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Bi-free entropy with respect to completely
positive maps

Georgios Katsimpas and Paul Skoufranis

Abstract. In this paper, a notion of non-microstate bi-free entropy with respect to completely
positive maps is constructed thereby extending the notions of non-microstate bi-free entropy and
free entropy with respect to a completely positive map. By extending the operator-valued bi-free
structures to allow for more analytical arguments, a notion of conjugate variables is constructed
using both moment and cumulant expressions. The notions of free Fisher information and entropy
are then extended to this setting and used to show minima of the Fisher information and maxima
of the non-microstate bi-free entropy at bi-R-diagonal elements.

1 Introduction

Free entropy was introduced in a series of papers by Voiculescu including [14, 15] that
cemented the foundations of free probability and its applications to operator algebras.
Of note is the non-microstate approach of [14] that generalized the notions of Fisher
information and entropy to the noncommutative random variables studied in free
probability by using a conjugate variable system and free Brownian motions. These
ideas were further extended to the operator-valued setting by Shlyakhtenko in [10] by
modifying the conjugate variable formulae to involve a completely positive map on
the algebra of amalgamation. One immediate application was [10, Proposition 7.14],
which obtained a formula for the Jones index of a subfactor. Furthermore, free entropy
with respect to a completely positive map was essential to the work in [8], which
demonstrated that minimal values for the free Fisher information and maximal values
for the non-microstate free entropy existed and were obtained at R-diagonal elements.

More recently, in [16], Voiculescu extended the notion of free independence to
simultaneously study the left and right actions of algebras on reduced free product
spaces. In particular, this permits a notion of independence, called bi-free inde-
pendence, that contains both free and classical independence (see [11]) and a free
probability construction to simultaneously study both a von Neumann algebra and its
commutant (see Example 2.3). Significant effort has gone into enhancing results from
free probability to the bi-free setting and examining potential applications. In terms
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2 G. Katsimpas and P. Skoufranis

of entropy, Charlesworth and the second author recently developed [4, 5], thereby
extending both the microstate and non-microstate free entropies to the bi-free setting.

The purpose of this paper is to further develop the theory of non-microstate bi-
free entropy x* to incorporate the existence of a completely positive map and examine
applications of said theory. In particular, our main applications are Theorem 9.5, which
examines the minimal value of the bi-free Fisher information for collections of pairs
of operators with similarities in their distributions, and the following theorem, which
cumulates the first author’s work on bi-R-diagonal elements from [7].

Theorem 1.1 Let (A, ¢) be a C*-noncommutative probability space, and let x,y € A
be such that x*x and xx* have the same distribution with respect to ¢ and y*y and y y*
have the same distribution with respect to ¢. With 1, : A ® M,(C) ® M(C)? - C
defined by

Tz(T@ bh® hz) = (P(T) trz(blbz)
and
X=xQ®E;®L+x"®Ey;®], and Y=yQ@L®E,+y " @L®E;),

we have that

X (fnxFuiyy™)) <2x" (XuY)
and equality holds whenever the pair (x, y) is bi-R-diagonal and alternating adjoint
flipping.

This paper is structured as follows. After reviewing some preliminaries and nota-
tion pertaining to bi-free probability in Section 2, Section 3 will extend the struc-
tures used in operator-valued bi-free probability. This is necessary as expectations
in operator-valued bi-free probability need not be positive and thus to perform
analytical computations additional structures are required. These structures occur and
are modeled based on the left and right actions of a II; factor on its L,-space (see
Example 3.5). By adding a tracial state on the algebra of amalgamation that satisfies
certain compatibility conditions, the appropriate L,-spaces can be constructed and
used to study operator-valued bi-free probability. It is these structures that the authors
believe will be vital to future applications of operator-valued bi-free probability.

In Section 4, the operator-valued bi-free cumulant functions are extended to allow
for the last entry to be an element of the corresponding L,-space. This is thematic in
bi-free probability where the last entry corresponds to the location where left and right
operators mix and, therefore, it is natural to extend the bi-free moment and cumulant
functions to have a mixture of left and right operators in the last entry. These analytical
extensions of the operator-valued bi-free cuamulants are shown to have the appropriate
bi-multiplicative properties by methods similar to [2].

In Section 5, the bi-free conjugate variables with respect to completely positive
maps are defined via moment relations. It is then shown that these moment relations
transfer to cumulant relations using the results of Section 4 and thus the natural
properties of free conjugate variables extend to this setting. One technical detail in
developing the bi-free entropy with respect to a completely positive map is to show
that if one perturbs operators by operator-valued bi-free central limit distributions,
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then the resulting operators have bi-free conjugate variables. Thus, it is necessary
to show that one can always add in the appropriate operator-valued bi-free central
limit distributions into the structures from Section 3 and remain within that context.
Results along these line sufficient for this paper are developed in Section 6.

In Sections 7 and 8, the bi-free Fisher information and entropy with respect to a
completely positive map are defined and shown to have the desired properties from
[4, 10, 14] with very similar proofs. Sections 9 and 10 extend the techniques from [8]
taking into account the differences in bi-free probability to obtain the minimal value
of the bi-free Fisher information of a collection of pairs of operators with similarities
in their distributions and the above theorem. Finally, Section 11 outlines some other
results that immediately extend from [8] to the bi-free setting using the results and
techniques from this paper.

2 Preliminaries

In this section, we will remind the reader on the basic combinatorial and operator-
valued structures that have been used in previous papers on bi-free independence.
For a more in-depth reminder of these concepts, we refer the readers to the original
papers [2, 3].

2.1 Combinatorics on the lattice of bi-non-crossing partitions

For n €N, the collection of all partitions on {1,...,n} is denoted by P(n). The
elements of any 7 € P(n) are called the blocks of 7. A partial ordered on P(n) is
defined via refinement where for 77,0 € P(n) we write 7 < ¢ if every block of 7 is
contained in a block of ¢. The maximal element of P(n) with respect to this partial
order is the partition consisting of one block and is denoted by 1,,, whereas the minimal
element is the partition consisting of n-blocks and is denoted by 0,,. Note that P(n)
becomes a lattice under this partial ordering. For 7,0 € P(n), the join of 7 and o,
denoted 7 Vv 0, is the minimum element of the non-empty set {v € P(n) | v > m,0}.
A partition 7w on {1, ..., n} is said to be non-crossing if whenever V, W are blocks of
mand vy, vy € V, wy, wa € W are such that

V1 < wp < vy < Wy,

then V = W. The lattice of non-crossing partitions on {1,.. ., n} is denoted NC(n).
In the bi-free setting, all operators are implicitly imbued with a direction, either left

or right. Given a sequence of n operators, we will use a map y € {/, r}" to distinguish

whether the kth operator is a left or a right operator. Such a map automatically gives

rise to a permutation s, on {1,...,n} defined as follows: if y ' ({¢}) = {iy < -+ <i,}
and x'({r}) = {j1 < -+ < ju_p}, then
k> ifk < p,
(k=1 P
Jnsi-k> ifk>p.

From a combinatorial point of view, the main difference between free and bi-free
probabilities arises from dealing with s,. The permutation s, naturally induces a total
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order <, on {1, ..., n}, henceforth referred to as the y -order as follows:
i<yj = s (1) <5 (-

Instead of reading {1, ..., n} in the traditional order, this corresponds to first reading
the elements of {1,...,n} labeled “¢” in increasing order followed by reading the
elements labeled “r” in decreasing order. Note that if V' is any non-empty subset of
{1,...,n}, the map x|y naturally gives rise to a map s, which should be thought of

as a permutation on {1,...,|V|}.

Definition 2.1 Let neN and ye {{,r}". A partition 7 € P(n) is called bi-non-
crossing with respect to y if the partition s)’(1 o 7 (i.e., the partition obtained by applying
the permutation 5;1 to each entry of every block of 7) is non-crossing. Equivalently,
7 is bi-non-crossing with respect to y if whenever V, W are blocks of 7 and vy, v; €
V,wi, wy € W are such that

Vi <y W1 <y V2 <X w2,

then V' = W. The collection of bi-non-crossing partitions with respect to y is denoted
by BNC(y). It is clear that

BNC(y) = {me®P(n) | s;(l omeNC(n)}={syo0 | 6 eNC(n)}.

In the context when the map y is clear, we will refer to an element of BNC(y)
simply as bi-non-crossing. To each partition 7 € BNC(x), we can associate a “bi-non-
crossing diagram” (with respect to y) by placing nodes along two vertical lines, labeled
1 to n from top to bottom, such that the nodes on the left line correspond to those
values for which y(k) = ¢ (similarly for the right), and connecting those nodes which
are in the same block of 77 in a non-crossing manner. In particular, a partition 7 € P(n)
is in BNC( y) if and only if it can be drawn in this non-crossing way.

Example 2.1 1If y € {£,r}® is such that y ' ({¢}) = {1,2,3,6} and ' ({r}) = {4,5},
then

(s4(1), ..., 5,(6)) = (1,2,3,6,5,4)

and the partition given by

m={{1,4},{2,5},{3,6}}

is bi-non-crossing with respect to y even though 7 ¢ NC(6). This may also be seen via
the following diagrams:

16—
1
24— |

34—
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The set of bi-non-crossing partitions with respect to a map x € {£,r}" automati-
cally inherits the lattice structure from P(n) via the partial order of refinement. The
minimal and maximal elements of BNC(x) will be denoted by 0, and 1,, respec-
tively, and note that 0, =5,(0,) =0, and 1, = 5,(1,) =1,. For @ # V c {L,...,n},
we denote by ming V and ming, V' the minimum element of V with respect to the
natural order and the y-order of {1,..., n}, respectively, with similar notation used
for the maximum elements. For 7, 0 € BNC(y) with o < 7, we will denote by [0, 7]
the interval with respect to the partial order of refinement.

Definition 2.2  The bi-non-crossing Mobius function is the map

UBNC * U U BNC(X) X BNC(X) - Z
neN ye{(,r}"

defined recursively by
1, ifn=0
Z usnc(m,v) = Z penc(v,0) = ]
veBNC(n) 7€BNC(n) 0, ifn<o
n<v<o n<v<o

whenever 7 < o while taking the zero value otherwise.

The connection between the bi-non-crossing Moébius function and the Mobius
function on the lattice of non-crossing partitions pyc is given by the formula

unc (7, 0) = pnc(sy o 7,5, 0 0)

for all 7 < 0 € BNC(x). Hence, ppnc inherits permuted analogs of the multiplicative
properties of unc (see [3, Section 3]). In particular, if n € N, if y € {£,7}", if m,0 €
BNC(y) such that 7 < ¢, and if V4, ..., V,, are unions of blocks of 7 that partition
{1,..., n}, then the natural map

=

[7.0] — [[7lvi> olw]

=~
I

1
T (T|Vk):l=1

is a bijection and
usnc (7, 0) = ppnc(7ly,, olv) - psnc(ly, » olv, )
2.2 B-B-noncommutative probability spaces and bi-freeness

To study operator-valued bi-free independence, certain structures are required. Thus,
we shall remind the reader of the general structures as developed in [2] and refer the
reader there for more details.

Definition 2.3 Let B be a unital *-algebra, and let B°? denote the unital *-algebra
with the same elements as B with the opposite multiplication. A B-B-noncommutative
probability space consists of a triple (A, E, ), where A is a unital *-algebra, ¢: B®
B°? — A is a unital *-homomorphism such that the restrictions &|g, and e[, g zop
are both injective, and E : A — B is a unital linear map such that

E(e(by ® by)a) = biE(a)b, and E(ae(b®1p)) = E(ac(1 ® b)),
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for all b, by, b, € B and a € A. In addition, consider the unital *-subalgebras A, and
A, of A given by

Ap={acA|ac(lz®b)=¢c(lp®b)aforallbe B}
and

A, ={acA|ae(belp)=¢e(b®lp)aforall be B}.
We call Ay and A, the left and right algebras of A, respectively.

Note that one can always assume that a B-B-noncommutative probability space is
generated as a *-algebra by A, and A,.

Example 2.2 Let A and B be unital %-algebras, and let ¢ : A — C be a unital, linear
map. f A=A®B®B®,if ¢: BQB®? » A is defined by ¢(b; ® b,) =14 ® b1 ® b,
for all by, b, € B,and E : A — B is defined by

E(tl ® b ® bg) = q)(d)blbz

forall a € Aand by, b, € B, then (A, E, ¢) is a B-B-noncommutative probability space.
Indeed, clearly, ¢ is a unital injective *-homomorphism. Furthermore, note for all Z €
A and b, bl, bz, b3, b4 € B that

E((LA ® b1 ® bz)(z ® b3 ® b4)) = (P(Z)blb3b4b2 = blE(Z ® b3 ® b4)b2
and
E(Zob1®by)(1a®b®1p)) = ¢p(Z)bibb, =E((Z®b,® by)(14 ®15 ® D)).

Hence, E satisfies the required properties.
For future use, notice that

A®B®lgc Ay and A®13®B®P cA,.

Moreover, in the case B =C, (4, E, ¢) efficiently reduces down to (A, ¢), the usual
notion of a noncommutative probability space.

Example 2.3 Let 9 be a finite von Neumann algebra with a tracial state 7 : 91 — C,
and let L, (91, 7) be the Gelfand-Naimark-Segal Hilbert space generated by (90, 7).
For T € 91, let Lt denote the left action of T on L, (M, 7), and let Ry denote the right
action of T on L,(9M, 7). Furthermore, let A be the algebra generated by {L, Rt |
T € M}.

Let B be a unital von Neumann subalgebra of 21, and let Ep : 91 — B be the
conditional expectation of 9t onto B. Recall that if P: L,(91,7) - Ly(B, 7) is the
orthogonal projection of L,(9,7) onto Ly(B, ), then Eg(Z) = P(Zlgyn) for all
Z e

Define ¢ : B® B°? - Aby ¢(b; ® by) = Ly, Ry, and define E: A - Bby

E(Z) = P(Z1m)

for all Z € A. Elementary von Neumann algebra theory implies that the range of E
is indeed contained in B. To see that (A, E, ¢) is a B-B-noncommutative probability
space, first note that ¢ is clearly a unital *-homomorphism that is injective when
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restricted to B ® 13 and when restricted to 13 ® B°P. Moreover, note for all Z € A and
b, bl, bz € B that

E(Lp,Rp,Z) = P(b1(Z19n)by) = biP(Z1on )by = biE(Z2) by
and

E(TLy) = P(TLplon) = P(Tb) = P(TRylon) = E(TRy).
Hence, E satisfies the required properties.

The map ¢: B® B°? - A encodes the left and right elements of B in A. For
notational purposes, for each b € B, we will denote ¢(b ® 15) and ¢(15 ® b) by L, and
Ry, respectively, and we denote

By=e(B®lg)={L, | beB} and B,=¢e(l3®B%)={R, | beB}.

To examine bi-free independence with amalgamation over B, it is necessary that left
operators are contained in A, (i.e., commute with the right copy of B) and right
operators are contained in A, (i.e., commute with the left copy of B).

Definition 2.4 [2] Let (A, E, €) be a B-B-noncommutative probability space.

(1) A pair of B-algebras is a pair (C, D) of unital subalgebras of A such that

B,cCcAy, and B,cDCcA,.

(2) A family {(Cy, D)}k of pairs of B-algebras in A is called bi-free with amal-
gamation over B if there exist B-B-bimodules with specified B-vector states

{(Xk, &k, Pk)} ke and unital homomorphisms
Ik : Cx > Lo(Xy) and 1y : Dy = £,(Xy),

such that the joint distribution of the family {(Cy, Dk )}, With respect to E
coincides with the joint distribution of the images

{((Ak o 1) (Ck)s (pr 0 7%) (Di)) } rexc
in the space £ (*xexXx ) with respect to E (4, x,)> Where #xcx Xy is the reduced

free product of {(Xx, X, pr)}rex With amalgamation over B, Ay is the left-
regular representation of £p(Xx) on *kcx Xy, and py is the right-regular repre-
sentation of £,(Xx) on * g Xg.

Remark 2.4 Let A and B be unital *-algebras, and let ¢ : A — C be a unital linear
map. Let (A, E, ¢) be as in Example 2.2. By [5, 11], if { (Cy, D ) } are *-subalgebras of A
that are bi-free with respect to ¢, then {(Cx ® B® 1g, D ® 15 ® B°P) } 4 are bi-free
with amalgamation over B with respect to E. Thus, Example 2.2 is the correct notion
of “inflating (A, ¢) by B” in the bi-free setting.

Example 2.5 Let 90t and 9, be finite von Neumann algebras with a common von
Neumann subalgebra B and tracial states 7; and 7,, respectively, such that 7;|p =
75|p. Let 9 = 9y x5 M, be the reduced free product von Neumann algebra with
amalgamation over B, let Ep : 901 — B be the conditional expectation of 9t onto B,
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and let 7 = 71 * 7, = 71| o Ep be the tracial state on 90t. If E and ¢ are as in Example
2.3 for (9M, 1), then

{({Lx | XeM}{Ry [ YeM})}  and  {({Lx | X €M}, {Ry [ Y € M:})}
are bi-free with amalgamation over B.

In order to study bi-free independence with amalgamation, the operator-valued
bi-free moment and cumulant functions are key. These functions have specific prop-
erties that are described via the following concept. In what follows and for the
remainder of the paper, given an n-tuple (Zy,...,Z,) and V ¢ {1,...,n}, we will use
(Z1,...,Zy)|v to denote the | V|-tuple where only the entries Zy where k € V remain.

Definition 2.5 [2, Definition 4.2.1] Let (A, E, €) be a B-B-noncommutative probabil-
ity space. A map

> UN {LEJ} BNC(X) x Aya) X Aya) X = x Ay(m) > B
nelN ye{£,r "

is called bi-multiplicative if it is C-linear in each of the A (1) entries and for all n € N,
x €{4,r}", m e BNC(y), b € B, and Z; € A,(x), the following four conditions hold:

(1) Let
q= msax{k e{l,....,n} | x(k) £ x(n)}.
If x(n) = ¢, then

dDIX(Zl,...,Zq_l,Zth,ZqH,...,Z,,), ifq:#—oo,

Oy (Zys...» Zyo1, 2y Ly) =
11( ! -l " b) {GDIX(ZI,...,Z,,_l,Zn)b, iqu—OO.
If y(n) = r, then

Oy (Z1s...sZn1,ZnRyp) = Oy Zat Lol Zgsio o B, ?fq T
x bCI)ll(Zl,...,Zn,l,Zn), lfq = —00.
(2) Letpe{l,...,n}, and let
q=max{ke{l....n} | x(k)=x(p), k<p}.

If x(p) = ¢, then

(DIX(ZI ..... Zq_l,Zqu,ZqH,...,Zn), ifq¢ —o00,

DOy (Z1,....Zp 1, LpZp, Z s Zy) =
1, (Z1 p-1>LoZp, Zps1 ) {b¢1X(Z1 ''''' Lo Z), if g = —oo.
If x(p) = r, then

(Dlx (Z1 ..... qul,Zqu,Zqu] ..... Zn), lfq * —00,

@1 (Zir-. s Zp1s RoZps Zps1 oo or Zn) =
(& prb oS pHl ") {qnx(zl,...,znl,zn)b, if g = —co.

(3) Suppose Vi,..., V,, are unions of blocks of 7 that partition {1, ..., n} with each
being a y-interval (i.e., an interval in the y-ordering) and the sets V;,..., V,, are
ordered by <, (i.e, (minx, Vi) <, (ming, Vi;) for all k). Then,

D.(Zy,...,2Z,) = CD,T|V1((Z1,...,Z,1)|V1)~~'CDﬂ‘Vm ((Zi-- s Zu)ly,)-
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(4) Suppose that V and W are unions of blocks of 7 that partition {1,...,n}, Visa
x-interval, and s, (1),s,(n) € W. Let

rriaxV<Xk}.
=X

p:max{keW

=x

k<XminV} and q:min{keW

=x =x

Then, we have that

). ifx(p) =t

(Zis .. Zp-15Ro, (Zinnz)) Zp> Zp415 - - > Zy)| ), if x(p) =1,
@ (215 Zg-1s Loy, ((zinz)) Za> Zarts - - o> Zy)| ) if x(q) = ¢,
Oy ((Zis- s Zg1s ZgRo (2inzlyys Zavts 5 Za)l ) i x(@) = 7

(D"|w

q)n(Zl ..... Zn) - {q)n|w E
(

Given a B-B-noncommutative probability space (A, E, ¢), the moment and cumu-
lant functions are well-defined bi-multiplicative functions.
Definition 2.6 Let (A, E, ¢) be a B-B-noncommutative probability space.
(1) The operator-valued bi-free moment function
E:|J U BNC(y)xAyqyx - xAyu —B
neN ye{(,r}n
is the bi-multiplicative function (see [2, Theorem 5.1.4]) that satisfies

EIX(ZI)ZZ’- . -sZrl) = E(ZIZZ : 'Zn)>
foralln e N, y € {£,r}", and Zy € A (1.

(2) The operator-valued bi-free cumulant function

KZBZ U U BNC(X)XAX(I)X XA)((n) - B
neN ye{¢,r}»

is the bi-multiplicative function (see [2, Corollary 6.2.2]) defined by

Ko(Zis- s Zn) = Y. Eo(Zi,....Zn)uenc(0,7),

geBNC(y)
o<m

foreachn e N, y € {£,r}", m € BNC(), and Z € A,(x). In the special case when
7 =1y, the map #; is simply denoted by x7. An instance of Mdbius inversion
yields that the equality

Eo(Ziyo.'nZw)= Y. Kko(Zise.osZy)

neBNC(y)
n<o

holds foralln e N, y € {{,r}", 0 € BNC(y), and Zj € A (k-
The condition of bi-freeness with amalgamation over B for a family of pairs of B-

faces is equivalent to the vanishing of their mixed operator-valued bi-free cumulants,
as the following result indicates.

Theorem 2.6 [2, Theorem 8.1.1] Let (A, E, ¢) be a B-Bnon-commutative probability
space, and let {(Cy, Di) } 1.k be a family of pairs of B-algebras in A. The following are
equivalent:
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(1) The family {(Ci, Di)} yex is bi-free with amalgamation over B.
(2) ForallneN, ye{{,r}", Zy,...,Z, € A, and nonconstant mapsy : {1,...,n} -
K such that

7, ¢ Cyxy> if x(k) =4¢,
Dyky, ifx(k)=r,

we have that

K3 (Zss. .. Zn) = 0.

3 Analytical B-B-noncommutative probability spaces

The notion of a B-B-noncommutative probability space is purely an algebraic
construction. In order to perform the more analytical computations necessary in
this paper, additional structure is needed. These structures are analogous to those
observed in Example 2.3 and will be seen to be the correct enhancement of a B-B-
noncommutative probability space to perform functional analysis.

Given a unital *-algebra A, by a state 7 : A - C, we will always mean a unital, linear
functional with the property that 7(a*a) >0 forallac A. If N, ={ac A: 7(a%a) =
0}, then L, (A, 7) will denote the Hilbert space completion of the quotient space A/N,
with respect to the inner product induced by 7 given by

(a1 + Ny az + Np) = 7(a5aq),
forall a;,a, € Aand || - |, will denote the Hilbert space norm on L, (A, 7).

Definition 3.1 Given a unital *-algebra B, an analytical B-B-noncommutative proba-
bility space consists of a tuple (A, E, ¢, ) such that:
(1) (A, E,¢) is a B-B-noncommutative probability space,
(2) 7: A — Cis a state that is compatible with E; that is,
7(a) = 7(Le(a)) = 7 (Re(a))

foralla e A,
(3) the canonical state 75 : B - C defined by 75(b) = 7(L;) for all b € B is tracial,
(4) left multiplication of A on A/N, are bounded linear operators and thus extend to
bounded linear operators on L, (A, 7), and
(5) Eis completely positive when restricted to A, and when restricted to A,.

Remark 3.1 Given an analytical B-B-noncommutative probability space (4, E, ¢, 7),
note the following.

(1) The fact that 75 is a state immediately follows from the fact that 7 is a state and ¢
is a *-homomorphism. Specifically, for positivity, notice for all b € B that

TB(b*b) = T(Lb*b) = T((Lb)*Lb) >0.
(2) Note for all b € B that
[b+Neyl7, = 78(b7b) = 7(Les) = | Ly + No 7.
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Hence, the map from B/N., to L,(A, 7) defined by
b+N; — L, +N;

for all b € B is a well-defined, linear isometry. Therefore, a standard density
argument yields that

\I.”
[P

Lz(B,TB)g{Lb-i-NT | bEB} ng(A,T).

Henceforth, we shall only be making reference to the space L,(B, 7p) via this
identification.
(3) The state 7 naturally extends to a linear functional on L, (A4, 7) by defining

(&) = (& 14+ Ne)p,(an)

for all £ € L,(A, 7). Similarly, the scalar 75({) = 7({) is well defined for any { €
L2 (B, TB )

(4) As left multiplication by A on A/N is bounded, we immediately extend the left
multiplication map to obtain a unital *-homomorphism from A into B(L,(A)).
Thus, a is a well-defined element of L, (A, 7) foralla € Aand & € L, (A, 7).

(5) The requirement of the left multiplication inducing bounded operators is imme-
diate in the case when A is a C*-algebra; however, it also holds in more general
situations. For instance, when A is a unital *-algebra generated by its partial
isometries, the left multiplication map is automatically bounded (see [9, Exercise
7.22]).

(6) Since the state 75 is assumed to be tracial, right multiplication of B on B/N, is
also bounded. Thus, for any by, b, € B and { € L,(B, 75), we have that b;(b, is
a well-defined element of L, (B, 75) and, in L,(A, 7), Ly, Ry, { = b1{b,. Further-
more, note that left and right multiplication of B on L,(B, 75) are commuting
*-homomorphisms.

(7) Foralla € Aand b € B, we automaticallyhave 7(aL;) = 7(aRy ), as 7 is compatible
with E. Indeed,

(aLy) = 7(Lg(ar,)) = T(LE(ar,)) = T(aRp),
as desired. Hence, L, + N; = R, + N forall b € B.
In some cases, property (v) of Definition 3.1 is redundant.

Lemma 3.2 Let (A, E, ¢, 7) satisfy assumptions (i)-(iv) of Definition 3.1. If Bis a C*-
algebra and Ty is faithful, then property (v) of Definition 3.1 holds.

Proof To see that E is completely positive on Ay, letd e Nand A = [a; ;] € My(Ap).
To verify that E;(A*A) > 0 in B, as B is a C*-algebra and 73 is faithful, it suffices to
show forall h = (by,...,by) € B that

<Ed(A*A)h, h)Lz(B,TB)$d > 0.
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Note that

(Ba(A"A)B ), g pyon = 3 7o (BIE(ajak,)b))

::M:“

<.
e

I
—_

g (E(Rb,-Lb;aZ,iak,j))

::MS_

~.
=~

I
—

7 (E(Lyy ax,;ax,jRo,))

::M&

~.
=

I
—

75 (E(L},ax,;ax,iL,))

::M&

<
o~

Il
=

T (ina;)iak,ijj)

::M:’"

<
~

[
_

M=

7(crek),

b
I
—

where ¢y = Zj-l:l ak,;jLy,. Hence, as 7 is positive and the computation for A, is similar,
the result follows. u

At this point, let us revisit Examples 2.2 and 2.3 to provide the canonical examples
of analytical B-B-noncommutative probability spaces.

Example 3.3 Let A and B be unital C*-algebras, and let ¢ : A — C be a state. Recall
from Example 2.2 that (A, E, ¢) is a B-B-noncommutative probability space where
A=A®B®B°,¢: B® B — Ais the natural embedding, and E : A — B is defined
by

E(Z ® b ® bz) = (P(Z)blbb

forall Z € A and by, b, € B.
Let 75 : B - C be any tracial state. Extend 75 to a linear map 7 : A - C by defining

T(Z ® b] ® bz) = TB(E(Z ® b] ® bz)) = (p(Z)TB(blbz),

forallZ ® b; ® b, € A. We claim that (A, E, ¢, ) is an analytical B-B-noncommutative
probability space. To see this, it suffices to prove that 7 is a state that is compatible with
E, since A and B being unital C*-algebras automatically imply that left multiplication
will be bounded on L,(A, 7), and Lemma 3.2 implies that E is completely positive
when restricted to Ay or A, (or one may simply use the fact that states are completely
positive).

Clearly, 7 is a unital, linear map that is compatible with E. To see that 7 is positive,
let (Z;);_, €A, (bk)p_p (ck)jy € B, and

n
a:ZZk®bk®ckeA.
k=1

https://doi.org/10.4153/50008414X23000366 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000366

Bi-free entropy with respect to completely positive maps 13

To see that 7(a*a) > 0, note that
n
t(a*a)= ) 1(Z;Z;®bb;®cjc})
irj=1

Zn: o(Z;Zj)tp(b;bjcjc;)

i,j

Zn: o(Z;Zj)tp(cibibjcj)

i

<.
\ |

- (2 Z))ts((bici) (bjcy)),

ﬁM=

—

with the third equality being due to the fact that 73 is tracial. Observe that the matrices
(27iz;]  and  [(bici)" (bjc))]

are positive in M, (A) and M, (B), respectively. Therefore, as states on C*-algebras
are completely positive, this implies that the matrices

[p(ZiZ))]  and  [z5((bici)" (bjc;))]
are positive in M,,(C). Consequently,
[9(27 Z))t5((bici)" (bje)))]

is also positive being the Schur product of positive matrices (see, for instance, [9,
Lemma 6.11]). Therefore, as the sum of all entries of a positive matrix equals a
positive scalar, we obtain that 7(a*a) > 0. Hence, (A, E, ¢, 7) is an analytical B-B-
noncommutative probability space.

Remark 3.4 Note that Example 3.3 demonstrates that E need not be a positive map
on A since the product of two positive matrices need not be positive. Thus, even if
7p : B — C is defined to be a state, 73 o E may not be for an arbitrary A.

Example 3.5 For a finite von Neumann algebra 97 with a unital von Neumann
subalgebra B and tracial state 7, let (A, E, €) be the B-B-noncommutative probability
space as in Example 2.3. Note that 7 extends to a unital linear map 74 : A — C defined
by

74(T) = (Tlon, lon ) 1, (om, 7)

for all T € A. Clearly, 74 is a state as A< B(L,(9,7)) and 74 is a vector state.
Furthermore, notice that

74(T) = (P(Tlon ), lon )1, om,v) = {Le(rylons bom) 1, (om,7) = Ta(LE(r))
forall T € Aand 74(T) = T4(Rg(r)) by a similar computation. Finally, as
Ta(Lp) = (b, 1) 1, (om,r) = 7()

for all b € B, we see that 75 = 74 o E is tracial on B as 7 is tracial. Again, we automati-
cally have that left multiplication will be bounded on L, (A, 7) and that E is completely
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positive when restricted (as they are the conditional expectations of a copy of 9 onto
B). Hence, (A, E, €, 74) is an analytical B-B-noncommutative probability space.

As motivated by Example 3.5, it is natural in an analytical B-B-noncommutative
probability space to extend the expectation E: A — B to a map from L,(A, 1) to
L, (B, 7p) via orthogonal projection. From this point onward, for a € A, we will often
denote the coset a + N, simply by a and, for b € B, we will often denote the coset
b+ N, by b. Note that if 7 is faithful, then the map b ~ b is a bijection.

Proposition 3.6 Let (A,E,e, 1) be an analytical B-B-noncommutative probability
space. IfE : L,(A, 7) > Ly(B, p) denotes the orthogonal projection, then

B(a) - E(a)
for all a € A. In particular, when g is faithful, E extends E.
Proof Notice forall a € Aand b € B that
(a—E’(?),Lb) = (Lp+(a = Lg(a))las1a)1y(400)
=7 (Ly(a - L))
=1(Lya) = 7(LosLE(a))
=7 (Lot ) = 7 (Love(a) = 0

L,(B,78)

Since b was arbitrary, the element a — E(a) is orthogonal to L,(B, 75) and hence
E(a) = E(a). o

Remark 3.7 Notice in Proposition 3.6 that if B is finite-dimensional and the trace 75 :
B — C is faithful, then L, (B, 75) 2 B, so E : A - B extends to a map from L, (4, 1)
into B.

Of course, E inherits many properties that E is required to have.

Proposition 3.8 Let (A,E,e,7) be an analytical B-B-noncommutative probability
space, and let E : Ly(A,7) - L,(B, 73) denote the orthogonal projection. For a € A,
b,b,byeB, & &,E € Ly(A, 1), and { € Ly(B, 1), the following hold:

M (&) = 75 (E(2))-

() B(aLy) - E(aRy).

(3) E(Lp,Rp,§) = bi1E(£)Ds.

(4) Ifa € Ay, then E(a() = E(a)(.

(5) IfacA,, then E(al) = (E(a). _ B

(6) If t(Lp&y) = 7(Lp&2) for all b € B, then E(&) = E(&>).

(7) If t1(Rp&y) = T1(Rp&,) forall b € B, then E(&;) = E(&,).

Proof For (i), since L, =14 as ¢ is unital, note that
TB (E(f)) = <E(£)’1B>L2(B,TB) = (E’ E(IB))Lz(A,T) = (E’ 1A>LZ(A,T) = T(E),

as desired.
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For (ii), note for all b’ € B that

(E(aL;,),TJ\’) = <aL17’Lb'>L2(A,T) = T(L(b/)* aLb) = T(L(br)* aRI,) = <f(aRb),l7>

Ly(B,7g) Ly(B,7p)

Hence, E(aLy) = E(aR,).

For (iii), let (a, ) n>1 be a sequence of elements of A that converge to & in L, (A, 7).
Since left multiplication in L, (A, 7) by elements of A are bounded and thus continu-
ous, and since left and right multiplication in L, (B, 75) by elements of B are bounded
and thus continuous, we obtain that

E(Ly, Ry, &) = lim E(Ly, Ry, a,) + Ny, = lim biE(a, )by + Ny, = biE(E)by,

as desired.

For (iv) and (v), let (¢, )n>1 be a sequence of elements of B that converge to { in
L,(B, 7p). Thus, by the inclusion of L,(B, 75) into L,(A, 7), we have that (L., ) ,»1 is
a sequence of elements of L, (A, 7) that converge to {in L,(A, 7). Thus, if a € Ay, then

E(a{) = lim E(aL,) + N,

= lim E(aR.,) + Nq,

n—oo

= lim E(R.,a) + Nq,

n—oo

= lim E((Jl)Cn + Ny, = E(Ll)(,

n—oo

thereby proving (iv). Note that (v) is similar using (R, ) ns1 in place of (L, ) y>1-
As (vi) and (vii) are similar, we prove (vii). Note by (iii) and the fact that 75 is tracial
that

(E(&) ~E(&).5),, 5.0,y = (EED"E(W)) 5.0,y — (BB E(LA)) 50
E(Rb*fl)’E(IA»Lz(B,TB) - <E(Rb*£2),§(1A))LZ(B)TB)
Rp+&1,1a) 1, (a0 — (Ro* €2, 1a) 104 1)

T(Rp+&1) = T(Rp+§2) = 0.

As the above holds for all b € B, (vii) follows. [

<
<

4 Analytical bi-multiplicative functions

In this section, we extend the notion of bi-multiplicative functions on analytical B-B-
noncommutative probability spaces in order to permit the last entry to be an element
of L, (A, 7). This is possible as the last entry can be treated as a left or right operator
as [12] shows, or can be treated as a mixture of left and right operators as [4] shows.
Extending the operator-valued bi-free cumulant function to permit the last entry to
be an element of L, (A, 7) is necessary in order to permit the simple development of
conjugate variable systems in the next section.

We advise the reader that familiarity with specifics of bi-multiplicative functions,
the construction of the operator-valued bi-free moment function, and the construc-
tion of the operator-valued bi-free cumulant function from [2] would be of great aid

https://doi.org/10.4153/50008414X23000366 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000366

16 G. Katsimpas and P. Skoufranis

in comprehension of this section. As the proofs are nearly identical, to avoid clutter,
we will focus on that which is different and why the results of [2] extend.

Definition 4.1 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, and let @ be a bi-multiplicative function on (A4, E, ¢). A function

®:J U BNC(x)xAypy x -+ x Aygnr) X La(A, 7) > Ly(B, 75)
neN ye{l,r}n

is said to be analytical extension of ® if @, is C-multilinear function that does
not change values if the last entry of y is changed from an ¢ to an r and satisfies
the following three properties: for all n € N, y € {¢,r}", m € BNC(y), & € L,(A, 1),
( € LZ(B, TB), be B, and Zk € AX(k):

(1) If y(k) =¢forallk e {1,2,...,n}, then
a’)1)((21) ce sZn—l’Zn{) = (DIX(ZD s )Zn)()
and if y(k) =rforallk € {1,2,...,n}, then

(DIX(ZI) v )Zn—l)Zn{) = (CDIX(ZD “ee )Zn)-

In particular, by setting { = 15 = 14, we see that ® does extend .
(ii) Let pe{1,...,n}, and let

q=max{ke{l....n} | x(k) = x(p).k<p}.
If x(p) = ¢, then

O (Zis-- s Zp1s Lo Zps Zpsts -+ Znot, §)

_ CI~)1%(Zl, [N ,qul, Zqu, Zq+1, DR} anl) E)’ lfq # —o00,
bDy (Z1s...» Zn1s §), if g = —co,

and if y(p) = r, then
EIV)I}((ZI) D) Zp—l) Rpr) Zp+1) ) Zﬂ-l’ 5)

) O (Zis-. s Zge1, ZgRos Zgits o Zuo, £), if g # —0o,
(DIX(ZI)“-aZn—I)f)b) ifq:—(X).

(iii) Suppose Vi, ..., V,, are unions of blocks of 7 that partition {1,...,n}, with each
being a y-interval. Moreover, assume that the sets V1,..., V,, are ordered by <,
(e, (ming, Vi) <, (ming Vi.1)). Let g € {1,...,m} be such that n € V,, and
for each k # g, let

bk = (Dr[|vk ((Zl)“ -’Zn—b f)|Vk) :
Then, by € B for k # g and

Or(Zts s Zn1s &) = biba- - bg 1@y ((Zis s Zu1 )y, Ybgar =~ bom.

https://doi.org/10.4153/50008414X23000366 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000366

Bi-free entropy with respect to completely positive maps 17

(iv) Suppose that V and W are unions of blocks of 7 that partition {1,...,n} such
that Vis a y-interval and s,(1),s,(n) € W. Let

X

p:max{keW‘k< man} and qzmin{kéW‘maszxk}.
=x =x =X
Then, one of the following four cases hold:
a) If n € V and k = max. W, then
Dn(Zise s Zn1s8) = By ((Z1s ooy Zieets Zk®ryy ((Z1s o5 Zuts Oy)s o5 Zun ), ) -

b) If n € W, then

o (Z 7 ) _{571\“7((Zl’---sZp—I)ZpLd),,‘V((Z, ,,,,, Z,,)|V)’ZP+1""’Z")‘W) ifX(P)=Z)
L4 | B n) =3\~ X

D@y, ((Zb <5 Zp1sRoy ((24yenz)) Zps Zptis - ,Zn)\w) if x(p)=r,

B (2o Zoons Loy (izii Za0 Zas -0 Z0)] )i x(a) = 6,

Bty ((Zis-- s Zaos ZaRo, ((zareziylyys Zasts 5 Za)l ) i x(q) = 7.

(Recall that we can set y(n) = £ or y(n) =r.)

Remark 4.1 Note that the pair of a bi-multiplicative function and its extension are
very reminiscent of the two expectation extensions of bi-multiplicative functions used
for operator-valued conditional bi-free independence from [6]. The main difference is
that the notion in [6] looks at interior versus exterior blocks of the partition, whereas
Definition 4.1 looks at the blocks containing the last entry. This is due to the fact that
the L,(A, 7) element is always the last entry and must be treated differently being a
generalization of a mixture of left and right operators.

It is worth pointing out that treating the last entry as an element of L, (A, 7) is no
issue. In particular, the properties in Definition 4.1 are well defined. Indeed, properties
(i) and (ii) of Definition 4.1 are clearly well defined and properties (iii) and (iv) in
Definition 4.1 are well defined as all terms where ® is used over ® never involve an
element of L, (A, 7) and as elements from B have left and right actions on L,(B, 75).

Remark 4.2 Note that property (i) of Definition 4.1 is clearly the correct generaliza-
tion of property (i) from Definition 2.5, as an element of L, (B, 7g) is playing the role
of L, and Ry, in this generalization and thus should be able to escape these expressions
if only left operators or right operators are present. The absence of the full property (i)
from Definition 2.5 causes no issues when attemptmg to reduce or rearrange the value
of @, to an expression involving only CI>1 s, as the last entry of any sequence input

into ® is always in L, (A, 7), is reduced to an element of L, (B, ), and an element of
Ay or A, then acts on it via the left action of A on L,(A, 7). Thus, there is never any
need to move the L, (A, 7) entry to another position.

If property (i) is ever used, we note that if { € L,(B, 75) is viewed as an element of
L,(A, 1), then L is simply the element b{ € L, (B, 75) and R, { is simply the element
(b € L,(B, 7). Thus, using (i) does not pose problems when trying to “move around
L and R;, elements” in proofs when trying to show the equivalence of any reductions
as the following example demonstrates.
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Example 4.3 Let y € {{,r}% besuch that y '({¢}) = {5,6},let E € L,(A, T),let Z €
A y(x)> and let 7 € BNC( y) be the partition

7= {{1.2},{3.5},{4.7).{6.8} .

Note that the bi-non-crossing diagram of 7 can be represented as the following (with
the convention now that the last entry is at the bottom instead of on its respective
side):

— 3
¢4
1
1
1
6 1
1 1
l $7
—_— - s .

When reducing E)ﬂ(Zl, Z3, ..., 27, ), we can clearly use property (iii) of Definition
4.1 first to obtain with U = {3,4, ..., 8} that

(21, Zas s 27, 8) = Oy (23, Zas .., 27, E) D1, (21, Z2).

To reduce the expression fully, we have to simply reduce &)n‘u (Z3,24,...,2Z7,&) using
property (iv) of Definition 4.1 of which there are three ways to do so.

The first way to reduce is to use V ={4,6,7,8} and W = {3,5}. By applying
property (iv) of Definition 4.1, we obtain that

Ef)ﬂly(z?n Z4) e )Z7) f) = EIST[|W (Z3$Z56H|V(Z4)Z6’ Z71 E)) .

Finally, by applying property (iii) of Definition 4.1 to Elv)ﬂ‘v (Z4, Zs, Z7, £), we obtain
that

E)ﬂ|U(Z3) Z4) e Z7) f) = a)l(,,g) (Z31 ZS (61(2,0 (ZG) E)(Dl(,,,,) (Z4) Z7)))
= 61(,,1) (Z3> ZSRCDl(m) (Z4,Z7)61(l,g) (ZG’ f)) .

The second way to reduce is to use V = {6,8} and W = {3,4,5,7}. By applying
property (iv) of Definition 4.1, we obtain that

Dy (23, Zsy . 27, 8) = Oy, (23, 24, Z5, 2D, (26, §)) .

By applying property (iv) of Definition 4.1 again as {4,7} is now a y|w-interval), we
obtain that

Dy (23, Zas .. 27, 8) = By, (23, 25 (D, (Z4, 2Dy, (Z6,E))) -
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However, as Z4, Z; € A,, we obtain by property (i) that
Dy (23, Zas .. 27, §) = B, (23, Z5 (Do, ) (26, E) Dy, (24 Z7)))
=y, (Z3’ ZSR(DI(,),) (24:27) P1ansy (Zs> s)) >

thereby agreeing with the above expression.
The third way to reduce is to use V ={4,7} and W = {3,5,6,8}. By applying
property (iv) of Definition 4.1, we obtain that

a57!\[;(Z3rZ4> e :Z7> E) = asﬂlw (Z3’ZSrZ6>R(I>ﬂ|V(Z4,Z7)£)

= (T)n|w (Z3R<I>,,‘V(Z4,Z7),Z5,Zs, f) ,

by using the two expressions in property (iv). Using either expression, we will now
obtain again property (iv) of Definition 4.1 as {6, 8} is now y|w-interval. For the first,
we obtain that

By (23,21, 22,8) = By, (25, 2B1,,) (ZooRo, | (2020)E))
=@y, (25,25 (D, (Z6, )P, (24, Z7)))
= a51(,,@) (Za, Zschl(m (24,27);151(@,@ (Zs» f))

where the second equality follows from applying property (ii) of Definition 4.1, as
Zs € Ay. For the second expression, we obtain that

By (2. Zar .., 22, 8) = By, (Z3R¢‘(m) 22y 25D,y (Zos 5))

= 51(,,@) (Zs,Rq>1( r)(z4,z,)2551(@,4)(26> 5))

= (’51(,’[) (Z3) ZSR(D](,’,') (Z4,Z7)61([,2) (Zﬁ> 6)) >

where the second equality follows from applying property (ii) of Definition 4.1 as the
last entry is now the L,(A, 7) entry, and the third equality holds as Z5 € A, and thus
commutes with Ry,.

Hence, Definition 4.1 is consistent in this example (and will be in all examples due
to similar computations).

Using similar reductions for arbitrary expressions, one can prove the following.

Lemma 4.4 Let (A, E, ¢, 1) be an analytical B-B-noncommutative probability space,
let ® be a bi-multiplicative function on (A, E,¢), and let ® be an analytic extension
of ®. Then, properties (i) and (ii) of Definition 4.1 hold when 1, is replaced with any
7 € BNC(y).

Proof The proof is essentially the same as the proof that properties (i) and (ii) of
Definition 2.5 hold for ® when 1, is replaced with any 7 € BNC() as in [2, Propo-
sition 4.2.5]. To see that property (i) of Definition 4.1 extends, note when using (iii)
and (iv) to reduce the expression for a)ﬂ(Zl, Z3y .-y Zn-1, Zy() that one is effectively
using the bi-multiplicative properties of ® and including ( in the appropriate spot.
To see that property (ii) of Definition 4.1 extends, indices that are always adjacent in
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the y-ordering will remain in the correct ordering so that when L, or R;, operators are
considered, we can always move them outside the ®- and ®-expressions on the correct
side to move them to the next operator (that is, things will always move around as they
do in the free multiplicative functions from [13] after reordering by the y-order). For
example, in Example 4.3, we showed that

On(Z1, 22y ..., 27, §) = 51(,,4) (Z3> Zschl(m) (Z4,Z7)’qv)1(e,,z) (Zs, f)) @, (Z1,22).
If Z5 were replaced with Ry Z3, we would have
O (Z1, 22, Ry Z3, Zs - 27, €) = B, (sz3,Z5R¢l(m) (24,2 P10,y (Zo> f)) @i, (Z1,22)
= 51(,1) (23, Zschl(m) (z4,z7)51(l,,3) (Zs, 5)) by, (21, 2Z2)
=®y,, (23, ZsRo,, (24,2 P00y (Zo> E)) D1, (Z1,Z2Ry)
= ®.(Z1,Z2Ry, Z3, Z4 . . ., Z7, E).

If £ were replaced with L, &, then clearly the L, can be moved to give Z¢L;, via (ii) with
aly as the expression @y, , (Zs, §) is present. If { were replaced with R, then

E)ﬂ(zl,Zz, N ,Z7,Rb£) = &')1(“1{) (Z3,Z5Rq)l( " (24,27)&;1(1{,0 (Z6> Rbf)) q)l(m) (Zl) ZZ)

T

= q)l(r,é) (Z3’ Z5R<D1(,,,> (24,27) (q)l(z,e) (Zs, E)b)) (Dl(r,r) (21, 22)

(20 Z5Roy | (202 Ro®ry (Z6:6) ) O, (21 22)
= Big, oy (2 ZsRooy | (20 Priey (262 §)) P, (21, 22)
=D,y (23, Zsle(”) (2,27Ry) P10y (Z6> f)) @y, (Z1,22)
= ®n(Zis.... Z6, Z1Ry, £),

as desired. Thus, the result follows. [ |

4.1 Analytical operator-valued bi-moment function

We will now construct the analytical extension of the operator-valued bi-moment
function via recursion and the map E : L,(A, ) - Ly(B, 75) from Section 3. Note
that the recursive process in the following definition is different than that from [2,
Definition 5.1] and [6, Definition 4.4], in order to facilitate the introduction of the
L,(A, 1) element. The same recursive process could have been used in [2, Definition
5.1] and [6, Definition 4.4], as these processes are equivalent in those settings. Note
that we use V¥ in the following to avoid confusion with E in Section 3, although ¥ is a
multi-entry extension of E.

Definition 4.2 Let (A, E,¢,7) be an analytical B-B-noncommutative probability
space. The analytical bi-moment function

Y:J U BNC(x) xAyqy x -+ x Ayuor) X La(A, 7) = La(B, 78)
neN ye{{,r}n
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is defined recursively as follows: let n € N, y € {¢,r}", m ¢ BNC(y), { € L,(A, 7), and
Zy € AX(k)'
o If 7 =1,, then

WV, (Z1, 22, 201, §) = E(ZiZy Zy£).

o If m#1,, let V be the block in 7 such that n € V. We divide discussion into two
cases:
- Suppose that ming, V' = s,(1) and max. V =s,(n), and let

p=min{ie{l,...,n} | i¢V}, g=min{jeV |p<,j}, and
m=max{ieV | i<, p}.
Set

W={ie{l,...,n} | p=<yi=<yq}.
Note by construction and the fact that 7 €¢ BNC( y) that W is equal to a union of
blocks of 7 and y(p) = x(j) for all j € W. Thus, we define
Ya(Ziyeoos Zuo1s &)

_{ Crpye ((Zoe 2 Zpts Zuliy (zalyrre 2 Lo O, ) o HE(P) =
Wriye ((Ziso Zgt ZaRey (st Zon O )o i x(p) = 7

(Note that as n ¢ W, the quantity E,, ((Zy, ..., Zn-1,&)|yy) is always a well-
defined element of B in this case. Note in the case that y(p) = ¢ that m <,
p <y nand thus Z,, # & 50 ¥V, (Zy,...,Z,1,§) is well defined. Also, in the case
when x(p) = r, note that n <, q and thus Z, # & so ¥ (Z1,..., Z,1, &) is well
defined.)

— Otherwise, set

V:{ie{l,...,n}

minV <,i<, maxV ;.
< X X <
=X =X

Note that V is a proper subset of {l .., n} that is a union of blocks of 7 and is
such that n € V ¢ V. For g = max. V<, define

Y. (Z1,..., Zn-1,8) = ¥y, ((Zl ~~~~~ Zg—1, Zg¥n, ((Z1, ..., Zn-1,8)%)--0s Zn-1, f)|7c) .

(Note that the quantity Wy ((Z1,...,Zs-1,§)|) is a well-defined element of
L,(B, 7p) due to the recursive nature of our definition. Moreover, the last element
of the sequence

(Zl; oo an—b Zq\yﬂ|7((zl> ce. aZn—la E)|‘7)> ce. sZn—la £)|~c

is equal to Z;¥,((Z1,...,Zn1,&)|y), which is an element of L,(A, 1), so
Y. (Zy,...s Zyo1, &) is well defined.)

To aid in the comprehension of Definition 4.2, we provide an example using bi-
non-crossing diagrams to show the recursive construction. We note that £ will always
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appear last in a sequence of operators and is an element of L, (A, 7) and thus neither
a left nor a right operator. As such, we treat it as neither. This is reminiscent of [12,
Lemma 2.17], where it does not matter whether we treat the last operator in a list as a
left or as a right operator, and of [4, Lemma 2.29 and Proposition 2.30], where the last
entry can be a mixture of left and right operators.

Example 4.5 Let ye {{,r}'* be such that y'({¢})={1,5,8,9,11,12}, let &«
Ly(A, 1), let Zi € Ay(x), and let w € BNC(y) be the partition with blocks

Vi={13}, W,={2}, Vi={4,51,12}, Vi={6,10}, Vs={7}, and Ve={8,9}.

To compute ¥, (Z1,. .., Z11, &), we note that the second part of the second step of the
recursive definition from Definition 4.2 applies first. In particular,

- 6
V= Vi.
k=3
Thus, if
X = \PH‘V(Z‘I) ZS: ZGs Z7> ZS: Z9> ZlO) les E)y
then

\I/T[(Zl’ ce )Zlb f) = \Pn|vc (Zb ZZ) ZSX)

Diagrammatically, this first reduction is seen as follows:

Zy ——— | Zy b——— :
i 22 E i
. s
| 47 | ;
Zsp—— | - i :
E —‘:'Zs E —?st
; 2,
Zg 4
sullE
E — Zio
Zb—of
e | |

Note that
Yaioe (Z1, 22, Z3X) = Yoy, (Z2¥, (21, Z3X)) = E(Z:E(Z125X))

where the first equality holds by the same recursive idea, whereas the second equality
holds by the first step of Definition 4.2.
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When computing the value of X, the minimal and maximal elements of
{4,5,...,11,12} in the y|-order are 5 and 4, respectively, and the block that contains
the index corresponding to & contains both 5 and 4. Thus, the first part of the second
step of Definition 4.2 should be used. The algorithm in Definition 4.2 then calculates
the value of X by “stripping out” the y-intervals V5 and V, U V5 successively and this
is seen via the following two diagrammatic reductions:

e ¥ e ¥4
| 1 | 1
Zs ¢— 1 Z5L‘I’H\V6 (Zs,Z9) ¢— 1
1 1 | 1
: 1 Z6 : \ Z6
: tZ; : tZ;
1 1 1
V4 :j . |
8 1 1 — : 1
1 | 1
Z9 1 ! 1 !
1 ! | |
. Zyo | Zio
1 1
Zn — ! Zn — !
1 1 1 1
| IS QU — | IS QU —
and
! —$Z ! ——8ZRy, | (zoz20)
1 1
ZsLy,, (z,.2,) g—oi | ZsLy,, (z,,2,) g—oi |
1 ! 1 !
Z, 1
l Ve l .
1
: +Z7 : 1
1 I 1 1
1 1
: 1 Ed : 1
1 1 1 1
1 1 1 1
! $Z1o ! :
1 ! 1 !
Zn ¢——— ! Zn — !
1 I 1 1
| IS R — | IS QU —
5 $

It is readily verified using the fact that the operator-valued bi-free moment func-
tion is bi-multiplicative that Eqny, (Zs,Z9) = E(ZsZy) and Enlvuv, (Z¢, Z7,Z19) =
E(ZsRg(z,)Z10)- Thus, using the fact that 7|y, = 1, , the first step in Definition 4.2
yields

X = E(Z4RE(ZsRE(z7)Zw)ZSLE(ZSZQZHE) :
Hence,

Yo(Zis. s 21, §) = E(ZE (225E (ZaRy gy, ) Z5LE(zeze) Z0E) ) )

= E(ZZE (ZaRp(zn,,,  20) ZLi(2020) 218 ) E(22),

with the last equality following from Proposition 3.8.
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Before investigating the bi-multiplicative properties inherited by the analytical bi-
moment function, we note that it is truly an extension of the operator-valued bi-
moment function.

Theorem 4.6  Let (A, E, ¢, ) be an analytical B-B-noncommutative probability space.
ForanyneN, y e {{,r}", m e BNC(y), and Zy € Ay(x),

‘I’,,(Zl, e >Zn—1:Zn + NT) = Eﬂ(Zl, Ce )Zn—laZn) + NTB'

Proof Note that each step in the recursive definition of Definition 4.2 is a step that
can be performed to the operator-valued bi-free moment function as the operator-
valued bi-free moment function is bi-multiplicative (see Definition 2.5). Therefore, as
Proposition 3.6 implies that

E(a) = E(a) + Ny,

forall a € A, by applying the same recursive propertiesto E;(Zy, ..., Zn-1, Z, ) as used
to compute ¥, (Zy, ..., Zn-1, Zn + N;), the result follows. [

Like with the construction of the operator-valued bi-free moment function in [2],
although the construction of the analytical bi-moment function is done using specific
rules from the operator-valued bi-free moment function in a specific order, we desire
more flexibility in the reductions that can be done and the order they can be done in.
In particular, we desire to show that the analytical bi-moment function is an analytic
extension of the operator-valued bi-free moment function.

The main ideas used to prove this are similar to those utilized in the proof of
[2, Theorem 5.1.4], and hence we shall be concerned with demonstrating that the
inclusion of the Ly(A,7) term and the slightly modified recursive definition are
not issue and pose next to no changes. In particular, it may appear that ¥ behaves
differently than the operator-valued bi-free moment function as entries in L, (4, 1)
can also act as mixtures of left and right operators, which was not dealt with in [2].
However, using the properties of E as developed in Proposition 3.8, one familiar with
[2] can easily see that the desired results will hold with simple adaptations. We note
that similar adaptations were done in [6] without issue.

When examining the proof of the following, Example 4.5 serves as a good example
to keep in mind, just as Example 4.3 aided in comprehending why analytic extensions
of bi-multiplicative functions work.

Theorem 4.7 Let (A, E, ¢, T) be an analytical B-B-noncommutative probability space,
and let

v UN {U} BNC(x) x Ay x *+ x Aynr) x L2(A,7) > L2(B, 78)
neN ye{l,r}n

be the analytical bi-moment function. Then, ¥ is an analytically extension of the
operator-valued bi-free moment function.

Clearly, the map ¥;  is C-multilinear, and it does not matter whether y(n) = £ or
x(n) = r. A straightforward induction argument using the definition of ¥ shows that
the map ¥, will be C-multilinear. Thus, we focus on the remaining four properties.
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Proof of Theorem 4.7 property (i) This immediately follows from parts (ii) and (iii)
of Proposition 3.8. [ ]

Proof of Theorem 4.7 property (ii) To see (ii), fix n € N, y € {£,r}", m € BNC(y),
Eely,(A 1), beB,and Z € A, (k)>and let p and g be as in the statement of (ii). In the
case that y(p) = ¢, note that

Vi (Ztse s Zpts Lo Zps Zpits - o2 Zne1, €) = E(Zy -+ Zp i Ly Zp Zipsr -+ Zur £).
If g # oo, then Zgi1s---»Zp1 € Ay and thus commute with L,. Hence,

\Pll(Zl, e Zp s LyZp, Zpsts .. s Zn1, §) = E(Zl o Zg1ZqlyZgsr- - Zna &)
=W, (Z1,....Z4-1,ZqLps Zgs1s - . s Zn-1, §)

(and note Z;Ly, € Ay).
If g = oo, then Zy,...,Z,; € A, and thus commute with L;,. Hence,

\Ijlx(zl) e Zp—l) Lpr) Zp+1) e Zn—l> 6) = E;’(LbZl e Zn—lf)
= bE(Zl . 'anlf)
= b\PIX(Zl) e Zn—la E)
by Proposition 3.8. The case x(p) = r is similar. ]

Proof of Theorem 4.7 property (iii) To highlight how the proof works, we begin
with the case that 7 consists of exactly three blocks that are y-intervals and # is
contained in the middle block under the y-ordering. Suppose that 7w = {V;, V5, V3}
and thus there exists i € {2,...,n —1} and j € {0, ..., n — 2} such that

Vi={sy(1),5,(2),...,5,(i - 1)},
Vo= {sy(i),sy(i+1),...,5,(i+j)}, and
V= {sy(i+j+1),s,(i+j+2),...,50n)}

Thus, n = s5,(k) for some i <k < i+ j. This implies that y(p) = £ for all p € V; and
x(p) =rforall pe V53.If W = V; U V3, observe that the definition of the permutation
s, yields that

q= mSaxW = mSax{sX(i 1), s, (i+j+1)}.

Consider the case g = s, (i — 1) so that g € V}, and let m = s, (i + j +1). Notice that
if

X = \IIH|V2((ZI,-"aZn—1’ f)|V2)’
then by Definition 4.2, we obtain that
VolZiso s Zu1,8) = Ya, (21 21, 20X 201, ©)| )
Thus, if
Y=Yy, ((Zi,.... 24-1, 24X, .., Zu15 §)] )
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then again Definition 4.2 implies that

Y. (Zy,.... 201, 8) = Yo, (Z1,o s Zts Zn Yoo 2y, €)|V3)
= E(st(n)zs,((n—l) e st(i+j+1) Y) .

Therefore, since Z;, (n)Zs, (n-1) - - - Zs,(i+j+1) € Ar> Proposition 3.8 implies that

Ya(Zuse s Zno1s €) = YE(Zoyn Zoy(nr) - - Zoy(ijon)) = YEay, (Z1s -0 Zut, E)|1s)-

Since Z;, (1), Zs,(2)> - - - » Zs,(i-1) € Ay Proposition 3.8 implies that

Y = E(st(l)ZsX(Z) A Zs,c(i—l))X = E7T|V1 ((Zl, s Zu1s £)|V1)X>

so the result follows. Note that the case g =s,(i+ j+1) is handled similarly by
interchanging the orders of the x- intervals V; and V3. This argument can be extended
via induction to any bi-non-crossing partition 7 all of whose blocks are y-interval.
By the same argument as [2, Lemma 5.2.1], one need only consider the case in
property (iii) that for each y-interval, the y-maximal and y-minimal elements belong
to the same block. When using the recursive procedure in Definition 4.2 to reduce ¥,
one of the y-intervals (which will either be entirely on the left or entirely on the right)
will have the L, (A, 7) term added to the last entry as above. This L, (A, 7) entry can
be pulled out on the appropriate side leaving only the bi-moment function expression
for the y-interval, which can be undone as usual. By repetition, eventually, all that
remains is the expression for the y-interval containing # as desired. |

Proof of Theorem 4.7 property (iv) The proof that property (iv) holds for the
operator-valued bi-free moment function is one of the longest of [2] consisting of [2,
Lemmas 5.3.1-5.3.4]. As such, we will only sketch the details here.

First, one proceeds to show that properties (i) and (ii) of Definition 4.1 hold for ¥
when 1, is replaced with an arbitrary bi-non-crossing partition. This effectively makes
use of the same arguments as in Lemma 4.4; that is, one uses the recursive algorithm
to reduce down and then note that the proofs of properties (i) and (ii) above still apply
and lets one move elements around as needed. In particular, the same arguments used
in [2, Lemmas 5.3.2 and 5.3.3] transfer with the use of Proposition 3.8.

Next, using property (iii), we need only prove property (iv) under the assumption
that 5,(1) and s,(n) are in the same block Wy of W. One then follows many of the
same ideas as [2, Lemmas 5.3.1 and 5.3.4] by applying the recursive definition from
Definition 4.2, moving around the appropriate B-elements using the more general (i)
and (ii), and combining the appropriate elements using (iii) as needed. ]

4.2 Analytical operator-valued bi-free cumulant function

By convolving the analytical bi-moment function with the bi-non-crossing Mobius
function, we obtain the following, which is essential to our study of conjugate variables
in the subsequent section.

Definition 4.3 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, and denote by ¥ the analytical bi-moment function. The analytical bi-cumulant
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function

7: U U BNC(y)x Ay X -+ X Ay(nory X L2(A, 1) > Ly (B, 73)
neN ye{{,r}n

is defined by
Eﬂ(zl)--wzn—laf) = Z \I/U(Zl)-”:Zn—l:f).“BNC(U) T[)>
0eBNC(x)
o<1

forallneN, y e {£,r}", me BNC(y), § € L2(A, 1), and Z € A, (x).

Remark 4.8 (1) In the case when 7 = 1,, we will denote the map %,, simply by %,.
By Mébius inversion, we obtain that

Yo(Ztsoo s Zn) = Y, Fn(Zis...sZu1, &)
neBNC(y)
<o

foralln e N, y € {£,r}", 0 € BNC(y), and Zj € A ().
(2) In the case that B = C, the analytical bi-cumulant functions are precisely the
L, (A, 7)-valued bi-free cumulants that were used in [4].

Unsurprisingly, the analytic extension of the operator-valued bi-free cumulant
function lives up to its name.

Theorem 4.9 Let (A, E, ¢, 7) be an analytical B-B-noncommutative probability space.
Then, the analytical bi-cumulant function is the analytic extension of the operator-
valued bi-free cumulant function.

Proof Recall by [2, Theorem 6.2.1] that the convolution of a bi-multiplicative
function with a scalar-valued multiplicative function on the lattice of non-crossing
partitions (e.g., the bi-free M6bius function) produces a bi-multiplicative function.
As the properties of an analytic extension of a bi-multiplicative function are analogous
to those of a bi-multiplicative function, we obtain that the convolution of an analytic
extension of a bi-multiplicative function with a scalar-valued multiplicative function
on the lattice of non-crossing partitions (e.g., the bi-free M6bius function) produces
the analytic extension of the corresponding bi-multiplicative function obtained via the
same convolution. Hence, the result follows. [ ]

Theorem 4.10 Let (A, E, €, 1) be an analytical B-B-noncommutative probability space.
ForallneN, y e {{,r}", m e BNC(y), and Zi € A,(x), we have that

Fn(Zis.o s Zn1s Zn + Ny) = K2( 20 ... 201y Z) + Ny
Proof By Theorem 4.6, we know that
Va(Zis.. . Zn1»Zn + Ni) = Ex(Z1s. .., Zuc, Zn) + Niy

for all 7 € BNC(x). Therefore, as % and 7 are the convolution of ¥ and E against the
bi-free Mébius function, respectively, the result follows. ]

Of course, as [2, Theorem 8.1.1] demonstrated that bi-freeness with amalgamation
over B is equivalent to the mixed operator-valued bi-free cumulants vanishing,
Theorem 4.10 immediately implies the following.
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Corollary 4.1 Let (A, E, ¢, 1) be an analytical B-B-noncommutative probability space
containing a family of pairs of B-algebras {(Cy, Dy ) }rex. Consider the following two
conditions:

(1) The family {(Ck, D) }kex is bi-free with amalgamation over B with respect to E.
(2) ForallneN, ye {{,r}", Zy,...,Z, € A, and nonconstant maps y : {1,...,n} —
K such that

7, ¢ Cyxy> if x(k) =¢,
Dy, ifx(k)=r,

it follows that
E)((Zl’ . )Zn—bZn + NT) =0.
Then, (1) implies (2). In the case that 15 : B — C is faithful, (2) implies (1).

Proof Note that (1) implies (2) follows from [2, Theorem 8.1.1] and Theorem 4.10. In
the case that 7p is faithful, (2) immediately implies x2(Z,,...,Z,_1, Z,) = 0 where
{Zk};_, are as in (2) via Theorem 4.10. Hence, [2, Theorem 8.1.1] completes the
argument. u

4.3 Vanishing analytical cumulants

However, something stronger than Corollary 4.11 holds. Indeed, note that the analytic
operator-valued bi-free cumulant function has the added benefit that the last entry
can be an element of L,(A, 7) and thus the L,-image of a product of left and right
operators. As such, it is possible to verify that additional analytic bi-cumulants vanish.
The desired result is analogous to the scalar-valued result demonstrated in [4,
Proposition 2.30] and proved in a similar manner. Thus, we begin with a generalization
of [2, Theorem 9.1.5] where we can expand out a cumulant involving products of
operators. In [2, Theorem 9.1.5], only products of left and right operators were
considered in the operator-valued setting, whereas [4, Lemma 2.29] expanded out
scalar-valued cumulants involving a product of left and right operator in the last entry.
To begin, fix m < n € N, y € {¢,r}", integers

k(0)=0<k(l)< --- <k(m)=n,
and any function y € {¢,7}" such that for all g € {1,...,n} for which there exists a
(necessarily unique) pg € {1,...,m -1} with k(py —1) < g < k(p4), we have
x(q) = x(pq)-

Thus, ¥'is constant from k(p —1) + 1to k(p), whereas ¥ does not need to be constant
from k(m —1) +1to k(m).

We may embed BNC( y) into BNC() via 7 — 7 where the blocks of 7 are formed
by taking each block V of 7 and forming a block

V=U{k(p-1)+1,....k(p)}

pev
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of 7. It is not difficult to see that 7€ BNC(}) as ¥ is constant on {k(p—1) +
L....k(p)} for all pe V\{m} and although the block containing {k(n-1)+
1,...,k(n)} has both left and right entries, it occurs at the bottom of the bi-non-
crossing diagram and thus poses no problem. Alternatively, this map can be viewed as
an analog of the map on non-crossing partitions from [9, Notation 11.9] after applying
sy

It is easy to see that I, = I

0y = Ul{k(P—l) +1..k(p)}
P:
and that the map 7 — 7 is injective and order-preserving. Furthermore, the image of
BNC(x) under this map is
BNC(x) = [0y, 1, ] = [0y, 1%] € BNC(}).

Remark 4.12  Recall that since ypnc is the bi-non-crossing Mobius function, we have
for each o, m € BNC(y) with ¢ < 7 that

Z penc(v, ) =

veBNC(y)
o<VUsT

{ 1, ifo=m,

0, otherwise.

Since the lattice structure is preserved under the map defined above, we see that

penc (o, ) = upnc(0, 7).
It is also easy to see that the partial M&bius inversion from [9, Proposition 10.11]
holds in the bi-free setting; that is, if f, g : BNC(y) — C are such that

fmy= > glo)
veBUI\g(x)

for all # € BNC(x), then for all 7, 0 € BNC(y) with ¢ < 7, we have the relation

>, f@usxc(om) = Y glw),

veBNC(y) weBNC(y)
o<v<m wvVo=m

where 71 v ¢ denotes the smallest element of BNC( ) greater than 7 and o.

Thus, by following the proofs of either [9, Theorem 11.12], [2, Theorem 9.1.5], or [4,
Lemma 2.29], we arrive at the following.

Proposition 4.13 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space. Under the above notation, if m € BNC(x) and Zi € Az(x), then

Eﬂ(zl T Zk(l)’ cees Zk(m—2)+1 T Zk(m—l)’ Zk(m—1)+1 to Zk(m) + N‘r)

= Z EU(Zl,...,Zn_l,Zn‘FNT).
0eBNC(Y)
ov0,=7
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In particular, when o = 1, we have

Fy(Zi- Ziys -+ o5 Zi(m=2)41" " * Zi(m=1)> Zk(m-1)+1" " * Zk(m) + Nz)

= Z T{U(Zl)-nyzn—lszn +NT):
7€BNC(})
UV@IIY

Proof First, it is not difficult to verify using the recursive definition of the analytic
operator-valued bi-moment function that

\PU(ZI T Zk(l)) s Zk(m—2)+1 T Zk(m—1)> Zk(m—1)+1 to Zk(m) + NT)
= “IJ@*(ZI, ey anlazn + NT)

for all v € BNC( x). Therefore, we have
Fr(Zi - Zyays - s Zi(m-2)+1"** Zk(m-1)> Zk(m-1)+1" " * Z(m) + Nr)

Yo(Zi- Zrqys -+ Zi(m-2)41"" " Zk(m-1)> Zk(m-1)41" " * Zk(m) + Nz )unnc (v, )
veBNC(y)
v<m

= Z Yo (Z1, ... Zn-1,Zn + Nz ) usnc (0, )

vvesZu-1,Zn + Nz)psnc(0,7)

I
™
-
2
N

Il
l
™
=
Q
—~
N

...,Zn_l,Zn +NT),

where the last line follows from Remark 4.12. ]

Theorem 4.14 Let (A, E, ¢, T) be an analytical B-B-noncommutative probability space
containing a family of pairs of B-algebras {(Cy, D) } kex that are bi-free with amalga-
mation over B with respect to E. For each k € K, let L,(Ag, T) be the closed subspace of
L, (A, 7) generated by

alg(Cy, Dg) + N;.

Then, foralln e N, y € {{,r}", nonconstant mapsy : {1,...,n} - K, § € Ly(A,(n> T)s
and Z1, ..., Z,_1 € A such that

7. Cyry>  if x(k) =4,
Dyiy>  if x(k) =,
it follows that
Fy(Zis..s Zuo1,€) = 0.

Proof Fix an meN, ye{{,r}"™, nonconstant map yp:{l,...,m} > K, and
Ziy..osZm1 € A Forany n > m,if Z,,, ..., Zy € Cy(n) U D)y and y is defined by

x(k), ifk<m,
(k) =14, if k> mand Zy € Cy( s
7, ifk >mand Zy € D, (),
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then by Proposition 4.13 and Theorem 4.6 imply that

T{X(Zl,...,Zm,l,Zmn-Zn+NT)= Z Ro(Z1s.o s Zn-1,Zn + Ny)
0eBNC(Y)
ov0,=13
= > KNZi..sZy1s Zy) + Ny
0eBNC(Y)
0'V6;=17(~

As the conditions o € BNC(¥) and o v 0, = Iz automatically imply that each block of
o containing one of {1,2, ..., m — 1} must also contain an element of {m, ..., n}, the
bi-multiplicative properties of the operator-valued bi-free cumulant function imply
that each cumulant x2(Z,,..., Z,_,, Z,) appearing in the sum above can be reduced
down to an expression involving a mixed x® term which must be 0 by [2, Theorem
8.1.1]. Hence,

%X(Zl,...,Zm_me"'Zn +N-,-) = 0

Since E is a continuous function and left multiplication of A on L, (A, 7) yields
bounded operators, due to the recursive nature of ¥, we see that ¥ is continuous in
the L, (A, 7) entry. Therefore, by Mobius inversion, % is continuous in the L, (A, 7)
entry. Hence, the result follows. [ ]

Corollary 4.15 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space,andletn >2, y € {{,r}", £ € Ly(A, 1), b € B, and Zy € A (). Suppose that either
there exists p € {1,...,n — 1} such that

Z _ Lb’ !fX(p) = g
P~ .
Ry, ifx(p)=r
or that & € Ly(B, 7). Then,
T{X(Zl, e )anls E) =0.

Proof If Z, =1L, or Z, = R, for some p, then we may proceed as in the proof of
Theorem 4.14 by assuming that £ is an element of A, expanding out the analytic
operator-valued bi-free cumulant function with the aid of Proposition 4.13, and using
the fact that non-singleton operator-valued bi-free cumulants involving L, or R,
terms are zero by [2, Proposition 6.4.1] and then taking a limit at the end.

In the case where & € L,(B, 73), £ is a limit of terms of the form L, + N;. As

T{X(Zl) e )Zn—l)Lb + NT) = K’X(Zl) s )Zn—laLb) + NTB =0+ NTBa
by Theorem 4.10 and [2, Proposition 6.4.1], the result follows by taking a limit. [ ]
5 Bi-free conjugate variables with respect to completely
positive maps

In this section, we develop the appropriate notion of conjugate variables in order
to define bi-free Fisher information and entropy with respect to completely positive
maps. This can be viewed as both an extension of the bi-free conjugate variables

https://doi.org/10.4153/50008414X23000366 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000366

32 G. Katsimpas and P. Skoufranis

developed in [4] and of the free conjugate variables with respect to a completely
positive map developed in [10]. We will focus on both the moment and cumulant
characterizations of these conjugate variables, whereas [10] focused on the moment
and derivation characterizations of free conjugate variables. Although [4] analyzed
the moment, cumulant, and bi-free difference quotient characterizations of bi-free
conjugate variables, we will forgo trying to generalize the bi-free difference quotient
characterization in this setting as it was the cumulant characterization that was found
most effective and as the bi-module structures of [10] necessary for the derivation
characterization using adjoints are less clear in this setting.

We refer the reader to [8, Definition 2.7] as an equivalent description to [10] of
the free conjugate variables with respect to a completely positive map that we mimic
below.

Definition 5.1 Let (A,E,&,7) be an analytical B-B-noncommutative probability
space, let (Cy, C,) be a pair of B-algebrasin A,let X € Ay, let Y € A,,andlet: B - B
be a completely positive map.

An element & € L, (A, 7) is said to satisfy the left bi-free conjugate variable relations
for X with respect to n and T in the presence of (Cy,C,) if for all n e Nu {0},
Z1y...sZy € {X}UCpu C, we have

(Z1-Z,8)= ) 71 I1 Z,|L ,

1<k<n peVi\{k,n+1} n(E(HPEV" Zp))

Zr=X
where Vy ={k<m<n+1| Z, ¢ {X}uCy} and where all products are taken in
numeric order (with the empty product being 1). If, in addition,

£ ealg(X, Cy, o)
we call £ the left bi-free conjugate variable for X with respect to n and 7 in the presence
of (Ce, C,) and denote &by Jo(X : (Cy, C,), 7).
Similarly, an element v € L,(A, 7) is said to satisfy the right bi-free conjugate

variable relations for Y with respect to n and T in the presence of (Cy,C,) if for all
neNu{0},Zy,...,Z, € {Y} uCpuC, we have

Wz Z)= Y z,|r ,
1 15;)? Per\I{_’!,ml} ? ”(E(Hl’evk ZP))
=

where Vi ={k<m<n+1]| Z, € {Y}uUC,}.1If, in addition,

vealg(Y, Cy, C,)HT,

we call v the right bi-free conjugate variable for Y with respect to 1 and 1 in the presence
of (Cy, C,) and denote v by J,(Y : (Ce, C,), 17).

Example 5.1 For an example of Definition 5.1, consider X € Ay, Y € A,, Z,,Z3 € Cy,
and Z,,Z4 € C,. If & = (X : (Cy,2lg(C,, Y)), 17), then
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(X212, Y XY Z3XZ4E) = 1(Z1Y Y ZaLy(5 (22 x2:%)) )
+ (X2 ZYY Zs Ly (e 2ox))
+1(XZ1Z,YXY Z5Z4 Ly (5 1) ) -

This can be observed diagrammatically by drawing X, Z,, Z,,Y, X, Y, Z3, X, Z4 as one
would in a bi-non-crossing diagram (i.e., drawing two vertical lines and placing the
variables on these lines starting at the top and going down with left variables on the left
line and right variables on the right line), drawing all pictures connecting the center of
the bottom of the diagram to any X, taking the product of the elements starting from
the top and going down in each of the two isolated components of the diagram, taking
the expectation of the bounded region and applying # to the result to obtain a b € B,
appending L, to the end of the product of operators from the unbounded region, and
applying 7 to the result.

1 : 1
| Xe |

1 | 1 : 1
Xt+— ! t 2 ! 2

: ¢ 7, | Zye :
Z2} : °Y : *Y

' Y : i :
X1 : . . X1 :

: Ly : by : ty
Z34 ! s : ¢ :
Xl : Z3: 1 Z3: 1

I A Xe : X :

R ! +Z4 ! +Z4

1 1
I____ [ — | I____ [ — |

This is analogous to applying the left bi-free difference quotient d;, x defined in [4] on
a suitable algebraic free product to XZ,Z,YXYZ3XZ, to obtain

Z21\YYZy Q@ ZyXZ3 X+ XZ1Z)YYZy Q@ Z3 X + XZ1 Z, YXY 7372, 91,

applying Id ® (7 o E), collapsing the tensor, and applying 7 to the result.
Similarly, if v = J, (Y : (alg(Cy, X), C,), 1), then

W(XZ1Z2YXY 23X Z4v) = T(XZ1 22X Z3XRy(p(v2a)) ) + T(XZ122Y X Z3 X Ry (5(24)) ) -

This can be observed diagrammatically in a similar fashion by drawing all pictures
connecting the center of the bottom of the diagram to any Y on the right.
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! 1 ! 1
X E xs i

: 7 : *Z
Zyo : Zyo :

 — b
X¢ ! Xt !
Z3é ! Z34
Xe ! X¢

22 Z4

] ! .

This is analogous to applying the right bi-free difference quotient d,,y defined in [4]
on a suitable algebraic free product to XZ;Z,YXY Z3XZ, to obtain

XZIZZXZ3X ® YZ4 + XZ]ZZ YXZ3X ® Z4,
applying Id ® (7 o E), collapsing the tensor, and applying 7 to the result.

Remark 5.2 (1) As 7(aLy) = 7(aRy,) for all a € A and b € B, one may use either
Lyop or Ryop in either part of Definition 5.1. In fact, one may simply use # o E if
one views the resulting element of B as an element of L,(B, 75) € L, (A, 1), since
7(aLly) = 7(a(b+ N;)) forall a € A and b € B by construction.

(2) The element J,(X:(Cy Cyr),n) is unique in the sense that if &;e

alg(X, Cy, Cr)” - satisfies the left bi-free conjugate variable relations for
X with respect to (Cy, C,), then & =Jo(X:(Cy, C,),y) as the left bi-free
conjugate variable relations causes the inner products in L, (A, 7) of both &, and
Jo(X : (Cy, C,), ) against any element of alg(X, C,, C,) to be equal.

(3) In the case where B = C, E reduces down to a unital, linear map ¢ : A - C and,
as 7 is compatible with E, one obtains that 7 = ¢. As ¢ is linear, Definition 5.1
immediately reduces down to the left and right conjugate variables with respect
to ¢ in the presence of (Cy, C,) as in [4], provided 7 is unital.

(4) In the setting of Example 2.3, we note that J,(X : (B, B;), ) exists if and only
if the free conjugate variable of X with respect to (B,#) from [10] exists. This
immediately follows as B, commutes with X and B, and 7 is tracial, so the
expressions for either conjugate variable can be modified into the expressions of
the other conjugate variable.

As with the bi-free conjugate variables in [4], any moment expression should be
equivalent to certain cumulant expressions via Mobius inversion. Thus, we obtain
the following equivalent characterization of conjugate variables. Note in that which
follows, it does not matter whether the last entry in the analytical operator-valued
bi-free cumulant function is treated as a left or as a right operator by Definition 4.1.

Theorem 5.3 Let (A, E, ¢, T) be an analytical B-B-noncommutative probability space,
let (Cy, C,) be a pair of B-algebras in A, let X € Ay, let Y € A,, and let n: B— Bbea
completely positive map. For & € L, (A, T), the following are equivalent:
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(1) & satisfies the left bi-free conjugate variable relations for X (resp. & satisfies the right
bi-free conjugate variable relations for Y) with respect to nj and T in the presence of
(Cb Cr)-

(2) The following four cumulant conditions hold:

(a) Fig,y (&) =0+ Ny,
(b) Fieypy (XL, &) = 1(b) + Ny (resp. R, (YRp, §) = () + N,) forall b € B.
(€) Rigyp (c1,8) = Fig.0 (€2,&) =0+ Ny, forallc; € Cpand c; € C,.
(d) Foralln >3, ye{{,r}", andall Z,,Z, ..., Zy_1 € A such that
14
R

{X}uCp ifx(k)=t¢ Co, if x(k)
Z"e{cn ifx(k) = r (” Z"E{{Y}ucn if x(k)

we have that
EX(ZI, ce ’Zn—l’ f) =0+ NTB.

Proof We will prove that the result for the left bi-free conjugate variable as the proof
for the right bi-free conjugate variable is analogous.

Suppose that & satisfies (ii). To see that & satisfies the left bi-free conjugate variable
relations, let n e Nu {0} and let Z,,...,Z, € {X} UCpu C,. Fix y € {£,r}"*! such
that

4, ika € {X} uCy
x(k) = { .
r, if Zk € Cr
(note that the value of y(n + 1) does not matter in that which follows). By the relation

between the analytic extensions of the bi-moment and bi-cumulant functions, we
obtain that

E(Zy+Z,8)= Y FulZi..os 2y E).
meBNC(y)

Due to the cumulant conditions in (ii), the only way %, (Zy, . . ., Z,,, &) is nonzero is if
the block of 7 containing # + 1 contains a single other index k with Z; = X. Moreover,
there is a bijection between such partitions and partitions of the form

n={k,n+1}umumn,,

where 7 is a bi-non-crossing partition on Vi ={k<m<n+1]| Z, e {X}uC¢}
with respect to x|y, and where 7, is a bi-non-crossing partition on Wy = Vi\{k,n +1}

with respect to x|w,. Using this decomposition, the properties of bi-analytic exten-
sions of bi-multiplicative functions and the moment-cumulant formulas yield that

E(Z---Znk)

= Z Z Z E{k,n-#l}unlunz(zl’---’Zn’g)
lZSkkf)? m2€BNC(xlw, ) meBNC(xlv, )

= > > Rik,n+1}um ( (Zh . ->Zk—1>ZkLE( Wku{k,nﬂ})

)Zk+1: e ,Zn) &)
1<k<n m;eBNC
3 2 (xXlw)

Mpevy Zp
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= 757"1 ( (Zb s >ZmaxS(Wk)—l’ZmaxS(Wk)n (E ( H ZP))) Wk)
1<k<n PeVi
(( I1 ZP)U(E(H Zp)))-
1<k<n peVi\{k,n+1} PeVi

Hence, by applying 75 to both sides of this equation, the left bi-free conjugate variable
relations from Definition 5.1 are obtained via part (i) of Proposition 3.8.

For the converse direction, suppose that £ satisfies the left bi-free conjugate variable
relations for X. Thus, for all b € B, 7(L,&) = 0 by the conjugate variable relations.
Hence, %, (&) = E(E) = 0 by part (vi) of Proposition 3.8 and therefore (a) holds.

To see that (b) holds, note for all by, b € B that

1]
s

boFiy ¢ (XLb» §) = Ry py (Lo XLy, &) = ¥1, ) (Log X Lo, §) = Yo, ) (Log XL, &)
= E(Ly, XLy&) — E(Lyy XLy )E(&) = E(Ly, XLy ).

Therefore, by applying 75 to both sides, we obtain that
TB (bo%l([,[)(XLh, 5)) =1TB (E(LhUXLh&‘)) = T(LbOXLbf).

By the left bi-free conjugate variable relations, we obtain that

75 (boRt ) (XLb, §)) = 7 (Lo Ly(e(r))) = T(LoaLyv)) = T(Logn(ey) = 75(bon(b)).

As this holds for all by € B, we obtain that %y, , (XLs, §) = 1(b) + Ny, as desired.
To see that (c) holds, note for all b € B and ¢; € C, that

TB (b’:“{l(l)“(q, 5)) = T(LbClE) =0

by similar computations as above. Since this holds for all b€ B, we see that
R (c1,&) = 0+ N, Similarly, for all ¢, € C,, we see that

%1(,35) (CZ: f)b = 7{1(,,@) (RbCZ’ E) = \Ijl(,,g) (RbCZ) f) - \PO(,,[) (RhCZJ f)
= E(Ry2§) — E(§)E(Rycz) = E(Rpcy8).

Therefore, by applying 75 to both sides, we obtain that
T (Elw)(cz, E)b) =13 (E(R;,czf)) = 7(Rpc2§).

By the left bi-free conjugate variable relations, we obtain that

7B (El(r,l) (CZ> E)b) =0.

Therefore, as 7 is tracial and the above holds for all b e B, we obtain that
R, (€2,§) = 0+ Ny, as desired.

For (d), we proceed by induction on #. To do so, we will prove the base case n = 3
and the inductive step simultaneously. Fix # > 3 and suppose when n > 3 that (d) holds
forallm < n.Let y € {¢,r}", and let Z;, Z5, ..., Z,_1 € A be as in the assumptions of
(d). We will assume that y(1) = r as the case y(1) = £ will be handled similarly. Thus,
for all b € B, we know that
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E)((le Y anb f)b = T{X(RbZI’ Zz, PN anl) f)

=E(RyZiZy+ Zna&) = > Fu(RyZi,Z2seo s Znrs )
neBNC(y)
n#ll

=ERyZiZy Zya&) = Y. Fenl(Zi:Z2s...s Zuo1, E)b.
neBNC(x)
n#lx

Using the fact that (a)-(c) hold and that (d) holds for all m < n, we obtain using the
same arguments used in the other direction of the proof that

S FnZeZenOb= S E[R| ] 2 ﬂ(g(n zp)) ,
meBNC(x) 1<k<n peVi\{k,n} PpeVi
#ly Z=X

where Vi ={k<m <n | Z, € {X} U Cy}. Therefore, by applying 75 to both sides of
our initial equation, we obtain that

15 (Ry(Z1s ... Zuo1, €)D)

15| E(RyZ1 2y Zya &) = D E(R,,( IT Zp)n(E(H Zp)))
1<k<n peVE\{k,n} PeVi

Z=X

1(RyZiZa - Zpa§) = D) 7| R ] 2, W(E(HZP)) =0,
lzsk<)? peVE\{k,n} peVi
o=

by the left bi-free conjugate variable relations. Therefore, as the above holds for all
b € B and 13 is tracial, the result follows. [ ]

The cumulant approach to conjugate variables has merits as it is very simple to
check that most cumulants vanish and the values of others. For instance, an observant
reader might have noticed that the operators X and Y in Definition 5.1 were not
required to be self-adjoint. This is for later use in the paper and can be converted to
studying self-adjoint operators as follows.

Lemma 5.4 Let (A, E, ¢, 1) be an analytical B-B-noncommutative probability space,
let (Cy, C,) be a pair of B-algebras in A, let X € Ay, and let 4 : B > B be a completely
positive map. The left bi-free conjugate variables

Jo(X: (alg(Cp, X*),Cp),m)  and  Jo(X" = (alg(Co, X)), Cr), 1)
exist if and only if
Je(R(X) : (alg(Cp, 3(X)), Cr)om)  and — Jo(3(X) = (alg(Co, R(X)), Cr), 1)
exist where R(X) = (X + X*) and 3(X) = 5;(X — X*). Furthermore,

Je(R(X) : (alg(Cp, I(X)), Cr)s ) = Jo(X : (alg(Ce, X7), Cr ), 1) + Jo(X™ ¢ (alg(Ces X), Cr), 1)
Je(3(X) « (alg(Cp, M(X)), Cr), 1) = iJe(X : (alg(Co, X¥), Cr), 1) — iJo(X* : (alg(Ce, X), Cr), ).

A similar result holds for right bi-free conjugate variables.
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Proof Suppose that
& =Jo(X s (alg(Ce, X*),Cr), 1) and & = Jo(XT - (alg(Cr, X), Cy), 1)

exist. Hence, & and &, satisfy the appropriate analytic cumulant equations from
Theorem 5.3. Let

h=&+& and  hy=i& - i&,.
As

Il H
Il

and & ealg(X*,alg(Cy, X),C,) 7,

I
il

& ealg(X,alg(Cy, X*),C,)

we easily see that

Iy € alg(R(X),alg(Ce, 3(X)), C) ' and & e alg(3(X), alg(Cor R(X)), Cr) .

Thus, by Theorem 5.3, it suffices to show that h; and h, satisfy the appropriate
conjugate variable formulae. Indeed, property (a) of Theorem 5.3 holds as

T{I(l) (I’ll) = %1(2) (hz) =0+ NTB.
Next, notice for all b € B that
%1(2,2) (m(X)Llw hl)
- 1 _ 1 _ 1 _ 1_.,
= Kl (EXLZJ) fl) * Rl (EX*Lb’ fl) + Rl (EXLb’ fz) + Kl (EX Ly, 52)

= 2(B) + 0+ 0+ 2n(b) = n(b)

d ~
o K10y (j(X)Lb) hz)

N 1 ) ~ | R
= R0 ZXLb)lfl T K10 _EX Ly, i&

N3 1 H ~ 1 * .
+f€1([’1{) EXLh)_IEZ +K:1(1/.,1/.) —;X Lb,—lfz

= in(b) =00~ - (=i)(b) = n(b).

Hence, property (b) of Theorem 5.3 holds.
To see that properties (c) and (d) of Theorem 5.3 hold, note for all b € B that

T{l(u) (m(x)Lb’ hl)
~ 1 ) - |
= Kigge (EXLZH lfl) * Rl (EX Ly, lfl)
~ 1 ) - |- .
+ Rl (EXLb’ —zfz) + Rl (EX Ly, —152)
1 1
= Ein(b) +0+0+ E(—i)n(b) =0,
and similarly %y, ,, (J(X)Ly, h1) = 0. Therefore, Proposition 4.13 along with the lin-

earity of the cumulants in each entry yields properties (c) and (d).
The converse direction is proved analogously. [ ]
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Of course, many other results follow immediately from the cumulant definition of
the conjugate variables.

Lemma 5.5 Let (A, E, ¢, 1) be an analytical B-B-noncommutative probability space,
let (Cy¢, C,) be a pair of B-algebras in A, let X € Ay, and let y : B — B be a completely
positive map. If

§=Ju(X:(Ci,Cr)sm)

exists, then, for all A € C\{0}, the conjugate variable J;(AX : (Cy, C,), 1) exists and is
equal to ;&
A similar result holds for right bi-free conjugate variables.

Proposition 5.6 Let (A,E,¢, 1) be an analytical B-B-noncommutative probability
space, let (Cy, C,) be a pair of B-algebras in A, let X € Ay, and let 11,1, : B— B be
completely positive maps. If

El = ]Z(X: (Clscr): ’71) and 52 = ][(X: (CZ)Cr)s 7]2)

exist, then & = Jo(X : (Cy, C;), 1 + 12) exists and & = & + &,.
A similar result holds for right bi-free conjugate variables.

Proposition 5.7 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, let (Cy, C,) be a pair of B-algebras in A, let X € Ay, and let 1: B — B be a
completely positive map. For fixed b, b, € B, define 11y, », : B — B by

Ne.bb, () = 1(bby) by

forall beB. If £=Jy(X : (Cy, C,), 1) exists and ny,p,.5, is completely positive, then
Je(X : (Co, Cr)s e,b,,b, ) exists and

Je(X: (Co, Cr ) Mayby,b, ) = Roy Lo, &
Similarly, if Y € A, and 1, p, b, : B = B is defined by

Nr,bib, = b217(b1b)

for all beB is completely positive, and ], (Y :(Cy,C,),n) exists, then J,(Y:
(Ce»Ct)s My by,b, ) exists and

]T(Y: (CE’CY)’ }71‘,51,1)2) = RblLbzlr(Y: (CZ’CV)’ ’7)

Proof By Theorem 5.3, it suffices to show that Ry, L;,¢ satisfies the appropriate
analytical operator-valued bi-free cumulant formula. Indeed, clearly,

R, (Ryp, Ly, &) = bR, (&)b1 =0,
and for all b € B,
Til(u) (XLb’RblLbZ E) = 7’51(2,/5) (XLbLbz’ E)bl = 7{1(2,4) (XLbbz’ g)bl = ’Y(be)bl = Wbl,bz(b)'

To show that the other analytical operator-valued bi-free cumulants from Theorem 5.3
vanish, one simply needs to use the analytical extension properties of bi-multiplicative
functions together with Proposition 4.13. The result for right bi-free conjugate vari-
ables is analogous. [ ]
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Similarly, many results pertaining to conjugate variables from [4, 10, 14] immedi-
ately generalize to the conjugate variables in Definition 5.1. However, one result from
[10] requires additional setup. In the context of Example 2.3, one can always consider
a further von Neumann subalgebra D of B and ask how the conjugate variables react.
To analyze the comparable situation in our setting, we need the following example.

Example 5.8 Let (A,E,&,7) be an analytical B-B-noncommutative probability
space, and let D be a unital *-subalgebra of B (with 1p =1g). If F : B - D is a condi-
tional expectation in the sense that F(d) = d for all d € D and F(d,bd,) = d,F(b)d,
forall di,d, € Dand b € B, then (A, F o E, €| pgper ) is a D-D-noncommutative prob-
ability space by [12, Section 3].

Note that 7p = 7g|p : D — C is a tracial state being the restriction of a tracial state.
Moreover, if 75 is compatible with F in the sense that 75(F (b)) = 75(b) forall b € B,
we easily see that 7 is compatible with F o E, as for all a € A we have that

7(a) = 7(Le(ay) = 76(E(a)) = 15(F(E(a))) = 7 (Le(k(ay))

and similarly 7(a) = 7 (Rp(g(a)) ). Hence, (A, F o E, &[pgper, 7) is an analytical D-D-
noncommutative probability space.

Proposition 5.9 Let (A,E,e,7) be an analytical B-B-noncommutative probability
space, and let X € Ay. In addition, let D and F be as in Example 5.8, let (Cy,C,) be
a pair of B-algebras (and thus automatically a pair of D-algebras), and let : D — D
be a completely positive map. Moreover, suppose that F is completely positive (and hence
#o F: B — D c Bis also completely positive).

Then, the conjugate variable J,(X : (Cy,C,),n o F) exists in the analytical B-B-
noncommutative probability space (A, E, €, T) if and only if the conjugate variable Jo(X :
(Ce,Cy),m) exists in the analytical D-D-noncommutative probability space (A,F o
E, e|pgper, T), in which case they are the same element of L, (A, 7).

A similar result holds for right bi-free conjugate variables.

Proof As (7oF)oE =1no(FokE), the bi-free conjugate variable relations from
Definition 5.1 are precisely the same and thus there is nothing to prove. ]

With Proposition 5.9 out of the way, we turn our attention to proving that the
expected generalizations of conjugate variable properties from [4, 10, 14] hold.

Lemma 5.10 Let (A, E, ¢, T) be an analytical B-B-noncommutative probability space,
let (Cy, C,) be a pair of B-algebras in A, let X € Ay, and let 11 : B — B be a completely
positive map. Suppose further that Dy € Cy and D, € C, are such that (Dy, D, ) is a pair

of B-algebras in A. If E=Ju(X:(Cs, Cy)m)

exists, then & = Jo(X : Dy, D,), ")

exists. In particular, if P is the orthogonal projection of L,(A, T) onto

alg(X) D[)DT)”HT)

then & = P(&).
A similar result holds for right bi-free conjugate variables.
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Proof Notice that if & satisfies the left bi-free conjugate variable relations for X
with respect to E and # in the presence of (Cy,C,), & satisfies the left bi-free
conjugate variable relations for X with respect to E and # in the presence of (Dy, D, ).
Therefore, since 7(ZP(&)) = 1(Z¢) for all Z € alg(X, Dy, D, ), it follows that P(£) =
Jo(X : (Dy, D,), 17) as desired. ]

The following generalizes [14, Proposition 3.6], [10, Proposition 3.8], and [4,
Proposition 4.3].

Proposition 5.11 Let (A,E, ¢, 1) be an analytical B-B-noncommutative probability
space, let (Cy, C,) be a pair of B-algebras in A, let X € Ay, and let 1: B - B be a
completely positive map. If (Dy, D, ) is another pair of B-algebras such that

(alg(X, Ce), Cy) and (De¢, Dy)
are bi-free with amalgamation over B with respect to E, then

§=Ju(X:(Co, Cy)s1m)
exists if and only if
§" = Jo(X : (alg(Cy, Dy), alg(Cr, Dy)), 1)

exists, in which case they are equal.
A similar result holds for right bi-free conjugate variables.

Proof Note by Lemma 5.10 that if &’ exists, then & exists.

Conversely suppose that ¢ exists. Hence, £ is a |- |,-limit of elements from
alg(X, Cy, C,). Since the analytical operator-valued bi-free cumulants are |- | -
continuous in the last entry, it follows that any analytical operator-valued bi-free
cumulant involving & at the end and at least one element of D, or D, must be zero
by Theorem 4.14 as

(alg(X, Cy), Cy) and (D¢, D,)

are bi-free with amalgamation over B with respect to E. Therefore, as

Il .
Eealg(X,Cy, C,) I c alg(X,alg(Cy, Dy),alg(C,, D)) HT,
it follows that &’ exists and & = &'. [

The following generalizes [14, Proposition 3.7], [10, Proposition 3.11], and [4,
Proposition 4.4]. In that which follows, we will use Z to denote a tuple of operators
(Z1, ..., Z). Furthermore, given another tuple Z' = (Zi,..., Z} ), we will use Z + Z'
to denote the tuple (Z; + Zi,...,Zx + Z; ) and we will use 2; to denote the tuple
(Z1s...sZp 15 Zps15 - . . Z) obtained by removing Z, from the list.

Proposition 5.12 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, and let 11 : B — B be a completely positive map. Suppose that X and X' are n-
tuples of operators from Ay, Y and Y' are m-tuples of operators from A,, and (Cy, C,)
and (Dy, D, ) are pairs of B-algebras such that

(alg(X,Cr),alg(Y,C;))  and  (alg(X',Dy),alg(Y', D;))
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are bi-free with amalgamation over B with respect to E. If

E=J, (Xl : (alg ()/(\1, Cg) ,alg(Y, Cr)) N T)

exists, then

& = Jo (X + X{ : (alg ((X+X')1, Co, Dy ) alg(Y + Y/, C,, D))
exists. Moreover, if P is the orthogonal projection of L, (A, ¢) onto
I H

alg(X+X',Y +Y',Cy, C,, Dy, D,)

then

& =P(9).
A similar result holds for right bi-free conjugate variables.

Proof Suppose that & exists. For notation purposes, let A =alg(X+X', Y+
Y',Cy,C,,Dy, D )

Since 7(LpZP(§)) = 1(LpZ&) forall Z € A and b € B (as By < Cy), we obtain by
Proposition 3.8 that E(ZP(£)) = E(Z¢&) for all Z € A. Thus, as By, B, € A, we obtain
for all y € {¢,7}? with y(p) = ¢, for all 7 € BNC(y), and for all Z; € A with

7 e alg(X-!—X,,Cg,Dg), ifX(k)Zf
“Tlalg(Y+ Y, C,.D,), if y(k) =r

that W, (Zy, ..., Z,1P(§)) = Ya(Zy, ..., Zp1, §) and thus
Fy(Zis.o s Zp, P(8) =Ry (Z1, ... s Zp1, §).

To show that P(£) is the appropriate left bi-free conjugate variable, it suffices to
consider expressions of the form %,(Zy,...,Z,_1, P(§)) and show that they obtain
the correct values as dictated in Theorem 5.3. By the above, said cumulant is equal to
an analytic operator-valued bi-free cumulant involving elements from Cy, Dy, C,, D,
X +X’,and Y+ Y’ (in the appropriate positions) and a £ at the end. By expanding
using linearity, said cumulant can be modified to a sum of cumulants involving only
elements from Cy, Dy, C,, D,, X, X', Y, and Y’ with a & at the end. By a similar
argument to that in Lemma 5.4, these cumulants then obtain the necessary values for
P(&) to be the appropriate left bi-free conjugate variable due to Theorem 5.3 applied
to & and the fact that

(alg(X, Cy),alg(Y,C,)) and (alg(X', Dy),alg(Y', D,))

are bi-free with amalgamation over B with respect to E, so mixed cumulants vanish by
Theorem 4.14. u

6 Bi-semicircular operators with completely positive covariance

One essential example of conjugate variables in [4, 10, 14] comes from central
limit distributions. Thus, this section is devoted to defining the operator-valued
bi-semicircular operators with covariance coming from a completely positive map,
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showing that one may add in certain bi-semicircular operators into analytical B-
B-noncommutative probability spaces, and showing the bi-free conjugate variables
behave in the appropriate manner.

To begin, let B be a unital *-algebra and let K be a finite index set. For each k € K,
let Zx be a symbol. Recall that the full Fock space F(B, K) is the algebraic free product
of Band {Zy } ek that is,

F(B,K)=BeH e H,® ---,
where
Hm:{bOZklbl---kabm | bo,bl,...,bmEB,kl,...,kmEK}.

Note that F(B, K) is a B-B-bimodule with the obvious left and right actions of B on
B and H,,. Moreover, as F(B, K) is a direct sum of B and another B-B-bimodule,
F(B, K) is a B-B-bimodule with the specified vector state p : F(B, K) — B (as in the
sense of [2, Definition 3.1.1]) defined by taking the B-term in the above direct product.
Therefore, the set A of linear maps on F(B, K) is a B-B-noncommutative probability
space with respect to the expectation E : A — B defined by E(T) = p(T1g) (see [2,
Remark 3.2.2]).

Let {#;,j}i,jex belinear maps on B. For each k € K, the left creation and annihilation
operators I and I}, are the linear maps defined such that

Itb =174 b,
lc(boZiy by -+ Zk, b)) = 15 Zikbo Zi, by - - Zi, bom,
b =0,

I (boZiybr -+ Zk,,bm) = 1k k, (bo ) b1+ -+ Zy, by,

and the right creation and annihilation operators ry and r}; are the linear maps defined

such that
ka = bZkIB,
k(boZi, b1+ Zk,bm) = boZi, by -+ Zg, b Zi 13,
reb =0,

11 (boZi by Zy, b)) = boZi, by - - - b1k, k(b ).

It is elementary to see that I, [ € Ay and ry, 7 € A,. With these operators in hand,
we make the following definition.

Definition 6.1 Using the above notation, write K as the disjoint union of two sets I
and J. Foreach i e I and j € ], let

*

Si:li-i-l? and Dj:rj+1’]

The pair ({S; }ier» {Dj} jey) is called the operator-valued bi-semicircular operators with
covariance {1;,j}i,jek-

In the case that #gx, =0 for all kj,k; € K with k; # k;, we say that
({Si}ier» {Dj} jey) is a collection of ({#3,i }ier» {1j,j} jey) bi-semicircular operators.
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Remark 6.1 It is natural to ask what are the necessary conditions for operator-valued
bi-semicircular operators with covariance {7;,;}i,jex to sit inside an analytical B-B-
noncommutative probability space. One may hope that a condition similar to [10,
Theorem 4.3.1] would work; that is, the answer is yes if 75 is tracial and 7 : Mg|(B) —
Mk|(B) defined by

1([bi,jlijex) = [11,j(bi,j)]ijex

is completely positive. However, if i € I, j € J, and by, b, € B, it is not difficult to verify
that

15 (E((SiD;Lp,Ry,)* (SiDjLy,Ry,,)) = 78 (b5 1, (18) baban,j (18 )by + b5 111, (i, (b1b2) )by )

and it is not clear if this is positive (even if the outer #; ; was a 77;,;).

Only certain operator-valued bi-semicircular operators are required in this paper.
Indeed, we will need only the case where ({S;}ier, {D;}jey) are ({#i,i Fiers {#j,j} jer)
bi-semicircular operators, as in this setting the pairs of algebras

{(alg(Be, Si), Br) }ier U {(Bralg(Br, Dj)) }jey
are bi-free with amalgamation over B with respect to E, as the following result shows.

Theorem 6.2 Using the above notation, if B is a *-algebra, Tg is a tracial state on
B, {ni}tierU{n;}jey are completely positive maps from B to B, ({Si}ier»{Dj}jes)
are  ({ni}ie-{nj}jey) bi-semicircular operators, Ay =alg(B¢,{Si}icr), Ar=
alg(By,{Dj}jej), A is generated as a +-algebra by Ay and A,, and 7: A - C
is defined by T=150E, then (A,E,e,7) is an analytical B-B-noncommutative
probability space. Moreover, all operator-valued bi-free cumulants involving {S;}ie1
and {Dj} jej of order not two are zero and for all i, i\, i, € I and j, jy, j, €],

Hl(z,z) (SilLb’ Siz) = 6i1,i2 rlil(b)’ Iﬁ(”) (Dleb> Djz) = 6j1>jz ’7;1(17)’
HI(Z)O(SiLhyDj) = 0, Iil(h[)(D]’Rb,S,‘) =0.

Proof Asshown above, (A, E, ¢) is a B-B-noncommutative probability space. Next,
note that E is completely positive when restricted A, and A, by [13, Remark 4.3.2] as
the expectations reduce to the free case. In fact, this same idea can be used to show
that 7 is positive. Indeed, first note that S; and D; commute. Thus, every element of A
can be written as sum of elements of the form

Z=Lp,SiyLy, - Si, Ly, Rp,, Diy i Roy " Dipors R
where by, ... b, ., € B. Moreover, we can write
F(B,K) 2 F(B,I) ® F(B,])
in such a way that Z acts via
LpySiyLy, -+ Si, Lo, ® Loy, Sjnim Lty = Sjnsi Ly

sothatif E; : L(F(B,1)) > Band E; : L(F(B,])) — B are the corresponding expec-
tations, then

E(Z) = Er(Lb,Si, Lo, Siu Lo, )E1 (Lt Sinem Lbnimes " S Lbnin)-

n+m
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Therefore, if we have Z = Z‘;:l X1 Yy where X is a product of Ly’s and S;’s and Yy is
a product of Ry’s and Dj’s, then

d ~ ~
w(2°2)= 3 s (Er(XiXe)Er (Vi Vi)
ki,k2=1

where Y represents the monomial obtained by reversing the order and changing R’s
to L’s and D’s to S’s. However, as E; and E; are completely positive on the algebras
generated by L’s and S’s, we can find bx x, ;> by k,,k, € B such that

d ds
* * v U *
E; (Xklxkz) = Z bX,kl,k3bX)k2)k3 and El (Ykz Ykl) = Z bY,kz:k4bY,k1,k4’
k3=1 kq=1
and thus
d dy, ds

T(Z*Z) = Z Z Z TB(b;(,kl,lgbX>k2,k3hY,kz,k4b*Y,k1,k4)
ki,k2=1k3=1k4=1

dy ds d “a
=> > 18 (( > bX,kl,k3bY,kl,k4) (Z bX,kz,kng,kz,k4)) > 0.

k3=1ks=1 ki=1 ka=1

Hence, 7 is positive.

Next, one can verify in L, (A, 7) that S; and D; are the sum of an isometry and its
adjoint (see [13, Proposition 4.6.9]) and thus define bounded linear operators. Hence,
(A, E, &, 7) is an analytical B-B-noncommutative probability space.

To see the cumulant condition, one can proceed in two ways. One can immediately
realize that

(alg(Be, {Si}ier),B;)  and  (By,alg(B,, {Dj}jes)

are bi-free over B due to the above tensor-product relation. This implies that mixed
cumulants are zero. The other cumulants then follow from the free case in [13].
Alternatively, one can analyze the actions of Ly, Ry, S;, and D; as one would on the
operator-valued reduced free product space in an identical way to the LR-diagrams of
[2, 3] to obtain a diagrammatic description of the elements of F(B, K) produced, note
that the ones that contribute to a B-element are exactly the bi-non-crossing diagrams
that correspond to pair bi-non-crossing partitions, and use induction to deduce the
values of the operator-valued cumulants. [ ]

We immediately obtain the following using Theorems 6.2 and 5.3.

Lemma 6.3 Let (A, E,¢,7) be an analytical B-B-noncommutative probability space,
let {neitiy and {n,;}7, be completely positive maps from B to B, and let
({Si} i AD; ) be ({ne,i iy {nr,j} 121) bi-semicircular operators in A. Then,

Jo (S1: (alg (Ber {Si}™,) »alg (By, {D;}))) s 7e) = 1.
A similar result holds for the other left and the right conjugate variables.

In order to obtain more examples of bi-free conjugate variables, it would be
typical to perturb by bi-semicircular operators and use Proposition 5.12. To do this,
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we must have the collection of bi-semicircular operators in the same analytical B-
B-noncommutative probability space. Thus, it is natural to ask whether given two
analytical B-B-noncommutative probability spaces there is a bi-free product which
causes the pairs of left and right algebras to be bi-freely independent over B and
preserve the analytical properties.

Unfortunately, we do not have an answer to this question. The proof of positivity
in the operator-valued free case requires the characterization of the vanishing of
alternating centered moments in [13, Proposition 3.3.3] to ensure positivity in the end.
One may attempt to use the bi-free analogue of “alternating centered moments vanish”
from [1]; however, the bi-free formula generalization of [13, Proposition 3.3.3] is far
more complicated. In particular, the proof from [13] will not immediately generalize,
as Example 3.3 shows that E will not be positive and the traciality of 75 will need to
come into play.

Luckily, if we deal only with bi-semicircular operators, which is all that is required
for this paper, there is no issue. In fact, in the case one is working with von Neumann
factors as in Example 2.3, the following is trivial as we can add the corresponding
collection of bi-semicircular operators using factors by [13].

Theorem 6.4 Let (A, E, ¢, 1) be an analytical B-B-noncommutative probability space
with Ay and A, generated by isometries, let {¢,i}}_ U {n:,;}}, be completely pos-
itive maps from B to B, and let ({S;}}_;,{D;}7,) be ({nei}izp{nrj}7,) bi-
semicircular operators. Then, there exists an analytical B-B-noncommutative probability
space (A", E', e/, 7") with AC A", E'|, =E, U'|a=1, Ay C A, A, C A, {S;i}1, €Al
{D;}%, € A, and such that the pairs of algebras

(A, Ar) and (alg(Bg, {Si}i-1), alg(By, {Dj};n=1 )
are bi-free with amalgamation over B with respect to E'.

As, for any ({#ii}ier> {#,j}jey) bi-semicircular operators ({S;}ier, {Dj}jes), we
know that

{(alg(Be, i), By) }ier U{(Br,alg(Br, Dj))}jes

are bi-free over B, to prove Theorem 6.4, it suffices to use the following lemma and an
analogous result on the right iteratively, or simply adapt the proof to multiple operators
simultaneously.

Lemma 6.5 Let (A,E, ¢, 1) be an analytical B-B-noncommutative probability space
with Ay and A, generated by isometries, let 11 : B — B be a completely positive map, and
let S be an n-semicircular operator. Then, there exists an analytical B-B-noncommutative
probability space (A’ E', €', ") such that A" = alg(A¢, A}, S), E'|4 = E, T'|a =1, A} =
alg(Ay, S), AL = A,, and

(A, Ay) and (alg(Be, S), By)
are bi-free with amalgamation over B with respect to E'.

Proof By taking the operator-valued bi-free product of B-B-noncommutative prob-
ability spaces, we obtain a B-B-noncommutative probability space (A’, E’, ") such
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that A’ = alg(Ay, A,, S), A, = alg(Ay, S), A}, = A,, E'|4 = E, and
(Ag, A}) and (alg(Be¢, S), By)

are bi-free with amalgamation over B with respect to E’. Note that E’ restricted to A,
is trivially completely positive and E’ restricted to A}, is completely positive by the free
result from [13]. Thus, to verify Definition 3.1, it suffices to verify that if 7’ = 75 o E,
then 7’ is positive and elements of A}, and A’, define bounded operators on L, (A’, 7).

By analyzing the reduced free product construction, we can realize Ay, A,, and S
as operators acting on

F=BeH,oH & -,
where
Huw={aoZar--Zay | ao,a1,...,0m-1€ A, a,, € A}
and if p : § — B is defined by taking the B-term in J, then
E'(T) = p(Tlp).
Define a function (-,- ) : F x F — A by setting B, H;, H,, . . . to be pairwise orthogo-
nal, (by, by) = Lyyy,, and
(ahZaf - Zaly, aoZar - Zaw) = @l Ly (1~ Ly(ai Ly(asay)af) a1 )aly

where L, (T) = L,(g(r))- As 11 is completely positive and E is completely positive when
restricted to Ay, we obtain that (-, -) is an A-valued inner product by the same argu-
ments as [13, Proposition 4.6.6]. To elaborate slightly, given >7_; ax.0Zax, - Zag,m,
the matrix [#(a; ya;,0)] is positive and thus can be written as [ Yy_, b} ;bx, ;] for some
b, € B. One then substitutes L,(a;aj,0) = Yi-, Ly, Ly, and continues until one
ends with a sum of products of elements of A with their adjoints.

As 7: A — Cispositive and as for all T € A’,

TI(T* T) = T((TIB, T13>),

we obtain that 7" is positive as desired. To see that elements of A}, and A’ define
bounded operators on L,(A’, "), note if T € A,, then, using the above description,

T(agZay - Zaw) = aoZay---ZTay.
As any of the terms,
Ly(am-y---Ly(aiLy(agag)ar) -~ a,, )

in the above A-valued inner product will be able to be written as sums involving terms
of the form L; L;, and will then produce terms of the form

* * * A * * * A
a,T L, Ly, Ta,, = a,,L, T"TLy,a,,

in the A-valued inner product when T acts on the left, the fact that A, is generated
by isometries yields that A, acts as bounded operators on L, (A, 7). The fact that Ay
is generated by isometries immediately yields that A, acts as bounded operators on
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L,(A, 1), and it is not difficult to see that S acts as the sum of an isometry and its
adjoint on L, (A, 7) and thus is bounded. |

With Theorem 6.4 establishing we can always assume that our B-B-
noncommutative probability spaces have ({r¢,i}i_;, {#,,j}7;) bi-semicircular
operators, we can proceed with the following.

Theorem 6.6 Let (A, E, ¢, ) be an analytical B-B-noncommutative probability space,
let {1¢,i}i_y and {n,,;} 7, be completely positive maps from B to B, let X € A} and Y €

AT be tuples of self-adjoint operators, let ({S:}/_;,{D;}7,) be ({ne,i}ip> {nr.j}7%0)
bi-semicircular operators in A, and let (Cy, C,) be pairs of B-algebras of A such that

{(alg(Cy, X),alg(C,, Y))) } U {(alg(Be, S:), Br) } iy U {(Be-alg(Br, D))}y

are bi-free. If P is the orthogonal projection of L,(A, ¢) onto

g (C Cr X + /a8 Y + /D) ",
then

§=To(Xa+ VeSy : (alg(Co, (X+V2S), ) alg (Cro Y + VD) ) 11 ) = %P(sl).
Thus,

I, < %mw(m)).

A similar computation holds for the other entries of the tuples and the right conjugate
variables.

Proof By Lemmas 6.3 and 5.5, we have that
N 1
Je (V/eS: : (alg (By, V€81 ,alg (B, /eD)) , 7o) = —

Ve

The conjugate variable result then follows from Propositions 5.11 and 5.12, whereas the
T-norm computation is trivial. |

Si.

7 Bi-free fisher information with respect to a completely
positive map

With the above technology, the bi-free Fisher information with respect to completely
positive maps can be constructed and has similar properties to the bi-free Fisher
information from [4] and the free Fisher information with respect to a completely
positive map from [10]. We highlight the main results and properties in this section.

Definition 7.1 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, let {#¢,;}1; and {#,,j} ., be completely positive maps from B to B, let X € A}
and Y € A and let (Cy, C,) be a pair of B-algebras of A. The relative bi-free Fisher
information of (X,Y) with respect to ({#¢,i }i_1> {11r,j} ) in the presence of (C, C;)
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is

2
o’

O (XUY: (Co Cr), (i Himws {13 1)) = D&+ Y ]
i=1 j=1

where, fori e {1,...,n}and je{l,...,m},

& =Jo (X (alg(Cr.Xi),alg(Cr,Y)), 7,i) and
vi=], (Y] : (alg(Cg,X) ,alg(Cr,?j)) >’7r,j)

provided these variables exist, and otherwise is defined as co.

In the case that 74,; = 5, j =  for all i and j, we use ®*(XuY:(Cy,C,), 1) to
denote the above bi-free Fisher information. In the case that C, = By and C, = B,, we
use (XU Y : ({1e,i}i=> {#+,j}71)). In the case both occur, we use @*(XUY : 7).

Note that the bi-free Fisher with respect to completely positive maps exists in many
settings due to Theorems 6.4 and 6.6. Furthermore, the properties of the bi-free Fisher
with respect to completely positive maps are in analogy with those from [4, 10, 14] as
the following shows.

Remark 71 (1) In the case that B = C and 7 is unital, Definition 7.1 immediately
reduces down to the bi-free Fisher information in [4, Definition 5.1] by Remark
5.2.

(2) In the case we are in the context of Example 2.3 with m =0, C; = By, and C, =
B,, Definition 7.1 immediately reduces down to the free Fisher information with
respect to a complete positive map from [10, Definition 4.1].

(3) Note that

O (XuY:(Co, Cr), ({Me,i } o> {1, 121))

O* (X;uw: (alg(CenXi),alg(Cr,Y))  10,isT)

e

I
—

+ iCD* (ouy;: (alg(Cg,X),alg(Cr,Yj)) M T) .
=
(4) If X=(X,X{,....Xs,X;;) and Y=(V,Y*,...,Y,,Y)), then Lemma 5.4
implies that
(D*(X‘—'Y: (Clscr)s({ﬂl,i ?:p{”/r,j};n:l))
= %QD*(X' uy : (CZ’Cr)’ ({’74,1‘ ?:1’ {Wr,j};il))’

where X' = (R(X1),3(X1), ..., R(Xn), T(Xn)) and Y =
(R(11),3(Y1), .., R (Y ), T(Yim)).

(5) In the context of Proposition 5.9 (i.e., reducing the B-B-noncommutative prob-
ability space to a D-D-noncommutative probability space),

O (XUY:(Co, Cr), ({nei} i {11} 1))
=0 (XU Y:(Cs, Cr), ({ne,i © F}_ys {nr,j o F}7Ly)).
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(6) By Lemma 5.5, for all A € C\{0},

O (AXUAY : (Co, Cr), ({110, iz {11, 120))

- ﬁq)*(XuY: (Ce, Cr)s ({me,iYims {1155 120))-

(7) In the context of Lemma 5.10 (i.e., (Dy, D,) a smaller pair of B-algebras than
(CZ> CT’)))
Q" (XuY: (De Dy), ({nei} iz {1121 41))
<O (XuY: (Co, Cr)s ({meidiz {nr.j}i)-
(8) In the context of Proposition 5.11 (i.e., adding in a bi-free pair of B-algebras),
Q" (XuY: (alg(Dr, Ce),alg(Dr, Cr))s ({n1e,i}i=p {1r,53 21))
=0 (XuY: (Co, Cr), ({ne,i}iz> {11} 700))-

(9) If in addition to the assumptions of Definition 71 X'EAZI, Y’ eAZ’",
({ny.i ?:,1’{’7;,]‘ ;”z'l) is a collection of completely positive maps on B, and
(D¢, D,) is a pair of B-algebras, then, by (iii) and (vii),

©* (X, X' UY, Y : (alg(Cr, Do), alg(Cry D)), ({61} 1y U 1Yo (s} U {001 im0))
> @ (XUY: (Cor C)y (e Y (s} i)) + O (X' WY = (Des D), ({11l Yoo {3 0))-
(10) In the context of (ix) with the additional assumption that
(alg(Cy, X), alg(C,, Y)) and (alg(Dy, X'),alg(D,,Y'))

are bi-free with amalgamation over B with respect to E, Proposition 5.11 implies
that

! ’
(X, X UY,Y": (alg(Ce, De)alg(Cro Dr))s ({fe,i iy U {n, i Yoy {1} g U {113 70)

= @ (XUY: (Cor C)y (e Y (1Y) + O (X' WY = (Des D), ({1 Yoo {03 ))-
Unsurprisingly, more complicated properties of free Fisher information extend.

Proposition 7.2 (Bi-free Stam inequality) Let (A, E,¢, 1) be an analytical B-B-
noncommutative probability space, let {n¢,i}i_, and {n, ;}7., be completely positive
maps from B to B, let X, X' € A} and Y,Y' € A", and let (Cy,C,) and (Dy, D,) be
pairs of B-algebras of A such that

(alg(Cy,X),alg(C,, Y)) and (alg(Dy, X'),alg(D,, Y'))

are bi-free with amalgamation over B with respect to E. Then,

-1

(O*(X+X' uY+Y': (alg(Cp, Dy),alg(Cyr, D)), ({1, }imrs {nr,,-}}“:l)))
> (@*(XuY: (alg(Cp, Dy),alg(Cr, Dy)), ({116, s {’7’,]};‘21)))_1
+(@* (X' uY': (alg(Cr, Dy),alg(Cr, Dy)), ({16,i s {m,j}}?il)))_l-
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Proof Let

Py : Ly(A,¢) > Ly(B, 15),

P Ly (A, ¢) > alg(Co LXK Y)

|- ”
Il T

Py :Ly(A,¢) — alg(Dy, D,, X', Y')
be the orthogonal projections onto their co-domains. Note that if
Z ealg(Cy,C,,X,Y) and alg(Dy,D,, X, Y'),
then bi-freeness implies that
E(zz')=E(ZE(Z))).

Indeed, this is easily seen as if Z and Z’ are monomials, then any cumulant of the
monomial ZZ' corresponding to a bi-non-crossing partition is nonzero if and only if
it decomposes into a bi-non-crossing partition on Z union a bi-non-crossing partition
onZ'. Thus, P1P2 = P2P1 = P().

The remainder of the proof can then be read from [10, Proposition 4.5], [4,
Proposition 5.8], or even [14, Proposition 6.5]. ]

Proposition 7.3 (Bi-free Cramer-Rao inequality) Let (A, E, ¢, T) be an analytical B-
B-noncommutative probability space, let {ne,;}}, and {n, ;}7, be completely positive
maps from B to B, let X € A} and Y € A7 consist of self-adjoint operators, and let
(Ce, C;) be a pair of B-algebras of A. Then,

O (XuY:(CpC),({nei}iy, {er};n:l))T(Zn:XtZ + i sz)
i=1 j=1

> (Zn: 78(1e,i(1)) + i TB(Wr,j(l))) .
i=1 j=1

Moreover, equality holds if (X,Y) are ({1¢,i}1,{nr,j}}%1)-bi-semicircular elements
and

{(Ce, C)} v {(alg(Be, Xi), B;) iy U {(Be, alg(Br, Yj)) } iy

are bi-free with amalgamation over B with respect to E. The converse holds when Cy = By
and C, = B,.

Proof The result follows from the obvious modifications to [4, Proposition 5.10].
Also, see [10, Proposition 4.6] and [14, Proposition 6.9]. ]

Similarly, limits behave as one expects based on [4, 10, 14].

Proposition 7.4 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, let {1¢,i}}_y and {n, ;}7., be completely positive maps from B to B, let X € A}
and Y € A" consist of self-adjoint operators, and let (Cy, C,) be a pair of B-algebras of
A. Suppose further for each k € N that X®®) e A" and Y*) € A™ are tuples of self-adjoint
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elements in A such that

lim sup Hka) H < 00,

k—oo

ima 1] <.

s- lim ka) = X;, and

k—oco

s- lim Yj(k) =Y;

k—oco

forall1<i<mnand 1< j<m (where the strong limit is computed as bounded linear
maps acting on L,(A, 7)). Then,

liminf @* (X® UY® : (Cr, C), (e ¥ {10} 1))

k—oc0
2 Q" (XU Y:(Cp, Cr), ({nei iz {15} i20))-

The proof of Proposition 7.4 becomes identical to [4, Proposition 5.12] once the
following lemma is established. Also, see [10, Proposition 4.7] and [14, Proposition
6.10].

Lemma 7.5 Under the assumptions of Proposition 7.4 along with the additional
assumptions that

=T, (Xl(k) : (alg (Cg,ifk)) ,alg(Cy, Y(k))) , 17@,1)
exist and are bounded in L,-norm by some constant K > 0, it follows that
£=J, (X : (alg (Ce,Xl) ,alg(Cr,Y)), 1e,)
exists and is equal to
w- lim P (§k)»
where P is the orthogonal projection of L, (A, T) onto m” . HT.
If, in addition,

limsup [ &, < €],

— 00

then
lim (& - €], =0.
The same holds with X; replaced with X;, and a similar result holds for the right.

Proof The proof of this result follows from the same sequence of steps as [4, Lemma
5.13] using the analytical operator-valued bi-free cumulants. [ ]

Corollary 7.6~ Under the assumptions of Proposition 7.4, if in addition
(B¢(X),B,(Y)) and  (alg(Cr, X)), alg(C,, YV))
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are bi-free for all k and

i[9 i [0 -0

k— o0 k—o0

foralll<i<mnandl< j<m,then

lim ®* (X+X® 0¥ +Y®: (Co, C), (e} i (1} ))

k—oco
=" (XuY: ({nei}i{nr,i}j))-
Furthermore, if Cy = By, C, = B,, and
ST (XUY: ({ne,i}ims {1} j0)) < oo,
then
Ji (Xf") : (Bg ((xm»i) B, (Y+Y®)), )
tends to
Je (Xi = (Be(Xi), B (Y)) 116,1)
in T-norm. A similar result holds for right bi-free conjugate variables.
Proof The proof is identical to [4, Corollary 5.14] and thus is omitted. [ ]

Theorem 7.7 Let (A, E, ¢, 7) be an analytical B-B-noncommutative probability space,
let {ne,i}i—y and {n:,;}}, be completely positive maps from B to B, let X € A} and
Y € AT be tuples of self-adjoint operators, let ({S:}}_;,{D;}},) be a collection of
({neitiz {nr.j}it) bi-semicircular operators in A, and let (C,,C,) be pairs of
B-algebras of A such that

{(alg(Ce,X),alg(C;, Y)))} u{(alg(Be, Si), Br) iy U {(Be,alg(Br, Dj)) iy
are bi-free. Then, the map
h:[0,00) 3t O (X+VISUY + VD (Co, ), ({116} i {103 121))
is decreasing, right continuous, and
K3
K+ Kyt

<h(t) < %K3,

where
n m
K=ty Xi+> v},
i1 =
Ky = 18(nei(18)) + Y 18(%r,j(18)), and
i=1 =

K; = ZH:TB(”IEJ(IB))Z + i 5(7,,;(18))%.
i=1 j=1
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Moreover, if (X, Y) is the ({ne,i }i_1> {11r,j} 7, )-bi-semicircular distribution and
{(Ce, Cr)} v {(alg(Be, Xi), Br) }iy v {(Be, alg(By, ;) } iy

2
are bi-free with amalgamation over B with respect to E, then h(t) = %ﬁw forallt.
1
K

Finally, if C; =By, C,=B,, and h(t) = gk~ for all t, then (X,Y) is the
({neitie {nr,j} iy)-bi-semicircular distribution.

Proof The proof becomes identical to [4, Theorem 5.15] using the above and the fact
that

(X +/18:) ) = 1 (XF) 12 (S2) = 7 (X2) + 115 (i (15)).

with an analogous computation on the right for use in the lower bound computation,
in conjunction with the bi-free Cramer—Rao inequality (Proposition 7.3). ]

8 Bi-free entropy with respect to completely positive maps

With the construction and properties of the bi-free Fisher information with respect to
completely positive maps complete, the construction and properties of bi-free entropy
with respect to completely positive maps follows easily by extending results from [4,
10] with similar proofs.

Definition 8.1 Let (A,E,¢,7) be an analytical B-B-noncommutative probability
space, let {#¢,; }]_; and {#,,j} 7, be completely positive maps from B to B, let (C¢, C;)
be pairs of B-algebras of A, and let X € A} and Y € A" be tuples of self-adjoint
operators. The relative bi-free entropy of (X, Y) with respect to ({11, } 71> {r,j}12,) in
the presence of (By, B,) is defined to be

X (XuY:(Co, Cr), ({16} iz {115} j20))

:gln(2ﬂ6)+lfw(£—®*(x+\/28uY
0

2 1+t
+/1D: (Co, Cr), ({nei} iy {”T,j};nzl))) dt,

where
K= Zn:TB(’M,i(lB)) + i (71, (18))
i=1 j=1

and ({Si}1_;,{D;}1;) is a collection of ({#¢,i}}_;> {#+,;}}2;) bi-semicircular opera-
tors such that

{(alg(Cr. X), alg(Cr, Y))) } U {(Be(Si), Br) yiea U {(Be, B, (D))},
are bi-free (note that such semicircular operators can be included in A by Theorem
6.4).
In the case that C; = B¢ and C, = B, we use y* (XY : ({1e,i} 7y, {#r,j}741)) to
denote the bi-free entropy. Ifin addition #¢,; = #,,; = nforalliand j, weuse y* (XU Y :
1) to denote the bi-free entropy.
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We note that there is a slight change in the normalization used in Definition 8.1
over that used in [10, Definition 8.1]. Generally, this makes no real difference other
than making some of the bounds in this section nice, such as the following one.

Proposition 8.1 In the context of Definition 8.1, if

n m
Ki=t(>XI+> Y],
i=1 j=1

then

. K 2me
(XU (Cor G (Db (e} 1)) < 5 In (25K,

Moreover, equality holds when (X,Y) are ({n¢,i} 1> {"r,}},)-bi-semicircular opera-
tors such that {(Cy, C;)} U {(alg(Br, Xi), B,) }; U {(Be, alg(B,, Y;)) } L, are bi-free
and if Cy = By and C, = B,, this is the only setting where equality holds.

Proof The proof is identical to [4, Proposition 6.5] in conjunction with Theorem
7.7. ]

Remark 8.2 (1) In the case that B = C and  is unital, Definition 8.1 produces the
non-microstate bi-free entropy from [4, Definition 6.1].

(2) In the setting of Example 2.3, when C, = B, and #,; = #,,; = #§ for all i and j,
Definition 8.1 produces the free entropy with respect to a completely positive map
from [10, Definition 8.1] modulo an additive constant (which is 0 in the case 7 is
unital).

Of course, due to the fact that the bi-free Fisher information from Section 7 behaves
analogously to the Fisher information considered in [4, 10], results for the behavior of
entropy automatically generalize.

Proposition 8.3  Using Remark 7.1, the following hold:

(v) In the context of Proposition 5.9 (i.e., reducing the B-B-noncommutative probability
space to a D-D-noncommutative probability space),

X (XuY: (Cp, Cr), ({ne,i iz {n1r,i3j00))
=X (XuY:(Co, Cr), ({ne,i © FYilys {n1r,j © F}iL1))-
(vi) For all A e R\{0},

X*(AXU LY : (Cg, Cr), ({n@,i}?:p {;7',)]}7;1))
= (Z 78(7¢,i(18)) + irg(m,j(lg)))lnw
i=1 j=1

X XUY:(Co, C), ({neidims {1 40))-
(vii) In the context of Lemma 5.10 (i.e., (D¢, D,) is a smaller pair of B-algebras than
(CZ; Cr))r

X (XUY: (De, Dr), ({116} {113 21))
2 X (XY (Co, Cr), ({2} i {115, 720))-
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(viii) In the context of Proposition 5.11 (i.e., adding in a bi-free pair of B-algebras),

X (XuY: (alg(Dy, Cp),alg(Dr, Cr))s ({1166 timrs {717, j21))
=X (XuY:(Co Co), ({nei}im {717,310
(ix) If in addition to the assumptions of Definition 8.1 we have X' € A%, Y' e A™,
({ny.; S {’7;,1'};":’1) is a collection of completely positive maps on B, and (D, D,)
is a pair of B-algebras, then
K (XX UY, Y+ (alg(Cr, Do), alg(Cry D)), ({1eai Vi U {5 ioas {1 ¥ 017 3 70))
S A KUY (Co C)y (i} iy 1) o)) + 67 (X WY (Do, D), (i {7 3550))-
(x) In the context of (ix) with the additional assumption that
(alg(Cy, X), alg(C,,Y)) and (alg(Dy, X'),alg(D,, Y'))
are bi-free with amalgamation over B with respect to E, Proposition 5.11 implies that
XXX UY, Y5 (alg(Co, D), alg(Cr D)), ({116} 1oy UG g L Ve U L7 )
= X (XUY : (Cor €y ({1} s £} ) + X7 (X U Y (D, D)y ({11 s {7 V)

Using Proposition 7.4, Theorem 7.7, and the same arguments as [4, Proposition 6.7],
the following holds.

Proposition 8.4 Under the assumptions of Definition 8.1, if for each k € N there exist
self-adjoint tuples X%) € A and YO € A™ such that

lim sup Hka) H < 00,
k—oco

lim sup HYj(k)H < 00,

k—o0
s- klim ka) = X;, and
s fim Y =y,

foralll1<i<mnandl< j<m (with the strong limit computed as bounded linear maps
acting on L, (A, 7)), then

limsup " (X9 YO £ (Cp, ), ({1} oas {1}

k—oc0
<X (XY (Cp, Co)s ({1} e {11r,} j20))-

Using the previous proposition together with Theorem 7.7 and the same arguments
as [4, Proposition 6.8], the following holds.

Proposition 8.5 Under the assumptions of Definition 8.1, suppose that
({Si}i, {Dj}y) is a collection of ({ne,i}i—y{"r,;}}%)) bi-semicircular operators
such that

(alg(Cy,X),alg(C,,Y))) u {(alg(Be, Si), Br) } iy U {(Be,alg(B,, DJ'))};ZI
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are bi-free. For t € [0, c0), let
g(1) = " (X+VISuY +ViD: (Ci. Cr), ({1} s {13 10)) -

Then, g :[0,00) > R U {-o00} is a concave, continuous, increasing function such that
g(t) > S In(2met), where

K=Y 15(n0i(18)) + Y. 78(nr,;(15))
i=1 j=1
and, when g(t) # —oo,

lim = (g(t-+2) - g(1)) = 307 (X# VIS UY+ViD: (Cos ), ({ne s {1 F)) -

Finally, using the Bi-free Stam inequality (Proposition 7.2) together with the same
proof as [4, Proposition 6.11] yields the following.

Proposition 8.6  Under the assumptions of Definition 8.1, if
O (XUY: (Co )y ({ei}iops {1} 11)) < 00,

then
K 2nKe
X (XuY: (B, B,)) 2 —In| — > —o00,
YT 2\ o (XU Y (Cr C) ({1 iy {1} ))
where

K= ZH:TB(VIZ,i(lB)) + iTB(’?r,j(lB))-
i=1 j=1

9 Minimizing bi-free fisher information

In this section, we will prove Theorem 9.5, thereby describing the minimal value of
the bi-free Fisher information of non-self-adjoint pairs of operators under certain dis-
tribution conditions. Throughout the section, we will be working under the situation
from Example 3.3 where A is a unital C*-algebra, ¢ : A - Cisastate, B = M;(C) (the
d x d matrices with complex entries), and 73 = tr; (the normalized trace on M4 (C)).
Thus, Ay = A® M;(C) ® My(C)°P,Eg: Ay - My(C)and 74 : Ay — C are defined
such that

Ed(Z®b1®b2) :¢(Z)b1b2 and Td(Z®b1®b2) ZQO(Z)trd(blbz),

forall Z € A and by, b, € M;(C). We recall the following result that aids in computing
momentsin (Ay, E4, ¢) where {Ei,j}?’jzl ¢ M, (C) are the canonical matrix units and
I, is the identity of M, (C).

Lemma 9.1 [11, Lemma 3.7] Let (A, ¢) be a C*-noncommutative probability space,
let y € {{,r}", and let

- | Bz @ By @ e if x(K) = 1,
i1 2hi ® 1 ® Enjy if x(K) = .
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Then,

where
EX((il’ R iﬂ)’ (j1> s )jn)) = Eis,((1>»jsx(1) o 'Eisx(n)»js,((n) € Md((c)

To discuss conjugate variables, we need to consider L, (A4, 74). It is not difficult
to verify that L,(Ay, 74) can be identified with the d x d matrices with entries in
Ly (A, ¢) where

(ZeIi®I4)[& ;] =28 ],

14 ® b ® I acts via left multiplication on [; ;], and 14 ® I; ® b acts via right multi-
plication on [&; ;] forall [&; ;] € My(L,(A, ¢)) and b € My(C).

Next, we consider the subalgebra D; ¢ M;(C) of the diagonal matrices. Clearly,
if F;: My(C) - Dy is the canonical conditional expectation onto the diagonal, then
(AasFi0Eg,elp g D> 74) is also an analytical D;-D;-noncommutative probability
space (see Example 5.8).

To begin stating our main result, we first require two definitions.

Definition 9.1 [12, Definition 4.4] Let

d d
Zy = Z Zg,i,j®E,‘,j®Id and Z, = Z Zg,i,j®ld®Ei,j.
i,j=1 i,j=1

The pair (Z;,Z,) is said to be bi-R-cyclic if for all n>1, ye{{r}" and 1<
il:-“:in)jl)-u)jnSd;

C _
f‘v'x(Zx(l),il,juZx(z),iz,j2>-~-’Zx(n),in,jn) =0

whenever at least one of j; (1) = I5,(2)> Jsg(2) = s,(3)> -+ o> Jsy(n-1) = s, (n)> Jsy(n) =
isx(l) fails.

Definition 9.2 [12, Example 4.7] Let x, y € A. The pair (x, y) is said to be bi-R-
diagonal if all odd length C-valued bi-free cumulants involving ({x,x*},{y,y*})
vanish and

/{%(zl,...,zzn) =0

(where y € {¢,r}*" is such that y(k) = £if zy € {x,x*} and x(k) =rifzx € {y, y*})
unless (2, (1), - - -» Zs, (n)) is of one of the following forms:

« (2,25,2,2*,...,Z,Z")with Z € {x,x*, y, y*},

o (%,X,%,%%, . L% x YL Y L YY),

o (XX, X%, XX Y Y Y LY ),

o (X5, 0,X5,%, XL,y Yy, Ly ), or

o (X5, X%, XXX Y Y S Y L YY),
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To reduce the above to our desired context, let x, y € A. For d = 2, let
X:X®E1,2®Iz+x*®E2,1®Iz and Y:y®Iz®E1’2+}/*®Iz®E2,1,

which are then self-adjoint elements of A,. The pair (X, Y) is intimately related to
whether or not (x, y) is bi-R-diagonal. Indeed, combining [7, Proposition 2.21] and
[12, Theorem 4.9], we obtain the following proposition.

Proposition 9.2 As described above, the following conditions are equivalent:

(1) The pair (x, y) is bi-R-diagonal.

(2) The pair (X,Y) is bi-R-cyclic.

(3) The pair of algebras (alg(D,, X), alg(D,, Y)) is bi-free from (M,(C)¢, Ma(C),)
with amalgamation over D, with respect to F, o E;.

In addition, the joint moments of (X, Y) with respect to 7,4 are not too difficult to
describe. Indeed, forany n €N, Z1,25,..., Z, € {X, Y}, ye {{,r}",and z;, ..., 2, €
{x, y} such that

(, ika:X X, ika:X,
x(k) = . and  z = .
r, ifZy=Y y, ifZp=Y,

then

EZ(ZI"'Zn):Z Z (P(Zfl...25")(E1,2)p’}((1)(EI’Z)PSX(Z)...(El’z)psl(”).
k=1pre{l,*}

Thus, if # is odd, we see that 7,(Z; - - - Z,,) = 0 and if n is even, we see that

1 . . ) .
12(Z1+Zn) = 5(§0(Zf o)+l 2l),

where

], ifkisodd and _ |, ifkisodd
Psi(i) = %, if kis even Dsx(k) = 1, ifkiseven

(thatis, the I's and #’s alternate in the y-ordering). Hence, the joint moments of (X, Y)
with respect to 7; depend only on specific moments of (x, y). We let Ax, y denote the
set of all pairs (X, y9) in a C*-noncommutative probability space (Ao, o) such that
if we apply the above procedure to (x, o) resulting in (Xp, Yp), then (Xy, Yo) has
the same joint distribution as (X, Y) (so Ax,y = Ax,.v,)-

One specific case worth mentioning is when x and y are normal operators with
[alg(x,x*),alg(y, y*)] = 0, thus defining a probability measure y on C?. Then, X and
Y will be commuting self-adjoint operators and therefore their joint distribution gives
rise to a compactly supported probability measure py on R? with moments

0, if n + mis odd,
T (X"Y™) = o((x*x) (y*y)7), if n =2iand m = 2j,
2o((x*x) (xy* +x*y)(y*y)7), ifn=2i+landm=2j+1
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One additional property is required in this section. In particular, as we are attempt-
ing to generalize [8, Theorem 1.1], which makes heavy use of traciality, we need a
condition that lets us bypass the issue that 7, is not tracial on A,.

Definition 9.3 Let (A, ¢) be a C*-noncommutative probability space, and let x, y €
A. We say that (x, y) is alternating adjoint flipping with respect to ¢ if for any n € N,
ye{l,r}*", and zy, ..., 22, € {x, y} such that

x, ify(k)=4¢,
Zk =
y, ifx(k)=r,

we have that

ozl -2y = (2 - 28,

where

L if k is odd and AR if k is odd,
Psy() = %, if k is even Dsx(k) = 1, ifkiseven.

Remark 9.3 If (x, y) is alternating adjoint flipping, then the description of the joint
moments of (X, Y) above reduces to a nicer expression. Furthermore, we see that

o((x"x)") = ((xx)™) ~ and  9((y*»)") = p((yy")")

for all m € N, so that x*x and xx* have the same distribution and y*y and yy* have
the same distribution, which would be automatic if ¢ was tracial when restricted
to alg(x,x*) and when restricted to alg(y, y*) (a common assumption in bi-free
probability).

Recall that a pair (1, u,) is said to be a bi-Haar unitary if uy and 4, are commuting
normal operators such that

I, ifm+k=0
m_ k > >

u'u,) =
o(ui'ur) {0, otherwise.
Of course, bi-Haar unitary pairs are trivially seen to be alternating adjoint flipping,
since any joint moment with an equal number of adjoint and non-adjoint terms is 1
and any joint moment with a differing number of adjoint and non-adjoint terms is 0.
Here is another example which is of use in this paper.

Example 9.4 Let 3 be any Hilbert space of dimension at least 4, let F(J) denote
the Fock space generated by I, let ¢y be the vacuum vector state on B(F(H)), and
let {e1, €3, €3, e4} be an orthonormal set. For i =1,2, let's; = I(e;) + I*(e;) (i.e., left
creation plus annihilation by e;), and for j = 1,2,let d; = r(ej.2) + r*(ejs2) (i.e., right
creation and annihilation by e;,5). Thus, ({s1,s2}, {d1,d>}) is a bi-free central limit
distribution with variance 1 and covariance 0.

Let
1 1 .
cp=— and ¢y = —2(d1+1d2).

\/E(Sl +1isy) 7
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We call the pair (cg, ¢,) a bi-free circular pair (with mean 0, variance 1, and covari-
ance 0).

We claim that (cg,c,) is an example of a bi-R-diagonal pair that is alternating
adjoint flipping with respect to ¢g. To see that (¢, ¢, ) is bi-R-diagonal, we note that
any bi-free cumulant for ({s;,s2},{d1,d>}) of order 1, of order greater than 3, or
involving two different elements is 0. As

1 1
K, (Co>Co) = > (s1,81) + (Z)ZEMM (s2,52) =0,

1 ol
K1ge) (CE’ C;) = E’ﬁ(u) (s1,81) + (_1)25“1(2,2) (s2,52) =0,

and similar computations hold on the right, we have that (cy, c,) is bi-R-diagonal.

To see that (c¢, ¢, ) is alternating adjoint flipping with respect to ¢y, first note that
@o is tracial when restricted to alg(s;,s,) as s; and s, are freely independent with
respect to ¢g. Hence, for all n € N,

po((czee)”) = po((eecy)").

Moreover, as any monomial of odd length involving freely independent semicircular
variables is 0, we obtain that, forall n € N,

o(ce(czee)”) = 0= po(ci(cecy)").

Similarly, for all n € N, we have that

go((crer)") = go((erer)”)  and  go(er(erer)™) = 0= po(cr(ere)").

To see the remaining moment conditions, first note that {cs, ¢; } commutes with
{cr,c;}. Thus, as the y-ordering is not changed by commutation of left and right
operators, it suffices to show that

po((cree)(cre;)™) = po(cecy)" (7 er)™)s
po(ce(czen)(erey)™) = olcq (cocy)" (crer)™),
po((cree)" ey (ere/)™) = olci (cocy)"cr(crer)™), and
po(ce(ciee) e (erey)™) = @o(cg (cecy) er(cier)™),
for all n,m e Nu {0}. However, as {c¢, ¢} } is classically independent from {c,,c; }
since the joint bi-free cumulants vanish, each of the eight above moment expressions
simplifies to the ¢o-moment of the {c/, ¢; } term times the ¢o-moment of the {c,, ¢; }.

Thus, the desired moments are equal by the above knowledge of the ¢(-moments of
the {cy, ¢; } and the ¢o-moment of the {c,, ¢} }.

With the above definitions, notation, and constructions out of the way, our main
result is at hand.

Theorem 9.5 Let (A, ¢) be a C*-noncommutative probability space, and let x, y € A
be such that x*x and xx™ have the same distribution with respect to ¢ and y*y and yy*
have the same distribution with respect to ¢. With X and Y as described above,

min { &~ ({xo, %o } U {y0, 79} : (C,C), 9) [ (x0, yo) € Ax,y} 2207 (XL Y)
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and equality holds and is achieved for any pair (xo, yo) that is alternating adjoint
flipping and bi-R-diagonal.

Remark 9.6 Note that Theorem 9.5 is a generalization of [8, Theorem 1.1] to the bi-
free setting. Prior to the acknowledgements of [8], it is mentioned that the minimum
in the free result can only be reached by an R-diagonal element via the result from [15]
that ®*(x;,...,x, : B) = ®*(xy,...,x,) < oo implies {xi,...,x,} is free from B. As
there is no such known analogous result in the bi-free case, we leave Theorem 9.5 as
stated.

To begin the proof of Theorem 9.5, we note the following connecting the bi-free
Fisher information of ({x,x*},{y, y*}) and (X, Y) (and thereby demonstrating the
necessity of considering bi-free Fisher information with respect to completely positive
maps in this construction). We note that the following is a generalization of [8,
Proposition 3.6] with a similar but more complicated proof due to the y-ordering and
additional variables present.

Proposition 9.7 Under the assumptions of Theorem 9.5, if n1: My(C) — M,(C) is
defined by
" ar @z || _|[a22 0
a1 4dp 0 ay|’

O ({x,x"Ju{y,y"}: (C,C),9) =207 (XU Y : (Mz(C)y, M2(C)y), 7).

Proof First, suppose that the bi-free Fisher information ®*({x,x*}u{y,y*}) is
finite. Thus, there exist

then

Il

&6 calg(x,x*,y, %) 7

such that & is the left bi-free conjugate variable for x with respect to ¢ in the presence
of (x,{y,y*}) and &, is the left bi-free conjugate variable for x* with respect to ¢ in
the presence of (x*, {y, y*}). Let

[1]

= |:§1 502:| € MZ(LZ(AZ) Tz)) = LZ(MZ(AZ);Tz ®tr2),

We claimthat 8 = J, (X : (M2(C)y,alg (M,(C),,Y)),#). Since a similar result holds
on the right and since

=2
IE]Z, =
T2

(1al; +1&13)

N | =

the result will follow in this case. )
First, we claim that 2 € alg (X, Y, M,(C)s, My(C),) . Indeed, it is not difficult to
verify that

zQ® Eilajl ® Eiz)]'z € alg (X, Y, Mz(C)(,Mz((C)r)
for all ze{x,x*,y,y*} and iy iy j1,j2€{1,2}. Thus, since §&,& ¢

alg(x,x*, y, y*) : H“’, the claim follows.
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To complete the claim that E is the appropriate left bi-free conjugate variable, we
must show that E satisfies the left bi-free conjugate variable relations; that is, for all
neN, by, by,...,b, € My(C), ye {¢,r}" with y(n) =4, and Z,...,Z,_; € A, and
Ciy...Cyuq €14 ® My(C) ® My (C)°P where

_X if y(k)=¢ and C, - Ly,, ifx(k) =4,
Y, ify(k)=r Ry,, if x(k)=r,

we have that

(9.1)

72 (LoyRp, Z1C1 -+ Zy1CuaB) = Y ‘rz(Lbann( I ZPCP)LW(EZ(QHMchy))),

;(Slf)inz peVi\{k,n}

where Vi = {k <m < n | y(m) = £}.Bylinearity, it suffices to consider by = E;,_j, for
all k where i, jx € {1,2}. In that which follows, the proof is near identical to that of
[8, Proposition 3.6] taking into account the y-order. For notational purposes, for k €
{1,2},letk=3—k.

Letg = s;(l(n) (i.e., E appears qth in the y-ordering). We begin by computing the
left-hand side of (9.1). Using Lemma 9.1 (and recalling 7, = tr, oE;), proceeding via
x-order using commutation, we obtain that:

« the only way the product produces a nonzero trace is if ip = j,
o the term Ly, XLy, ) can be made to appear in the product and is nonzero only if

jO = is;{(l)’

o theterm Ly, ., , XLy, , can be made to occur forall 2 < k < q and is nonzero only

Sx(k)

if fs, (k-1) = s, (k>

o the term Lbs,c - Rb E can be made to occur and is nonzero only if Jsy(q-1) =

sx(a+1)

b5 (q+1)>

o theterm Ry, .., YRy, ,, canbe madeto occur forall g < k < nand is nonzero only

Sx(k)
if Jsy(k) = is,(k+1) (recall the opposite multiplication), and

« the term Ry, YRy, gy CAN be made to occur and is nonzero only if j; (n) = in.

Note the discrepancy in notation around the E term due to the labeling of the left and

right B-operators (i.e., b, (4) = by is in the wrong spot). Thus, with

(X)l,z =X, (X)Z,l = x*, (Y)l,z =) (Y)2,1 = }/*, (5)1,2 = fz, and (5)2,1 = fl,

and
(X )]0 o if s, (k) =1,
(X )Jsx(k—l)’jsx(k—l) , if1< S)((k) <q,
Ze =) iy k) =a,
¥ )Jsx(k)’jsx(k)’ if g <sy(k) <m,
4 )lsm)’fsm)’ if s, (k) = n,
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we see that the left-hand side of (9.1) is
Ls

2 Tnoto Zjosisy ) sy sisy 2) Jsy(a-2obsy(a-1)  Tsy-2) sy (qrn)  Jsy(a41)>isy(q+2) Fsyn-1y>isy(m j’)((")’Z

(9.2) x¢(Z~"Z),

where §;,; is the Kronecker delta. Moreover, using the conjugate variable relations for
&1 and &,, we see that

(9.3) 9(ZiZn)= 2 8 oimel T1 2% sv(I_IZp))

1<k<n eVe\{k,n} PeVi
x(k)=t P
where the §, : should be 6. - when k =521 (1).
Jsy(k=1)>Jsy(q-1) Jsy(k=1)>Jsy(q-1) X

To complete the proof that equation (9.1) holds, we compute the right-hand side
of equation (9.1) and show the kth term in the sum equals the kth term obtain in
equation (9.2) using equation (9.3). Indeed, for a fixed 1 < k < n for which y(k) = ¢,
we can compute

My =E[Cc [] Z,Cp |»
pe Vi
in a similar fashion to the above. Thus, to obtain a nonzero value, the relations
Jsy(p-1) = is,(p) for all p € Vi must hold. Moreover, one immediately obtains when
My # 0 that

Mi=¢ ( I1 Zp) T,
peVi
for some T € M,(C).

Next, notice that # (M} ) is equivalent to multiplying My on the leftby U = E; , +
E,,1 (for right conjugate variables, one would multiply on the right) and thus we
consider UM, in place of 17 (M ). At this point, notice by Lemma 9.1 that U T, can be
written as a product of by’s with b, (,-1) being the right-most term. By commutation,
Ro, (i) will act on the right of UTj thereby multiplying by b, (4+1) on the right and

forcing js, (4-1) = i5,(4+1) for a nonzero value to be obtained. One then proceeds as
above to show that a nonzero value is obtained only if the above relations are satisfied
and that the term that is produced agrees with the kth term of (9.3). Hence, the proof
is complete in the case that ®* ({x,x*} U {y, y*}) < occ.

To prove the result in the case that ®*({x,x*} u{y, y*}) = oo, it suffices to
show that if ®*(X U Y :#) < oo, then @*({x,x*}u{y,y*}: (C,C), ¢) < oo. Thus,
suppose that ®* (X LY : 1) < oo. Hence, E = J; (X : (M2(C)y¢,alg (M2(C),,Y)),n)

exists and can be written as
= El,l 51,2
&Ha Ly
We claim that

Ga=Je(x: (x5 {y,y"}),9)  and G =To(x": (6 {07 )) 9)
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As a similar result will hold on the right, we will obtain that ®* ({x,x*} u {y,y*}:
(C,C), ¢) < oo as desired.

As Eealg(X, Y,MZ(C)Z,MZ((C),)TZ, it is not difficult to see that &; ;e
Il

alg(x,x*,y,y*) *.Toseethat & ; and &) , satisfy the appropriate left bi-free conju-
gate variable relations, one need only use equation (9.1), choose by = E;, ;. satisfying
the above required relations for a nonzero value, and expand both sides of equation
(9.1) in an identical way to that above. The resulting equations are exactly the left bi-
free conjugate variable relations required. [ ]

Using the results from this paper, there is some immediate knowledge about the
bi-free Fisher information with respect to # from Proposition 9.7. We note that
the following is a generalization of [8, Proposition 3.7] with a similar but more
complicated proof due to the y-ordering and additional variables present.

Proposition 9.8  Under the assumptions and notation of Proposition 9.7,
O (XuY:n) 20 (XuY:qp,)

and the equality holds when (alg((Dz)e, X),2lg((D;),,Y)) is bi-free from
(M2(C)y, M5(C),) with amalgamation over D, with respect to F,. Moreover,

O*(XuY:ylp,) 20" (XuY)
and the equality holds if (x, y) is alternating adjoint flipping.
Proof Since 7 = # o F, we have that
OH(XuY:n) =0 (XuY:((My(C)g, Ma(C),),noF)
by Remark 7.1(5). Moreover,
O*(XUY s (Mo(C)rs Mao(C), )0 F) 2 0 (XU Y )

by Remark 71(7). Furthermore, equality holds if (alg((D3 )¢, X), alg((D2),, Y)) is bi-
free from (M»(C),, M(C),) over D, with respect to F, by Remark 71(8).
To see that @* (XU Y : ¢|p,) > @* (X uY), we assume that

E = Jo (X : ((D2)enalg((D2) V) 11, € alg(X. Y, (D2)en (D))

exists and show that Z satisfies the left bi-free conjugate variable relations for X in the

presence of Y. Thus, if P is the orthogonal projection of L, (A, 7, ) onto alg(X, Y) Il ,
then P(E) will also satisfy the left bi-free conjugate variable relations for X in the
presence of Y. As a similar result will hold on the right, the inequality ®*(Xu Y :
11lp,) > ®* (X 1Y) will be demonstrated.

By the defining property of E, we know forall n € N, by, by, ..., b, € Dy, y € {£,r}"
with y(n)=4¢, and Z;,...,Z,1€ A, and C;,...Cp1 €14 @ M(C) ® M,(C)°P,
where

7. - X, ?f)((k)zé and C, = Lp,» %f)((k)zf,
Y, ify(k)=r Ry,, if x(k)=r,
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that
(9.4)

Ly, Ry Z,Cy---Z,1C,1E) = Ly, R Z,Cy |L ,
T2( by Rb, 4101 n-1Gn-1 ) lgkqu TZ( bo b, (pekal\_%k,n} P P) W((FOEZ)(CkaerZpCp))

x(k)=¢

where Vi, = {k <m < n | y(m) = £}. We will use equation (9.4) where by = I, for all
k. To begin, notice that

”((F"El)(ck [1 chp)) = (x") 1,
PeVi

as odd moments of X are zero and as x*x and xx* have the same distribution with
respect to ¢. Therefore,

o((x"x)™) = p((xx™)") = T2(X°™),

for all m € N. Hence, equation (9.4) reduces to

Ty (Zl .- ~Z,,,1E) = Z T2 ((Zl, RN ’Zn—l)
1<k<n
x(k)=¢

vt ) 72 (X)),

which is exactly the desired formula.

To prove ®* (XU Y :7|p,) <O (XuY) when (x, y) is alternating adjoint flip-
ping thereby completing the proof, we proceed in a similar (but more complicated)
fashion. Suppose that

E=Ji(X:(C,alg(Y))) calg(X,Y) ™ calg(X,Y,(D2)e (Dz)r)H.HTZ

exists. We will demonstrate that Z satisfies the left bi-free conjugate variable relations
for X with respect to # in the presence of ((D;)¢,alg((D2),,Y)). As an analogous
result will hold on the right, this will complete the proof.

Write

First, we will demonstrate that & ; = &, , = 0. To begin, let

Il .
H, = span(Zs - Zon [ €N, Ze € (X, ¥]) ™ and
I

Ho=span(Zy---Zyyy | n€N, Zp € {X, Y})”.””.

By the defining property of E, we know for all n € N, y € {£,r}" with y(n) = ¢, and
Z1y...yZy_1 € Ay, where

X, ify(k)=¢,
Zi =
Y, ify(k)=r,
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that

(9.5) (21 ZuaB)= ), T ((Zly--- n-1)|ve\(k, n}) T2 (X| ‘)
1<k<n
x(k)=t

where Vi ={k<m<n | y(m)=/{}. Note that as 7, evaluates any odd product
involving X and Y to 0 by Lemma 9.1, if n—1 is even, then 7, (Z;---Z,1E) = 0.
Therefore, since B € H, + H,, we obtain that B € H,.

Note for neN, ye {{,r}*", Zy,..., Z2y1 € {X, Y}, and z1,..., 2201 € {x, ¥}

where
7, = X 1f)((k): and _x if y(k) =¢
Y ify(k)= y ifx(k)=r
that in M, (L, (A, ¢)) we have
- 0 7'z 2|
Zl Z2n—l - [zillzgz Zg;n 11 0

where

1, ifkisodd d *, if kis odd,
= an =
Psy(i) *, if k is even Tsx() 1, ifkiseven.
Therefore, as }, is the | - || -limit of matrices of the above form and as E € J(,, we
obtain that & ; = &, , = 0 as desired.
Let

neN,zge{x,x*,y,y*}
the powers of the z;’s alternate between 1 and * in the y-ordering and
and the first and last elements in the y-ordering have power 1

H; = span (zl cZop-1

H,

the powers of the z;’s alternate between 1 and * in the y-ordering
and the first and last elements in the y-ordering have power *

neN,zye{x,x*,y,y*}
span | zy---2un-1

Using the above and the notation & = & ; and &* = &, | (note that we do not claim that
there is an involution operation on L, (A, ¢) as we do not know ¢ is tracial), we see that
EeH e , & eH, e » and if we have a | - || ,-limiting sequence using {x, x", y, y*}
producing &, we can obtain a | - [ ,-limiting sequence using {x, x", y, y*} producing
&* by exchanging x <> x* and y <> y*. This, in conjunction with the alternating
adjoint flipping condition, lets us show if n € N, y € {£,r}*", Zy, ..., Zyn1 € {X, Y},
and zi, ..., 22,1 € {x, y}, where

7, = X, %fx(k):ﬁ and = X, ?fx(k):ﬁ,
Y, ify(k)=r y, ifx(k)=r,

that

(9.:6) 92"y 2 §0) = (' 25 2 €,
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where

-

if k is odd *, if k is odd,
Po(k) = and g, (k) =

, if kiseven 1, ifkiseven.

*

Indeed, consider zf t.. -zg:l"_’f &P with p,, =1 (the case py, = * is analogous). As the
terms preceding § in the y-ordering both must have +’s on themandas §isa | - | ,-limit

of elements of Hj, we see that 2 - - - Z0> 1 EP2n js a || - | o -limit of a linear combination

of monomials in {x,x*, y, y*} that alternate between * and non-*-terms in the -
ordering. As x <> x* and y < y* produce the same ¢-moment by the alternating
adjoint flipping condition (as z/" - - - 25"} and every element of H; is of odd length)
and produce a sequence that converges to zj'z7* - - - 232" £%2n with respect to | - | o the
claim is complete.

Returning to showing E satisfies the left bi-free conjugate variable relations for X
with respect to 7 in the presence of ((D;), alg((D3),, Y)), it suffices to demonstrate
that equation (9.4) holds for this . Furthermore, it suffices to verify that equation
(9.4) holds when by = E;, ;, for all k. By the same computations as done in the proof

of Proposition 9.7 with j; = iy for all k, we see with q = s;l(n) that

72 (LyyRo, Z1C1 - -+ Zy-1Cana B)

—(p(zp1 P2 zﬁfl_lfp"), if n is even and (io,isl(l) ..... isX(q,l),isX(qH) ..... isX(,,)) =(1,2,...,1,2)
= —(p(qu a2 .. zZ':l EIn), if n is even and (io, iy i (q-1)> Isy(qr1)s -+ isX(,,)) =(2,1,...,2,1)
0, otherwise

and

Z T2 LboRbn H ZPCP Lﬂ((FOEZ)(CkHPerZpCp))

<k<n c ,
1sksn, peVE\ (ko)
Y ek, ‘/’((Zfli-~->Zf:f]')|v,§\{k,n})<P((Zf‘,...,z"" Nve)
|)\£k\even

if nis even and (io, i (1)s---» s, (q-1)> sy (qe1)s - - > sy ) = (1,255 1,2),
— n— P n—
= % » lflf;ng ® ((z:ﬂ’ ... ’23—11)|V1f\{k,n}) @ ((zlﬂll’ ...,z l)|Vk)
|6k\even
if nis even and (io, is (1) - -» i (q-1)> fsy(qe1)s - -5 By () ) = (215005 2,1),
0, otherwise,

where Vi = {k <m < n | y(m) = £} (note only the terms where |V}/| is even survive
from the # o F o E, expression due to the form of X) and zj, p, and g are defined as
usual in this proof. Hence, it suffices to show when 7 is even that

9.7)

(P(Zl 22 .. Pn lfpn) — Z gp((z{’l,,..,Zﬁi}l)|VI:\{k’n})(/)((Z{Jl,,.. Pn- 1)|Vk)
i
| Vk| even
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(9.8)

ol tEm) = 5 (e gm0 (e ).
1<k<n
x(k)=¢
| Vi| even

Note that equations (9.7) and (9.8) are the same equation by the alternating adjoint
flipping condition and equation (9.6). Moreover, due to the defining property of &, we
know with n even that

Tz(Zl"'Zn,la) = T2 H Zp L o
2\, 7 | Pl 2)
x(k)=¢
= Z T2 H Zp T2 (lekl)
;?;f)?z peVi\{k,n}
Due to the form of X and the alternating adjoint flipping condition, we immediately
see that
7 (x") = 0, . ff|Vk| ?S odd,
o (.28 ),» i [Viis even,

and, for n even and k such that | Vi| is even, we have

Tz(( H ZP)):i(‘p((zflw'-’Z£211)|V£\{k,n})+(P((z;h)--')ZZill)lVlf\{k,n})>

peVE\ (k)
=9 ((z{", . ,zﬁi}1)|v,§\{k,n}) ,
thereby completing the proof. [ ]

Proof of Theorem 9.5 The proof follows immediately by combining Propositions
9.2,9.7,and 9.8. u

10 Maximizing bi-free entropy

In this section, we will prove Theorem 10.2 by obtaining an upper bound for the bi-
free entropy of a pair of operators and their adjoints based on the entropy of a pair of
matrices and demonstrate when equality is obtained. In particular, this generalizes an
essential result from [8, Section 5].

To begin, we must establish a formula for the bi-free entropy of non-self-adjoint
operators.

Definition 10.1 Let (A, @) be a C*-noncommutative probability space, and let
(X, X, u{XI U {v;, Y/}, {Yj'};.’i,l c A where X; and Y] are self-adjoint
for all i and j. The bi-free entropy of ({X,X*,X'},{Y,Y*,Y'}) is defined to be

2n+2m+n’ + 1 reef2n+2m+n’+m'
XX LY, YY) - wlnmmi[} (%_M)dt
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where
g(t) = " (X + VIC, X* +VIC), X' +V/ISUY + VIC,, Y* + VIC!, Y + /D),

where S and D consist of semicircular variables of mean 0, variance 1, and covariance
0 and C; and C, consist of circular variables of mean 0, variance 1, and covariance 0
such that

(XXX Y Y YD) 0 {(Sn D} u (L D) M
U{({Ce.i»Cpi Do v {(L{C G S
are bi-free.

Remark 10.1 Given any C*-noncommutative probability space (A, ¢), it is always
possible to find a larger C*-noncommutative probability space that contains the
necessary bi-free elements from Definition 10.1. Indeed, one need only consider the
scalar reduced free product of the appropriate spaces and use Definition 2.4 to obtain
bi-freeness. The fact that the state is positive follows as it will be a vector state.

In the simplest case, one may ask why we do not simply define

X ({ex u{y,y™}) = x" ({R(x), 3(x)} U {R(»),3(»)})

to trivially reduce to the self-adjoint case in a similar fashion to Remark 71(4) and why
the integrand in Definition 10.1 is well defined. Both of these questions are answered
via Remark 7.1(4) as

O ({x + Vi, x" +Vici fu{y+ Vieny" +Vic'})

1

= ECD* ({Sﬁ(x) + VIR (ce), I(x) + \/Zj(cz)} u {9{(}/) +VIR(er), 3 (y) + \ﬁﬁ(c,)})

= %GJ* ({%(x) + %sl,j(x) + \\;_;52} u {SR()/) + %dbj(y) + f;d;})

=0 ({\/Eiﬁ(x) +Vts1, V23(x) + \/?sz} U {\/Zm(y) +V1d,V23(y) + \/;dz}),

where 51, 53, di, and d, are as in Example 9.4. Hence, the integrand in Definition 10.1
is well defined with

¥ (xx b u{ny ) = ¢ ({V2R), V230 b u {VaR(), V23 })
= ¢ ({R(2),3(x)} U{R(), I(9)}) + 4In(V2).

We normalize Definition 10.1 so that the following holds and generalizes [8,
Theorem 1.4] in the case d = 1.

Theorem 10.2  Let (A, ¢) be a C*-noncommutative probability space, and let x, y € A
be such that x*x and xx* have the same distribution with respect to ¢ and y*y and y y*
have the same distribution with respect to ¢. With X and Y as in Section 9,

X {xex buly,y)) <2 (XuY)
and equality holds whenever the pair (x, y) is bi-R-diagonal and alternating adjoint
flipping.
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To prove Theorem 10.2, we need two technical lemmata. For the first, note that the
following does not immediately follow from Remark 2.4 as being bi-free over M,(C)
with respect to E, does not imply being bi-free with respect to 7,.

Lemma 10.3 Let (A, ¢) be a C*-noncommutative probability space, let x,y € A be
such that x*x and xx* have the same distribution with respect to ¢ and y*y and yy*
have the same distribution with respect to ¢, and let (c¢, ¢, ) be a bi-free circular pair in
A with mean 0, variance 1, and covariance 0 such that

({2 Ly y D ui{en b, D u {1 {er ¢/ 1)}
are bi-free with respect to ¢. Using the notation of Section 10, if
Se=ct®FE12Q0L+¢c, ®E1®L €Ay and S;=c;®LQE2+c, L, ®Ey1 € Ay,

then Sy and S, have semicircular distributions with respect to T, of mean 0 and variance
land

{(XCY)u{(Se14,)} U {(14,,80) )
are bi-free with respect to T,.

Proof As {({ce,c; 1)} u{(L,{c,,c}})} are bi-free with respect to ¢ by Example
9.4, Remark 2.4 implies that (S, 1) and (1, S, ) are bi-free with respect to E,. Moreover,
as ¢y and ¢, commute, sy and s, commute. Hence, we see for all n, m € N that

Ta(sys;") = tra(Ea(sys)”)) = tra(Ea(s7)Ea(s)"))
_]o, if n or mis odd,
- (p((c}c@ﬂ(p((c;‘cr)%), if n and m are even,

by Example 9.4 and the alternating adjoint flipping condition. Therefore, as c; ¢, and
c; ¢, are known to have the same distributions as the square of a semicircular element
of mean 0 and variance 1 (see [17, Section 5.1]), we obtain that (sg,s,) is the bi-free
central limit distribution with mean 0, variance 1, and covariance 0 with respect to 7,.
Hence, {(S¢,14,)} U {(14,,S,)} are bi-free with respect to 7,.

To complete the proof, it suffices to show that {(X,Y)} u{(Ss,S,)} are bi-free
with respect to 7,. Therefore, by [3], it suffices to show for all n e N, y e {{,r}",
nonconstant y € {1,2}",and Z; € {X,Y, S, S, }, where

X, ify(k)=/and y(k) =1,
Y, ify(k)=randy(k)=1,

7. =
“Tse if x(k) = Cand (k) =2,
Sy, if x(k) =rand y(k) =2,
that
(101) T2(Z1"'Zn) = Z H;Z(Zl,...,Z,,),
me€BNC(y)
<y
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where y is representing the partition {{k | y(k)=1},{k| y(k) =2}}. Note if

Z15.-+> 2y € {X, ¥, ¢q, ¢, } are such that
X, ika = X,
)/, ika = Y,
Zi =
co, ifZp =Sy,
Cr: lek = Sr’

then by Lemma 9.1 and the fact that ({x,x*},{y, y*}) u{(ce,1)} U {(1,¢,)} are bi-
free with respect to ¢, we have that

0, if n is odd,
T Z.Z =
() {i((P(z{"~-zﬁ")+¢(Zf‘~-~zﬁ"))> if n is even,
0, if n is odd,
T2 Srenncip wE (A mmt) H g (22, ifniseven,

n<y

where

L if k is odd and R if k is odd,
Psy() = %, if kis even Dsx(k) = 1, ifkiseven.

To show that this agrees with the right-hand side of equation (10.1), we divide the
discussion into several cases. To this end, let

Ixy={k|y(k)=1} and  Is={k|y(k)=2}.

First, suppose that n is odd. If |Is| is odd, then the right-hand side of equation
(10.1) is zero as there must be a cumulant involving an odd number of Sy and S, and
{(S¢, S;)} is a bi-free central limit distribution with 0 mean. Otherwise, |Ix y| is odd.
In this case, we may rearrange the sum on the right-hand side of equation (10.1) to
add over all 7 € BNC(y) with 7 < y that form the same partition when restricted to
Is. Since summing over such partitions yields a product of moment terms in the X’s
and Y’s where the sum of the lengths of the moments is | Iy, y| and since all odd moment
terms involving only X’s and Y’s is zero by Lemma 9.1, this portion of the sum yields
zero. Hence, equation (10.1) holds when 7 is odd.

In the case n is even, note if |I| is odd, then the right-hand side of equation (10.1)
is still zero. However,

% Z Ky (zf‘,...,zﬁ”) + Ry (zf‘,...,zf,”) =0
7eBNC(x)
<y
as there must be a cumulant involving an odd number of ({c/,¢;},{c,,¢;}) and
(ce» ¢;) is a bi-free circular pair. Thus, we may assume that n, |Is|, and |Ix, y| are even.

Under these assumptions, we claim that

ky (2 L) vk (2. 2) = Y kP (Zn. . Za).

neBNC(y) neBNC(x)
<y n<y

1
2
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To see this, again we need only consider m € BNC(y) that form pair partitions
when restricted to Is and no block of 7 contains both an element of {k | x(k) = ¢}
and of {k | y(k) =r}, since {(S¢,1)} U{(1,S,)} are bi-free with respect to 7, and
{{eo, ¢ 1,1} u{(1, {cs, c; })} are bi-free with respect to ¢. For such a partition 7, if
we let 7 be the largest partition on Ix y such that 77 U 7|, is an element of BNC(y),
then by adding over all ¢ € BNC( y) with ¢ < y and 0|, = 7], it suffices to show that

1
3 (‘Pﬁ((zf71 ----- 2 ) ) iy (s Z) i) + o7 (oo z)l ) ey (-0 20) |Is))
(10.2)
= ()7 ((Z1s s Zu) Iy ) -
Note that
P Pn _ " _
/@Zhs ((zll,...,zn ) Is) =0 or ﬁzhs ((zlql,...,zz ) Is) =0

if and only if 7 has a block with two *-terms or two non-x-terms, as 7, is a pair
partition and (¢, ¢, ) is a bi-circular pair. In this case, we would have that 77 has a
block of odd length, and thus the right-hand side of equation (10.2) is also zero, as any
odd 1,-moment involving X and Y is zero. Otherwise, both ¢-cumulants are 1 and
this forces every block of 7 to be of even length and alternate between 1 and * in the
x-ordering. Since

(")) = o((xx)") = 2(X*™) and 9((y*9)™) = p((yy*)") = Ta(Y>")

and since (by the assumption that 77 does not contain a block containing elements of
{k | x(k) =¢}andof {k | y(k) =r}) there is a single block of 77 containing elements
of {k | x(k) =¢} and {k | x(k) =r}, adding the two ¢-terms together produces
exactly the 7, term in equation (10.2). ]

Lemma 10.4 Let (A, @) be a C*-noncommutative probability space, let x, y € A, and
let (cq, ¢;) be a bi-free circular pair in A with mean 0, variance 1, and covariance 0 such

that
(31 oy DU {en T h D} U fener )

are bi-free with respect to ¢. Then:

(1) If (x,y) is bi-R-diagonal, then (x +Vtep, y+ \/Zcr) is bi-R-diagonal for all t €
(0, 00).

(2) If (x, y) is alternating adjoint flipping, then (x +/teg, y + \/?c,) is alternating
adjoint flipping for all t € (0, 00).

(3) If x*x and xx* (rsp.e y*y and yy*) have the same distribution with respect to ¢,
then (x +\/tcy)* (x +\/tey) and (x +/teo) (x + Vteg)* (resp. (y +/te,)* (v +
Vte,) and (y +\/te,)(y +/tc,)*) have the same distribution with respect to ¢.

Proof As (¢, c,) is bi-R-diagonal by Example 9.4 and as sums and scalar multiples
of bi-R-diagonal pairs are bi-R-diagonal by [7, Proposition 3.1], (i) follows.

To see that (ii) holds, first, we claim that forall n € N, y € {£, r}?" and zy,...,2, €
{x, y,ce, ¢, } such that

e {x,ce}, ify(k)=¢,
{rer}s ifx(k) =r,
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we have that

ozl -2y = (228,

where
L if k is odd and EN if k is odd,
Psy(i) = %, if k is even Dsx(k) = 1 if k is even.
Recall that
o(e'-z) = Y KalEhe . 2y)
neBNC(x)

and the bi-free cumulant is zero if any block of 7 contains both an element of
{x,x*,y,y*} and an element of {c/, ¢}, ¢, c;}. As the only cumulants involving
C¢» €} 5 Cr> €5 With non-zero values are

R (corcg) =1= R,y (c>ce) and K1g,n (cricy) =1= Kl (crscr)s

for any fixed m ¢ BNC( y) for which the blocks containing {c, ¢;, ¢,, ¢} } do not cause
the bi-free cumulant to be zero, we may add over all elements of BNC(y) with the
same blocks as 7 for those indices corresponding to elements of {cs, ¢, c,,c; } to
obtain a product of moments involving {x, x*, y, y* }, each of which is of even length
and alternates between 1 and + in the y-ordering. We may then use the alternating
adjoint flipping condition on (x, y) to exchange the powers and reverse this cumulant
reduction process to obtain ¢(z]" - --z32"), thereby completing the claim. Thus, (ii)
then follows by linearity.
To see that (iii) holds, we desire to show that

0 (((x +Vte))* (x + \/EC@))n) = go(((x +Vteo) (x + \/;Cg)*)n)

for all n € N. To see how the left-hand side can be changed into the right-hand side,
arguments similar to the proof of Lemma 10.3 are used. First, we expand out the
product and expand the moment using linearity. Then, for each moment term, we
expand via the free cumulants and use the fact that mixed free cumulants vanish.
Cumulants involving an odd number of ¢; and ¢; vanish, and thus we can consider
only pair partitions when restricted to entries involving c, and ¢;. Any cumulant
involving just ¢, or just ¢; vanishes and can be ignored. By adding over all partitions
with the same blocks on ¢, and ¢; that do not vanish yields a product of moment terms
of the form ¢((x*x)™) and ¢((xx*)™). For any such terms, viewing the (21)th term
as the first term does not change the value, as the distributions of x*x and xx* are the
same, thereby effectively moving the x or ¢, term at the end to the beginning. One
then reverses the above process and obtains the right-hand side as desired. [ ]

Proof of Theorem 10.2. As per Remark 10.1, we may assume without loss of gen-
erality that there exists a bi-free circular pair (c¢, ¢,) (with mean 0, variance 1, and
covariance 0) in A such that

{{xx" 1y D u{{eo. i 1D u{L{er 7 1)}
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are bi-free. Therefore, as {(X,Y)} U {(Ss,S,)} are bi-free with respect to 7, by

Lemma 10.3, we obtain that
1 © 2
¥ (XUY)=In(2me) + - f (— —O* (X+ VIS uY + ﬁs,)) dt.
0

1+¢

However, as

X+V1tSp = (x +\Vtc)) ® B, ® I + (x +Vtcp)* ® E21 ® I,
Y+ \/;Sr = (y+ \/EC‘,) ®Iz ®E1’2 + (y+ \/;C,—)* ®Iz ®E2’1

and as Lemma 10.4(iii) shows that the assumptions of Theorem 9.5 as satisfied, we
obtain that

(10.3)

oM ({x +teo, (x+ \/;Cg)*} u{y+ Ve, (y+ \/?c,)*}) > 20" (X VIS UY + \/?S,)

for all ¢ € (0, 00). Hence, the inequality
X ({nxjulyy h) <2y (Xuy)

follows by comparing the above bi-free entropy formula with that from Definition 10.1.

In the case that (x, y) is bi-R-diagonal and alternating adjoint flipping, Lemma 10.4
implies that (x + \/tcs, y + \/tc,) is bi-R-diagonal and alternating adjoint flipping for
all t € (0, 00); thus; equality holds in equation (10.3) by Theorem 9.5. ]

11 Other results

In this section, we will examine other results from [8] that generalize to the bi-
free setting. As these results are less connected to bi-free entropy with respect to a
completely positive map and have proofs that can be adapted from [8] using the same
modifications from Sections 9 and 10 to deal with the y-ordering, we simply state these
results.

Theorem 11.1 (Generalization of [8, Theorem 12]) Let (A,¢) be a C*-
noncommutative probability space, let d € N, and let (A4, Eg, €, 74) be as in Section 9.
Then:

(1) Forall {xi,j}‘ij:l, {)’i,j}?,j:l CA,if

d d
X = Zx,-,]-®E,-,]-®Id and Y= Zyi:j@)ld@Ei,j’
i,j=1 i,j=1

then

* * 1d * 1d * * *
@ ({xi,]"xi,j}i,jzlU{yi,j’yi,j}i,jzl) >d’0* (X, X uY,Y").

Moreover, equality holds if ({X, X*}, {Y, Y*}) is bi-free from (M4(C)¢, M4(C),)
with respect to 7.
(2) Ifin (i) X and Y are self-adjoint, then

q)* ({x,-,]-}‘ii,j:l U {yi)j}?,]ﬁl) > d3q)*(X (] Y)
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with equality holding if ({X},{Y}) is bi-free from (My(C);, Ma(C),) with
respect to T,.

Theorem 11.2 (Generalization of [8, Theorem 15]) Let (A,¢) be a C*-

noncommutative probability space, let d € N, and let (Ag, Eq, €, 74) be as in Section 9.
Then:

(1) Forall {x,-,j}’ijzl, {y,-,j}’ijzl CA,if

d d
X= in,j®Ei,j®Id and Y= Zyi,j®1d ®Ei,j’
i,j=1 i,j=1

then
X" ({x,-,j,xf)j}f,j:l u{yij v ijl) <d* (' (X, X*uY,Y*")-2In(d)).
Moreover, equality holds if ({ X, X*},{Y, Y*}) is bi-free from (M 4(C)¢, My (C),)
with respect to 7.
(2) Ifin (i) X and Y are self-adjoint, then
X (Ui vy i) <4 (X (XuY) ~In(d))
with equality holding if ({X},{Y}) is bi-free from (M4(C);, My(C),) with
respect to 7.

To prove Theorem 11.2, we note that it is essential to prove the following.

Lemma 11.3 (Generalization of [8, Proposition 5.3]) Let (A,¢) be a C*-
noncommutative probability space, let Dy, D, be *-subalgebras of A, let d € N, and let
(A4, Eq, €,14) be as in Section 9.

(1 If{c&i,]-}f’j:l and {Cr,i,j};'i,j=1 are circular elements of A with mean 0 and variance
1 such that

* d * d
{(De, Dr)} u{({ew,i,j> CZ,i,j}’l)}i,j=1 u {1 {erij> Cr,i,j)}i,j=1

are bi-free, then

d d
C[: Z C@),‘)j@E,‘)j@Id and C, = Z Cr,i,j®1d®Ei,j
i,j=1 i,j=1

are circular elements of mean 0 and variance d such that ({C;,C;},1),
(1,{C;,C;}), and (Dy ® My(C) ® I, D, ® I; ® M;(C)) are bi-free with respect
to 74.

(2) If{Sg,,-,j}‘ij:l and {s,,,-,j}‘ii)j=1 are elements of A with mean 0 and variance 1 such
that sy;; and s, ;; are semicircular elements for all i, s, ; ; and s, ; ; are circular
elements for all i, j, s; ; ;= s¢,j,i and s;; ; = sy,j,i for all i, j, and

{(De; D)} U {(s0,0,6 D Yoy U{ s i) Yy U { ({50,055 57,0, 1> D hicicjea

u{(L {sri,j> 55:,i,j)}lsi<jgd
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are bi-free, then

d d
Sy = Z SZ,i,j®Ei,j®Id and S, = Z Sr,i,j®1d®Ei,j
i,j=1 i,j=1

are semicircular elements of mean 0 and variance d such that (Sy,1), (1,S,), and
(De®@ Mys(C)®14,D, ® 1; ® My(C)) are bi-free with respect to 7.

Note that the proof of Lemma 11.3 is obtained by first generalizing [8, Lemma 5.4],
which clearly holds due to the bi-free cumulant characterization of the conjugate vari-
ables. The proof then proceeds via constructing the appropriate conjugate variables for
either (Cy, C,) or (8¢, S;) using the techniques from Section 9.
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