than ideal, is a reflection
of the challenging nature of real data, which often includes more
complex noise patterns and processing (or imaging) artifacts. This
may lead to a higher rate of false positives, where noise or artifacts
are incorrectly classified as galaxies.

Similarly, the FNR of 22.22% indicates that a portion of actual
galaxies is being missed. Twelve DR2 sources with SNR> 5 were
missed by our model despite the high SNR nature of these sources.
This suggests that while our model is able to characterise the gen-
eral properties of true HI detections, there appears to be a greater
range of properties possessed by true HI sources (than generalised
by our model). A greater number of sources may be required in
the training sample to improve upon the understanding of HI
detections with more extreme properties. We acknowledge that
the small test set size may introduce variability due to small num-
ber statistics. However, we have tested different training-test splits
with various random seeds, and the TPR and TNR remained
consistent within a reasonable range.

Visualising the model’s accuracy as a function of SNR, we find
that our model is able to achieve reliable accuracy at SNR>7.5
(Fig. 9). However, we missed a source with SNR= 11, as shown
in Fig. 3. Why is our model not recovering all the 1 326 sources

Figure 9. Histogram of detected (blue), undetected (orange) real galaxies, and the
completeness (black) as a function of SNR.

catalogued in the NGC 5044 pointings of DR2? The likely reasons
are:

1. Inherent bias in the range of SNR in our sample. Our
WALLABY DR2 dataset used for training, validation, and
testing contains sources which typically have SNR>5,
limiting our model’s ability to perform at lower SNR.
Therefore, we do not expect our model to surpass the
performance set by the data on which it was trained.

2. More extreme or complex properties associated with high
SNR sources. As can be seen in Fig. 9, our model is also
misclassifying high SNR HI sources. Related to the nar-
row range of properties described by our DR2 dataset, we
hypothesise that we are missing these high SNR sources
due to rarer properties that have not been modelled well
by our current model. While the multidimensional feature
maps may be more difficult to interpret, we examine the
known properties of the HI sources that have been mis-
classified as FN to illustrate the outlier nature of these FN
sources. Fig. 10 shows that while the peak and integrated
HI fluxes of FN sources are consistent with that of the
general population, we find that our model’s FN sources
typically reside in outlying parameter spaces relative to the
general population in terms of size (as traced by the ellipse
major axis, ellmaj); HI line width, W20; and noise, rms. A
reason for the rarity of some of these sources comes from
the observational constraints and limitations. For exam-
ple, it is typically quite difficult to detect a bona fide HI
source that has both large angular extent and wide HI line
width.

While our model results on the WALLABY DR2 data may
not match the completeness seen for the simulated datasets, they
nonetheless demonstrate the model’s practical utility in assist-
ing astronomers with source-finding. By effectively reducing the
volume of data through the accurate identification of a major-
ity of true galaxies and noise/artifacts, the model can significantly
streamline the data analysis process, allowing astronomers to focus
on the most promising data for further investigation. This effi-
ciency is particularly valuable in large-scale surveys, where the
sheer volume of data can be overwhelming.
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(a)

(b)

(c)

Figure 10. Panels (a), (b) and (c) show the distribution of integrate flux, peak flux and
RMS flux for the DR2 SoFiA candidate list (small yellow open circles) and the twelve
false negative sources missed by our model (large blue filled diamonds).

Figure 11. The relationship between the candidate lists and new sources found.

4.3. Recovery of additional HI sources from the unverified
SoFiA2 candidate catalogue

As an additional test, we apply our model to previously mentioned
11 121 data cubes in Section 4.1 identified as candidate sources by
SoFiA for the NGC 5044 data cubes that were observed by ASKAP
in 2022. Can our model identify additional HI sources that have
not been catalogued via the default WALLABY source-finding
process (Westmeier et al. 2022; Murugeshan et al. in preparation)?
Please note, this dataset of 11 121 sources is a combination of the
training, validation, and test sets.

Similar to SoFiA, our model generates a list of candidate HI
sources. However, this candidate list is a much smaller subset than
that of the original SoFiA candidate list. After removing cata-
logued DR2 sources (Murugeshan et al. in preparation), we were
left with a list of 223 candidates. This can be compared with the
initial SoFiA candidate list of 11 121 candidates, of which 1 326 HI
sources, as described in Section 4.1. The relationship between the
candidate lists are shown in Fig. 11.

In addition, we found three additional HI sources that have
not been catalogued in the WALLABY DR2 30-arcsec catalogue
(Murugeshan et al. in preparation). Two of the three additional
sources identified by our model are large extended HI nearby
galaxies (NGC 4920 and NGC 5068) that have been presented in
Murugeshan et al. (in preparation) as part of their high-resolution
sample – a sample of nearby HI sources previously catalogued in
the HI Parkes All Sky-Survey (Koribalski et al. 2004; Meyer et al.
2004; Wong et al. 2006). These two sources were left out of the
default 30-arcsec WALLABY DR2 catalogue due to their posi-
tion and extent near the edges of their respective source-finding
regions. Hence, these two sources will be recovered in future
WALLABY data releases when additional sky regions are observed
and these two sources are further away from the edges of their
respective fields.

The third additional source is a new HI detection of a more
distant galaxy, LEDA 817885. The HI central velocity is consistent
(within uncertainties) with previous spectroscopic measurements
of the recessional velocity of LEDA 817885 (Jones et al. 2009).
On the other hand, the HI position centre is slightly offset by
approximately 28 arcsec to the north-east of the galaxy’s optical
centre. It appears that the north-eastern region is more HI-rich
than the south-western region of LEDA 817885. The recovery of
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this source alone argues for the benefits of source-finding using
multiple approaches.

Fig. 12 presents the HI moment zero column density maps
across the entire emission line in the left column and the inte-
grated spectra in the right column. A summary of the observed
properties of these three additional HI sources within the NGC
5044 pointings can be found in Table 4. The HI spectral line
parameters were measured using MBSPECT function within the
MIRIAD software package (Sault, Teuben, and Wright 1995). Our
results here highlight the value of our model and the invaluable
role that such automated systems can play in improving effi-
ciency, cross-checking, and augmenting current source-finding
workflows for very large surveys.

5. Discussion

5.1. Implications of our results for largeHI surveys

The machine learning-based workflow that we describe in this
paper builds upon and leverages the strengths of SoFiA – a source-
finding tool that is well understood and widely used within the
HI community (e.g. Koribalski et al. 2020; Hartley et al. 2023). As
described by Serra et al. (2015) andWestmeier et al. (2021), SoFiA
works well when the data are relatively clean and have Gaussian
noise characteristics. However, in the presence of non-Gaussian
noise where the noise is a combination of imaging systematics and
residual continuum subtraction or calibration artefacts, as shown
in Fig. 6 in Leahy et al. (2019), it is more difficult for SoFiA to dis-
entangle true detections from noise and artifacts. This is especially
the case for low SNR sources, which will result in the cataloguing
of a large number of false positives within the output candidate
catalogue.

To this end, the combination of SoFiA and the 3D CNN-based
model that we present here provides a source-finding method
that is more capable at differentiating between true HI sources
from false positives due to non-Gaussian noise properties, rela-
tive to using SoFiA on its own. Admittedly human verification is
still required in the current source-finding workflow; however, the
addition of our model to SoFiA significantly reduces the num-
ber of false-positive detections. The reduction in the number of
false-positive detections at low SNR leads to greater source-finding
efficiency for the very large datasets that are generated by the next-
generation HI surveys, such as the WALLABY survey. Our results
also provide strong support for the use of multiple source-finding
methods in order to optimise and maximise the output from very
large surveys. As we progress towards the SKA era of large surveys,
results from SKA source-finding challenges based on simulated
datasets may also not reveal the true challenge that is ahead when
real observational data becomes available.

5.2. Limitations of our method

Themachine learning-based method presented here is not an end-
to-end source-finding tool and works in a complementary manner
and leverages the strengths of SoFiA. The advantage is that we are
building on a well-understood source-finding tool and the con-
tribution from our method is to enhance and further automate the
functions of SoFiA. As such, our method is more interpretable and
reproducible; and less of a ‘black box’. Themodel that we have pre-
sented here is a proof-of-concept, and there are clear avenues for
enhancement and expansion.

Using simulated HI sources, we verify the potential efficacy and
efficiency of the proposed machine learning-based method pre-
sented here. However, a key result is that the model’s accuracy on
real datasets does not match its performance on simulated data.
As described in Section 4.2, our model is not able to recover the
entire set of confirmed DR2 sources. We show that SNR alone is
insufficient to fully characterise the non-linear properties of both
observational datasets and that of our model. As such the range of
properties spanned by true HI detections needs to be better sam-
pled within the training set of the model. To include sources with
rarer and a larger range of properties, a much larger dataset will be
required than the ones used in this paper. We also demonstrated
that a more complex model with more convolutional layers does
not translate to a significant improvement in performance. Hence,
the size and diversity of the training dataset will ultimately drive
future improvements to our method.

The central focus of our future work will be to broaden the
scope and diversity of the training dataset. This will involve not
only the inclusion of much larger data samples to provide a richer
learning experience for the model but also a deliberate empha-
sis on exploring objects which occupy a much larger range of
observed properties such as lower SNR, broader line widths and
larger angular extents. By integrating more examples of sources
with rarer properties, the model’s ability to accurately identify and
classify objects in a wider range of conditions will be substantially
improved.We also note that as we aim to recover more FN sources
and reduce the number of FP, we have to ensure the robustness of
the model by preventing any possibility of over-fitting.

At the current stage, the accuracy of our model heavily relies on
the labelling capabilities of human experts. In low SNR scenarios,
our model theoretically can only approach, but not surpass, the
accuracy of human experts. We are exploring methods to enable
our model to exceed human expert accuracy even without better
labels.

Through these targeted efforts, we anticipate significant strides
in our model’s capability to analyse complex and large volumes
of HI datasets. Future improvements to our proposed method
will make it a more robust resource for enabling accurate and
comprehensive source-finding from very large surveys.

6. Conclusion

As SKA pathfinder surveys such as WALLABY get underway,
there is a pressing need for increased automation in data analy-
sis processes such as source finding from large data cubes. Manual
source-finding by astronomers is no longer a sustainable method
given the data rates and volumes expected from surveys such as
WALLABY. To this end, we present a proof-of-concept machine
learning-based workflow that works in a complementary man-
ner to SoFiA. Linear source-finding algorithms such as those used
by SoFiA’s smooth-and-clip do not perform well for data cubes
which exhibit complex or non-Gaussian noise properties – many
false-positive candidate detections are generated.

In this paper, we demonstrate that our workflow performs rea-
sonably well using both a simulated and real WALLABY DR2
datasets. Our model exhibits high accuracy in distinguishing
between actual HI sources and noise, even in challenging real-
world conditions characterised by lower SNR and the presence of
various processing artifacts. In summary, the key contributions of
our work are as follows:
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Figure 12. HI sources identified by ourmodel that are not catalogued in the default 30-arcsecWALLABY DR2 catalogue. The left column shows the HI moment zero column density
maps as magenta contours overlaid on g-band images from the Legacy Survey. The higher-density regions are closer to the centre. The synthesised beam is shown in the bottom
left corner of each moment zero map. The right column shows the integrated HI spectrum for each source.
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Table 4. Properties of the additional HI sources. Col (1): Name of the source; Col (2): Optical ID of the associated galaxy; Col (3): Right Ascension (RA) centre of the HI
emission; Col (4): Declination (Dec) centre of the HI emission; Col (5): Central HI velocity (in optical convention); Col (6): IntegratedHI flux; Col (7): Width of HI emission
line at full-width-half-maximum; Col (8): Comments about the source including the optical identity of the source.

Source Optical ID RA Dec v SINT W50 Comments

(J2000) (J2000) km s−1 Jy km s−1 km s−1

(1) (2) (3) (4) (5) (6) (7) (8)

WALLABY J130204-112248 NGC 4290 13:02:04 -11:22:48 1 334 360.5 93 12-arcsec map available (Murugeshan et al. in preparation)

WALLABY J131851-210223 NGC 5068 13:18:51 -21:02:23 669 4 409.3 67 12-arcsec map available (Murugeshan et al. in preparation)

WALLABY J133612-221125 LEDA 817885 13:36:12 -22:11:25 8 316 9.1 76 New HI detection

• We developed a 3D convolutional neural network model,
specifically tailored to process three-dimensional HI data.
This model efficiently handles both two-dimensional spa-
tial and one-dimensional spectral information inherent in
data cubes and leverages the correlated nature of true HI
detections in the spectral dimension.

• Working alongside the SoFiA software, our model pro-
cesses intermediate products (candidate list) generated by
SoFiA and effectively reduces a substantial number of false
positives.

• As an added bonus, we report the discovery of a new HI
source in LEDA 817885, further demonstrating the value
of our approach. More generally, such a discovery also
argues for the use of multiple source-finding methods.

• While focused on radio astronomical data, the methodol-
ogy has potential applications in other areas of astronomy
where multidimensional data is prevalent.

The quantitative analysis, supported by confusion matrices
and experiments results, reveals the model’s strengths and lim-
itations. Although the performance on real data does not com-
pletely match the near-perfect results obtained from the simulated
dataset, our workflow still represents a significant advancement in
the field of astronomical data analysis, considering the inherent
complexities of real-world data. This research paves the way for
future studies and developments in source finding from large sur-
veys where manual analysis is impractical and unsustainable. By
automating the initial stages of data filtering, our method allows
astronomers to concentrate their efforts on the most promising
data, thereby enhancing the efficiency and productivity of their
research.
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