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Bi-free entropy with respect to completely
positive maps
Georgios Katsimpas and Paul Skoufranis
Abstract. In this paper, a notion of non-microstate bi-free entropy with respect to completely
positive maps is constructed thereby extending the notions of non-microstate bi-free entropy and
free entropy with respect to a completely positive map. By extending the operator-valued bi-free
structures to allow for more analytical arguments, a notion of conjugate variables is constructed
using both moment and cumulant expressions. The notions of free Fisher information and entropy
are then extended to this setting and used to show minima of the Fisher information and maxima
of the non-microstate bi-free entropy at bi-R-diagonal elements.

1 Introduction

Free entropy was introduced in a series of papers by Voiculescu including [14, 15] that
cemented the foundations of free probability and its applications to operator algebras.
Of note is the non-microstate approach of [14] that generalized the notions of Fisher
information and entropy to the noncommutative random variables studied in free
probability by using a conjugate variable system and free Brownian motions. These
ideas were further extended to the operator-valued setting by Shlyakhtenko in [10] by
modifying the conjugate variable formulae to involve a completely positive map on
the algebra of amalgamation. One immediate application was [10, Proposition 7.14],
which obtained a formula for the Jones index of a subfactor. Furthermore, free entropy
with respect to a completely positive map was essential to the work in [8], which
demonstrated that minimal values for the free Fisher information and maximal values
for the non-microstate free entropy existed and were obtained at R-diagonal elements.

More recently, in [16], Voiculescu extended the notion of free independence to
simultaneously study the left and right actions of algebras on reduced free product
spaces. In particular, this permits a notion of independence, called bi-free inde-
pendence, that contains both free and classical independence (see [11]) and a free
probability construction to simultaneously study both a von Neumann algebra and its
commutant (see Example 2.3). Significant effort has gone into enhancing results from
free probability to the bi-free setting and examining potential applications. In terms
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2 G. Katsimpas and P. Skoufranis

of entropy, Charlesworth and the second author recently developed [4, 5], thereby
extending both the microstate and non-microstate free entropies to the bi-free setting.

The purpose of this paper is to further develop the theory of non-microstate bi-
free entropy χ∗ to incorporate the existence of a completely positive map and examine
applications of said theory. In particular, our main applications are Theorem 9.5, which
examines the minimal value of the bi-free Fisher information for collections of pairs
of operators with similarities in their distributions, and the following theorem, which
cumulates the first author’s work on bi-R-diagonal elements from [7].

Theorem 1.1 Let (A, φ) be a C∗-noncommutative probability space, and let x , y ∈ A
be such that x∗x and xx∗ have the same distribution with respect to φ and y∗y and yy∗
have the same distribution with respect to φ. With τ2 ∶ A⊗M2(C) ⊗M2(C)op → C

defined by

τ2(T ⊗ b1 ⊗ b2) = φ(T) tr2(b1b2)
and

X = x ⊗ E1,2 ⊗ I2 + x∗ ⊗ E2,1 ⊗ I2 and Y = y ⊗ I2 ⊗ E1,2 + y∗ ⊗ I2 ⊗ E2,1 ,

we have that

χ∗({x , x∗} ⊔ {y, y∗}) ≤ 2χ∗(X ⊔ Y)
and equality holds whenever the pair (x , y) is bi-R-diagonal and alternating adjoint
flipping.

This paper is structured as follows. After reviewing some preliminaries and nota-
tion pertaining to bi-free probability in Section 2, Section 3 will extend the struc-
tures used in operator-valued bi-free probability. This is necessary as expectations
in operator-valued bi-free probability need not be positive and thus to perform
analytical computations additional structures are required. These structures occur and
are modeled based on the left and right actions of a II1 factor on its L2-space (see
Example 3.5). By adding a tracial state on the algebra of amalgamation that satisfies
certain compatibility conditions, the appropriate L2-spaces can be constructed and
used to study operator-valued bi-free probability. It is these structures that the authors
believe will be vital to future applications of operator-valued bi-free probability.

In Section 4, the operator-valued bi-free cumulant functions are extended to allow
for the last entry to be an element of the corresponding L2-space. This is thematic in
bi-free probability where the last entry corresponds to the location where left and right
operators mix and, therefore, it is natural to extend the bi-free moment and cumulant
functions to have a mixture of left and right operators in the last entry. These analytical
extensions of the operator-valued bi-free cumulants are shown to have the appropriate
bi-multiplicative properties by methods similar to [2].

In Section 5, the bi-free conjugate variables with respect to completely positive
maps are defined via moment relations. It is then shown that these moment relations
transfer to cumulant relations using the results of Section 4 and thus the natural
properties of free conjugate variables extend to this setting. One technical detail in
developing the bi-free entropy with respect to a completely positive map is to show
that if one perturbs operators by operator-valued bi-free central limit distributions,
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Bi-free entropy with respect to completely positive maps 3

then the resulting operators have bi-free conjugate variables. Thus, it is necessary
to show that one can always add in the appropriate operator-valued bi-free central
limit distributions into the structures from Section 3 and remain within that context.
Results along these line sufficient for this paper are developed in Section 6.

In Sections 7 and 8, the bi-free Fisher information and entropy with respect to a
completely positive map are defined and shown to have the desired properties from
[4, 10, 14] with very similar proofs. Sections 9 and 10 extend the techniques from [8]
taking into account the differences in bi-free probability to obtain the minimal value
of the bi-free Fisher information of a collection of pairs of operators with similarities
in their distributions and the above theorem. Finally, Section 11 outlines some other
results that immediately extend from [8] to the bi-free setting using the results and
techniques from this paper.

2 Preliminaries

In this section, we will remind the reader on the basic combinatorial and operator-
valued structures that have been used in previous papers on bi-free independence.
For a more in-depth reminder of these concepts, we refer the readers to the original
papers [2, 3].

2.1 Combinatorics on the lattice of bi-non-crossing partitions

For n ∈ N, the collection of all partitions on {1, . . . , n} is denoted by P(n). The
elements of any π ∈ P(n) are called the blocks of π. A partial ordered on P(n) is
defined via refinement where for π, σ ∈ P(n) we write π ≤ σ if every block of π is
contained in a block of σ . The maximal element of P(n) with respect to this partial
order is the partition consisting of one block and is denoted by 1n , whereas the minimal
element is the partition consisting of n-blocks and is denoted by 0n . Note that P(n)
becomes a lattice under this partial ordering. For π, σ ∈ P(n), the join of π and σ ,
denoted π ∨ σ , is the minimum element of the non-empty set {υ ∈ P(n) ∣ υ ≥ π, σ}.
A partition π on {1, . . . , n} is said to be non-crossing if whenever V , W are blocks of
π and v1 , v2 ∈ V , w1 , w2 ∈W are such that

v1 < w1 < v2 < w2 ,

then V =W . The lattice of non-crossing partitions on {1, . . . , n} is denoted NC(n).
In the bi-free setting, all operators are implicitly imbued with a direction, either left

or right. Given a sequence of n operators, we will use a map χ ∈ {�, r}n to distinguish
whether the kth operator is a left or a right operator. Such a map automatically gives
rise to a permutation sχ on {1, . . . , n} defined as follows: if χ−1({�}) = {i1 < ⋅ ⋅ ⋅ < ip}
and χ−1({r}) = { j1 < ⋅ ⋅ ⋅ < jn−p}, then

sχ(k) =
⎧⎪⎪⎨⎪⎪⎩

ik , if k ≤ p,
jn+1−k , if k > p.

From a combinatorial point of view, the main difference between free and bi-free
probabilities arises from dealing with sχ . The permutation sχ naturally induces a total
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4 G. Katsimpas and P. Skoufranis

order ≺χ on {1, . . . , n}, henceforth referred to as the χ -order as follows:

i ≺χ j ⇐⇒ s−1
χ (i) < s−1

χ ( j).

Instead of reading {1, . . . , n} in the traditional order, this corresponds to first reading
the elements of {1, . . . , n} labeled “�” in increasing order followed by reading the
elements labeled “r” in decreasing order. Note that if V is any non-empty subset of
{1, . . . , n}, the map χ∣V naturally gives rise to a map sχ∣V , which should be thought of
as a permutation on {1, . . . , ∣V ∣}.

Definition 2.1 Let n ∈ N and χ ∈ {�, r}n . A partition π ∈ P(n) is called bi-non-
crossing with respect to χ if the partition s−1

χ ○ π (i.e., the partition obtained by applying
the permutation s−1

χ to each entry of every block of π) is non-crossing. Equivalently,
π is bi-non-crossing with respect to χ if whenever V , W are blocks of π and v1 , v2 ∈
V , w1 , w2 ∈W are such that

v1 ≺χ w1 ≺χ v2 ≺χ w2 ,

then V =W . The collection of bi-non-crossing partitions with respect to χ is denoted
by BNC(χ). It is clear that

BNC(χ) = {π ∈ P(n) ∣ s−1
χ ○ π ∈ NC(n)} = {sχ ○ σ ∣ σ ∈ NC(n)} .

In the context when the map χ is clear, we will refer to an element of BNC(χ)
simply as bi-non-crossing. To each partition π ∈ BNC(χ), we can associate a “bi-non-
crossing diagram” (with respect to χ) by placing nodes along two vertical lines, labeled
1 to n from top to bottom, such that the nodes on the left line correspond to those
values for which χ(k) = � (similarly for the right), and connecting those nodes which
are in the same block of π in a non-crossing manner. In particular, a partition π ∈ P(n)
is in BNC(χ) if and only if it can be drawn in this non-crossing way.

Example 2.1 If χ ∈ {�, r}6 is such that χ−1({�}) = {1, 2, 3, 6} and χ−1({r}) = {4, 5},
then

(sχ(1), . . . , sχ(6)) = (1, 2, 3, 6, 5, 4)

and the partition given by

π = {{1, 4}, {2, 5}, {3, 6}}

is bi-non-crossing with respect to χ even though π ∉ NC(6). This may also be seen via
the following diagrams:

1
2
3

4
5

6 �→
1 2 3 6 5 4
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The set of bi-non-crossing partitions with respect to a map χ ∈ {�, r}n automati-
cally inherits the lattice structure from P(n) via the partial order of refinement. The
minimal and maximal elements of BNC(χ) will be denoted by 0χ and 1χ , respec-
tively, and note that 0χ = sχ(0n) = 0n and 1χ = sχ(1n) = 1n . For ∅ ≠ V ⊆ {1, . . . , n},
we denote by min≤ V and min⪯χ V the minimum element of V with respect to the
natural order and the χ-order of {1, . . . , n}, respectively, with similar notation used
for the maximum elements. For π, σ ∈ BNC(χ) with σ ≤ π, we will denote by [σ , π]
the interval with respect to the partial order of refinement.

Definition 2.2 The bi-non-crossing Möbius function is the map

μBNC ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × BNC(χ) → Z

defined recursively by

∑
ν∈BNC(n)

π≤ν≤σ

μBNC(π, ν) = ∑
τ∈BNC(n)

π≤ν≤σ

μBNC(ν, σ) =
⎧⎪⎪⎨⎪⎪⎩

1, if π = σ
0, if π < σ

whenever π ≤ σ while taking the zero value otherwise.

The connection between the bi-non-crossing Möbius function and the Möbius
function on the lattice of non-crossing partitions μNC is given by the formula

μBNC(π, σ) = μNC(s−1
χ ○ π, s−1

χ ○ σ)
for all π ≤ σ ∈ BNC(χ). Hence, μBNC inherits permuted analogs of the multiplicative
properties of μNC (see [3, Section 3]). In particular, if n ∈ N, if χ ∈ {�, r}n , if π, σ ∈
BNC(χ) such that π ≤ σ , and if V1 , . . . , Vm are unions of blocks of π that partition
{1, . . . , n}, then the natural map

[π, σ] �→
m
∏
k=1
[π∣Vk , σ ∣Vk ]

τ ↦ (τ∣Vk
)m

k=1

is a bijection and

μBNC(π, σ) = μBNC(π∣V1
, σ ∣V1) ⋅ ⋅ ⋅ μBNC(π∣Vm

, σ ∣Vm).

2.2 B-B-noncommutative probability spaces and bi-freeness

To study operator-valued bi-free independence, certain structures are required. Thus,
we shall remind the reader of the general structures as developed in [2] and refer the
reader there for more details.

Definition 2.3 Let B be a unital ∗-algebra, and let Bop denote the unital ∗-algebra
with the same elements as B with the opposite multiplication. A B-B-noncommutative
probability space consists of a triple (A, E , ε), where A is a unital ∗-algebra, ε ∶ B ⊗
Bop → A is a unital ∗-homomorphism such that the restrictions ε∣B⊗1B

and ε∣1B⊗Bop

are both injective, and E ∶ A→ B is a unital linear map such that

E(ε(b1 ⊗ b2)a) = b1E(a)b2 and E(aε(b ⊗ 1B)) = E(aε(1B ⊗ b)),
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6 G. Katsimpas and P. Skoufranis

for all b, b1 , b2 ∈ B and a ∈ A. In addition, consider the unital ∗-subalgebras A� and
Ar of A given by

A� = {a ∈ A ∣ aε(1B ⊗ b) = ε(1B ⊗ b)a for all b ∈ B}

and

Ar = {a ∈ A ∣ aε(b ⊗ 1B) = ε(b ⊗ 1B)a for all b ∈ B}.

We call A� and Ar the left and right algebras of A, respectively.

Note that one can always assume that a B-B-noncommutative probability space is
generated as a ∗-algebra by A� and Ar .

Example 2.2 Let A and B be unital ∗-algebras, and let φ ∶ A→ C be a unital, linear
map. If A = A⊗ B ⊗ Bop, if ε ∶ B ⊗ Bop → A is defined by ε(b1 ⊗ b2) = 1A ⊗ b1 ⊗ b2
for all b1 , b2 ∈ B, and E ∶ A→ B is defined by

E(a ⊗ b1 ⊗ b2) = φ(a)b1b2

for all a ∈ A and b1 , b2 ∈ B, then (A, E , ε) is a B-B-noncommutative probability space.
Indeed, clearly, ε is a unital injective ∗-homomorphism. Furthermore, note for all Z ∈
A and b, b1 , b2 , b3 , b4 ∈ B that

E((1A ⊗ b1 ⊗ b2)(Z ⊗ b3 ⊗ b4)) = φ(Z)b1b3b4b2 = b1E(Z ⊗ b3 ⊗ b4)b2

and

E((Z ⊗ b1 ⊗ b2)(1A ⊗ b ⊗ 1B)) = φ(Z)b1bb2 = E((Z ⊗ b1 ⊗ b2)(1A ⊗ 1B ⊗ b)).

Hence, E satisfies the required properties.
For future use, notice that

A⊗ B ⊗ 1B ⊆ A� and A⊗ 1B ⊗ Bop ⊆ Ar .

Moreover, in the case B = C, (A, E , ε) efficiently reduces down to (A, φ), the usual
notion of a noncommutative probability space.

Example 2.3 Let M be a finite von Neumann algebra with a tracial state τ ∶M→ C,
and let L2(M, τ) be the Gelfand-Naimark-Segal Hilbert space generated by (M, τ).
For T ∈M, let LT denote the left action of T on L2(M, τ), and let RT denote the right
action of T on L2(M, τ). Furthermore, let A be the algebra generated by {LT , RT ∣
T ∈M}.

Let B be a unital von Neumann subalgebra of M, and let EB ∶M→ B be the
conditional expectation of M onto B. Recall that if P ∶ L2(M, τ) → L2(B, τ) is the
orthogonal projection of L2(M, τ) onto L2(B, τ), then EB(Z) = P(Z1M) for all
Z ∈M.

Define ε ∶ B ⊗ Bop → A by ε(b1 ⊗ b2) = Lb1 Rb2 and define E ∶ A→ B by

E(Z) = P(Z1M)

for all Z ∈ A. Elementary von Neumann algebra theory implies that the range of E
is indeed contained in B. To see that (A, E , ε) is a B-B-noncommutative probability
space, first note that ε is clearly a unital ∗-homomorphism that is injective when
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Bi-free entropy with respect to completely positive maps 7

restricted to B ⊗ 1B and when restricted to 1B ⊗ Bop. Moreover, note for all Z ∈ A and
b, b1 , b2 ∈ B that

E(Lb1 Rb2 Z) = P(b1(Z1M)b2) = b1P(Z1M)b2 = b1E(Z)b2

and

E(TLb) = P(TLb1M) = P(Tb) = P(TRb1M) = E(TRb).

Hence, E satisfies the required properties.

The map ε ∶ B ⊗ Bop → A encodes the left and right elements of B in A. For
notational purposes, for each b ∈ B, we will denote ε(b ⊗ 1B) and ε(1B ⊗ b) by Lb and
Rb , respectively, and we denote

B� = ε(B ⊗ 1B) = {Lb ∣ b ∈ B} and Br = ε(1B ⊗ Bop) = {Rb ∣ b ∈ B}.

To examine bi-free independence with amalgamation over B, it is necessary that left
operators are contained in A� (i.e., commute with the right copy of B) and right
operators are contained in Ar (i.e., commute with the left copy of B).

Definition 2.4 [2] Let (A, E , ε) be a B-B-noncommutative probability space.
(1) A pair of B-algebras is a pair (C , D) of unital subalgebras of A such that

B� ⊆ C ⊆ A� and Br ⊆ D ⊆ Ar .

(2) A family {(Ck , Dk)}k∈K of pairs of B-algebras in A is called bi-free with amal-
gamation over B if there exist B-B-bimodules with specified B-vector states
{(Xk ,

○
Xk , pk)}k∈K and unital homomorphisms

lk ∶ Ck → L�(Xk) and rk ∶ Dk → Lr(Xk),

such that the joint distribution of the family {(Ck , Dk)}k∈K with respect to E
coincides with the joint distribution of the images

{((λk ○ lk)(Ck), (ρk ○ rk)(Dk))}k∈K

in the space L(∗k∈KXk)with respect to EL(∗k∈KXk), where ∗k∈KXk is the reduced

free product of {(Xk ,
○
Xk , pk)}k∈K with amalgamation over B, λk is the left-

regular representation of L�(Xk) on ∗k∈KXk , and ρk is the right-regular repre-
sentation of Lr(Xk) on ∗k∈KXk .

Remark 2.4 Let A and B be unital ∗-algebras, and let φ ∶ A→ C be a unital linear
map. Let (A, E , ε) be as in Example 2.2. By [5, 11], if {(Ck , Dk)} are ∗-subalgebras ofA
that are bi-free with respect to φ, then {(Ck ⊗ B ⊗ 1B , Dk ⊗ 1B ⊗ Bop)}k∈K are bi-free
with amalgamation over B with respect to E. Thus, Example 2.2 is the correct notion
of “inflating (A, φ) by B” in the bi-free setting.

Example 2.5 Let M1 and M2 be finite von Neumann algebras with a common von
Neumann subalgebra B and tracial states τ1 and τ2, respectively, such that τ1∣B =
τ2∣B . Let M =M1 ∗B M2 be the reduced free product von Neumann algebra with
amalgamation over B, let EB ∶M→ B be the conditional expectation of M onto B,
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8 G. Katsimpas and P. Skoufranis

and let τ = τ1 ∗ τ2 = τ1∣B ○ EB be the tracial state on M. If E and ε are as in Example
2.3 for (M, τ), then

{({LX ∣ X ∈M1}, {RY ∣ Y ∈M1})} and {({LX ∣ X ∈M2}, {RY ∣ Y ∈M2})}

are bi-free with amalgamation over B.

In order to study bi-free independence with amalgamation, the operator-valued
bi-free moment and cumulant functions are key. These functions have specific prop-
erties that are described via the following concept. In what follows and for the
remainder of the paper, given an n-tuple (Z1 , . . . , Zn) and V ⊆ {1, . . . , n}, we will use
(Z1 , . . . , Zn)∣V to denote the ∣V ∣-tuple where only the entries Zk where k ∈ V remain.

Definition 2.5 [2, Definition 4.2.1] Let (A, E , ε) be a B-B-noncommutative probabil-
ity space. A map

Φ ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × Aχ(2) × ⋅ ⋅ ⋅ × Aχ(n) → B

is called bi-multiplicative if it is C-linear in each of the Aχ(k) entries and for all n ∈ N,
χ ∈ {�, r}n , π ∈ BNC(χ), b ∈ B, and Zk ∈ Aχ(k), the following four conditions hold:
(1) Let

q =max
≤
{k ∈ {1, . . . , n} ∣ χ(k) ≠ χ(n)}.

If χ(n) = �, then

Φ1χ(Z1 , . . . , Zn−1 , Zn Lb) =
⎧⎪⎪⎨⎪⎪⎩

Φ1χ(Z1 , . . . , Zq−1 , ZqRb , Zq+1 , . . . , Zn), if q ≠ −∞,
Φ1χ(Z1 , . . . , Zn−1 , Zn)b, if q = −∞.

If χ(n) = r, then

Φ1χ(Z1 , . . . , Zn−1 , Zn Rb) =
⎧⎪⎪⎨⎪⎪⎩

Φ1χ(Z1 , . . . , Zq−1 , ZqLb , Zq+1 , . . . , Zn), if q ≠ −∞,
bΦ1χ(Z1 , . . . , Zn−1 , Zn), if q = −∞.

(2) Let p ∈ {1, . . . , n}, and let

q =max
≤
{k ∈ {1, . . . , n} ∣ χ(k) = χ(p), k < p} .

If χ(p) = �, then

Φ1χ (Z1 , . . . , Zp−1 , Lb Zp , Zp+1 . . . , Zn) =
⎧⎪⎪⎨⎪⎪⎩

Φ1χ (Z1 , . . . , Zq−1 , Zq Lb , Zq+1 , . . . , Zn), if q ≠ −∞,
bΦ1χ (Z1 , . . . , Zn−1 , Zn), if q = −∞.

If χ(p) = r, then

Φ1χ (Z1 , . . . , Zp−1 , Rb Zp , Zp+1 . . . , Zn) =
⎧⎪⎪⎨⎪⎪⎩

Φ1χ (Z1 , . . . , Zq−1 , Zq Rb , Zq+1 , . . . , Zn), if q ≠ −∞,
Φ1χ (Z1 , . . . , Zn−1 , Zn)b, if q = −∞.

(3) Suppose V1 , . . . , Vm are unions of blocks of π that partition {1, . . . , n} with each
being a χ-interval (i.e., an interval in the χ-ordering) and the sets V1 , . . . , Vm are
ordered by ⪯χ (i.e., (min⪯χ Vk) ≺χ (min⪯χ Vk+1) for all k). Then,

Φπ(Z1 , . . . , Zn) = Φπ∣V1
((Z1 , . . . , Zn)∣V1

) ⋅ ⋅ ⋅Φπ∣Vm
((Z1 , . . . , Zn)∣Vm

).
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Bi-free entropy with respect to completely positive maps 9

(4) Suppose that V and W are unions of blocks of π that partition {1, . . . , n}, V is a
χ-interval, and sχ(1), sχ(n) ∈W . Let

p =max
⪯χ
{k ∈W ∣ k ≺χ min

⪯χ
V } and q =min

⪯χ
{k ∈W ∣max

⪯χ
V ≺χ k} .

Then, we have that

Φπ(Z1 , . . . , Zn) =
⎧⎪⎪⎨⎪⎪⎩

Φπ∣W ((Z1 , . . . , Zp−1 , Zp LΦπ∣V ((Z1 , . . . ,Zn)∣V ) , Zp+1 , . . . , Zn)∣W) , if χ(p) = �,
Φπ∣W ((Z1 , . . . , Zp−1 , RΦπ∣V ((Z1 , . . . ,Zn)∣V )Zp , Zp+1 , . . . , Zn)∣W) , if χ(p) = r ,

=
⎧⎪⎪⎨⎪⎪⎩

Φπ∣W ((Z1 , . . . , Zq−1 , LΦπ∣V ((Z1 , . . . ,Zn)∣V)Zq , Zq+1 , . . . , Zn)∣W) , if χ(q) = �,
Φπ∣W ((Z1 , . . . , Zq−1 , Zq RΦπ∣V ((Z1 , . . . ,Zn)∣V ) , Zq+1 , . . . , Zn)∣W) , if χ(q) = r .

Given a B-B-noncommutative probability space (A, E , ε), the moment and cumu-
lant functions are well-defined bi-multiplicative functions.

Definition 2.6 Let (A, E , ε) be a B-B-noncommutative probability space.
(1) The operator-valued bi-free moment function

E ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n) → B

is the bi-multiplicative function (see [2, Theorem 5.1.4]) that satisfies

E1χ(Z1 , Z2 , . . . , Zn) = E(Z1Z2 ⋅ ⋅ ⋅ Zn),

for all n ∈ N, χ ∈ {�, r}n , and Zk ∈ Aχ(k).
(2) The operator-valued bi-free cumulant function

κB ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n) → B

is the bi-multiplicative function (see [2, Corollary 6.2.2]) defined by

κB
π(Z1 , . . . , Zn) = ∑

σ∈BNC(χ)
σ≤π

Eσ(Z1 , . . . , Zn)μBNC(σ , π),

for each n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), and Zk ∈ Aχ(k). In the special case when
π = 1χ , the map κB

1χ
is simply denoted by κB

χ . An instance of Möbius inversion
yields that the equality

Eσ(Z1 , . . . , Zn) = ∑
π∈BNC(χ)

π≤σ

κB
π(Z1 , . . . , Zn)

holds for all n ∈ N, χ ∈ {�, r}n , σ ∈ BNC(χ), and Zk ∈ Aχ(k).

The condition of bi-freeness with amalgamation over B for a family of pairs of B-
faces is equivalent to the vanishing of their mixed operator-valued bi-free cumulants,
as the following result indicates.

Theorem 2.6 [2, Theorem 8.1.1] Let (A, E , ε) be a B-Bnon-commutative probability
space, and let {(Ck , Dk)}k∈K be a family of pairs of B-algebras in A. The following are
equivalent:
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10 G. Katsimpas and P. Skoufranis

(1) The family {(Ck , Dk)}k∈K is bi-free with amalgamation over B.
(2) For all n ∈ N, χ ∈ {�, r}n , Z1 , . . . , Zn ∈ A, and nonconstant maps γ ∶ {1, . . . , n} →

K such that

Zk ∈
⎧⎪⎪⎨⎪⎪⎩

Cγ(k), if χ(k) = �,
Dγ(k), if χ(k) = r,

we have that

κB
χ(Z1 , . . . , Zn) = 0.

3 Analytical B-B-noncommutative probability spaces

The notion of a B-B-noncommutative probability space is purely an algebraic
construction. In order to perform the more analytical computations necessary in
this paper, additional structure is needed. These structures are analogous to those
observed in Example 2.3 and will be seen to be the correct enhancement of a B-B-
noncommutative probability space to perform functional analysis.

Given a unital ∗-algebra A, by a state τ ∶ A→ C, we will always mean a unital, linear
functional with the property that τ(a∗a) ≥ 0 for all a ∈ A. If Nτ = {a ∈ A ∶ τ(a∗a) =
0}, then L2(A, τ)will denote the Hilbert space completion of the quotient space A/Nτ
with respect to the inner product induced by τ given by

⟨a1 + Nτ , a2 + Nτ⟩ = τ(a∗2 a1),

for all a1 , a2 ∈ A and ∥ ⋅ ∥τ will denote the Hilbert space norm on L2(A, τ).

Definition 3.1 Given a unital ∗-algebra B, an analytical B-B-noncommutative proba-
bility space consists of a tuple (A, E , ε, τ) such that:
(1) (A, E , ε) is a B-B-noncommutative probability space,
(2) τ ∶ A→ C is a state that is compatible with E; that is,

τ(a) = τ (LE(a)) = τ (RE(a))

for all a ∈ A,
(3) the canonical state τB ∶ B → C defined by τB(b) = τ(Lb) for all b ∈ B is tracial,
(4) left multiplication of A on A/Nτ are bounded linear operators and thus extend to

bounded linear operators on L2(A, τ), and
(5) E is completely positive when restricted to A� and when restricted to Ar .

Remark 3.1 Given an analytical B-B-noncommutative probability space (A, E , ε, τ),
note the following.
(1) The fact that τB is a state immediately follows from the fact that τ is a state and ε

is a ∗-homomorphism. Specifically, for positivity, notice for all b ∈ B that

τB(b∗b) = τ(Lb∗b) = τ((Lb)∗Lb) ≥ 0.

(2) Note for all b ∈ B that

∥b + NτB∥
2
τB
= τB(b∗b) = τ(Lb∗b) = ∥Lb + Nτ∥2

τ .
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Hence, the map from B/NτB to L2(A, τ) defined by

b + NτB ↦ Lb + Nτ

for all b ∈ B is a well-defined, linear isometry. Therefore, a standard density
argument yields that

L2(B, τB) ≅ {Lb + Nτ ∣ b ∈ B}
∥⋅∥τ ⊆ L2(A, τ).

Henceforth, we shall only be making reference to the space L2(B, τB) via this
identification.

(3) The state τ naturally extends to a linear functional on L2(A, τ) by defining

τ(ξ) = ⟨ξ, 1A + Nτ⟩L2(A,τ)

for all ξ ∈ L2(A, τ). Similarly, the scalar τB(ζ) = τ(ζ) is well defined for any ζ ∈
L2(B, τB).

(4) As left multiplication by A on A/Nτ is bounded, we immediately extend the left
multiplication map to obtain a unital ∗-homomorphism from A into B(L2(A)).
Thus, aξ is a well-defined element of L2(A, τ) for all a ∈ A and ξ ∈ L2(A, τ).

(5) The requirement of the left multiplication inducing bounded operators is imme-
diate in the case when A is a C∗-algebra; however, it also holds in more general
situations. For instance, when A is a unital ∗-algebra generated by its partial
isometries, the left multiplication map is automatically bounded (see [9, Exercise
7.22]).

(6) Since the state τB is assumed to be tracial, right multiplication of B on B/NτB is
also bounded. Thus, for any b1 , b2 ∈ B and ζ ∈ L2(B, τB), we have that b1ζb2 is
a well-defined element of L2(B, τB) and, in L2(A, τ), Lb1 Rb2 ζ = b1ζb2. Further-
more, note that left and right multiplication of B on L2(B, τB) are commuting
∗-homomorphisms.

(7) For all a ∈ A and b ∈ B, we automatically have τ(aLb) = τ(aRb), as τ is compatible
with E. Indeed,

τ(aLb) = τ(LE(aLb)) = τ(LE(aRb)) = τ(aRb),

as desired. Hence, Lb + Nτ = Rb + Nτ for all b ∈ B.

In some cases, property (v) of Definition 3.1 is redundant.

Lemma 3.2 Let (A, E , ε, τ) satisfy assumptions (i)–(iv) of Definition 3.1. If B is a C∗-
algebra and τB is faithful, then property (v) of Definition 3.1 holds.

Proof To see that E is completely positive on A�, let d ∈ N and A = [a i , j] ∈ Md(A�).
To verify that Ed(A∗A) ≥ 0 in B, as B is a C∗-algebra and τB is faithful, it suffices to
show for all h = (b1 , . . . , bd) ∈ Bd that

⟨Ed(A∗A)h, h⟩L2(B ,τB)⊕d ≥ 0.
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Note that

⟨Ed(A∗A)h, h⟩L2(B ,τB)⊕d =
d
∑

i , j,k=1
τB (b∗i E(a∗k , i ak , j)b j)

=
d
∑

i , j,k=1
τB (E(Rb j Lb∗i a∗k , i ak , j))

=
d
∑

i , j,k=1
τB (E(Lb∗i a∗k , i ak , jRb j))

=
d
∑

i , j,k=1
τB (E(L∗b i

a∗k , i ak , jLb j))

=
d
∑

i , j,k=1
τ (L∗b i

a∗k , i ak , jLb j)

=
d
∑
k=1

τ (c∗k ck) ,

where ck = ∑d
j=1 ak , jLb j . Hence, as τ is positive and the computation for Ar is similar,

the result follows. ∎

At this point, let us revisit Examples 2.2 and 2.3 to provide the canonical examples
of analytical B-B-noncommutative probability spaces.

Example 3.3 Let A and B be unital C∗-algebras, and let φ ∶ A→ C be a state. Recall
from Example 2.2 that (A, E , ε) is a B-B-noncommutative probability space where
A = A⊗ B ⊗ Bop, ε ∶ B ⊗ Bop → A is the natural embedding, and E ∶ A→ B is defined
by

E(Z ⊗ b1 ⊗ b2) = φ(Z)b1b2 ,

for all Z ∈ A and b1 , b2 ∈ B.
Let τB ∶ B → C be any tracial state. Extend τB to a linear map τ ∶ A→ C by defining

τ(Z ⊗ b1 ⊗ b2) = τB(E(Z ⊗ b1 ⊗ b2)) = φ(Z)τB(b1b2),

for all Z ⊗ b1 ⊗ b2 ∈ A. We claim that (A, E , ε, τ) is an analytical B-B-noncommutative
probability space. To see this, it suffices to prove that τ is a state that is compatible with
E, since A and B being unital C∗-algebras automatically imply that left multiplication
will be bounded on L2(A, τ), and Lemma 3.2 implies that E is completely positive
when restricted to A� or Ar (or one may simply use the fact that states are completely
positive).

Clearly, τ is a unital, linear map that is compatible with E. To see that τ is positive,
let (Z i)n

i=1 ⊆ A, (bk)n
k=1 , (ck)n

k=1 ⊆ B, and

a =
n
∑
k=1

Zk ⊗ bk ⊗ ck ∈ A.
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To see that τ(a∗a) ≥ 0, note that

τ(a∗a) =
n
∑

i , j=1
τ(Z∗

i Z j ⊗ b∗i b j ⊗ c jc∗i )

=
n
∑

i , j=1
φ(Z∗

i Z j)τB(b∗i b jc jc∗i )

=
n
∑

i , j=1
φ(Z∗

i Z j)τB(c∗i b∗i b jc j)

=
n
∑

i , j=1
φ(Z∗

i Z j)τB((b i c i)∗(b jc j)),

with the third equality being due to the fact that τB is tracial. Observe that the matrices

[Z∗
i Z j] and [(b i c i)∗(b jc j)]

are positive in Mn(A) and Mn(B), respectively. Therefore, as states on C∗-algebras
are completely positive, this implies that the matrices

[φ(Z∗
i Z j)] and [τB((b i c i)∗(b jc j))]

are positive in Mn(C). Consequently,

[φ(Z∗
i Z j)τB((b i c i)∗(b jc j))]

is also positive being the Schur product of positive matrices (see, for instance, [9,
Lemma 6.11]). Therefore, as the sum of all entries of a positive matrix equals a
positive scalar, we obtain that τ(a∗a) ≥ 0. Hence, (A, E , ε, τ) is an analytical B-B-
noncommutative probability space.

Remark 3.4 Note that Example 3.3 demonstrates that E need not be a positive map
on A since the product of two positive matrices need not be positive. Thus, even if
τB ∶ B → C is defined to be a state, τB ○ E may not be for an arbitrary A.

Example 3.5 For a finite von Neumann algebra M with a unital von Neumann
subalgebra B and tracial state τ, let (A, E , ε) be the B-B-noncommutative probability
space as in Example 2.3. Note that τ extends to a unital linear map τA ∶ A→ C defined
by

τA(T) = ⟨T1M , 1M⟩L2(M,τ)

for all T ∈ A. Clearly, τA is a state as A ⊆ B(L2(M, τ)) and τA is a vector state.
Furthermore, notice that

τA(T) = ⟨P(T1M), 1M⟩L2(M,τ) = ⟨LE(T)1M , 1M⟩L2(M,τ) = τA(LE(T))

for all T ∈ A and τA(T) = τA(RE(T)) by a similar computation. Finally, as

τA(Lb) = ⟨b, 1M⟩L2(M,τ) = τ(b)

for all b ∈ B, we see that τB = τA ○ E is tracial on B as τ is tracial. Again, we automati-
cally have that left multiplication will be bounded on L2(A, τ) and that E is completely
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positive when restricted (as they are the conditional expectations of a copy of M onto
B). Hence, (A, E , ε, τA) is an analytical B-B-noncommutative probability space.

As motivated by Example 3.5, it is natural in an analytical B-B-noncommutative
probability space to extend the expectation E ∶ A→ B to a map from L2(A, τ) to
L2(B, τB) via orthogonal projection. From this point onward, for a ∈ A, we will often
denote the coset a + Nτ simply by a and, for b ∈ B, we will often denote the coset
b + Nτb by b̂. Note that if τB is faithful, then the map b ↦ b̂ is a bijection.

Proposition 3.6 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space. If Ẽ ∶ L2(A, τ) → L2(B, τB) denotes the orthogonal projection, then

Ẽ(a) = Ê(a)

for all a ∈ A. In particular, when τB is faithful, Ẽ extends E.

Proof Notice for all a ∈ A and b ∈ B that

⟨a − Ê(a), Lb⟩L2(B ,τB)
= ⟨Lb∗(a − LE(a))1A, 1A⟩L2(A,τ)

= τ (Lb∗(a − LE(a)))
= τ(Lb∗a) − τ (Lb∗LE(a))
= τ (LE(Lb∗ a)) − τ (Lb∗E(a)) = 0.

Since b was arbitrary, the element a − Ê(a) is orthogonal to L2(B, τB) and hence
Ẽ(a) = Ê(a). ∎

Remark 3.7 Notice in Proposition 3.6 that if B is finite-dimensional and the trace τB ∶
B → C is faithful, then L2(B, τB) ≅ B, so E ∶ A→ B extends to a map from L2(A, τ)
into B.

Of course, Ẽ inherits many properties that E is required to have.

Proposition 3.8 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let Ẽ ∶ L2(A, τ) → L2(B, τB) denote the orthogonal projection. For a ∈ A,
b, b1 , b2 ∈ B, ξ, ξ1 , ξ2 ∈ L2(A, τ), and ζ ∈ L2(B, τB), the following hold:
(1) τ(ξ) = τB (Ẽ(ξ)).
(2) Ẽ(aLb) = Ẽ(aRb).
(3) Ẽ(Lb1 Rb2 ξ) = b1 Ẽ(ξ)b2.
(4) If a ∈ A�, then Ẽ(aζ) = E(a)ζ.
(5) If a ∈ Ar , then Ẽ(aζ) = ζE(a).
(6) If τ(Lb ξ1) = τ(Lb ξ2) for all b ∈ B, then Ẽ(ξ1) = Ẽ(ξ2).
(7) If τ(Rb ξ1) = τ(Rb ξ2) for all b ∈ B, then Ẽ(ξ1) = Ẽ(ξ2).

Proof For (i), since L1B = 1A as ε is unital, note that

τB (Ẽ(ξ)) = ⟨Ẽ(ξ), 1B⟩L2(B ,τB)
= ⟨ξ, Ẽ(1B)⟩L2(A,τ) = ⟨ξ, 1A⟩L2(A,τ) = τ(ξ),

as desired.
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For (ii), note for all b′ ∈ B that

⟨Ẽ(aLb), b̂′⟩
L2(B ,τB)

= ⟨aLb , Lb′⟩L2(A,τ) = τ (L(b′)∗ aLb) = τ (L(b′)∗ aRb) = ⟨Ẽ(aRb), b̂′⟩
L2(B ,τB)

.

Hence, Ẽ(aLb) = Ẽ(aRb).
For (iii), let (an)n≥1 be a sequence of elements of A that converge to ξ in L2(A, τ).

Since left multiplication in L2(A, τ) by elements of A are bounded and thus continu-
ous, and since left and right multiplication in L2(B, τB) by elements of B are bounded
and thus continuous, we obtain that

Ẽ(Lb1 Rb2 ξ) = lim
n→∞

E(Lb1 Rb2 an) + NτB = lim
n→∞

b1E(an)b2 + NτB = b1 Ẽ(ξ)b2 ,

as desired.
For (iv) and (v), let (cn)n≥1 be a sequence of elements of B that converge to ζ in

L2(B, τB). Thus, by the inclusion of L2(B, τB) into L2(A, τ), we have that (Lcn)n≥1 is
a sequence of elements of L2(A, τ) that converge to ζ in L2(A, τ). Thus, if a ∈ A�, then

Ẽ(aζ) = lim
n→∞

E(aLcn) + NτB

= lim
n→∞

E(aRcn) + NτB

= lim
n→∞

E(Rcn a) + NτB

= lim
n→∞

E(a)cn + NτB = E(a)ζ ,

thereby proving (iv). Note that (v) is similar using (Rcn)n≥1 in place of (Lcn)n≥1.
As (vi) and (vii) are similar, we prove (vii). Note by (iii) and the fact that τB is tracial

that

⟨Ẽ(ξ1) − Ẽ(ξ2), b̂⟩L2(B ,τB)
= ⟨Ẽ(ξ1)b∗ , Ẽ(1A)⟩L2(B ,τB)

− ⟨Ẽ(ξ2)b∗ , Ẽ(1A)⟩L2(B ,τB)

= ⟨Ẽ(Rb∗ ξ1), Ẽ(1A)⟩L2(B ,τB)
− ⟨Ẽ(Rb∗ ξ2), Ẽ(1A)⟩L2(B ,τB)

= ⟨Rb∗ ξ1 , 1A⟩L2(A,τ) − ⟨Rb∗ ξ2 , 1A⟩L2(A,τ)

= τ(Rb∗ ξ1) − τ(Rb∗ ξ2) = 0.

As the above holds for all b ∈ B, (vii) follows. ∎

4 Analytical bi-multiplicative functions

In this section, we extend the notion of bi-multiplicative functions on analytical B-B-
noncommutative probability spaces in order to permit the last entry to be an element
of L2(A, τ). This is possible as the last entry can be treated as a left or right operator
as [12] shows, or can be treated as a mixture of left and right operators as [4] shows.
Extending the operator-valued bi-free cumulant function to permit the last entry to
be an element of L2(A, τ) is necessary in order to permit the simple development of
conjugate variable systems in the next section.

We advise the reader that familiarity with specifics of bi-multiplicative functions,
the construction of the operator-valued bi-free moment function, and the construc-
tion of the operator-valued bi-free cumulant function from [2] would be of great aid
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in comprehension of this section. As the proofs are nearly identical, to avoid clutter,
we will focus on that which is different and why the results of [2] extend.

Definition 4.1 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let Φ be a bi-multiplicative function on (A, E , ε). A function

Φ̃ ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n−1) × L2(A, τ) → L2(B, τB)

is said to be analytical extension of Φ if Φ̃π is C-multilinear function that does
not change values if the last entry of χ is changed from an � to an r and satisfies
the following three properties: for all n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), ξ ∈ L2(A, τ),
ζ ∈ L2(B, τB), b ∈ B, and Zk ∈ Aχ(k):

(1) If χ(k) = � for all k ∈ {1, 2, . . . , n}, then

Φ̃1χ(Z1 , . . . , Zn−1 , Zn ζ) = Φ1χ(Z1 , . . . , Zn)ζ ,

and if χ(k) = r for all k ∈ {1, 2, . . . , n}, then

Φ̃1χ(Z1 , . . . , Zn−1 , Zn ζ) = ζΦ1χ(Z1 , . . . , Zn).

In particular, by setting ζ = 1B = 1A, we see that Φ̃ does extend Φ.
(ii) Let p ∈ {1, . . . , n}, and let

q =max
≤
{k ∈ {1, . . . , n} ∣ χ(k) = χ(p), k < p} .

If χ(p) = �, then

Φ̃1χ(Z1 , . . . , Zp−1 , Lb Zp , Zp+1 , . . . , Zn−1 , ξ)

=
⎧⎪⎪⎨⎪⎪⎩

Φ̃1χ(Z1 , . . . , Zq−1 , ZqLb , Zq+1 , . . . , Zn−1 , ξ), if q ≠ −∞,
bΦ̃1χ(Z1 , . . . , Zn−1 , ξ), if q = −∞,

and if χ(p) = r, then

Φ̃1χ(Z1 , . . . , Zp−1 , Rb Zp , Zp+1 , . . . , Zn−1 , ξ)

=
⎧⎪⎪⎨⎪⎪⎩

Φ̃1χ(Z1 , . . . , Zq−1 , ZqRb , Zq+1 , . . . , Zn−1 , ξ), if q ≠ −∞,
Φ̃1χ(Z1 , . . . , Zn−1 , ξ)b, if q = −∞.

(iii) Suppose V1 , . . . , Vm are unions of blocks of π that partition {1, . . . , n}, with each
being a χ-interval. Moreover, assume that the sets V1 , . . . , Vm are ordered by ⪯χ
(i.e., (min⪯χ Vk) ≺χ (min⪯χ Vk+1)). Let q ∈ {1, . . . , m} be such that n ∈ Vq , and
for each k ≠ q, let

bk = Φπ∣Vk
((Z1 , . . . , Zn−1 , ξ)∣Vk

) .

Then, bk ∈ B for k ≠ q and

Φ̃π(Z1 , . . . , Zn−1 , ξ) = b1b2 ⋅ ⋅ ⋅ bq−1Φ̃π∣Vq
((Z1 , . . . , Zn−1 , ξ)∣Vq

)bq+1 ⋅ ⋅ ⋅ bm .
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(iv) Suppose that V and W are unions of blocks of π that partition {1, . . . , n} such
that V is a χ-interval and sχ(1), sχ(n) ∈W . Let

p =max
⪯χ
{k ∈W ∣ k ⪯χ min

⪯χ
V } and q =min

⪯χ
{k ∈W ∣max

⪯χ
V ⪯χ k} .

Then, one of the following four cases hold:
a) If n ∈ V and k =max≤ W , then

Φ̃π(Z1 , . . . , Zn−1 , ξ) = Φ̃π∣W ((Z1 , . . . , Zk−1 , Zk Φ̃π∣V ((Z1 , . . . , Zn−1 , ξ)∣V), . . . , Zn−1 , ξ)∣W) .

b) If n ∈W , then

Φ̃π(Z1 , . . . , Zn) =
⎧⎪⎪⎨⎪⎪⎩

Φ̃π∣W ((Z1 , . . . , Zp−1 , Zp LΦπ∣V ((Z1 , . . . ,Zn)∣V ) , Zp+1 , . . . , Zn)∣W) if χ(p) = �,
Φ̃π∣W ((Z1 , . . . , Zp−1 , RΦπ∣V ((Z1 , . . . ,Zn)∣V )Zp , Zp+1 , . . . , Zn)∣W) if χ(p) = r ,

=
⎧⎪⎪⎨⎪⎪⎩

Φ̃π∣W ((Z1 , . . . , Zq−1 , LΦπ∣V ((Z1 , . . . ,Zn)∣V )Zq , Zq+1 , . . . , Zn)∣W) if χ(q) = �,
Φ̃π∣W ((Z1 , . . . , Zq−1 , Zq RΦπ∣V ((Z1 , . . . ,Zn)∣V ) , Zq+1 , . . . , Zn)∣W) if χ(q) = r .

(Recall that we can set χ(n) = � or χ(n) = r.)

Remark 4.1 Note that the pair of a bi-multiplicative function and its extension are
very reminiscent of the two expectation extensions of bi-multiplicative functions used
for operator-valued conditional bi-free independence from [6]. The main difference is
that the notion in [6] looks at interior versus exterior blocks of the partition, whereas
Definition 4.1 looks at the blocks containing the last entry. This is due to the fact that
the L2(A, τ) element is always the last entry and must be treated differently being a
generalization of a mixture of left and right operators.

It is worth pointing out that treating the last entry as an element of L2(A, τ) is no
issue. In particular, the properties in Definition 4.1 are well defined. Indeed, properties
(i) and (ii) of Definition 4.1 are clearly well defined and properties (iii) and (iv) in
Definition 4.1 are well defined as all terms where Φ is used over Φ̃ never involve an
element of L2(A, τ) and as elements from B have left and right actions on L2(B, τB).

Remark 4.2 Note that property (i) of Definition 4.1 is clearly the correct generaliza-
tion of property (i) from Definition 2.5, as an element of L2(B, τB) is playing the role
of Lb and Rb in this generalization and thus should be able to escape these expressions
if only left operators or right operators are present. The absence of the full property (i)
from Definition 2.5 causes no issues when attempting to reduce or rearrange the value
of Φ̃π to an expression involving only Φ̃1χ ’s, as the last entry of any sequence input
into Φ̃ is always in L2(A, τ), is reduced to an element of L2(B, τ), and an element of
A� or Ar then acts on it via the left action of A on L2(A, τ). Thus, there is never any
need to move the L2(A, τ) entry to another position.

If property (i) is ever used, we note that if ζ ∈ L2(B, τB) is viewed as an element of
L2(A, τ), then Lb ζ is simply the element bζ ∈ L2(B, τB) and Rb ζ is simply the element
ζb ∈ L2(B, τB). Thus, using (i) does not pose problems when trying to “move around
Lb and Rb elements” in proofs when trying to show the equivalence of any reductions
as the following example demonstrates.
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Example 4.3 Let χ ∈ {�, r}8 be such that χ−1({�}) = {5, 6}, let ξ ∈ L2(A, τ), let Zk ∈
Aχ(k), and let π ∈ BNC(χ) be the partition

π = {{1, 2}, {3, 5}, {4, 7}, {6, 8}}.

Note that the bi-non-crossing diagram of π can be represented as the following (with
the convention now that the last entry is at the bottom instead of on its respective
side):

1
2
3
4

5
6

7

8

When reducing Φ̃π(Z1 , Z2 , . . . , Z7 , ξ), we can clearly use property (iii) of Definition
4.1 first to obtain with U = {3, 4, . . . , 8} that

Φ̃π(Z1 , Z2 , . . . , Z7 , ξ) = Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ)Φ1(r ,r)(Z1 , Z2).

To reduce the expression fully, we have to simply reduce Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) using
property (iv) of Definition 4.1 of which there are three ways to do so.

The first way to reduce is to use V = {4, 6, 7, 8} and W = {3, 5}. By applying
property (iv) of Definition 4.1, we obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃π∣W (Z3 , Z5Φ̃π∣V (Z4 , Z6 , Z7 , ξ)) .

Finally, by applying property (iii) of Definition 4.1 to Φ̃π∣V (Z4 , Z6 , Z7 , ξ), we obtain
that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃1(r ,�) (Z3 , Z5 (Φ̃1(�,�)(Z6 , ξ)Φ1(r ,r)(Z4 , Z7)))

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r)(Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) .

The second way to reduce is to use V = {6, 8} and W = {3, 4, 5, 7}. By applying
property (iv) of Definition 4.1, we obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃π∣W (Z3 , Z4 , Z5 , Z7Φ̃π∣V (Z6 , ξ)) .

By applying property (iv) of Definition 4.1 again as {4, 7} is now a χ∣W -interval), we
obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃1r ,� (Z3 , Z5 (Φ̃1(r ,r)(Z4 , Z7Φ̃1(�,�)(Z6 , ξ))) .
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However, as Z4 , Z7 ∈ Ar , we obtain by property (i) that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃1(r ,�) (Z3 , Z5 (Φ̃1(�,�)(Z6 , ξ)Φ1(r ,r)(Z4 , Z7)))

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r)(Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) ,

thereby agreeing with the above expression.
The third way to reduce is to use V = {4, 7} and W = {3, 5, 6, 8}. By applying

property (iv) of Definition 4.1, we obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃π∣W (Z3 , Z5 , Z6 , RΦπ∣V (Z4 ,Z7)ξ)

= Φ̃π∣W (Z3RΦπ∣V (Z4 ,Z7) , Z5 , Z6 , ξ) ,

by using the two expressions in property (iv). Using either expression, we will now
obtain again property (iv) of Definition 4.1 as {6, 8} is now χ∣W -interval. For the first,
we obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃1(r ,�) (Z3 , Z5Φ̃1(�,�) (Z6 , RΦ1(r ,r)(Z4 ,Z7)ξ))

= Φ̃1(r ,�) (Z3 , Z5 (Φ̃1(�,�)(Z6 , ξ)Φ1(r ,r)(Z4 , Z7)))

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r)(Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ))

where the second equality follows from applying property (ii) of Definition 4.1, as
Z6 ∈ A�. For the second expression, we obtain that

Φ̃π∣U (Z3 , Z4 , . . . , Z7 , ξ) = Φ̃1(r ,�) (Z3RΦ1(r ,r)(Z4 ,Z7), Z5Φ̃1(�,�)(Z6 , ξ))

= Φ̃1(r ,�) (Z3 , RΦ1(r ,r)(Z4 ,Z7)Z5Φ̃1(�,�)(Z6 , ξ))

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r)(Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) ,

where the second equality follows from applying property (ii) of Definition 4.1 as the
last entry is now the L2(A, τ) entry, and the third equality holds as Z5 ∈ A� and thus
commutes with Rb .

Hence, Definition 4.1 is consistent in this example (and will be in all examples due
to similar computations).

Using similar reductions for arbitrary expressions, one can prove the following.

Lemma 4.4 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let Φ be a bi-multiplicative function on (A, E , ε), and let Φ̃ be an analytic extension
of Φ. Then, properties (i) and (ii) of Definition 4.1 hold when 1χ is replaced with any
π ∈ BNC(χ).

Proof The proof is essentially the same as the proof that properties (i) and (ii) of
Definition 2.5 hold for Φ when 1χ is replaced with any π ∈ BNC(χ) as in [2, Propo-
sition 4.2.5]. To see that property (i) of Definition 4.1 extends, note when using (iii)
and (iv) to reduce the expression for Φ̃π(Z1 , Z2 , . . . , Zn−1 , Zn ζ) that one is effectively
using the bi-multiplicative properties of Φ and including ζ in the appropriate spot.
To see that property (ii) of Definition 4.1 extends, indices that are always adjacent in
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the χ-ordering will remain in the correct ordering so that when Lb or Rb operators are
considered, we can always move them outside the Φ- and Φ̃-expressions on the correct
side to move them to the next operator (that is, things will always move around as they
do in the free multiplicative functions from [13] after reordering by the χ-order). For
example, in Example 4.3, we showed that

Φ̃π(Z1 , Z2 , . . . , Z7 , ξ) = Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r)(Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ))Φ1(r ,r)(Z1 , Z2).

If Z3 were replaced with Rb Z3, we would have

Φ̃π(Z1 , Z2 , Rb Z3 , Z4 . . . , Z7 , ξ) = Φ̃1(r ,�) (Rb Z3 , Z5RΦ1(r ,r) (Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) Φ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) bΦ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ)) Φ1(r ,r)(Z1 , Z2Rb)

= Φ̃π(Z1 , Z2Rb , Z3 , Z4 . . . , Z7 , ξ).

If ξ were replaced with Lb ξ, then clearly the Lb can be moved to give Z6Lb via (ii) with
a 1χ as the expression Φ̃1(�,�)(Z6 , ξ) is present. If ξ were replaced with Rb ξ, then

Φ̃π(Z1 , Z2 , . . . , Z7 , Rb ξ) = Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7)Φ̃1(�,�)(Z6 , Rb ξ))Φ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7) (Φ̃1(�,�)(Z6 , ξ)b))Φ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7)Rb Φ̃1(�,�)(Z6 , ξ))Φ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RbΦ1(r ,r) (Z4 ,Z7)Φ̃1(�,�)(Z6 , ξ))Φ1(r ,r)(Z1 , Z2)

= Φ̃1(r ,�) (Z3 , Z5RΦ1(r ,r) (Z4 ,Z7 Rb)Φ̃1(�,�)(Z6 , ξ))Φ1(r ,r)(Z1 , Z2)

= Φ̃π(Z1 , . . . , Z6 , Z7Rb , ξ),

as desired. Thus, the result follows. ∎

4.1 Analytical operator-valued bi-moment function

We will now construct the analytical extension of the operator-valued bi-moment
function via recursion and the map Ẽ ∶ L2(A, τ) → L2(B, τB) from Section 3. Note
that the recursive process in the following definition is different than that from [2,
Definition 5.1] and [6, Definition 4.4], in order to facilitate the introduction of the
L2(A, τ) element. The same recursive process could have been used in [2, Definition
5.1] and [6, Definition 4.4], as these processes are equivalent in those settings. Note
that we use Ψ in the following to avoid confusion with Ẽ in Section 3, although Ψ is a
multi-entry extension of Ẽ.

Definition 4.2 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space. The analytical bi-moment function

Ψ ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n−1) × L2(A, τ) → L2(B, τB)
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is defined recursively as follows: let n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), ξ ∈ L2(A, τ), and
Zk ∈ Aχ(k).
• If π = 1χ , then

Ψ1χ(Z1 , Z2 , . . . , Zn−1 , ξ) = Ẽ(Z1Z2 ⋅ ⋅ ⋅ Zn−1 ξ).

• If π ≠ 1χ , let V be the block in π such that n ∈ V . We divide discussion into two
cases:
– Suppose that min⪯χ V = sχ(1) and max⪯χ V = sχ(n), and let

p =min
⪯χ
{i ∈ {1, . . . , n} ∣ i ∉ V}, q =min

⪯χ
{ j ∈ V ∣ p ≺χ j}, and

m =max
⪯χ
{i ∈ V ∣ i ≺χ p}.

Set

W = {i ∈ {1, . . . , n} ∣ p ⪯χ i ≺χ q}.

Note by construction and the fact that π ∈ BNC(χ) that W is equal to a union of
blocks of π and χ(p) = χ( j) for all j ∈W . Thus, we define

Ψπ(Z1 , . . . , Zn−1 , ξ)

=
⎧⎪⎪⎨⎪⎪⎩

Ψπ∣Wc ((Z1 , . . . , Zp−1 , Zm LEπ∣W ((Z1 , . . . ,Zn−1 ,ξ)∣W) , . . . , Zn−1 , ξ)∣
Wc
) , if χ(p) = �,

Ψπ∣Wc ((Z1 , . . . , Zq−1 , Zq REπ∣W ((Z1 , . . . ,Zn−1 ,ξ)∣W) , . . . , Zn−1 , ξ)∣
Wc
) , if χ(p) = r.

(Note that as n ∉W , the quantity Eπ∣W ((Z1 , . . . , Zn−1 , ξ)∣W) is always a well-
defined element of B in this case. Note in the case that χ(p) = � that m ≺χ
p ≺χ n and thus Zm ≠ ξ, so Ψπ(Z1 , . . . , Zn−1 , ξ) is well defined. Also, in the case
when χ(p) = r, note that n ≺χ q and thus Zq ≠ ξ, so Ψπ(Z1 , . . . , Zn−1 , ξ) is well
defined.)

– Otherwise, set

Ṽ = {i ∈ {1, . . . , n} ∣min
⪯χ

V ⪯χ i ⪯χ max
⪯χ

V } .

Note that Ṽ is a proper subset of {1, . . . , n} that is a union of blocks of π and is
such that n ∈ V ⊆ Ṽ . For q =max≤ Ṽ c, define

Ψπ(Z1 , . . . , Zn−1 , ξ) = Ψπ∣Ṽc ((Z1 , . . . , Zq−1 , Zq Ψπ∣Ṽ ((Z1 , . . . , Zn−1 , ξ)∣Ṽ ), . . . , Zn−1 , ξ)∣
Ṽc) .

(Note that the quantity Ψπ∣Ṽ ((Z1 , . . . , Zn−1 , ξ)∣Ṽ) is a well-defined element of
L2(B, τB)due to the recursive nature of our definition. Moreover, the last element
of the sequence

(Z1 , . . . , Zq−1 , Zq Ψπ∣Ṽ ((Z1 , . . . , Zn−1 , ξ)∣Ṽ), . . . , Zn−1 , ξ)∣Ṽc

is equal to ZqΨπ∣Ṽ ((Z1 , . . . , Zn−1 , ξ)∣Ṽ), which is an element of L2(A, τ), so
Ψπ(Z1 , . . . , Zn−1 , ξ) is well defined.)

To aid in the comprehension of Definition 4.2, we provide an example using bi-
non-crossing diagrams to show the recursive construction. We note that ξ will always
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appear last in a sequence of operators and is an element of L2(A, τ) and thus neither
a left nor a right operator. As such, we treat it as neither. This is reminiscent of [12,
Lemma 2.17], where it does not matter whether we treat the last operator in a list as a
left or as a right operator, and of [4, Lemma 2.29 and Proposition 2.30], where the last
entry can be a mixture of left and right operators.

Example 4.5 Let χ ∈ {�, r}12 be such that χ−1({�}) = {1, 5, 8, 9, 11, 12}, let ξ ∈
L2(A, τ), let Zk ∈ Aχ(k), and let π ∈ BNC(χ) be the partition with blocks

V1 = {1, 3}, V2 = {2}, V3 = {4, 5, 11, 12}, V4 = {6, 10}, V5 = {7}, and V6 = {8, 9}.

To compute Ψπ(Z1 , . . . , Z11 , ξ), we note that the second part of the second step of the
recursive definition from Definition 4.2 applies first. In particular,

Ṽ =
6
⋃
k=3

Vk .

Thus, if

X = Ψπ∣Ṽ (Z4 , Z5 , Z6 , Z7 , Z8 , Z9 , Z10 , Z11 , ξ),

then

Ψπ(Z1 , . . . , Z11 , ξ) = Ψπ∣Ṽc
(Z1 , Z2 , Z3 X).

Diagrammatically, this first reduction is seen as follows:

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

ξ

�→

Z1

Z2

Z3 X

Note that

Ψπ∣Ṽc
(Z1 , Z2 , Z3 X) = Ψπ∣V2

(Z2Ψπ∣V1
(Z1 , Z3 X)) = Ẽ (Z2 Ẽ(Z1Z3 X)) ,

where the first equality holds by the same recursive idea, whereas the second equality
holds by the first step of Definition 4.2.
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When computing the value of X, the minimal and maximal elements of
{4, 5, . . . , 11, 12} in the χ∣Ṽ -order are 5 and 4, respectively, and the block that contains
the index corresponding to ξ contains both 5 and 4. Thus, the first part of the second
step of Definition 4.2 should be used. The algorithm in Definition 4.2 then calculates
the value of X by “stripping out” the χ-intervals V6 and V4 ∪ V5 successively and this
is seen via the following two diagrammatic reductions:

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

ξ

�→

Z4
Z5LΨπ∣V6

(Z8 ,Z9)

Z6

Z7

Z10

Z11

ξ

and

Z4

Z5 LΨπ∣V6
(Z8 ,Z9)

Z6

Z7

Z10

Z11

ξ

�→

Z4 RΨπ∣V4∪V6
(Z6 ,Z7 ,Z10)

Z5 LΨπ∣V6
(Z8 ,Z9)

Z11

ξ

It is readily verified using the fact that the operator-valued bi-free moment func-
tion is bi-multiplicative that Eπ∣V6

(Z8 , Z9) = E(Z8Z9) and Eπ∣V4∪V6
(Z6 , Z7 , Z10) =

E(Z6RE(Z7)Z10). Thus, using the fact that π∣V3 = 1χ∣V3
, the first step in Definition 4.2

yields

X = Ẽ (Z4RE(Z6 RE(Z7)Z10)Z5LE(Z8 Z9)Z11 ξ) .

Hence,

Ψπ(Z1 , . . . , Z11 , ξ) = Ẽ (Z2 Ẽ (Z1Z3 Ẽ (Z4RE(Z6 RE(Z7)Z10)Z5LE(Z8 Z9)Z11 ξ)))

= Ẽ (Z1Z3 Ẽ (Z4RE(Z6 RE(Z7)Z10)Z5LE(Z8 Z9)Z11 ξ))E(Z2),

with the last equality following from Proposition 3.8.
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Before investigating the bi-multiplicative properties inherited by the analytical bi-
moment function, we note that it is truly an extension of the operator-valued bi-
moment function.

Theorem 4.6 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space.
For any n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), and Zk ∈ Aχ(k),

Ψπ(Z1 , . . . , Zn−1 , Zn + Nτ) = Eπ(Z1 , . . . , Zn−1 , Zn) + NτB .

Proof Note that each step in the recursive definition of Definition 4.2 is a step that
can be performed to the operator-valued bi-free moment function as the operator-
valued bi-free moment function is bi-multiplicative (see Definition 2.5). Therefore, as
Proposition 3.6 implies that

Ẽ(a) = E(a) + NτB

for all a ∈ A, by applying the same recursive properties to Eπ(Z1 , . . . , Zn−1 , Zn) as used
to compute Ψπ(Z1 , . . . , Zn−1 , Zn + Nτ), the result follows. ∎

Like with the construction of the operator-valued bi-free moment function in [2],
although the construction of the analytical bi-moment function is done using specific
rules from the operator-valued bi-free moment function in a specific order, we desire
more flexibility in the reductions that can be done and the order they can be done in.
In particular, we desire to show that the analytical bi-moment function is an analytic
extension of the operator-valued bi-free moment function.

The main ideas used to prove this are similar to those utilized in the proof of
[2, Theorem 5.1.4], and hence we shall be concerned with demonstrating that the
inclusion of the L2(A, τ) term and the slightly modified recursive definition are
not issue and pose next to no changes. In particular, it may appear that Ψ behaves
differently than the operator-valued bi-free moment function as entries in L2(A, τ)
can also act as mixtures of left and right operators, which was not dealt with in [2].
However, using the properties of Ẽ as developed in Proposition 3.8, one familiar with
[2] can easily see that the desired results will hold with simple adaptations. We note
that similar adaptations were done in [6] without issue.

When examining the proof of the following, Example 4.5 serves as a good example
to keep in mind, just as Example 4.3 aided in comprehending why analytic extensions
of bi-multiplicative functions work.

Theorem 4.7 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
and let

Ψ ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n−1) × L2(A, τ) → L2(B, τB)

be the analytical bi-moment function. Then, Ψ is an analytically extension of the
operator-valued bi-free moment function.

Clearly, the map Ψ1χ is C-multilinear, and it does not matter whether χ(n) = � or
χ(n) = r. A straightforward induction argument using the definition of Ψ shows that
the map Ψπ will be C-multilinear. Thus, we focus on the remaining four properties.

https://doi.org/10.4153/S0008414X23000366 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000366


Bi-free entropy with respect to completely positive maps 25

Proof of Theorem 4.7 property (i) This immediately follows from parts (ii) and (iii)
of Proposition 3.8. ∎

Proof of Theorem 4.7 property (ii) To see (ii), fix n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ),
ξ ∈ L2(A, τ), b ∈ B, and Zk ∈ Aχ(k), and let p and q be as in the statement of (ii). In the
case that χ(p) = �, note that

Ψ1χ(Z1 , . . . , Zp−1 , Lb Zp , Zp+1 , . . . , Zn−1 , ξ) = Ẽ(Z1 ⋅ ⋅ ⋅ Zp−1Lb Zp Zp+1 ⋅ ⋅ ⋅ Zn−1 ξ).

If q ≠ ∞, then Zq+1 , . . . , Zp−1 ∈ Ar and thus commute with Lb . Hence,

Ψ1χ(Z1 , . . . , Zp−1 , Lb Zp , Zp+1 , . . . , Zn−1 , ξ) = Ẽ(Z1 ⋅ ⋅ ⋅ Zq−1Zq Lb Zq+1 ⋅ ⋅ ⋅ Zn−1 ξ)
= Ψ1χ(Z1 , . . . , Zq−1 , Zq Lb , Zq+1 , . . . , Zn−1 , ξ)

(and note ZqLb ∈ A�).
If q = ∞, then Z1 , . . . , Zp−1 ∈ Ar and thus commute with Lb . Hence,

Ψ1χ(Z1 , . . . , Zp−1 , Lb Zp , Zp+1 , . . . , Zn−1 , ξ) = Ẽ(Lb Z1 ⋅ ⋅ ⋅ Zn−1 ξ)
= bẼ(Z1 ⋅ ⋅ ⋅ Zn−1 ξ)
= bΨ1χ(Z1 , . . . , Zn−1 , ξ)

by Proposition 3.8. The case χ(p) = r is similar. ∎

Proof of Theorem 4.7 property (iii) To highlight how the proof works, we begin
with the case that π consists of exactly three blocks that are χ-intervals and n is
contained in the middle block under the χ-ordering. Suppose that π = {V1 , V2 , V3}
and thus there exists i ∈ {2, . . . , n − 1} and j ∈ {0, . . . , n − 2} such that

V1 = {sχ(1), sχ(2), . . . , sχ(i − 1)},
V2 = {sχ(i), sχ(i + 1), . . . , sχ(i + j)}, and
V3 = {sχ(i + j + 1), sχ(i + j + 2), . . . , sχ(n)}.

Thus, n = sχ(k) for some i ≤ k ≤ i + j. This implies that χ(p) = � for all p ∈ V1 and
χ(p) = r for all p ∈ V3. If W = V1 ∪ V3, observe that the definition of the permutation
sχ yields that

q =max
≤

W =max
≤
{sχ(i − 1), sχ(i + j + 1)}.

Consider the case q = sχ(i − 1) so that q ∈ V1, and let m = sχ(i + j + 1). Notice that
if

X = Ψπ∣V2
((Z1 , . . . , Zn−1 , ξ)∣V2

),

then by Definition 4.2, we obtain that

Ψπ(Z1 , . . . , Zn−1 , ξ) = Ψπ∣W ((Z1 , . . . , Zq−1 , Zq X , . . . , Zn−1 , ξ)∣W).

Thus, if

Y = Ψπ∣V1
((Z1 , . . . , Zq−1 , Zq X , . . . , Zn−1 , ξ)∣V1

),
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then again Definition 4.2 implies that

Ψπ(Z1 , . . . , Zn−1 , ξ) = Ψπ∣V3
((Z1 , . . . , Zm−1 , ZmY , . . . , Zn−1 , ξ)∣V3

)
= Ẽ (Zs χ(n)Zs χ(n−1) . . . Zs χ(i+ j+1)Y) .

Therefore, since Zs χ(n)Zs χ(n−1) . . . Zs χ(i+ j+1) ∈ Ar , Proposition 3.8 implies that

Ψπ(Z1 , . . . , Zn−1 , ξ) = Y E (Zs χ(n)Zs χ(n−1) . . . Zs χ(i+ j+1)) = Y Eπ∣V3
((Z1 , . . . , Zn−1 , ξ)∣V3).

Since Zs χ(1) , Zs χ(2) , . . . , Zs χ(i−1) ∈ Ar , Proposition 3.8 implies that

Y = E(Zs χ(1)Zs χ(2) . . . Zs χ(i−1))X = Eπ∣V1
((Z1 , . . . , Zn−1 , ξ)∣V1)X ,

so the result follows. Note that the case q = sχ(i + j + 1) is handled similarly by
interchanging the orders of the χ- intervals V1 and V3. This argument can be extended
via induction to any bi-non-crossing partition π all of whose blocks are χ-interval.

By the same argument as [2, Lemma 5.2.1], one need only consider the case in
property (iii) that for each χ-interval, the χ-maximal and χ-minimal elements belong
to the same block. When using the recursive procedure in Definition 4.2 to reduce Ψπ ,
one of the χ-intervals (which will either be entirely on the left or entirely on the right)
will have the L2(A, τ) term added to the last entry as above. This L2(A, τ) entry can
be pulled out on the appropriate side leaving only the bi-moment function expression
for the χ-interval, which can be undone as usual. By repetition, eventually, all that
remains is the expression for the χ-interval containing n as desired. ∎

Proof of Theorem 4.7 property (iv) The proof that property (iv) holds for the
operator-valued bi-free moment function is one of the longest of [2] consisting of [2,
Lemmas 5.3.1–5.3.4]. As such, we will only sketch the details here.

First, one proceeds to show that properties (i) and (ii) of Definition 4.1 hold for Ψ
when 1χ is replaced with an arbitrary bi-non-crossing partition. This effectively makes
use of the same arguments as in Lemma 4.4; that is, one uses the recursive algorithm
to reduce down and then note that the proofs of properties (i) and (ii) above still apply
and lets one move elements around as needed. In particular, the same arguments used
in [2, Lemmas 5.3.2 and 5.3.3] transfer with the use of Proposition 3.8.

Next, using property (iii), we need only prove property (iv) under the assumption
that sχ(1) and sχ(n) are in the same block W0 of W. One then follows many of the
same ideas as [2, Lemmas 5.3.1 and 5.3.4] by applying the recursive definition from
Definition 4.2, moving around the appropriate B-elements using the more general (i)
and (ii), and combining the appropriate elements using (iii) as needed. ∎

4.2 Analytical operator-valued bi-free cumulant function

By convolving the analytical bi-moment function with the bi-non-crossing Möbius
function, we obtain the following, which is essential to our study of conjugate variables
in the subsequent section.

Definition 4.3 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and denote by Ψ the analytical bi-moment function. The analytical bi-cumulant
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function

κ̃ ∶ ⋃
n∈N

⋃
χ∈{�,r}n

BNC(χ) × Aχ(1) × ⋅ ⋅ ⋅ × Aχ(n−1) × L2(A, τ) → L2(B, τB)

is defined by

κ̃π(Z1 , . . . , Zn−1 , ξ) = ∑
σ∈BNC(χ)

σ≤π

Ψσ(Z1 , . . . , Zn−1 , ξ)μBNC(σ , π),

for all n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), ξ ∈ L2(A, τ), and Zk ∈ Aχ(k).

Remark 4.8 (1) In the case when π = 1χ , we will denote the map κ̃1χ simply by κ̃χ .
By Möbius inversion, we obtain that

Ψσ(Z1 , . . . , Zn) = ∑
π∈BNC(χ)

π≤σ

κ̃π(Z1 , . . . , Zn−1 , ξ)

for all n ∈ N, χ ∈ {�, r}n , σ ∈ BNC(χ), and Zk ∈ Aχ(k).
(2) In the case that B = C, the analytical bi-cumulant functions are precisely the

L2(A, τ)-valued bi-free cumulants that were used in [4].

Unsurprisingly, the analytic extension of the operator-valued bi-free cumulant
function lives up to its name.

Theorem 4.9 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space.
Then, the analytical bi-cumulant function is the analytic extension of the operator-
valued bi-free cumulant function.
Proof Recall by [2, Theorem 6.2.1] that the convolution of a bi-multiplicative
function with a scalar-valued multiplicative function on the lattice of non-crossing
partitions (e.g., the bi-free Möbius function) produces a bi-multiplicative function.
As the properties of an analytic extension of a bi-multiplicative function are analogous
to those of a bi-multiplicative function, we obtain that the convolution of an analytic
extension of a bi-multiplicative function with a scalar-valued multiplicative function
on the lattice of non-crossing partitions (e.g., the bi-free Möbius function) produces
the analytic extension of the corresponding bi-multiplicative function obtained via the
same convolution. Hence, the result follows. ∎
Theorem 4.10 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space.
For all n ∈ N, χ ∈ {�, r}n , π ∈ BNC(χ), and Zk ∈ Aχ(k), we have that

κ̃π(Z1 , . . . , Zn−1 , Zn + Nτ) = κB
π(Z1 , . . . , Zn−1 , Zn) + NτB .

Proof By Theorem 4.6, we know that

Ψ̃π(Z1 , . . . , Zn−1 , Zn + Nτ) = Eπ(Z1 , . . . , Zn−1 , Zn) + NτB

for all π ∈ BNC(χ). Therefore, as κ̃ and κB are the convolution of Ψ̃ and E against the
bi-free Möbius function, respectively, the result follows. ∎

Of course, as [2, Theorem 8.1.1] demonstrated that bi-freeness with amalgamation
over B is equivalent to the mixed operator-valued bi-free cumulants vanishing,
Theorem 4.10 immediately implies the following.
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Corollary 4.11 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space
containing a family of pairs of B-algebras {(Ck , Dk)}k∈K . Consider the following two
conditions:
(1) The family {(Ck , Dk)}k∈K is bi-free with amalgamation over B with respect to E.
(2) For all n ∈ N, χ ∈ {�, r}n , Z1 , . . . , Zn ∈ A, and nonconstant maps γ ∶ {1, . . . , n} →

K such that

Zk ∈
⎧⎪⎪⎨⎪⎪⎩

Cγ(k), if χ(k) = �,
Dγ(k), if χ(k) = r,

it follows that

κ̃χ(Z1 , . . . , Zn−1 , Zn + Nτ) = 0.

Then, (1) implies (2). In the case that τB ∶ B → C is faithful, (2) implies (1).

Proof Note that (1) implies (2) follows from [2, Theorem 8.1.1] and Theorem 4.10. In
the case that τB is faithful, (2) immediately implies κB

π(Z1 , . . . , Zn−1 , Zn) = 0 where
{Zk}n

k=1 are as in (2) via Theorem 4.10. Hence, [2, Theorem 8.1.1] completes the
argument. ∎

4.3 Vanishing analytical cumulants

However, something stronger than Corollary 4.11 holds. Indeed, note that the analytic
operator-valued bi-free cumulant function has the added benefit that the last entry
can be an element of L2(A, τ) and thus the L2-image of a product of left and right
operators. As such, it is possible to verify that additional analytic bi-cumulants vanish.

The desired result is analogous to the scalar-valued result demonstrated in [4,
Proposition 2.30] and proved in a similar manner. Thus, we begin with a generalization
of [2, Theorem 9.1.5] where we can expand out a cumulant involving products of
operators. In [2, Theorem 9.1.5], only products of left and right operators were
considered in the operator-valued setting, whereas [4, Lemma 2.29] expanded out
scalar-valued cumulants involving a product of left and right operator in the last entry.

To begin, fix m < n ∈ N, χ ∈ {�, r}m , integers

k(0) = 0 < k(1) < ⋅ ⋅ ⋅ < k(m) = n,

and any function χ̂ ∈ {�, r}n such that for all q ∈ {1, . . . , n} for which there exists a
(necessarily unique) pq ∈ {1, . . . , m − 1} with k(pq − 1) < q ≤ k(pq), we have

χ̂(q) = χ(pq).

Thus, χ̂ is constant from k(p − 1) + 1 to k(p), whereas χ̂ does not need to be constant
from k(m − 1) + 1 to k(m).

We may embed BNC(χ) into BNC( χ̂) via π ↦ π̂ where the blocks of π̂ are formed
by taking each block V of π and forming a block

V̂ = ⋃
p∈V
{k(p − 1) + 1, . . . , k(p)}
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of π̂. It is not difficult to see that π̂ ∈ BNC( χ̂) as χ̂ is constant on {k(p − 1) +
1, . . . , k(p)} for all p ∈ V/{m} and although the block containing {k(n − 1) +
1, . . . , k(n)} has both left and right entries, it occurs at the bottom of the bi-non-
crossing diagram and thus poses no problem. Alternatively, this map can be viewed as
an analog of the map on non-crossing partitions from [9, Notation 11.9] after applying
s−1

χ .
It is easy to see that 1̂χ = 1 χ̂ ,

0̂χ =
m
⋃
p=1
{k(p − 1) + 1, . . . , k(p)},

and that the map π ↦ π̂ is injective and order-preserving. Furthermore, the image of
BNC(χ) under this map is

B̂NC(χ) = [0̂χ , 1̂χ] = [0̂χ , 1 χ̂] ⊆ BNC( χ̂).

Remark 4.12 Recall that since μBNC is the bi-non-crossing Möbius function, we have
for each σ , π ∈ BNC(χ) with σ ≤ π that

∑
υ∈BNC(χ)

σ≤υ≤π

μBNC(υ, π) = { 1, if σ = π,
0, otherwise.

Since the lattice structure is preserved under the map defined above, we see that
μBNC(σ , π) = μBNC(σ̂ , π̂).

It is also easy to see that the partial Möbius inversion from [9, Proposition 10.11]
holds in the bi-free setting; that is, if f , g ∶ BNC(χ) → C are such that

f (π) = ∑
σ∈BNC(χ)

σ≤π

g(σ)

for all π ∈ BNC(χ), then for all π, σ ∈ BNC(χ) with σ ≤ π, we have the relation

∑
υ∈BNC(χ)

σ≤υ≤π

f (υ)μBNC(υ, π) = ∑
ω∈BNC(χ)

ω∨σ=π

g(ω),

where π ∨ σ denotes the smallest element of BNC(χ) greater than π and σ .

Thus, by following the proofs of either [9, Theorem 11.12], [2, Theorem 9.1.5], or [4,
Lemma 2.29], we arrive at the following.

Proposition 4.13 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space. Under the above notation, if π ∈ BNC(χ) and Zk ∈ A χ̂(k), then

κ̃π(Z1 ⋅ ⋅ ⋅ Zk(1) , . . . , Zk(m−2)+1 ⋅ ⋅ ⋅ Zk(m−1) , Zk(m−1)+1 ⋅ ⋅ ⋅ Zk(m) + Nτ)
= ∑

σ∈BNC( χ̂)
σ∨0̂χ=π̂

κ̃σ(Z1 , . . . , Zn−1 , Zn + Nτ).
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In particular, when σ = 1χ , we have

κ̃χ(Z1 ⋅ ⋅ ⋅ Zk(1) , . . . , Zk(m−2)+1 ⋅ ⋅ ⋅ Zk(m−1) , Zk(m−1)+1 ⋅ ⋅ ⋅ Zk(m) + Nτ)
= ∑

σ∈BNC( χ̂)
σ∨0̂χ=1 χ̂

κ̃σ(Z1 , . . . , Zn−1 , Zn + Nτ),

Proof First, it is not difficult to verify using the recursive definition of the analytic
operator-valued bi-moment function that

Ψυ(Z1 ⋅ ⋅ ⋅ Zk(1) , . . . , Zk(m−2)+1 ⋅ ⋅ ⋅ Zk(m−1) , Zk(m−1)+1 ⋅ ⋅ ⋅ Zk(m) + Nτ)
= Ψυ̂(Z1 , . . . , Zn−1 , Zn + Nτ)

for all υ ∈ BNC(χ). Therefore, we have

κ̃π(Z1 ⋅ ⋅ ⋅ Zk(1) , . . . , Zk(m−2)+1 ⋅ ⋅ ⋅ Zk(m−1) , Zk(m−1)+1 ⋅ ⋅ ⋅ Zk(m) + Nτ)
= ∑

υ∈BNC(χ)
υ≤π

Ψυ(Z1 ⋅ ⋅ ⋅ Zk(1) , . . . , Zk(m−2)+1 ⋅ ⋅ ⋅ Zk(m−1) , Zk(m−1)+1 ⋅ ⋅ ⋅ Zk(m) + Nτ)μBNC(υ, π)

= ∑
υ∈BNC(χ)

υ≤π

Ψυ̂(Z1 , . . . , Zn−1 , Zn + Nτ)μBNC(υ̂, π̂)

= ∑
σ∈BNC( χ̂)

0̂χ≤σ≤π̂

Ψσ (Z1 , . . . , Zn−1 , Zn + Nτ)μBNC(σ , π̂)

= ∑
σ∈BNC( χ̂)

σ∨0̂χ=π̂

κ̃σ (Z1 , . . . , Zn−1 , Zn + Nτ),

where the last line follows from Remark 4.12. ∎

Theorem 4.14 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space
containing a family of pairs of B-algebras {(Ck , Dk)}k∈K that are bi-free with amalga-
mation over B with respect to E. For each k ∈ K, let L2(Ak , τ) be the closed subspace of
L2(A, τ) generated by

alg(Ck , Dk) + Nτ .

Then, for all n ∈ N, χ ∈ {�, r}n , nonconstant maps γ ∶ {1, . . . , n} → K, ξ ∈ L2(Aγ(n), τ),
and Z1 , . . . , Zn−1 ∈ A such that

Zk ∈
⎧⎪⎪⎨⎪⎪⎩

Cγ(k) , if χ(k) = �,
Dγ(k) , if χ(k) = r,

it follows that

κ̃χ(Z1 , . . . , Zn−1 , ξ) = 0.

Proof Fix an m ∈ N, χ ∈ {�, r}m , nonconstant map γ ∶ {1, . . . , m} → K, and
Z1 , . . . , Zm−1 ∈ A. For any n ≥ m, if Zm , . . . , Zn ∈ Cγ(m) ∪ Dγ(m) and χ̂ is defined by

χ̂(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(k), if k ≤ m,
�, if k > m and Zk ∈ Cγ(m),
r, if k > m and Zk ∈ Dγ(m),
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then by Proposition 4.13 and Theorem 4.6 imply that

κ̃χ(Z1 , . . . , Zm−1 , Zm ⋅ ⋅ ⋅ Zn + Nτ) = ∑
σ∈BNC( χ̂)

σ∨0̂χ=1 χ̂

κ̃σ(Z1 , . . . , Zn−1 , Zn + Nτ)

= ∑
σ∈BNC( χ̂)

σ∨0̂χ=1 χ̂

κB
σ (Z1 , . . . , Zn−1 , Zn) + NτB .

As the conditions σ ∈ BNC( χ̂) and σ ∨ 0̂χ = 1 χ̂ automatically imply that each block of
σ containing one of {1, 2, . . . , m − 1}must also contain an element of {m, . . . , n}, the
bi-multiplicative properties of the operator-valued bi-free cumulant function imply
that each cumulant κB

σ (Z1 , . . . , Zn−1 , Zn) appearing in the sum above can be reduced
down to an expression involving a mixed κB term which must be 0 by [2, Theorem
8.1.1]. Hence,

κ̃χ(Z1 , . . . , Zm−1 , Zm ⋅ ⋅ ⋅ Zn + Nτ) = 0.

Since Ẽ is a continuous function and left multiplication of A on L2(A, τ) yields
bounded operators, due to the recursive nature of Ψ, we see that Ψ is continuous in
the L2(A, τ) entry. Therefore, by Möbius inversion, κ̃ is continuous in the L2(A, τ)
entry. Hence, the result follows. ∎
Corollary 4.15 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let n ≥ 2, χ ∈ {�, r}n , ξ ∈ L2(A, τ), b ∈ B, and Zk ∈ Aχ(k). Suppose that either
there exists p ∈ {1, . . . , n − 1} such that

Zp =
⎧⎪⎪⎨⎪⎪⎩

Lb , if χ(p) = �
Rb , if χ(p) = r

or that ξ ∈ L2(B, τB). Then,

κ̃χ(Z1 , . . . , Zn−1 , ξ) = 0.

Proof If Zp = Lb or Zp = Rb for some p, then we may proceed as in the proof of
Theorem 4.14 by assuming that ξ is an element of A, expanding out the analytic
operator-valued bi-free cumulant function with the aid of Proposition 4.13, and using
the fact that non-singleton operator-valued bi-free cumulants involving Lb or Rb
terms are zero by [2, Proposition 6.4.1] and then taking a limit at the end.

In the case where ξ ∈ L2(B, τB), ξ is a limit of terms of the form Lb + Nτ . As

κ̃χ(Z1 , . . . , Zn−1 , Lb + Nτ) = κχ(Z1 , . . . , Zn−1 , Lb) + NτB = 0 + NτB ,

by Theorem 4.10 and [2, Proposition 6.4.1], the result follows by taking a limit. ∎

5 Bi-free conjugate variables with respect to completely
positive maps

In this section, we develop the appropriate notion of conjugate variables in order
to define bi-free Fisher information and entropy with respect to completely positive
maps. This can be viewed as both an extension of the bi-free conjugate variables
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developed in [4] and of the free conjugate variables with respect to a completely
positive map developed in [10]. We will focus on both the moment and cumulant
characterizations of these conjugate variables, whereas [10] focused on the moment
and derivation characterizations of free conjugate variables. Although [4] analyzed
the moment, cumulant, and bi-free difference quotient characterizations of bi-free
conjugate variables, we will forgo trying to generalize the bi-free difference quotient
characterization in this setting as it was the cumulant characterization that was found
most effective and as the bi-module structures of [10] necessary for the derivation
characterization using adjoints are less clear in this setting.

We refer the reader to [8, Definition 2.7] as an equivalent description to [10] of
the free conjugate variables with respect to a completely positive map that we mimic
below.

Definition 5.1 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, let Y ∈ Ar , and let η ∶ B → B
be a completely positive map.

An element ξ ∈ L2(A, τ) is said to satisfy the left bi-free conjugate variable relations
for X with respect to η and τ in the presence of (C� , Cr) if for all n ∈ N ∪ {0},
Z1 , . . . , Zn ∈ {X} ∪ C� ∪ Cr we have

τ(Z1 ⋅ ⋅ ⋅ Zn ξ) = ∑
1≤k≤n
Zk=X

τ
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n+1}
Zp
⎞
⎟
⎠

Lη(E(∏p∈Vk
Zp))

⎞
⎟
⎠

,

where Vk = {k < m < n + 1 ∣ Zm ∈ {X} ∪ C�} and where all products are taken in
numeric order (with the empty product being 1). If, in addition,

ξ ∈ alg(X , C� , Cr)
∥ ⋅ ∥τ ,

we call ξ the left bi-free conjugate variable for X with respect to η and τ in the presence
of (C� , Cr) and denote ξ by J�(X ∶ (C� , Cr), η).

Similarly, an element ν ∈ L2(A, τ) is said to satisfy the right bi-free conjugate
variable relations for Y with respect to η and τ in the presence of (C� , Cr) if for all
n ∈ N ∪ {0}, Z1 , . . . , Zn ∈ {Y} ∪ C� ∪ Cr we have

τ(Z1 ⋅ ⋅ ⋅ Znν) = ∑
1≤k≤n
Zk=X

τ
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n+1}
Zp
⎞
⎟
⎠

Rη(E(∏p∈Vk
Zp))

⎞
⎟
⎠

,

where Vk = {k < m < n + 1 ∣ Zm ∈ {Y} ∪ Cr}. If, in addition,

ν ∈ alg(Y , C� , Cr)
∥ ⋅ ∥τ ,

we call ν the right bi-free conjugate variable for Y with respect to η and τ in the presence
of (C� , Cr) and denote ν by Jr(Y ∶ (C� , Cr), η).

Example 5.1 For an example of Definition 5.1, consider X ∈ A�, Y ∈ Ar , Z2 , Z3 ∈ C�,
and Z1 , Z4 ∈ Cr . If ξ = J�(X ∶ (C� , alg(Cr , Y)), η), then
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τ(XZ1Z2Y XY Z3 XZ4 ξ) = τ (Z1YY Z4Lη(E(Z2 XZ3 X)))
+ τ (XZ1Z2YY Z4Lη(E(Z3 X)))
+ τ (XZ1Z2Y XY Z3Z4Lη(E(1))) .

This can be observed diagrammatically by drawing X , Z1 , Z2 , Y , X , Y , Z3 , X , Z4 as one
would in a bi-non-crossing diagram (i.e., drawing two vertical lines and placing the
variables on these lines starting at the top and going down with left variables on the left
line and right variables on the right line), drawing all pictures connecting the center of
the bottom of the diagram to any X, taking the product of the elements starting from
the top and going down in each of the two isolated components of the diagram, taking
the expectation of the bounded region and applying η to the result to obtain a b ∈ B,
appending Lb to the end of the product of operators from the unbounded region, and
applying τ to the result.

Z1

Y

Y

Z4

X

Z2

X

Z3
X

Z1

Y

Y

Z4

X

Z2

X

Z3

X

Z1

Y

Y

Z4

X

Z2

X

Z3

X

This is analogous to applying the left bi-free difference quotient ∂�,X defined in [4] on
a suitable algebraic free product to XZ1Z2Y XY Z3 XZ4 to obtain

Z1YY Z4 ⊗ Z2 XZ3 X + XZ1Z2YY Z4 ⊗ Z3 X + XZ1Z2Y XY Z3Z4 ⊗ 1,

applying Id⊗ (η ○ E), collapsing the tensor, and applying τ to the result.
Similarly, if ν = Jr(Y ∶ (alg(C� , X), Cr), η), then

τ(XZ1 Z2Y XY Z3 XZ4ν) = τ (XZ1 Z2 XZ3 XRη(E(Y Z4))) + τ (XZ1 Z2Y XZ3 XRη(E(Z4))) .

This can be observed diagrammatically in a similar fashion by drawing all pictures
connecting the center of the bottom of the diagram to any Y on the right.
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Z1

Y

Y

Z4

X

Z2

X

Z3

X

Z1

Y

Y

Z4

X

Z2

X

Z3

X

This is analogous to applying the right bi-free difference quotient ∂r ,Y defined in [4]
on a suitable algebraic free product to XZ1Z2Y XY Z3 XZ4 to obtain

XZ1Z2 XZ3 X ⊗ Y Z4 + XZ1Z2Y XZ3 X ⊗ Z4 ,

applying Id⊗ (η ○ E), collapsing the tensor, and applying τ to the result.

Remark 5.2 (1) As τ(aLb) = τ(aRb) for all a ∈ A and b ∈ B, one may use either
Lη○E or Rη○E in either part of Definition 5.1. In fact, one may simply use η ○ E if
one views the resulting element of B as an element of L2(B, τB) ⊆ L2(A, τ), since
τ(aLb) = τ(a(b + Nτ)) for all a ∈ A and b ∈ B by construction.

(2) The element J�(X ∶ (C� , Cr), η) is unique in the sense that if ξ0 ∈
alg(X , C� , Cr)

∥ ⋅ ∥τ satisfies the left bi-free conjugate variable relations for
X with respect to (C� , Cr), then ξ0 = J�(X ∶ (C� , Cr), η) as the left bi-free
conjugate variable relations causes the inner products in L2(A, τ) of both ξ0 and
J�(X ∶ (C� , Cr), η) against any element of alg(X , C� , Cr) to be equal.

(3) In the case where B = C, E reduces down to a unital, linear map φ ∶ A→ C and,
as τ is compatible with E, one obtains that τ = φ. As φ is linear, Definition 5.1
immediately reduces down to the left and right conjugate variables with respect
to φ in the presence of (C� , Cr) as in [4], provided η is unital.

(4) In the setting of Example 2.3, we note that J�(X ∶ (B� , Br), η) exists if and only
if the free conjugate variable of X with respect to (B, η) from [10] exists. This
immediately follows as Br commutes with X and B� and τ is tracial, so the
expressions for either conjugate variable can be modified into the expressions of
the other conjugate variable.

As with the bi-free conjugate variables in [4], any moment expression should be
equivalent to certain cumulant expressions via Möbius inversion. Thus, we obtain
the following equivalent characterization of conjugate variables. Note in that which
follows, it does not matter whether the last entry in the analytical operator-valued
bi-free cumulant function is treated as a left or as a right operator by Definition 4.1.

Theorem 5.3 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, let Y ∈ Ar , and let η ∶ B → B be a
completely positive map. For ξ ∈ L2(A, τ), the following are equivalent:
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(1) ξ satisfies the left bi-free conjugate variable relations for X (resp. ξ satisfies the right
bi-free conjugate variable relations for Y) with respect to η and τ in the presence of
(C� , Cr).

(2) The following four cumulant conditions hold:
(a) κ̃1(�)(ξ) = 0 + NτB .
(b) κ̃1(�,�)(XLb , ξ) = η(b) + NτB (resp. κ̃1(r ,r)(YRb , ξ) = η(b) + NτB ) for all b ∈ B.
(c) κ̃1(�,�)(c1 , ξ) = κ̃1(r ,�)(c2 , ξ) = 0 + NτB for all c1 ∈ C� and c2 ∈ Cr .
(d) For all n ≥ 3, χ ∈ {�, r}n , and all Z1 , Z2 , . . . , Zn−1 ∈ A such that

Zk ∈
⎧⎪⎪⎨⎪⎪⎩

{X} ∪ C� , if χ(k) = �
Cr , if χ(k) = r

⎛
⎝

resp. Zk ∈
⎧⎪⎪⎨⎪⎪⎩

C� , if χ(k) = �
{Y} ∪ Cr , if χ(k) = r

⎞
⎠

,

we have that

κ̃χ(Z1 , . . . , Zn−1 , ξ) = 0 + NτB .

Proof We will prove that the result for the left bi-free conjugate variable as the proof
for the right bi-free conjugate variable is analogous.

Suppose that ξ satisfies (ii). To see that ξ satisfies the left bi-free conjugate variable
relations, let n ∈ N ∪ {0} and let Z1 , . . . , Zn ∈ {X} ∪ C� ∪ Cr . Fix χ ∈ {�, r}n+1 such
that

χ(k) =
⎧⎪⎪⎨⎪⎪⎩

�, if Zk ∈ {X} ∪ C�

r, if Zk ∈ Cr

(note that the value of χ(n + 1) does not matter in that which follows). By the relation
between the analytic extensions of the bi-moment and bi-cumulant functions, we
obtain that

Ẽ(Z1 ⋅ ⋅ ⋅ Zn ξ) = ∑
π∈BNC(χ)

κ̃π(Z1 , . . . , Zn , ξ).

Due to the cumulant conditions in (ii), the only way κ̃π(Z1 , . . . , Zn , ξ) is nonzero is if
the block of π containing n + 1 contains a single other index k with Zk = X. Moreover,
there is a bijection between such partitions and partitions of the form

π = {k, n + 1} ∪ π1 ∪ π2 ,

where π1 is a bi-non-crossing partition on Vk = {k < m < n + 1 ∣ Zm ∈ {X} ∪ C�}
with respect to χ∣Vk and where π2 is a bi-non-crossing partition on Wk = Vk/{k, n + 1}
with respect to χ∣Wk . Using this decomposition, the properties of bi-analytic exten-
sions of bi-multiplicative functions and the moment-cumulant formulas yield that

Ẽ(Z1 ⋅ ⋅ ⋅ Zn ξ)
= ∑

1≤k≤n
Zk=X

∑
π2∈BNC(χ∣Wk )

∑
π1∈BNC(χ∣Vk )

κ̃{k ,n+1}∪π1∪π2 (Z1 , . . . , Zn , ξ)

= ∑
1≤k≤n
Zk=X

∑
π2∈BNC(χ∣Wk )

κ̃{k ,n+1}∪π1 ( (Z1 , . . . , Zk−1 , Zk LE(∏p∈Vk
Z p)

Zk+1 , . . . , Zn , ξ)∣ Wk∪{k ,n+1})
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= ∑
1≤k≤n
Zk=X

κ̃π1
⎛
⎝

⎛
⎝

Z1 , . . . , Zmax≤(Wk)−1 , Zmax≤(Wk)η
⎛
⎝

E
⎛
⎝ ∏

p∈Vk

Zp
⎞
⎠

⎞
⎠

⎞
⎠

������������
Wk

⎞
⎠

= ∑
1≤k≤n
Zk=X

Ẽ
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n+1}
Zp

⎞
⎟
⎠

η
⎛
⎝

E
⎛
⎝ ∏

p∈Vk

Zp
⎞
⎠

⎞
⎠

⎞
⎟
⎠

.

Hence, by applying τB to both sides of this equation, the left bi-free conjugate variable
relations from Definition 5.1 are obtained via part (i) of Proposition 3.8.

For the converse direction, suppose that ξ satisfies the left bi-free conjugate variable
relations for X. Thus, for all b ∈ B, τ(Lb ξ) = 0 by the conjugate variable relations.
Hence, κ̃1(�)(ξ) = Ẽ(ξ) = 0 by part (vi) of Proposition 3.8 and therefore (a) holds.

To see that (b) holds, note for all b0 , b ∈ B that

b0κ̃1(�,�)(XLb , ξ) = κ̃1(�,�)(Lb0 XLb , ξ) = Ψ1(�,�)(Lb0 XLb , ξ) − Ψ0(�,�)(Lb0 XLb , ξ)
= Ẽ(Lb0 XLb ξ) − E(Lb0 XLb)Ẽ(ξ) = Ẽ(Lb0 XLb ξ).

Therefore, by applying τB to both sides, we obtain that

τB (b0κ̃1(�,�)(XLb , ξ)) = τB (Ẽ(Lb0 XLb ξ)) = τ(Lb0 XLb ξ).

By the left bi-free conjugate variable relations, we obtain that

τB (b0κ̃1(�,�)(XLb , ξ)) = τ (Lb0 Lη(E(Lb))) = τ(Lb0 Lη(b)) = τ(Lb0 η(b)) = τB(b0η(b)).

As this holds for all b0 ∈ B, we obtain that κ̃1(�,�)(XLb , ξ) = η(b) + NτB as desired.
To see that (c) holds, note for all b ∈ B and c1 ∈ C� that

τB (bκ̃1(�,�)(c1 , ξ)) = τ(Lb c1 ξ) = 0

by similar computations as above. Since this holds for all b ∈ B, we see that
κ̃1(�,�)(c1 , ξ) = 0 + NτB . Similarly, for all c2 ∈ Cr , we see that

κ̃1(r ,�)(c2 , ξ)b = κ̃1(r ,�)(Rb c2 , ξ) = Ψ1(r ,�)(Rb c2 , ξ) −Ψ0(r ,�)(Rb c2 , ξ)
= Ẽ(Rb c2 ξ) − Ẽ(ξ)E(Rb c2) = Ẽ(Rb c2 ξ).

Therefore, by applying τB to both sides, we obtain that

τB (κ̃1(r ,�)(c2 , ξ)b) = τB (Ẽ(Rb c2 ξ)) = τ(Rb c2 ξ).

By the left bi-free conjugate variable relations, we obtain that

τB (κ̃1(r ,�)(c2 , ξ)b) = 0.

Therefore, as τB is tracial and the above holds for all b ∈ B, we obtain that
κ̃1(r ,�)(c2 , ξ) = 0 + NτB as desired.

For (d), we proceed by induction on n. To do so, we will prove the base case n = 3
and the inductive step simultaneously. Fix n ≥ 3 and suppose when n > 3 that (d) holds
for all m < n. Let χ ∈ {�, r}n , and let Z1 , Z2 , . . . , Zn−1 ∈ A be as in the assumptions of
(d). We will assume that χ(1) = r as the case χ(1) = � will be handled similarly. Thus,
for all b ∈ B, we know that
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κ̃χ(Z1 , . . . , Zn−1 , ξ)b = κ̃χ(Rb Z1 , Z2 , . . . , Zn−1 , ξ)
= Ẽ(Rb Z1Z2 ⋅ ⋅ ⋅ Zn−1 ξ) − ∑

π∈BNC(χ)
π≠1χ

κ̃π(Rb Z1 , Z2 , . . . , Zn−1 , ξ)

= Ẽ(Rb Z1Z2 ⋅ ⋅ ⋅ Zn−1 ξ) − ∑
π∈BNC(χ)

π≠1χ

κ̃π(Z1 , Z2 , . . . , Zn−1 , ξ)b.

Using the fact that (a)–(c) hold and that (d) holds for all m < n, we obtain using the
same arguments used in the other direction of the proof that

∑
π∈BNC(χ)

π≠1χ

κ̃π(Z1 , . . . , Zn−1 , ξ)b = ∑
1≤k<n
Zk=X

Ẽ
⎛
⎜
⎝

Rb
⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

η
⎛
⎝

E
⎛
⎝∏p∈Vk

Zp
⎞
⎠
⎞
⎠
⎞
⎟
⎠

,

where Vk = {k < m < n ∣ Zm ∈ {X} ∪ C�}. Therefore, by applying τB to both sides of
our initial equation, we obtain that

τB (κ̃χ(Z1 , . . . , Zn−1 , ξ)b)

= τB

⎛
⎜⎜
⎝

Ẽ(Rb Z1Z2 ⋅ ⋅ ⋅ Zn−1 ξ) − ∑
1≤k<n
Zk=X

Ẽ
⎛
⎜
⎝

Rb
⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

η
⎛
⎝

E
⎛
⎝∏p∈Vk

Zp
⎞
⎠
⎞
⎠
⎞
⎟
⎠

⎞
⎟⎟
⎠

= τ(Rb Z1Z2 ⋅ ⋅ ⋅ Zn−1 ξ) − ∑
1≤k<n
Zk=X

τ
⎛
⎜
⎝

Rb
⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

η
⎛
⎝

E
⎛
⎝∏p∈Vk

Zp
⎞
⎠
⎞
⎠
⎞
⎟
⎠
= 0,

by the left bi-free conjugate variable relations. Therefore, as the above holds for all
b ∈ B and τB is tracial, the result follows. ∎

The cumulant approach to conjugate variables has merits as it is very simple to
check that most cumulants vanish and the values of others. For instance, an observant
reader might have noticed that the operators X and Y in Definition 5.1 were not
required to be self-adjoint. This is for later use in the paper and can be converted to
studying self-adjoint operators as follows.

Lemma 5.4 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η ∶ B → B be a completely
positive map. The left bi-free conjugate variables

J�(X ∶ (alg(C� , X∗), Cr), η) and J�(X∗ ∶ (alg(C� , X), Cr), η)
exist if and only if

J�(R(X) ∶ (alg(C� , I(X)), Cr), η) and J�(I(X) ∶ (alg(C� ,R(X)), Cr), η)

exist where R(X) = 1
2 (X + X∗) and I(X) = 1

2i (X − X∗). Furthermore,

J�(R(X) ∶ (alg(C� , I(X)), Cr), η) = J�(X ∶ (alg(C� , X∗), Cr), η) + J�(X∗ ∶ (alg(C� , X), Cr), η),
J�(I(X) ∶ (alg(C� ,R(X)), Cr), η) = i J�(X ∶ (alg(C� , X∗), Cr), η) − i J�(X∗ ∶ (alg(C� , X), Cr), η).

A similar result holds for right bi-free conjugate variables.
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Proof Suppose that

ξ1 = J�(X ∶ (alg(C� , X∗), Cr), η) and ξ2 = J�(X∗ ∶ (alg(C� , X), Cr), η)
exist. Hence, ξ1 and ξ2 satisfy the appropriate analytic cumulant equations from
Theorem 5.3. Let

h1 = ξ1 + ξ2 and h2 = iξ1 − iξ2 .

As

ξ1 ∈ alg(X , alg(C� , X∗), Cr)
∥ ⋅ ∥τ and ξ2 ∈ alg(X∗, alg(C� , X), Cr)

∥ ⋅ ∥τ ,

we easily see that

h1 ∈ alg(R(X), alg(C� , I(X)), Cr)∥ ⋅ ∥τ and ξ2 ∈ alg(I(X), alg(C� ,R(X)), Cr)∥ ⋅ ∥τ .

Thus, by Theorem 5.3, it suffices to show that h1 and h2 satisfy the appropriate
conjugate variable formulae. Indeed, property (a) of Theorem 5.3 holds as

κ̃1(�)(h1) = κ̃1(�)(h2) = 0 + NτB .

Next, notice for all b ∈ B that

κ̃1(�,�)(R(X)Lb , h1)

= κ̃1(�,�) (
1
2

XLb , ξ1) + κ̃1(�,�) (
1
2

X∗Lb , ξ1) + κ̃1(�,�) (
1
2

XLb , ξ2) + κ̃1(�,�) (
1
2

X∗Lb , ξ2)

= 1
2

η(b) + 0 + 0 + 1
2

η(b) = η(b)

and
κ̃1(�,�)(I(X)Lb , h2)

= κ̃1(�,�) (
1

2i
XLb , iξ1) + κ̃1(�,�) (−

1
2i

X∗Lb , iξ1)

+ κ̃1(�,�) (
1

2i
XLb ,−iξ2) + κ̃1(�,�) (−

1
2i

X∗Lb ,−iξ2)

= 1
2i

iη(b) − 0 + 0 − 1
2i
(−i)η(b) = η(b).

Hence, property (b) of Theorem 5.3 holds.
To see that properties (c) and (d) of Theorem 5.3 hold, note for all b ∈ B that

κ̃1(�,�)(R(X)Lb , h2)

= κ̃1(�,�) (
1
2

XLb , iξ1) + κ̃1(�,�) (
1
2

X∗Lb , iξ1)

+ κ̃1(�,�) (
1
2

XLb ,−iξ2) + κ̃1(�,�) (
1
2

X∗Lb ,−iξ2)

= 1
2

iη(b) + 0 + 0 + 1
2
(−i)η(b) = 0,

and similarly κ̃1(�,�)(I(X)Lb , h1) = 0. Therefore, Proposition 4.13 along with the lin-
earity of the cumulants in each entry yields properties (c) and (d).

The converse direction is proved analogously. ∎
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Of course, many other results follow immediately from the cumulant definition of
the conjugate variables.

Lemma 5.5 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η ∶ B → B be a completely
positive map. If

ξ = J�(X ∶ (C� , Cr), η)

exists, then, for all λ ∈ C/{0}, the conjugate variable J�(λX ∶ (C� , Cr), η) exists and is
equal to 1

λ ξ.
A similar result holds for right bi-free conjugate variables.

Proposition 5.6 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η1 , η2 ∶ B → B be
completely positive maps. If

ξ1 = J�(X ∶ (C� , Cr), η1) and ξ2 = J�(X ∶ (C� , Cr), η2)

exist, then ξ = J�(X ∶ (C� , Cr), η1 + η2) exists and ξ = ξ1 + ξ2.
A similar result holds for right bi-free conjugate variables.

Proposition 5.7 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η ∶ B → B be a
completely positive map. For fixed b1 , b2 ∈ B, define η�,b1 ,b2 ∶ B → B by

η�,b1 ,b2(b) = η(bb2)b1

for all b ∈ B. If ξ = J�(X ∶ (C� , Cr), η) exists and η�,b1 ,b2 is completely positive, then
J�(X ∶ (C� , Cr), η�,b1 ,b2) exists and

J�(X ∶ (C� , Cr), η�,b1 ,b2) = Rb1 Lb2 ξ.

Similarly, if Y ∈ Ar and ηr ,b1 ,b2 ∶ B → B is defined by

ηr ,b1 ,b2 = b2η(b1b)

for all b ∈ B is completely positive, and Jr(Y ∶ (C� , Cr), η) exists, then Jr(Y ∶
(C� , Cr), ηr ,b1 ,b2) exists and

Jr(Y ∶ (C� , Cr), ηr ,b1 ,b2) = Rb1 Lb2 Jr(Y ∶ (C� , Cr), η).

Proof By Theorem 5.3, it suffices to show that Rb1 Lb2 ξ satisfies the appropriate
analytical operator-valued bi-free cumulant formula. Indeed, clearly,

κ̃1(�)(Rb1 Lb2 ξ) = b2κ̃1(�)(ξ)b1 = 0,

and for all b ∈ B,

κ̃1(�,�)(XLb , Rb1 Lb2 ξ) = κ̃1(�,�)(XLb Lb2 , ξ)b1 = κ̃1(�,�)(XLbb2 , ξ)b1 = η(bb2)b1 = ηb1 ,b2(b).

To show that the other analytical operator-valued bi-free cumulants from Theorem 5.3
vanish, one simply needs to use the analytical extension properties of bi-multiplicative
functions together with Proposition 4.13. The result for right bi-free conjugate vari-
ables is analogous. ∎
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Similarly, many results pertaining to conjugate variables from [4, 10, 14] immedi-
ately generalize to the conjugate variables in Definition 5.1. However, one result from
[10] requires additional setup. In the context of Example 2.3, one can always consider
a further von Neumann subalgebra D of B and ask how the conjugate variables react.
To analyze the comparable situation in our setting, we need the following example.

Example 5.8 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let D be a unital ∗-subalgebra of B (with 1D = 1B). If F ∶ B → D is a condi-
tional expectation in the sense that F(d) = d for all d ∈ D and F(d1bd2) = d1F(b)d2
for all d1 , d2 ∈ D and b ∈ B, then (A, F ○ E , ε∣D⊗Dop) is a D-D-noncommutative prob-
ability space by [12, Section 3].

Note that τD = τB ∣D ∶ D → C is a tracial state being the restriction of a tracial state.
Moreover, if τB is compatible with F in the sense that τB(F(b)) = τB(b) for all b ∈ B,
we easily see that τ is compatible with F ○ E, as for all a ∈ A we have that

τ(a) = τ (LE(a)) = τB(E(a)) = τB(F(E(a))) = τ (LF(E(a)))

and similarly τ(a) = τ (RF(E(a))). Hence, (A, F ○ E , ε∣D⊗Dop , τ) is an analytical D-D-
noncommutative probability space.

Proposition 5.9 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let X ∈ A�. In addition, let D and F be as in Example 5.8, let (C� , Cr) be
a pair of B-algebras (and thus automatically a pair of D-algebras), and let η ∶ D → D
be a completely positive map. Moreover, suppose that F is completely positive (and hence
η ○ F ∶ B → D ⊆ B is also completely positive).

Then, the conjugate variable J�(X ∶ (C� , Cr), η ○ F) exists in the analytical B-B-
noncommutative probability space (A, E , ε, τ) if and only if the conjugate variable J�(X ∶
(C� , Cr), η) exists in the analytical D-D-noncommutative probability space (A, F ○
E , ε∣D⊗Dop , τ), in which case they are the same element of L2(A, τ).

A similar result holds for right bi-free conjugate variables.

Proof As (η ○ F) ○ E = η ○ (F ○ E), the bi-free conjugate variable relations from
Definition 5.1 are precisely the same and thus there is nothing to prove. ∎

With Proposition 5.9 out of the way, we turn our attention to proving that the
expected generalizations of conjugate variable properties from [4, 10, 14] hold.

Lemma 5.10 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η ∶ B → B be a completely
positive map. Suppose further that D� ⊆ C� and Dr ⊆ Cr are such that (D� , Dr) is a pair
of B-algebras in A. If ξ = J�(X ∶ (C� , Cr), η)
exists, then ξ′ = J�(X ∶ (D� , Dr), η)
exists. In particular, if P is the orthogonal projection of L2(A, τ) onto

alg(X , D� , Dr)
∥ ⋅ ∥τ ,

then ξ′ = P(ξ).
A similar result holds for right bi-free conjugate variables.
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Proof Notice that if ξ satisfies the left bi-free conjugate variable relations for X
with respect to E and η in the presence of (C� , Cr), ξ satisfies the left bi-free
conjugate variable relations for X with respect to E and η in the presence of (D� , Dr).
Therefore, since τ(ZP(ξ)) = τ(Zξ) for all Z ∈ alg(X , D� , Dr), it follows that P(ξ) =
J�(X ∶ (D� , Dr), η) as desired. ∎

The following generalizes [14, Proposition 3.6], [10, Proposition 3.8], and [4,
Proposition 4.3].

Proposition 5.11 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let (C� , Cr) be a pair of B-algebras in A, let X ∈ A�, and let η ∶ B → B be a
completely positive map. If (D� , Dr) is another pair of B-algebras such that

(alg(X , C�), Cr) and (D� , Dr)

are bi-free with amalgamation over B with respect to E, then

ξ = J�(X ∶ (C� , Cr), η)

exists if and only if

ξ′ = J�(X ∶ (alg(C� , D�), alg(Cr , Dr)), η)

exists, in which case they are equal.
A similar result holds for right bi-free conjugate variables.

Proof Note by Lemma 5.10 that if ξ′ exists, then ξ exists.
Conversely suppose that ξ exists. Hence, ξ is a ∥ ⋅ ∥τ-limit of elements from

alg(X , C� , Cr). Since the analytical operator-valued bi-free cumulants are ∥ ⋅ ∥τ-
continuous in the last entry, it follows that any analytical operator-valued bi-free
cumulant involving ξ at the end and at least one element of D� or Dr must be zero
by Theorem 4.14 as

(alg(X , C�), Cr) and (D� , Dr)

are bi-free with amalgamation over B with respect to E. Therefore, as

ξ ∈ alg(X , C� , Cr)
∥ ⋅ ∥τ ⊆ alg(X , alg(C� , D�), alg(Cr , Dr))

∥ ⋅ ∥τ ,

it follows that ξ′ exists and ξ = ξ′. ∎

The following generalizes [14, Proposition 3.7], [10, Proposition 3.11], and [4,
Proposition 4.4]. In that which follows, we will use Z to denote a tuple of operators
(Z1 , . . . , Zk). Furthermore, given another tuple Z′ = (Z′

1 , . . . , Z′
k), we will use Z + Z′

to denote the tuple (Z1 + Z′
1 , . . . , Zk + Z′

k) and we will use Ẑp to denote the tuple
(Z1 , . . . , Zp−1 , Zp+1 , . . . , Zk) obtained by removing Zp from the list.

Proposition 5.12 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, and let η ∶ B → B be a completely positive map. Suppose that X and X′ are n-
tuples of operators from A�, Y and Y′ are m-tuples of operators from Ar , and (C� , Cr)
and (D� , Dr) are pairs of B-algebras such that

(alg(X, C�), alg(Y, Cr)) and (alg(X′ , D�), alg(Y′ , Dr))
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are bi-free with amalgamation over B with respect to E. If

ξ = J� (X1 ∶ (alg (X̂1 , C�) , alg(Y, Cr)) , η, τ)

exists, then

ξ′ = J� (X1 + X′
1 ∶ (alg( ̂(X +X′)1 , C� , D�) , alg(Y +Y′ , Cr , Dr)))

exists. Moreover, if P is the orthogonal projection of L2(A, φ) onto

alg(X +X′ , Y +Y′ , C� , Cr , D� , Dr)
∥ ⋅ ∥τ ,

then

ξ′ = P(ξ).

A similar result holds for right bi-free conjugate variables.

Proof Suppose that ξ exists. For notation purposes, let A = alg(X +X′ , Y +
Y′ , C� , Cr , D� , Dr).

Since τ(Lb ZP(ξ)) = τ(Lb Zξ) for all Z ∈ A and b ∈ B (as B� ⊆ C�), we obtain by
Proposition 3.8 that Ẽ(ZP(ξ)) = Ẽ(Zξ) for all Z ∈ A. Thus, as B� , Br ⊆ A, we obtain
for all χ ∈ {�, r}p with χ(p) = �, for all π ∈ BNC(χ), and for all Zk ∈ A with

Zk ∈
⎧⎪⎪⎨⎪⎪⎩

alg(X +X′ , C� , D�), if χ(k) = �
alg(Y +Y′ , Cr , Dr), if χ(k) = r

that Ψπ(Z1 , . . . , Zp−1P(ξ)) = Ψπ(Z1 , . . . , Zp−1 , ξ) and thus

κ̃χ(Z1 , . . . , Zp−1 , P(ξ)) = κ̃χ(Z1 , . . . , Zp−1 , ξ).

To show that P(ξ) is the appropriate left bi-free conjugate variable, it suffices to
consider expressions of the form κ̃χ(Z1 , . . . , Zp−1 , P(ξ)) and show that they obtain
the correct values as dictated in Theorem 5.3. By the above, said cumulant is equal to
an analytic operator-valued bi-free cumulant involving elements from C�, D�, Cr , Dr ,
X +X′, and Y +Y′ (in the appropriate positions) and a ξ at the end. By expanding
using linearity, said cumulant can be modified to a sum of cumulants involving only
elements from C�, D�, Cr , Dr , X, X′, Y, and Y′ with a ξ at the end. By a similar
argument to that in Lemma 5.4, these cumulants then obtain the necessary values for
P(ξ) to be the appropriate left bi-free conjugate variable due to Theorem 5.3 applied
to ξ and the fact that

(alg(X, C�), alg(Y, Cr)) and (alg(X′ , D�), alg(Y′ , Dr))

are bi-free with amalgamation over B with respect to E, so mixed cumulants vanish by
Theorem 4.14. ∎

6 Bi-semicircular operators with completely positive covariance

One essential example of conjugate variables in [4, 10, 14] comes from central
limit distributions. Thus, this section is devoted to defining the operator-valued
bi-semicircular operators with covariance coming from a completely positive map,
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showing that one may add in certain bi-semicircular operators into analytical B-
B-noncommutative probability spaces, and showing the bi-free conjugate variables
behave in the appropriate manner.

To begin, let B be a unital ∗-algebra and let K be a finite index set. For each k ∈ K,
let Zk be a symbol. Recall that the full Fock space F(B, K) is the algebraic free product
of B and {Zk}k∈K ; that is,

F(B, K) = B ⊕H1 ⊕H2 ⊕ ⋅ ⋅ ⋅ ,

where

Hm = {b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm ∣ b0 , b1 , . . . , bm ∈ B, k1 , . . . , km ∈ K}.

Note that F(B, K) is a B-B-bimodule with the obvious left and right actions of B on
B and Hm . Moreover, as F(B, K) is a direct sum of B and another B-B-bimodule,
F(B, K) is a B-B-bimodule with the specified vector state p ∶ F(B, K) → B (as in the
sense of [2, Definition 3.1.1]) defined by taking the B-term in the above direct product.
Therefore, the set A of linear maps on F(B, K) is a B-B-noncommutative probability
space with respect to the expectation E ∶ A→ B defined by E(T) = p(T1B) (see [2,
Remark 3.2.2]).

Let {η i , j}i , j∈K be linear maps on B. For each k ∈ K, the left creation and annihilation
operators lk and l∗k are the linear maps defined such that

lk b = 1B Zk b,
lk(b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm) = 1B Zk b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm ,

l∗k b = 0,
l∗k (b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm) = ηk ,k1(b0)b1 ⋅ ⋅ ⋅ Zkm bm ,

and the right creation and annihilation operators rk and r∗k are the linear maps defined
such that

rk b = bZk1B ,
rk(b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm) = b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm Zk1B ,

r∗k b = 0,
r∗k(b0Zk1 b1 ⋅ ⋅ ⋅ Zkm bm) = b0Zk1 b1 ⋅ ⋅ ⋅ bm−1ηkm ,k(bm).

It is elementary to see that lk , l∗k ∈ A� and rk , r∗k ∈ Ar . With these operators in hand,
we make the following definition.

Definition 6.1 Using the above notation, write K as the disjoint union of two sets I
and J. For each i ∈ I and j ∈ J, let

S i = l i + l∗i and D j = r j + r∗j .

The pair ({S i}i∈I , {D j} j∈J) is called the operator-valued bi-semicircular operators with
covariance {η i , j}i , j∈K .

In the case that ηk1 ,k2 = 0 for all k1 , k2 ∈ K with k1 ≠ k2, we say that
({S i}i∈I , {D j} j∈J) is a collection of ({η i , i}i∈I , {η j, j} j∈J) bi-semicircular operators.
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Remark 6.1 It is natural to ask what are the necessary conditions for operator-valued
bi-semicircular operators with covariance {η i , j}i , j∈K to sit inside an analytical B-B-
noncommutative probability space. One may hope that a condition similar to [10,
Theorem 4.3.1] would work; that is, the answer is yes if τB is tracial and η ∶ M∣K∣(B) →
M∣K∣(B) defined by

η([b i , j]i , j∈K) = [η i , j(b i , j)]i , j∈K

is completely positive. However, if i ∈ I, j ∈ J, and b1 , b2 ∈ B, it is not difficult to verify
that

τB (E((Si D j Lb1 Rb2 )∗(Si D j Lb1 Rb2 )) = τB (b∗2 ηi , i (1B)b1b2η j, j(1B)b∗1 + b∗2 ηi , j(ηi , j(b1b2))b∗1 )

and it is not clear if this is positive (even if the outer η i , j was a η j, i ).
Only certain operator-valued bi-semicircular operators are required in this paper.

Indeed, we will need only the case where ({S i}i∈I , {D j} j∈J) are ({η i , i}i∈I , {η j, j} j∈J)
bi-semicircular operators, as in this setting the pairs of algebras

{(alg(B� , S i), Br)}i∈I ∪ {(B� , alg(Br , D j))} j∈J

are bi-free with amalgamation over B with respect to E, as the following result shows.

Theorem 6.2 Using the above notation, if B is a ∗-algebra, τB is a tracial state on
B, {η i}i∈I ∪ {η j} j∈J are completely positive maps from B to B, ({S i}i∈I , {D j} j∈J)
are ({η i}i∈I , {η j} j∈J) bi-semicircular operators, A� = alg(B� , {S i}i∈I), Ar =
alg(Br , {D j} j∈J), A is generated as a ∗-algebra by A� and Ar , and τ ∶ A→ C

is defined by τ = τB ○ E, then (A, E , ε, τ) is an analytical B-B-noncommutative
probability space. Moreover, all operator-valued bi-free cumulants involving {S i}i∈I
and {D j} j∈J of order not two are zero and for all i , i1 , i2 ∈ I and j, j1 , j2 ∈ J,

κ1(�,�)(S i1 Lb , S i2) = δ i1 , i2 η i1(b), κ1(r ,r)(D j1 Rb , D j2) = δ j1 , j2 η j1(b),
κ1(�,r)(S i Lb , D j) = 0, κ1(r ,�)(D jRb , S i) = 0.

Proof As shown above, (A, E , ε) is a B-B-noncommutative probability space. Next,
note that E is completely positive when restricted A� and Ar by [13, Remark 4.3.2] as
the expectations reduce to the free case. In fact, this same idea can be used to show
that τ is positive. Indeed, first note that S i and D j commute. Thus, every element of A
can be written as sum of elements of the form

Z = Lb0 S i1 Lb1 ⋅ ⋅ ⋅ S in Lbn Rbn+1 D in+1 Rbn+2 ⋅ ⋅ ⋅D jn+m Rbn+m ,

where b0 , . . . bn+m ∈ B. Moreover, we can write

F(B, K) ≅ F(B, I) ⊗B F(B, J)

in such a way that Z acts via

Lb0 S i1 Lb1 ⋅ ⋅ ⋅ S in Lbn ⊗ Lbn+m S jn+m Lbn+m−1 ⋅ ⋅ ⋅ S jn+1 Lbn+1 ,

so that if EI ∶ L(F(B, I)) → B and EJ ∶ L(F(B, J)) → B are the corresponding expec-
tations, then

E(Z) = EI(Lb0 S i1 Lb1 ⋅ ⋅ ⋅ S in Lbn)EJ(Lbn+m S jn+m Lbn+m−1 ⋅ ⋅ ⋅ S jn+1 Lbn+1).
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Therefore, if we have Z = ∑d
k=1 Xk Yk where Xk is a product of Lb ’s and S i ’s and Yk is

a product of Rb ’s and D j ’s, then

τ(Z∗Z) =
d
∑

k1 ,k2=1
τB (EI (X∗

k1
Xk2)EJ (Ỹk2 Ỹ∗

k1
)) ,

where Ỹ represents the monomial obtained by reversing the order and changing R’s
to L’s and D’s to S’s. However, as EI and EJ are completely positive on the algebras
generated by L’s and S’s, we can find bX ,k1 ,k3 , bY ,k1 ,k4 ∈ B such that

EI (X∗
k1

Xk2) =
d2

∑
k3=1

b∗X ,k1 ,k3
bX ,k2 ,k3 and EJ (Ỹk2 Ỹ∗

k1
) =

d3

∑
k4=1

bY ,k2 ,k4 b∗Y ,k1 ,k4
,

and thus

τ(Z∗Z) =
d
∑

k1 ,k2=1

d2

∑
k3=1

d3

∑
k4=1

τB(b∗X ,k1 ,k3
bX ,k2 ,k3 bY ,k2 ,k4 b∗Y ,k1 ,k4

)

=
d2

∑
k3=1

d3

∑
k4=1

τB
⎛
⎝
⎛
⎝

d
∑
k1=1

bX ,k1 ,k3 bY ,k1 ,k4

⎞
⎠

∗
⎛
⎝

d
∑
k2=1

bX ,k2 ,k3 bY ,k2 ,k4

⎞
⎠
⎞
⎠
≥ 0.

Hence, τ is positive.
Next, one can verify in L2(A, τ) that S i and D j are the sum of an isometry and its

adjoint (see [13, Proposition 4.6.9]) and thus define bounded linear operators. Hence,
(A, E , ε, τ) is an analytical B-B-noncommutative probability space.

To see the cumulant condition, one can proceed in two ways. One can immediately
realize that

(alg(B� , {S i}i∈I), Br) and (B� , alg(Br , {D j} j∈J)
are bi-free over B due to the above tensor-product relation. This implies that mixed
cumulants are zero. The other cumulants then follow from the free case in [13].
Alternatively, one can analyze the actions of Lb , Rb , S i , and D j as one would on the
operator-valued reduced free product space in an identical way to the LR-diagrams of
[2, 3] to obtain a diagrammatic description of the elements of F(B, K) produced, note
that the ones that contribute to a B-element are exactly the bi-non-crossing diagrams
that correspond to pair bi-non-crossing partitions, and use induction to deduce the
values of the operator-valued cumulants. ∎

We immediately obtain the following using Theorems 6.2 and 5.3.

Lemma 6.3 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, and let

({S i}n
i=1 , {D j}m

j=1) be ({η�, i}n
i=1 , {ηr , j}m

j=1) bi-semicircular operators in A. Then,

J� (S1 ∶ (alg (B� , {S i}n
j=2) , alg (Br , {D j}m

j=1)) , η�,1) = S1 .

A similar result holds for the other left and the right conjugate variables.

In order to obtain more examples of bi-free conjugate variables, it would be
typical to perturb by bi-semicircular operators and use Proposition 5.12. To do this,
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we must have the collection of bi-semicircular operators in the same analytical B-
B-noncommutative probability space. Thus, it is natural to ask whether given two
analytical B-B-noncommutative probability spaces there is a bi-free product which
causes the pairs of left and right algebras to be bi-freely independent over B and
preserve the analytical properties.

Unfortunately, we do not have an answer to this question. The proof of positivity
in the operator-valued free case requires the characterization of the vanishing of
alternating centered moments in [13, Proposition 3.3.3] to ensure positivity in the end.
One may attempt to use the bi-free analogue of “alternating centered moments vanish”
from [1]; however, the bi-free formula generalization of [13, Proposition 3.3.3] is far
more complicated. In particular, the proof from [13] will not immediately generalize,
as Example 3.3 shows that E will not be positive and the traciality of τB will need to
come into play.

Luckily, if we deal only with bi-semicircular operators, which is all that is required
for this paper, there is no issue. In fact, in the case one is working with von Neumann
factors as in Example 2.3, the following is trivial as we can add the corresponding
collection of bi-semicircular operators using factors by [13].

Theorem 6.4 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space
with A� and Ar generated by isometries, let {η�, i}n

i=1 ∪ {ηr , j}m
j=1 be completely pos-

itive maps from B to B, and let ({S i}n
i=1 , {D j}m

j=1) be ({η�, i}n
i=1 , {ηr , j}m

j=1) bi-
semicircular operators. Then, there exists an analytical B-B-noncommutative probability
space (A′ , E′ , ε′ , τ′) with A ⊆ A′, E′∣A = E, τ′∣A = τ, A� ⊆ A′

�, Ar ⊆ A′
r , {S i}n

i=1 ⊆ A′
�,

{D j}m
j=1 ⊆ A′

r and such that the pairs of algebras

(A� , Ar) and (alg(B� , {S i}n
i=1), alg(Br , {D j}m

j=1))

are bi-free with amalgamation over B with respect to E′.

As, for any ({η i , i}i∈I , {η j, j} j∈J) bi-semicircular operators ({S i}i∈I , {D j} j∈J), we
know that

{(alg(B� , S i), Br)}i∈I ∪ {(B� , alg(Br , D j))} j∈J

are bi-free over B, to prove Theorem 6.4, it suffices to use the following lemma and an
analogous result on the right iteratively, or simply adapt the proof to multiple operators
simultaneously.

Lemma 6.5 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space
with A� and Ar generated by isometries, let η ∶ B → B be a completely positive map, and
let S be an η-semicircular operator. Then, there exists an analytical B-B-noncommutative
probability space (A′ , E′ , ε′ , τ′) such that A′ = alg(A� , Ar , S), E′∣A = E, τ′∣A = τ, A′

� =
alg(A� , S), A′

r = Ar , and

(A� , Ar) and (alg(B� , S), Br)

are bi-free with amalgamation over B with respect to E′.

Proof By taking the operator-valued bi-free product of B-B-noncommutative prob-
ability spaces, we obtain a B-B-noncommutative probability space (A′ , E′ , ε′) such
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that A′ = alg(A� , Ar , S), A′
� = alg(A� , S), A′

r = Ar , E′∣A = E, and

(A� , Ar) and (alg(B� , S), Br)

are bi-free with amalgamation over B with respect to E′. Note that E′ restricted to Ar
is trivially completely positive and E′ restricted to A′

� is completely positive by the free
result from [13]. Thus, to verify Definition 3.1, it suffices to verify that if τ′ = τB ○ E,
then τ′ is positive and elements of A′

� and A′
r define bounded operators on L2(A′ , τ′).

By analyzing the reduced free product construction, we can realize A�, Ar , and S
as operators acting on

F = B ⊕H1 ⊕H2 ⊕ ⋅ ⋅ ⋅ ,

where

Hm = {a0Za1 ⋅ ⋅ ⋅ Zam ∣ a0 , a1 , . . . , am−1 ∈ A� , am ∈ A}

and if p ∶ F → B is defined by taking the B-term in F, then

E′(T) = p(T1B).

Define a function ⟨ ⋅, ⋅ ⟩ ∶ F × F → A by setting B, H1, H2, . . . to be pairwise orthogo-
nal, ⟨b1 , b2⟩ = Lb∗2 b1 , and

⟨a′0Za′1 ⋅ ⋅ ⋅ Za′m , a0Za1 ⋅ ⋅ ⋅ Zam⟩ = a∗m Lη(a∗m−1 ⋅ ⋅ ⋅ Lη(a∗1 Lη(a∗0 a′0)a′1) ⋅ ⋅ ⋅ a′m−1)a′m ,

where Lη(T) = Lη(E(T)). As η is completely positive and E is completely positive when
restricted to A�, we obtain that ⟨ ⋅, ⋅ ⟩ is an A-valued inner product by the same argu-
ments as [13, Proposition 4.6.6]. To elaborate slightly, given∑n

k=1 ak ,0Zak ,1 ⋅ ⋅ ⋅ Zak ,m ,
the matrix [η(a∗i ,0a j,0)] is positive and thus can be written as [∑n

k=1 b∗k , i bk , j] for some
b i , j ∈ B. One then substitutes Lη(a∗i ,0a j,0) = ∑n

k=1 L∗bk , i
Lbk , j and continues until one

ends with a sum of products of elements of A with their adjoints.
As τ ∶ A→ C is positive and as for all T ∈ A′,

τ′(T∗T) = τ(⟨T1B , T1B⟩),

we obtain that τ′ is positive as desired. To see that elements of A′
� and A′

r define
bounded operators on L2(A′ , τ′), note if T ∈ Ar , then, using the above description,

T(a0Za1 ⋅ ⋅ ⋅ Zam) = a0Za1 ⋅ ⋅ ⋅ ZTam .

As any of the terms,

Lη(a∗m−1 ⋅ ⋅ ⋅ Lη(a∗1 Lη(a∗0 a′0)a′1) ⋅ ⋅ ⋅ a′m−1)

in the above A-valued inner product will be able to be written as sums involving terms
of the form L∗b1

Lb2 and will then produce terms of the form

a∗m T∗L∗b1
Lb2 Ta′m = a∗m L∗b1

T∗TLb2 a′m
in the A-valued inner product when T acts on the left, the fact that Ar is generated
by isometries yields that Ar acts as bounded operators on L2(A, τ). The fact that A�

is generated by isometries immediately yields that A� acts as bounded operators on
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L2(A, τ), and it is not difficult to see that S acts as the sum of an isometry and its
adjoint on L2(A, τ) and thus is bounded. ∎

With Theorem 6.4 establishing we can always assume that our B-B-
noncommutative probability spaces have ({η�, i}n

i=1 , {ηr , j}m
j=1) bi-semicircular

operators, we can proceed with the following.

Theorem 6.6 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, let X ∈ An

� and Y ∈
Am

r be tuples of self-adjoint operators, let ({S i}n
i=1 , {D j}m

j=1) be ({η�, i}n
i=1 , {ηr , j}m

j=1)
bi-semicircular operators in A, and let (C� , Cr) be pairs of B-algebras of A such that

{(alg(C� , X), alg(Cr , Y)⟩)} ∪ {(alg(B� , S i), Br)}n
i=1 ∪ {(B� , alg(Br , D j))}m

j=1

are bi-free. If P is the orthogonal projection of L2(A, φ) onto

alg (C� , Cr , X +
√

εS, Y +
√

εD)
∥ ⋅ ∥τ ,

then

ξ = J� (X1 +
√

εS1 ∶ (alg(C� , ̂(X +
√

εS)1) , alg (Cr , Y +
√

εD)) , η�,1) =
1√
ε

P(S1).

Thus,

∥ξ∥τ ≤
1√
ε
√

τB(η(1B)).

A similar computation holds for the other entries of the tuples and the right conjugate
variables.

Proof By Lemmas 6.3 and 5.5, we have that

J� (
√

εS1 ∶ (alg (B� ,
√

εŜ1) , alg (Br ,
√

εD)) , η�,1) =
1√
ε

S1 .

The conjugate variable result then follows from Propositions 5.11 and 5.12, whereas the
τ-norm computation is trivial. ∎

7 Bi-free fisher information with respect to a completely
positive map

With the above technology, the bi-free Fisher information with respect to completely
positive maps can be constructed and has similar properties to the bi-free Fisher
information from [4] and the free Fisher information with respect to a completely
positive map from [10]. We highlight the main results and properties in this section.

Definition 7.1 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, let X ∈ An

�

and Y ∈ Am
r and let (C� , Cr) be a pair of B-algebras of A. The relative bi-free Fisher

information of (X, Y) with respect to ({η�, i}n
i=1 , {ηr , j}m

j=1) in the presence of (C� , Cr)
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is

Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) =
n
∑
i=1
∥ξ i∥2

τ +
m
∑
j=1
∥ν j∥

2
τ ,

where, for i ∈ {1, . . . , n} and j ∈ {1, . . . , m},

ξ i = J� (X i ∶ (alg (C� , X̂i) , alg (Cr , Y)) , η�, i) and

ν j = Jr (Yj ∶ (alg (C� , X) , alg (Cr , Ŷ j)) , ηr , j)

provided these variables exist, and otherwise is defined as∞.
In the case that η�, i = ηr , j = η for all i and j, we use Φ∗(X ⊔Y ∶ (C� , Cr), η) to

denote the above bi-free Fisher information. In the case that C� = B� and Cr = Br , we
use Φ∗(X ⊔Y ∶ ({η�, i}n

i=1 , {ηr , j}m
j=1)). In the case both occur, we use Φ∗(X ⊔Y ∶ η).

Note that the bi-free Fisher with respect to completely positive maps exists in many
settings due to Theorems 6.4 and 6.6. Furthermore, the properties of the bi-free Fisher
with respect to completely positive maps are in analogy with those from [4, 10, 14] as
the following shows.

Remark 7.1 (1) In the case that B = C and η is unital, Definition 7.1 immediately
reduces down to the bi-free Fisher information in [4, Definition 5.1] by Remark
5.2.

(2) In the case we are in the context of Example 2.3 with m = 0, C� = B�, and Cr =
Br , Definition 7.1 immediately reduces down to the free Fisher information with
respect to a complete positive map from [10, Definition 4.1].

(3) Note that

Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

=
n
∑
i=1

Φ∗ (X i ⊔ ∅ ∶ (alg (C� , X̂i) , alg (Cr , Y)) , η�, i , τ)

+
m
∑
j=1

Φ∗ (∅ ⊔ Yj ∶ (alg (C� , X) , alg (Cr , Ŷ j)) , ηr , j , τ) .

(4) If X = (X1 , X∗
1 , . . . , Xn , X∗

n) and Y = (Y1 , Y∗
1 , . . . , Ym , Y∗

m), then Lemma 5.4
implies that

Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

= 1
2

Φ∗(X′ ⊔Y′ ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)),

where X′ = (R(X1), I(X1), . . . ,R(Xn), I(Xn)) and Y′ =
(R(Y1), I(Y1), . . . ,R(Ym), I(Ym)).

(5) In the context of Proposition 5.9 (i.e., reducing the B-B-noncommutative prob-
ability space to a D-D-noncommutative probability space),

Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))
= Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i ○ F}n

i=1 , {ηr , j ○ F}m
j=1)).
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(6) By Lemma 5.5, for all λ ∈ C/{0},

Φ∗(λX ⊔ λY ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

= 1
∣λ∣2 Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)).

(7) In the context of Lemma 5.10 (i.e., (D� , Dr) a smaller pair of B-algebras than
(C� , Cr)),

Φ∗(X ⊔Y ∶ (D� , Dr), ({η�, i}n
i=1 , {ηr , j}m

j=1))
≤ Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)).

(8) In the context of Proposition 5.11 (i.e., adding in a bi-free pair of B-algebras),

Φ∗(X ⊔Y ∶ (alg(D� , C�), alg(Dr , Cr)), ({η�, i}n
i=1 , {ηr , j}m

j=1))
= Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)).

(9) If in addition to the assumptions of Definition 7.1 X′ ∈ An′
� , Y′ ∈ Am′

r ,
({η′�, i}n′

i=1 , {η′r , j}m′
j=1) is a collection of completely positive maps on B, and

(D� , Dr) is a pair of B-algebras, then, by (iii) and (vii),

Φ∗(X, X′ ⊔ Y, Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 ∪ {η′�, i}

n′
i=1 , {ηr , j}m

j=1 ∪ {η′r , j}
m′
j=1))

≥ Φ∗(X ⊔ Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) + Φ∗(X′ ⊔ Y′ ∶ (D� , Dr), ({η′�, i}
n′
i=1 , {η′r , j}

m′
j=1)).

(10) In the context of (ix) with the additional assumption that

(alg(C� , X), alg(Cr , Y)) and (alg(D� , X′), alg(Dr , Y′))

are bi-free with amalgamation over B with respect to E, Proposition 5.11 implies
that

Φ∗(X, X′ ⊔ Y, Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 ∪ {η′�, i}

n′
i=1 , {ηr , j}m

j=1 ∪ {η′r , j}
m′
j=1))

= Φ∗(X ⊔ Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) + Φ∗(X′ ⊔ Y′ ∶ (D� , Dr), ({η′�, i}
n′
i=1 , {η′r , j}

m′
j=1)).

Unsurprisingly, more complicated properties of free Fisher information extend.

Proposition 7.2 (Bi-free Stam inequality) Let (A, E , ε, τ) be an analytical B-B-
noncommutative probability space, let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive

maps from B to B, let X, X′ ∈ An
� and Y, Y′ ∈ Am

r , and let (C� , Cr) and (D� , Dr) be
pairs of B-algebras of A such that

(alg(C� , X), alg(Cr , Y)) and (alg(D� , X′), alg(Dr , Y′))

are bi-free with amalgamation over B with respect to E. Then,

(Φ∗(X +X′ ⊔Y +Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 , {ηr , j}m

j=1)))
−1

≥ (Φ∗(X ⊔Y ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 , {ηr , j}m

j=1)))
−1

+ (Φ∗(X′ ⊔Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 , {ηr , j}m

j=1)))
−1 .
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Proof Let

P0 ∶ L2(A, φ) → L2(B, τB),

P1 ∶ L2(A, φ) → alg(C� , Cr , X, Y)
∥ ⋅ ∥τ ,

P2 ∶ L2(A, φ) → alg(D� , Dr , X′ , Y′)
∥ ⋅ ∥τ

be the orthogonal projections onto their co-domains. Note that if

Z ∈ alg(C� , Cr , X, Y) and alg(D� , Dr , X′ , Y′),

then bi-freeness implies that

Ẽ(ZZ′) = Ẽ (ZẼ(Z′)) .

Indeed, this is easily seen as if Z and Z′ are monomials, then any cumulant of the
monomial ZZ′ corresponding to a bi-non-crossing partition is nonzero if and only if
it decomposes into a bi-non-crossing partition on Z union a bi-non-crossing partition
on Z′. Thus, P1P2 = P2P1 = P0.

The remainder of the proof can then be read from [10, Proposition 4.5], [4,
Proposition 5.8], or even [14, Proposition 6.5]. ∎

Proposition 7.3 (Bi-free Cramer–Rao inequality) Let (A, E , ε, τ) be an analytical B-
B-noncommutative probability space, let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive

maps from B to B, let X ∈ An
� and Y ∈ Am

r consist of self-adjoint operators, and let
(C� , Cr) be a pair of B-algebras of A. Then,

Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))τ
⎛
⎝

n
∑
i=1

X2
i +

m
∑
j=1

Y 2
j
⎞
⎠

≥
⎛
⎝

n
∑
i=1

τB(η�, i(1)) +
m
∑
j=1

τB(ηr , j(1))
⎞
⎠

2

.

Moreover, equality holds if (X, Y) are ({η�, i}n
i=1 , {ηr , j}m

j=1)-bi-semicircular elements
and

{(C� , Cr)} ∪ {(alg(B� , X i), Br)}n
i=1 ∪ {(B� , alg(Br , Yj))}m

j=1

are bi-free with amalgamation over B with respect to E. The converse holds when C� = B�

and Cr = Br .

Proof The result follows from the obvious modifications to [4, Proposition 5.10].
Also, see [10, Proposition 4.6] and [14, Proposition 6.9]. ∎

Similarly, limits behave as one expects based on [4, 10, 14].

Proposition 7.4 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, let X ∈ An

�

and Y ∈ Am
r consist of self-adjoint operators, and let (C� , Cr) be a pair of B-algebras of

A. Suppose further for each k ∈ N that X(k) ∈ An
� and Y(k) ∈ Am

r are tuples of self-adjoint
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elements in A such that

lim sup
k→∞

∥X(k)
i ∥ < ∞,

lim sup
k→∞

∥Y(k)
j ∥ < ∞,

s- lim
k→∞

X(k)
i = X i , and

s- lim
k→∞

Y(k)
j = Yj

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (where the strong limit is computed as bounded linear
maps acting on L2(A, τ)). Then,

lim inf
k→∞

Φ∗ (X(k) ⊔Y(k) ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

≥ Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)).

The proof of Proposition 7.4 becomes identical to [4, Proposition 5.12] once the
following lemma is established. Also, see [10, Proposition 4.7] and [14, Proposition
6.10].

Lemma 7.5 Under the assumptions of Proposition 7.4 along with the additional
assumptions that

ξk = J� (X(k)
1 ∶ (alg(C� , X̂(k)

1 ) , alg(Cr , Y(k))) , η�,1)

exist and are bounded in L2-norm by some constant K > 0, it follows that

ξ = J� (X1 ∶ (alg (C� , X̂1) , alg(Cr , Y)) , η�,1)

exists and is equal to

w- lim
k→∞

P (ξk) ,

where P is the orthogonal projection of L2(A, τ) onto alg(C� , Cr , X, Y)
∥ ⋅ ∥τ .

If, in addition,

lim sup
k→∞

∥ξk∥2 ≤ ∥ξ∥2 ,

then

lim
k→∞

∥ξk − ξ∥2 = 0.

The same holds with X1 replaced with X i , and a similar result holds for the right.

Proof The proof of this result follows from the same sequence of steps as [4, Lemma
5.13] using the analytical operator-valued bi-free cumulants. ∎

Corollary 7.6 Under the assumptions of Proposition 7.4, if in addition

(B�(X), Br(Y)) and (alg (C� , X(k)) , alg (Cr , Y(k)))
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are bi-free for all k and

lim
k→∞

∥X(k)
i ∥ = lim

k→∞
∥Y(k)

j ∥ = 0

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then

lim
k→∞

Φ∗ (X +X(k) ⊔Y +Y(k) ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

= Φ∗(X ⊔Y ∶ ({η�, i}n
i=1 , {ηr , j}m

j=1)).

Furthermore, if C� = B�, Cr = Br , and

Φ∗(X ⊔Y ∶ ({η�, i}n
i=1 , {ηr , j}m

j=1)) < ∞,

then

J� (X(k)
i ∶ (B� ( ̂(X +X(k))i) , Br (Y +Y(k))) , η�, i)

tends to

J� (X i ∶ (B� (X̂i) , Br (Y)) , η�, i)

in τ-norm. A similar result holds for right bi-free conjugate variables.

Proof The proof is identical to [4, Corollary 5.14] and thus is omitted. ∎

Theorem 7.7 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability space,
let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, let X ∈ An

� and
Y ∈ Am

r be tuples of self-adjoint operators, let ({S i}n
i=1 , {D j}m

j=1) be a collection of
({η�, i}n

i=1 , {ηr , j}m
j=1) bi-semicircular operators in A, and let (C� , Cr) be pairs of

B-algebras of A such that

{(alg(C� , X), alg(Cr , Y)⟩)} ∪ {(alg(B� , S i), Br)}n
i=1 ∪ {(B� , alg(Br , D j))}m

j=1

are bi-free. Then, the map

h ∶ [0,∞) ∋ t ↦ Φ∗ (X +
√

tS ⊔Y +
√

tD ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

is decreasing, right continuous, and

K2
2

K1 + K2 t
≤ h(t) ≤ 1

t
K3 ,

where

K1 = τ
⎛
⎝

n
∑
i=1

X2
i +

m
∑
j=1

Y 2
j
⎞
⎠

,

K2 =
n
∑
i=1

τB(η�, i(1B)) +
m
∑
j=1

τB(ηr , j(1B)), and

K3 =
n
∑
i=1

τB(η�, i(1B))2 +
m
∑
j=1

τB(ηr , j(1B))2 .
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Moreover, if (X, Y) is the ({η�, i}n
i=1 , {ηr , j}m

j=1)-bi-semicircular distribution and

{(C� , Cr)} ∪ {(alg(B� , X i), Br)}n
i=1 ∪ {(B� , alg(Br , Yj))}m

j=1

are bi-free with amalgamation over B with respect to E, then h(t) = K2
2

K2
1 +K2 t for all t.

Finally, if C� = B�, Cr = Br , and h(t) = K2
2

K1+K2 t for all t, then (X, Y) is the
({η�, i}n

i=1 , {ηr , j}m
j=1)-bi-semicircular distribution.

Proof The proof becomes identical to [4, Theorem 5.15] using the above and the fact
that

τ ((X i +
√

tS i)
2) = τ (X2

i ) + tτ (S2
i ) = τ (X2

i ) + tτB (η�, i(1B)) ,

with an analogous computation on the right for use in the lower bound computation,
in conjunction with the bi-free Cramer–Rao inequality (Proposition 7.3). ∎

8 Bi-free entropy with respect to completely positive maps

With the construction and properties of the bi-free Fisher information with respect to
completely positive maps complete, the construction and properties of bi-free entropy
with respect to completely positive maps follows easily by extending results from [4,
10] with similar proofs.

Definition 8.1 Let (A, E , ε, τ) be an analytical B-B-noncommutative probability
space, let {η�, i}n

i=1 and {ηr , j}m
j=1 be completely positive maps from B to B, let (C� , Cr)

be pairs of B-algebras of A, and let X ∈ An
� and Y ∈ Am

r be tuples of self-adjoint
operators. The relative bi-free entropy of (X, Y)with respect to ({η�, i}n

i=1 , {ηr , j}m
j=1) in

the presence of (B� , Br) is defined to be

χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

= K
2

ln(2πe) + 1
2 ∫

∞

0
( K

1 + t
−Φ∗(X +

√
tS ⊔Y

+
√

tD ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))) dt,

where

K =
n
∑
i=1

τB(η�, i(1B)) +
m
∑
j=1

τB(ηr , j(1B))

and ({S i}n
i=1 , {D j}m

j=1) is a collection of ({η�, i}n
i=1 , {ηr , j}m

j=1) bi-semicircular opera-
tors such that

{(alg(C� , X), alg(Cr , Y)⟩)} ∪ {(B�(S i), Br)}n
i=1 ∪ {(B� , Br(D j))}m

j=1

are bi-free (note that such semicircular operators can be included in A by Theorem
6.4).

In the case that C� = B� and Cr = Br , we use χ∗(X ⊔Y ∶ ({η�, i}n
i=1 , {ηr , j}m

j=1)) to
denote the bi-free entropy. If in addition η�, i = ηr , j = η for all i and j, we use χ∗(X ⊔Y ∶
η) to denote the bi-free entropy.
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We note that there is a slight change in the normalization used in Definition 8.1
over that used in [10, Definition 8.1]. Generally, this makes no real difference other
than making some of the bounds in this section nice, such as the following one.

Proposition 8.1 In the context of Definition 8.1, if

K1 = τ
⎛
⎝

n
∑
i=1

X2
i +

m
∑
j=1

Y 2
j
⎞
⎠

,

then

χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) ≤
K
2

ln(2πe
K

K1) .

Moreover, equality holds when (X, Y) are ({η�, i}n
i=1 , {ηr , j}m

j=1)-bi-semicircular opera-
tors such that {(C� , Cr)} ∪ {(alg(B� , X i), Br)}n

i=1 ∪ {(B� , alg(Br , Yj))}m
j=1 are bi-free

and if C� = B� and Cr = Br , this is the only setting where equality holds.

Proof The proof is identical to [4, Proposition 6.5] in conjunction with Theorem
7.7. ∎
Remark 8.2 (1) In the case that B = C and η is unital, Definition 8.1 produces the

non-microstate bi-free entropy from [4, Definition 6.1].
(2) In the setting of Example 2.3, when Cr = Br and η�, i = ηr , j = η for all i and j,

Definition 8.1 produces the free entropy with respect to a completely positive map
from [10, Definition 8.1] modulo an additive constant (which is 0 in the case η is
unital).

Of course, due to the fact that the bi-free Fisher information from Section 7 behaves
analogously to the Fisher information considered in [4, 10], results for the behavior of
entropy automatically generalize.

Proposition 8.3 Using Remark 7.1, the following hold:
(v) In the context of Proposition 5.9 (i.e., reducing the B-B-noncommutative probability

space to a D-D-noncommutative probability space),

χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))
= χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i ○ F}n

i=1 , {ηr , j ○ F}m
j=1)).

(vi) For all λ ∈ R/{0},
χ∗(λX ⊔ λY ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1))

=
⎛
⎝

n
∑
i=1

τB(η�, i(1B)) +
m
∑
j=1

τB(ηr , j(1B))
⎞
⎠

ln ∣λ∣

+ χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)).
(vii) In the context of Lemma 5.10 (i.e., (D� , Dr) is a smaller pair of B-algebras than
(C� , Cr)),

χ∗(X ⊔Y ∶ (D� , Dr), ({η�, i}n
i=1 , {ηr , j}m

j=1))
≥ χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)).
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(viii) In the context of Proposition 5.11 (i.e., adding in a bi-free pair of B-algebras),

χ∗(X ⊔Y ∶ (alg(D� , C�), alg(Dr , Cr)), ({η�, i}n
i=1 , {ηr , j}m

j=1))
= χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)).

(ix) If in addition to the assumptions of Definition 8.1 we have X′ ∈ An′
� , Y′ ∈ Am′

r ,
({η′�, i}n′

i=1 , {η′r , j}m′
j=1) is a collection of completely positive maps on B, and (D� , Dr)

is a pair of B-algebras, then

χ∗(X, X′ ⊔ Y, Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 ∪ {η′�, i}

n′
i=1 , {ηr , j}m

j=1 ∪ {η′r , j}
m′
j=1))

≤ χ∗(X ⊔ Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) + χ∗(X′ ⊔ Y′ ∶ (D� , Dr), ({η′�, i}
n′
i=1 , {η′r , j}

m′
j=1)).

(x) In the context of (ix) with the additional assumption that

(alg(C� , X), alg(Cr , Y)) and (alg(D� , X′), alg(Dr , Y′))

are bi-free with amalgamation over B with respect to E, Proposition 5.11 implies that

χ∗(X, X′ ⊔ Y, Y′ ∶ (alg(C� , D�), alg(Cr , Dr)), ({η�, i}n
i=1 ∪ {η′�, i}

n′
i=1 , {ηr , j}m

j=1 ∪ {η′r , j}
m′
j=1))

= χ∗(X ⊔ Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) + χ∗(X′ ⊔ Y′ ∶ (D� , Dr), ({η′�, i}
n′
i=1 , {η′r , j}

m′
j=1)).

Using Proposition 7.4, Theorem 7.7, and the same arguments as [4, Proposition 6.7],
the following holds.

Proposition 8.4 Under the assumptions of Definition 8.1, if for each k ∈ N there exist
self-adjoint tuples X(k) ∈ An

� and Y(k) ∈ Am
r such that

lim sup
k→∞

∥X(k)
i ∥ < ∞,

lim sup
k→∞

∥Y(k)
j ∥ < ∞,

s- lim
k→∞

X(k)
i = X i , and

s- lim
k→∞

Y(k)
j = Yj

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (with the strong limit computed as bounded linear maps
acting on L2(A, τ)), then

lim sup
k→∞

χ∗ (X(k) ⊔Y(k) ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1))

≤ χ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)).

Using the previous proposition together with Theorem 7.7 and the same arguments
as [4, Proposition 6.8], the following holds.

Proposition 8.5 Under the assumptions of Definition 8.1, suppose that
({S i}n

i=1 , {D j}m
j=1) is a collection of ({η�, i}n

i=1 , {ηr , j}m
j=1) bi-semicircular operators

such that

(alg(C� , X), alg(Cr , Y)⟩) ∪ {(alg(B� , S i), Br)}n
i=1 ∪ {(B� , alg(Br , D j))}m

j=1
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are bi-free. For t ∈ [0,∞), let

g(t) = χ∗ (X +
√

tS ⊔Y +
√

tD ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) .

Then, g ∶ [0,∞) → R ∪ {−∞} is a concave, continuous, increasing function such that
g(t) ≥ K

2 ln(2πet), where

K =
n
∑
i=1

τB(η�, i(1B)) +
m
∑
j=1

τB(ηr , j(1B))

and, when g(t) ≠ −∞,

lim
ε→0+

1
ε
(g(t + ε) − g(t)) = 1

2
Φ∗ (X +

√
tS ⊔ Y +

√
tD ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1)) .

Finally, using the Bi-free Stam inequality (Proposition 7.2) together with the same
proof as [4, Proposition 6.11] yields the following.

Proposition 8.6 Under the assumptions of Definition 8.1, if

Φ∗ (X ⊔Y ∶ (C� , Cr), ({η�, i}n
i=1 , {ηr , j}m

j=1)) < ∞,

then

χ∗(X ⊔Y ∶ (B� , Br)) ≥
K
2

ln
⎛
⎝

2πKe
Φ∗(X ⊔Y ∶ (C� , Cr), ({η�, i}n

i=1 , {ηr , j}m
j=1))

⎞
⎠
> −∞,

where

K =
n
∑
i=1

τB(η�, i(1B)) +
m
∑
j=1

τB(ηr , j(1B)).

9 Minimizing bi-free fisher information

In this section, we will prove Theorem 9.5, thereby describing the minimal value of
the bi-free Fisher information of non-self-adjoint pairs of operators under certain dis-
tribution conditions. Throughout the section, we will be working under the situation
from Example 3.3 whereA is a unital C∗-algebra, φ ∶ A→ C is a state, B = Md(C) (the
d × d matrices with complex entries), and τB = trd (the normalized trace on Md(C)).
Thus, Ad = A⊗Md(C) ⊗Md(C)op, Ed ∶ Ad → Md(C) and τd ∶ Ad → C are defined
such that

Ed(Z ⊗ b1 ⊗ b2) = φ(Z)b1b2 and τd(Z ⊗ b1 ⊗ b2) = φ(Z) trd(b1b2),
for all Z ∈ A and b1 , b2 ∈ Md(C). We recall the following result that aids in computing
moments in (Ad , Ed , ε)where {E i , j}d

i , j=1 ⊆ Md(C) are the canonical matrix units and
Id is the identity of Md(C).
Lemma 9.1 [11, Lemma 3.7] Let (A, φ) be a C∗-noncommutative probability space,
let χ ∈ {�, r}n , and let

Zk =
⎧⎪⎪⎨⎪⎪⎩

∑d
i , j=1 zk ;i , j ⊗ E i , j ⊗ Id , if χ(k) = �,
∑d

i , j=1 zk ;i , j ⊗ Id ⊗ E i , j , if χ(k) = r.
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Then,

Ed(Z1 ⋅ ⋅ ⋅ Zn) =
d
∑

i1 , . . . , in=1
j1 , . . . , jn=1

φ(z1;i1 , j1 ⋅ ⋅ ⋅ zn;in , jn)Eχ((i1 , . . . , in), ( j1 , . . . , jn)),

where

Eχ((i1 , . . . , in), ( j1 , . . . , jn)) ∶= E is χ(1) , js χ(1) ⋅ ⋅ ⋅E is χ(n) , js χ(n) ∈ Md(C).

To discuss conjugate variables, we need to consider L2(Ad , τd). It is not difficult
to verify that L2(Ad , τd) can be identified with the d × d matrices with entries in
L2(A, φ) where

(Z ⊗ Id ⊗ Id)[ξ i , j] = [Zξ i , j],

1A ⊗ b ⊗ Id acts via left multiplication on [ξ i , j], and 1A ⊗ Id ⊗ b acts via right multi-
plication on [ξ i , j] for all [ξ i , j] ∈ Md(L2(A, φ)) and b ∈ Md(C).

Next, we consider the subalgebra Dd ⊆ Md(C) of the diagonal matrices. Clearly,
if Fd ∶ Md(C) → Dd is the canonical conditional expectation onto the diagonal, then
(Ad , Fd ○ Ed , ε∣Dd⊗Dop

d
, τd) is also an analytical Dd -Dd -noncommutative probability

space (see Example 5.8).
To begin stating our main result, we first require two definitions.

Definition 9.1 [12, Definition 4.4] Let

Z� =
d
∑

i , j=1
z�, i , j ⊗ E i , j ⊗ Id and Zr =

d
∑

i , j=1
z�, i , j ⊗ Id ⊗ E i , j .

The pair (Z� , Zr) is said to be bi-R-cyclic if for all n ≥ 1, χ ∈ {�, r}n and 1 ≤
i1 , . . . , in , j1 , . . . , jn ≤ d,

κC

χ (zχ(1), i1 , j1 , zχ(2), i2 , j2 , . . . , zχ(n), in , jn) = 0

whenever at least one of js χ(1) = is χ(2), js χ(2) = is χ(3), . . ., js χ(n−1) = is χ(n), js χ(n) =
is χ(1) fails.

Definition 9.2 [12, Example 4.7] Let x , y ∈ A. The pair (x , y) is said to be bi-R-
diagonal if all odd length C-valued bi-free cumulants involving ({x , x∗}, {y, y∗})
vanish and

κC

χ (z1 , . . . , z2n) = 0

(where χ ∈ {�, r}2n is such that χ(k) = � if zk ∈ {x , x∗} and χ(k) = r if zk ∈ {y, y∗})
unless (zs χ(1) , . . . , zs χ(n)) is of one of the following forms:
• (Z , Z∗ , Z , Z∗ , . . . , Z , Z∗) with Z ∈ {x , x∗ , y, y∗},
• (x , x∗ , x , x∗ , . . . , x , x∗ , y, y∗ , y, y∗ , . . . , y, y∗),
• (x , x∗ , x , x∗ , . . . , x , x∗ , x , y∗ , y, y∗ , y, y∗ , . . . , y, y∗),
• (x∗ , x , x∗ , x , . . . , x∗ , x , y∗ , y, y∗ , y, . . . , y∗ , y), or
• (x∗ , x , x∗ , x , . . . , x∗ , x , x∗ , y, y∗ , y, y∗ , y, . . . , y∗ , y).
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To reduce the above to our desired context, let x , y ∈ A. For d = 2, let

X = x ⊗ E1,2 ⊗ I2 + x∗ ⊗ E2,1 ⊗ I2 and Y = y ⊗ I2 ⊗ E1,2 + y∗ ⊗ I2 ⊗ E2,1 ,

which are then self-adjoint elements of A2. The pair (X , Y) is intimately related to
whether or not (x , y) is bi-R-diagonal. Indeed, combining [7, Proposition 2.21] and
[12, Theorem 4.9], we obtain the following proposition.

Proposition 9.2 As described above, the following conditions are equivalent:
(1) The pair (x , y) is bi-R-diagonal.
(2) The pair (X , Y) is bi-R-cyclic.
(3) The pair of algebras (alg(D2 , X), alg(D2 , Y)) is bi-free from (M2(C)� , M2(C)r)

with amalgamation over D2 with respect to F2 ○ E2.

In addition, the joint moments of (X , Y) with respect to τd are not too difficult to
describe. Indeed, for any n ∈ N, Z1 , Z2 , . . . , Zn ∈ {X , Y}, χ ∈ {�, r}n , and z1 , . . . , zn ∈
{x , y} such that

χ(k) =
⎧⎪⎪⎨⎪⎪⎩

�, if Zk = X
r, if Zk = Y

and zk =
⎧⎪⎪⎨⎪⎪⎩

x , if Zk = X ,
y, if Zk = Y ,

then

E2(Z1 ⋅ ⋅ ⋅ Zn) =
n
∑
k=1

∑
pk∈{1,∗}

φ(zp1
1 ⋅ ⋅ ⋅ z

pn
n )(E1,2)ps χ(1)(E1,2)ps χ(2) ⋅ ⋅ ⋅ (E1,2)ps χ(n) .

Thus, if n is odd, we see that τ2(Z1 ⋅ ⋅ ⋅ Zn) = 0 and if n is even, we see that

τ2(Z1 ⋅ ⋅ ⋅ Zn) =
1
2
(φ(zp1

1 ⋅ ⋅ ⋅ z
pn
n ) + φ(zq1

1 ⋅ ⋅ ⋅ z
qn
n )) ,

where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, if k is odd
1, if k is even

(that is, the 1’s and ∗’s alternate in the χ-ordering). Hence, the joint moments of (X , Y)
with respect to τd depend only on specific moments of (x , y). We let ΔX ,Y denote the
set of all pairs (x0 , y0) in a C∗-noncommutative probability space (A0 , φ0) such that
if we apply the above procedure to (x0 , y0) resulting in (X0 , Y0), then (X0 , Y0) has
the same joint distribution as (X , Y) (so ΔX ,Y = ΔX0 ,Y0 ).

One specific case worth mentioning is when x and y are normal operators with
[alg(x , x∗), alg(y, y∗)] = 0, thus defining a probability measure μ on C

2. Then, X and
Y will be commuting self-adjoint operators and therefore their joint distribution gives
rise to a compactly supported probability measure μ0 on R

2 with moments

τ2(XnY m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if n +m is odd,
φ((x∗x)i(y∗y) j), if n = 2i and m = 2 j,
1
2 φ((x∗x)i(x y∗ + x∗y)(y∗y) j), if n = 2i + 1 and m = 2 j + 1.
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One additional property is required in this section. In particular, as we are attempt-
ing to generalize [8, Theorem 1.1], which makes heavy use of traciality, we need a
condition that lets us bypass the issue that τ2 is not tracial on A2.

Definition 9.3 Let (A, φ) be a C∗-noncommutative probability space, and let x , y ∈
A. We say that (x , y) is alternating adjoint flipping with respect to φ if for any n ∈ N,
χ ∈ {�, r}2n , and z1 , . . . , z2n ∈ {x , y} such that

zk =
⎧⎪⎪⎨⎪⎪⎩

x , if χ(k) = �,
y, if χ(k) = r,

we have that

φ(zp1
1 ⋅ ⋅ ⋅ z

p2n
2n ) = φ(zq1

1 ⋅ ⋅ ⋅ z
q2n
2n ),

where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, if k is odd,
1, if k is even.

Remark 9.3 If (x , y) is alternating adjoint flipping, then the description of the joint
moments of (X , Y) above reduces to a nicer expression. Furthermore, we see that

φ((x∗x)m) = φ((xx∗)m) and φ((y∗y)m) = φ((yy∗)m)

for all m ∈ N, so that x∗x and xx∗ have the same distribution and y∗y and yy∗ have
the same distribution, which would be automatic if φ was tracial when restricted
to alg(x , x∗) and when restricted to alg(y, y∗) (a common assumption in bi-free
probability).

Recall that a pair (u� , ur) is said to be a bi-Haar unitary if u� and ur are commuting
normal operators such that

φ(um
� uk

r ) =
⎧⎪⎪⎨⎪⎪⎩

1, if m + k = 0,
0, otherwise.

Of course, bi-Haar unitary pairs are trivially seen to be alternating adjoint flipping,
since any joint moment with an equal number of adjoint and non-adjoint terms is 1
and any joint moment with a differing number of adjoint and non-adjoint terms is 0.
Here is another example which is of use in this paper.

Example 9.4 Let H be any Hilbert space of dimension at least 4, let F(H) denote
the Fock space generated by H, let φ0 be the vacuum vector state on B(F(H)), and
let {e1 , e2 , e3 , e4} be an orthonormal set. For i = 1, 2, let s i = l(e i) + l∗(e i) (i.e., left
creation plus annihilation by e i ), and for j = 1, 2, let d j = r(e j+2) + r∗(e j+2) (i.e., right
creation and annihilation by e j+2). Thus, ({s1 , s2}, {d1 , d2}) is a bi-free central limit
distribution with variance 1 and covariance 0.

Let

c� =
1√
2
(s1 + is2) and cr =

1√
2
(d1 + id2).
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We call the pair (c� , cr) a bi-free circular pair (with mean 0, variance 1, and covari-
ance 0).

We claim that (c� , cr) is an example of a bi-R-diagonal pair that is alternating
adjoint flipping with respect to φ0. To see that (c� , cr) is bi-R-diagonal, we note that
any bi-free cumulant for ({s1 , s2}, {d1 , d2}) of order 1, of order greater than 3, or
involving two different elements is 0. As

κ1(�,�)(c� , c�) =
1
2
κ1(�,�)(s1 , s1) + (i)2 1

2
κ1(�,�)(s2 , s2) = 0,

κ1(�,�)(c∗� , c∗� ) =
1
2
κ1(�,�)(s1 , s1) + (−i)2 1

2
κ1(�,�)(s2 , s2) = 0,

and similar computations hold on the right, we have that (c� , cr) is bi-R-diagonal.
To see that (c� , cr) is alternating adjoint flipping with respect to φ0, first note that

φ0 is tracial when restricted to alg(s1 , s2) as s1 and s2 are freely independent with
respect to φ0. Hence, for all n ∈ N,

φ0((c∗� c�)n) = φ0((c�c∗� )n).

Moreover, as any monomial of odd length involving freely independent semicircular
variables is 0, we obtain that, for all n ∈ N,

φ0(c�(c∗� c�)n) = 0 = φ0(c∗� (c�c∗� )n).

Similarly, for all n ∈ N, we have that

φ0((c∗r cr)n) = φ0((cr c∗r )n) and φ0(cr(c∗r cr)n) = 0 = φ0(c∗r (cr c∗r )n).

To see the remaining moment conditions, first note that {c� , c∗� } commutes with
{cr , c∗r }. Thus, as the χ-ordering is not changed by commutation of left and right
operators, it suffices to show that

φ0((c∗� c�)n(cr c∗r )m) = φ0((c�c∗� )n(c∗r cr)m),
φ0(c�(c∗� c�)n(cr c∗r )m) = φ0(c∗� (c�c∗� )n(c∗r cr)m),
φ0((c∗� c�)n c∗r (cr c∗r )m) = φ0(c∗� (c�c∗� )n cr(c∗r cr)m), and

φ0(c�(c∗� c�)n c∗r (cr c∗r )m) = φ0(c∗� (c�c∗� )n cr(c∗r cr)m),

for all n, m ∈ N ∪ {0}. However, as {c� , c∗� } is classically independent from {cr , c∗r }
since the joint bi-free cumulants vanish, each of the eight above moment expressions
simplifies to the φ0-moment of the {c� , c∗� } term times the φ0-moment of the {cr , c∗r }.
Thus, the desired moments are equal by the above knowledge of the φ0-moments of
the {c� , c∗� } and the φ0-moment of the {cr , c∗r }.

With the above definitions, notation, and constructions out of the way, our main
result is at hand.

Theorem 9.5 Let (A, φ) be a C∗-noncommutative probability space, and let x , y ∈ A
be such that x∗x and xx∗ have the same distribution with respect to φ and y∗y and yy∗
have the same distribution with respect to φ. With X and Y as described above,

min{Φ∗({x0 , x∗0 } ⊔ {y0 , y∗0} ∶ (C,C), φ) ∣ (x0 , y0) ∈ ΔX ,Y} ≥ 2Φ∗(X ⊔ Y)
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and equality holds and is achieved for any pair (x0 , y0) that is alternating adjoint
flipping and bi-R-diagonal.

Remark 9.6 Note that Theorem 9.5 is a generalization of [8, Theorem 1.1] to the bi-
free setting. Prior to the acknowledgements of [8], it is mentioned that the minimum
in the free result can only be reached by an R-diagonal element via the result from [15]
that Φ∗(x1 , . . . , xn ∶ B) = Φ∗(x1 , . . . , xn) < ∞ implies {x1 , . . . , xn} is free from B. As
there is no such known analogous result in the bi-free case, we leave Theorem 9.5 as
stated.

To begin the proof of Theorem 9.5, we note the following connecting the bi-free
Fisher information of ({x , x∗}, {y, y∗}) and (X , Y) (and thereby demonstrating the
necessity of considering bi-free Fisher information with respect to completely positive
maps in this construction). We note that the following is a generalization of [8,
Proposition 3.6] with a similar but more complicated proof due to the χ-ordering and
additional variables present.

Proposition 9.7 Under the assumptions of Theorem 9.5, if η ∶ M2(C) → M2(C) is
defined by

η([a1,1 a1,2
a2,1 a2,2

]) = [a2,2 0
0 a1,1

] ,

then

Φ∗({x , x∗} ⊔ {y, y∗} ∶ (C,C), φ) = 2Φ∗(X ⊔ Y ∶ (M2(C)� , M2(C)r), η).
Proof First, suppose that the bi-free Fisher information Φ∗({x , x∗} ⊔ {y, y∗}) is
finite. Thus, there exist

ξ1 , ξ2 ∈ alg(x , x∗ , y, y∗)
∥ ⋅ ∥φ

such that ξ1 is the left bi-free conjugate variable for x with respect to φ in the presence
of (x , {y, y∗}) and ξ2 is the left bi-free conjugate variable for x∗ with respect to φ in
the presence of (x∗ , {y, y∗}). Let

Ξ = [ 0 ξ2
ξ1 0 ] ∈ M2(L2(A2 , τ2)) ≅ L2(M2(A2), τ2 ⊗ tr2).

We claim that Ξ = J� (X ∶ (M2(C)� , alg (M2(C)r , Y)) , η). Since a similar result holds
on the right and since

∥Ξ∥2
τ2
= 1

2
(∥ξ1∥2

φ + ∥ξ2∥2
φ) ,

the result will follow in this case.
First, we claim that Ξ ∈ alg (X , Y , M2(C)� , M2(C)r)

τ2 . Indeed, it is not difficult to
verify that

z ⊗ E i1 , j1 ⊗ E i2 , j2 ∈ alg (X , Y , M2(C)� , M2(C)r)
for all z ∈ {x , x∗ , y, y∗} and i1 , i2 , j1 , j2 ∈ {1, 2}. Thus, since ξ1 , ξ2 ∈
alg(x , x∗ , y, y∗)

∥ ⋅ ∥φ , the claim follows.
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To complete the claim that Ξ is the appropriate left bi-free conjugate variable, we
must show that Ξ satisfies the left bi-free conjugate variable relations; that is, for all
n ∈ N, b0 , b1 , . . . , bn ∈ M2(C), χ ∈ {�, r}n with χ(n) = �, and Z1 , . . . , Zn−1 ∈ A2 and
C1 , . . . Cn−1 ∈ 1A ⊗M2(C) ⊗M2(C)op where

Zk =
⎧⎪⎪⎨⎪⎪⎩

X , if χ(k) = �
Y , if χ(k) = r

and Ck =
⎧⎪⎪⎨⎪⎪⎩

Lbk , if χ(k) = �,
Rbk , if χ(k) = r,

we have that

τ2 (Lb0 Rbn Z1C1 ⋅ ⋅ ⋅ Zn−1Cn−1Ξ) = ∑
1≤k<n
χ(k)=�

τ2
⎛
⎜
⎝

Lb0 Rbn

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
ZpCp

⎞
⎟
⎠

Lη(E2(Ck ∏p∈Vk
Zp Cp))

⎞
⎟
⎠

,

(9.1)

where Vk = {k < m < n ∣ χ(m) = �}. By linearity, it suffices to consider bk = E ik , jk for
all k where ik , jk ∈ {1, 2}. In that which follows, the proof is near identical to that of
[8, Proposition 3.6] taking into account the χ-order. For notational purposes, for k ∈
{1, 2}, let k = 3 − k.

Let q = s−1
χ (n) (i.e., Ξ appears qth in the χ-ordering). We begin by computing the

left-hand side of (9.1). Using Lemma 9.1 (and recalling τ2 = tr2 ○E2), proceeding via
χ-order using commutation, we obtain that:

• the only way the product produces a nonzero trace is if i0 = jn ,
• the term Lb0 XLbs χ(1) can be made to appear in the product and is nonzero only if

j0 = is χ(1),
• the term Lbs χ(k−1)XLbs χ(k) can be made to occur for all 2 ≤ k < q and is nonzero only

if js χ(k−1) = is χ(k),
• the term Lbs χ(q−1)Rbs χ(q+1)Ξ can be made to occur and is nonzero only if js χ(q−1) =

is χ(q+1),
• the term Rbs χ(k+1)YRbs χ(k) can be made to occur for all q < k < n and is nonzero only

if js χ(k) = is χ(k+1) (recall the opposite multiplication), and
• the term Rbn YRbs χ(n) can be made to occur and is nonzero only if js χ(n) = in .

Note the discrepancy in notation around the Ξ term due to the labeling of the left and
right B-operators (i.e., bs χ(q) = bn is in the wrong spot). Thus, with

(X)1,2 = x , (X)2,1 = x∗ , (Y)1,2 = y, (Y)2,1 = y∗ , (Ξ)1,2 = ξ2 , and (Ξ)2,1 = ξ1 ,

and

Zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X) j0 , j0
, if sχ(k) = 1,

(X) js χ(k−1) , js χ(k−1)
, if 1 < sχ(k) < q,

(Ξ) js χ(q−1) , js χ(q−1)
, if sχ(k) = q,

(Y) js χ(k) , js χ(k)
, if q < sχ(k) < n,

(Y) js χ(n) , js χ(n)
, if sχ(k) = n,
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we see that the left-hand side of (9.1) is
1
2

δ jn , i0 δ j0 , is χ(1)
δ js χ(1) , is χ(2)

⋅ ⋅ ⋅ δ js χ(q−2) , is χ(q−1)
δ js χ(1−2) , is χ(q+1)

δ js χ(q+1) , is χ(q+2)
⋅ ⋅ ⋅ δ js χ(n−1) , is χ(n)

δ js χ(n) , in

× φ (Z1 ⋅ ⋅ ⋅ Zn) ,(9.2)

where δ j, i is the Kronecker delta. Moreover, using the conjugate variable relations for
ξ1 and ξ2, we see that

φ (Z1 ⋅ ⋅ ⋅ Zn) = ∑
1≤k<n
χ(k)=�

δ js χ(k−1) , js χ(q−1)
φ
⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

φ
⎛
⎝∏p∈Vk

Zp
⎞
⎠

,(9.3)

where the δ js χ(k−1) , js χ(q−1)
should be δ js χ(k−1) , js χ(q−1)

when k = s−1
χ (1).

To complete the proof that equation (9.1) holds, we compute the right-hand side
of equation (9.1) and show the kth term in the sum equals the kth term obtain in
equation (9.2) using equation (9.3). Indeed, for a fixed 1 ≤ k < n for which χ(k) = �,
we can compute

Mk = E2
⎛
⎝

Ck ∏
p∈Vk

ZpCp
⎞
⎠

,

in a similar fashion to the above. Thus, to obtain a nonzero value, the relations
js χ(p−1) = is χ(p) for all p ∈ Vk must hold. Moreover, one immediately obtains when
Mk ≠ 0 that

Mk = φ
⎛
⎝∏p∈Vk

Zp
⎞
⎠

Tk ,

for some Tk ∈ M2(C).
Next, notice that η (Mk) is equivalent to multiplying Mk on the left by U = E1,2 +

E2,1 (for right conjugate variables, one would multiply on the right) and thus we
consider UMk in place of η (Mk). At this point, notice by Lemma 9.1 that UTk can be
written as a product of bp ’s with bs χ(q−1) being the right-most term. By commutation,
Rbs χ(q+1) will act on the right of UTk thereby multiplying by bs χ(q+1) on the right and
forcing js χ(q−1) = is χ(q+1) for a nonzero value to be obtained. One then proceeds as
above to show that a nonzero value is obtained only if the above relations are satisfied
and that the term that is produced agrees with the kth term of (9.3). Hence, the proof
is complete in the case that Φ∗({x , x∗} ⊔ {y, y∗}) < ∞.

To prove the result in the case that Φ∗({x , x∗} ⊔ {y, y∗}) = ∞, it suffices to
show that if Φ∗(X ⊔ Y ∶ η) < ∞, then Φ∗({x , x∗} ⊔ {y, y∗} ∶ (C,C), φ) < ∞. Thus,
suppose that Φ∗(X ⊔ Y ∶ η) < ∞. Hence, Ξ = J� (X ∶ (M2(C)� , alg (M2(C)r , Y)) , η)
exists and can be written as

Ξ = [ξ1,1 ξ1,2
ξ2,1 ξ2,2

] .

We claim that

ξ2,1 = J�(x ∶ (x∗ , {y, y∗}), φ) and ξ1,2 = J�(x∗ ∶ (x , {y, y∗}), φ).
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As a similar result will hold on the right, we will obtain that Φ∗({x , x∗} ⊔ {y, y∗} ∶
(C,C), φ) < ∞ as desired.

As Ξ ∈ alg (X , Y , M2(C)� , M2(C)r)
τ2 , it is not difficult to see that ξ i , j ∈

alg(x , x∗ , y, y∗)
∥ ⋅ ∥φ . To see that ξ2,1 and ξ1,2 satisfy the appropriate left bi-free conju-

gate variable relations, one need only use equation (9.1), choose bk = E ik , jk satisfying
the above required relations for a nonzero value, and expand both sides of equation
(9.1) in an identical way to that above. The resulting equations are exactly the left bi-
free conjugate variable relations required. ∎

Using the results from this paper, there is some immediate knowledge about the
bi-free Fisher information with respect to η from Proposition 9.7. We note that
the following is a generalization of [8, Proposition 3.7] with a similar but more
complicated proof due to the χ-ordering and additional variables present.

Proposition 9.8 Under the assumptions and notation of Proposition 9.7,

Φ∗(X ⊔ Y ∶ η) ≥ Φ∗(X ⊔ Y ∶ η∣D2)
and the equality holds when (alg((D2)� , X), alg((D2)r , Y)) is bi-free from
(M2(C)� , M2(C)r) with amalgamation over D2 with respect to F2. Moreover,

Φ∗(X ⊔ Y ∶ η∣D2) ≥ Φ∗(X ⊔ Y)
and the equality holds if (x , y) is alternating adjoint flipping.

Proof Since η = η ○ F, we have that

Φ∗(X ⊔ Y ∶ η) = Φ∗(X ⊔ Y ∶ ((M2(C)� , M2(C)r), η ○ F)
by Remark 7.1(5). Moreover,

Φ∗(X ⊔ Y ∶ ((M2(C)� , M2(C)r), η ○ F) ≥ Φ∗(X ⊔ Y ∶ η∣D2)
by Remark 7.1(7). Furthermore, equality holds if (alg((D2)� , X), alg((D2)r , Y)) is bi-
free from (M2(C)� , M2(C)r) over D2 with respect to F2 by Remark 7.1(8).

To see that Φ∗(X ⊔ Y ∶ η∣D2) ≥ Φ∗(X ⊔ Y), we assume that

Ξ = J� (X ∶ ((D2)� , alg((D2)r , Y)) , η∣D2) ∈ alg(X , Y , (D2)� , (D2)r)
∥ ⋅ ∥τ2

exists and show that Ξ satisfies the left bi-free conjugate variable relations for X in the
presence of Y. Thus, if P is the orthogonal projection of L2(A2 , τ2)onto alg(X , Y)

∥ ⋅ ∥τ2 ,
then P(Ξ) will also satisfy the left bi-free conjugate variable relations for X in the
presence of Y. As a similar result will hold on the right, the inequality Φ∗(X ⊔ Y ∶
η∣D2) ≥ Φ∗(X ⊔ Y) will be demonstrated.

By the defining property of Ξ, we know for all n ∈ N, b0 , b1 , . . . , bn ∈ D2, χ ∈ {�, r}n

with χ(n) = �, and Z1 , . . . , Zn−1 ∈ A2 and C1 , . . . Cn−1 ∈ 1A ⊗M2(C) ⊗M2(C)op,
where

Zk =
⎧⎪⎪⎨⎪⎪⎩

X , if χ(k) = �
Y , if χ(k) = r

and Ck =
⎧⎪⎪⎨⎪⎪⎩

Lbk , if χ(k) = �,
Rbk , if χ(k) = r,
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that

τ2 (Lb0 Rbn Z1C1 ⋅ ⋅ ⋅ Zn−1Cn−1Ξ) = ∑
1≤k<n
χ(k)=�

τ2
⎛
⎜
⎝

Lb0 Rbn

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
ZpCp

⎞
⎟
⎠

Lη((F○E2)(Ck ∏p∈Vk
Z p C p))

⎞
⎟
⎠

,

(9.4)

where Vk = {k < m < n ∣ χ(m) = �}. We will use equation (9.4) where bk = I2 for all
k. To begin, notice that

η
⎛
⎝
(F ○ E2)

⎛
⎝

Ck ∏
p∈Vk

ZpCp
⎞
⎠
⎞
⎠
= τ2 (X ∣Vk ∣) I2 ,

as odd moments of X are zero and as x∗x and xx∗ have the same distribution with
respect to φ. Therefore,

φ((x∗x)m) = φ((xx∗)m) = τ2(X2m),

for all m ∈ N. Hence, equation (9.4) reduces to

τ2 (Z1 ⋅ ⋅ ⋅ Zn−1Ξ) = ∑
1≤k<n
χ(k)=�

τ2 ((Z1 , . . . , Zn−1)∣V c
k /{k ,n}) τ2 (X ∣Vk ∣) ,

which is exactly the desired formula.
To prove Φ∗(X ⊔ Y ∶ η∣D2) ≤ Φ∗(X ⊔ Y) when (x , y) is alternating adjoint flip-

ping thereby completing the proof, we proceed in a similar (but more complicated)
fashion. Suppose that

Ξ = J� (X ∶ (C, alg(Y))) ∈ alg(X , Y)
∥ ⋅ ∥τ2 ⊆ alg(X , Y , (D2)� , (D2)r)

∥ ⋅ ∥τ2

exists. We will demonstrate that Ξ satisfies the left bi-free conjugate variable relations
for X with respect to η in the presence of ((D2)� , alg((D2)r , Y)). As an analogous
result will hold on the right, this will complete the proof.

Write

Ξ = [ξ1,1 ξ1,2
ξ2,1 ξ2,2

] ∈ M2(L2(A, φ)) = L2(A2 , τ2).

First, we will demonstrate that ξ1,1 = ξ2,2 = 0. To begin, let

He = span(Z1 ⋅ ⋅ ⋅ Z2n ∣ n ∈ N, Zk ∈ {X , Y})
∥ ⋅ ∥τ2 and

Ho = span(Z1 ⋅ ⋅ ⋅ Z2n−1 ∣ n ∈ N, Zk ∈ {X , Y})
∥ ⋅ ∥τ2 .

By the defining property of Ξ, we know for all n ∈ N, χ ∈ {�, r}n with χ(n) = �, and
Z1 , . . . , Zn−1 ∈ A2, where

Zk =
⎧⎪⎪⎨⎪⎪⎩

X , if χ(k) = �,
Y , if χ(k) = r,
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that

τ2 (Z1 ⋅ ⋅ ⋅ Zn−1Ξ) = ∑
1≤k<n
χ(k)=�

τ2 ((Z1 , . . . , Zn−1)∣V c
k /{k ,n}) τ2 (X ∣Vk ∣) ,(9.5)

where Vk = {k < m < n ∣ χ(m) = �}. Note that as τ2 evaluates any odd product
involving X and Y to 0 by Lemma 9.1, if n − 1 is even, then τ2 (Z1 ⋅ ⋅ ⋅ Zn−1Ξ) = 0.
Therefore, since Ξ ∈He +Ho , we obtain that Ξ ∈Ho .

Note for n ∈ N, χ ∈ {�, r}2n−1, Z1 , . . . , Z2n−1 ∈ {X , Y}, and z1 , . . . , z2n−1 ∈ {x , y}
where

Zk =
⎧⎪⎪⎨⎪⎪⎩

X if χ(k) = �
Y if χ(k) = r

and zk =
⎧⎪⎪⎨⎪⎪⎩

x if χ(k) = �
y if χ(k) = r

that in M2(L2(A, φ)) we have

Z1 ⋅ ⋅ ⋅ Z2n−1 = [
0 zp1

1 zp2
2 ⋅ ⋅ ⋅ z

p2n−1
2n−1

zq1
1 zq2

2 ⋅ ⋅ ⋅ z
q2n−1
2n−1 0 ] ,

where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, if k is odd,
1, if k is even.

Therefore, as Ho is the ∥ ⋅ ∥τ2
-limit of matrices of the above form and as Ξ ∈Ho , we

obtain that ξ1,1 = ξ2,2 = 0 as desired.
Let

H1 = span(z1 ⋅ ⋅ ⋅ z2n−1 ∣
n∈N,zk∈{x ,x∗ , y , y∗}

the powers of the zk ’s alternate between 1 and * in the χ-ordering
and the first and last elements in the χ-ordering have power 1

) and

H∗ = span(z1 ⋅ ⋅ ⋅ z2n−1 ∣
n∈N,zk∈{x ,x∗ , y , y∗}

the powers of the zk ’s alternate between 1 and * in the χ-ordering
and the first and last elements in the χ-ordering have power *

) .

Using the above and the notation ξ = ξ1,2 and ξ∗ = ξ2,1 (note that we do not claim that
there is an involution operation on L2(A, φ) as we do not know φ is tracial), we see that
ξ ∈ H1

∥ ⋅ ∥φ , ξ∗ ∈ H∗
∥ ⋅ ∥φ , and if we have a ∥ ⋅ ∥φ-limiting sequence using {x , x∗ , y, y∗}

producing ξ, we can obtain a ∥ ⋅ ∥φ-limiting sequence using {x , x∗ , y, y∗} producing
ξ∗ by exchanging x ↔ x∗ and y↔ y∗. This, in conjunction with the alternating
adjoint flipping condition, lets us show if n ∈ N, χ ∈ {�, r}2n , Z1 , . . . , Z2n−1 ∈ {X , Y},
and z1 , . . . , z2n−1 ∈ {x , y}, where

Zk =
⎧⎪⎪⎨⎪⎪⎩

X , if χ(k) = �
Y , if χ(k) = r

and zk =
⎧⎪⎪⎨⎪⎪⎩

x , if χ(k) = �,
y, if χ(k) = r,

that

φ(zp1
1 zp2

2 ⋅ ⋅ ⋅ z
p2n−1
2n−1 ξp2n) = φ(zq1

1 zq2
2 ⋅ ⋅ ⋅ z

q2n−1
2n−1 ξq2n),(9.6)
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where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, if k is odd,
1, if k is even.

Indeed, consider zp1
1 ⋅ ⋅ ⋅ z

p2n−1
2n−1 ξp2n with p2n = 1 (the case p2n = ∗ is analogous). As the

terms preceding ξ in the χ-ordering both must have∗’s on them and as ξ is a ∥ ⋅ ∥φ-limit
of elements of H1, we see that zp1

1 ⋅ ⋅ ⋅ z
p2n−1
2n−1 ξp2n is a ∥ ⋅ ∥φ-limit of a linear combination

of monomials in {x , x∗ , y, y∗} that alternate between ∗ and non-∗-terms in the χ-
ordering. As x ↔ x∗ and y↔ y∗ produce the same φ-moment by the alternating
adjoint flipping condition (as zp1

1 ⋅ ⋅ ⋅ z
p2n−1
2n−1 and every element of H1 is of odd length)

and produce a sequence that converges to zq1
1 zq2

2 ⋅ ⋅ ⋅ z
q2n−1
2n−1 ξq2n with respect to ∥ ⋅ ∥φ , the

claim is complete.
Returning to showing Ξ satisfies the left bi-free conjugate variable relations for X

with respect to η in the presence of ((D2)� , alg((D2)r , Y)), it suffices to demonstrate
that equation (9.4) holds for this Ξ. Furthermore, it suffices to verify that equation
(9.4) holds when bk = E ik , ik for all k. By the same computations as done in the proof
of Proposition 9.7 with jk = ik for all k, we see with q = s−1

χ (n) that

τ2 (Lb0 Rbn Z1 C1 ⋅ ⋅ ⋅ Zn−1 Cn−1 Ξ)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 φ(z p1

1 z p2
2 ⋅ ⋅ ⋅ z pn−1

n−1 ξpn ), if n is even and (i0 , is χ(1) , . . . , is χ(q−1) , is χ(q+1) , . . . , is χ(n)) = (1, 2, . . . , 1, 2)
1
2 φ(zq1

1 zq2
2 ⋅ ⋅ ⋅ zqn−1

n−1 ξqn ), if n is even and (i0 , is χ(1) , . . . , is χ(q−1) , is χ(q+1) , . . . , is χ(n)) = (2, 1, . . . , 2, 1)
0, otherwise

and

∑
1≤k<n
χ(k)=�

τ2
⎛
⎜
⎝

Lb0 Rbn

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
ZpCp

⎞
⎟
⎠

Lη((F○E2)(Ck ∏p∈Vk
Z p C p))

⎞
⎟
⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∑ 1≤k<n

χ(k)=�
∣Vk ∣ even

φ ((zp1
1 , . . . , zpn−1

n−1 )∣V c
k /{k ,n})φ ((zp1

1 , . . . , zpn−1
n−1 )∣Vk ) ,

if n is even and (i0 , is χ(1) , . . . , is χ(q−1) , is χ(q+1) , . . . , is χ(n)) = (1, 2, . . . , 1, 2),
1
2 ∑ 1≤k<n

χ(k)=�
∣Vk ∣ even

φ ((zq1
1 , . . . , zqn−1

n−1 )∣V c
k /{k ,n})φ ((zq1

1 , . . . , zpqn−1
n−1 )∣Vk) ,

if n is even and (i0 , is χ(1) , . . . , is χ(q−1) , is χ(q+1) , . . . , is χ(n)) = (2, 1, . . . , 2, 1),
0, otherwise,

where Vk = {k < m < n ∣ χ(m) = �} (note only the terms where ∣Vk ∣ is even survive
from the η ○ F ○ E2 expression due to the form of X) and zk , pk , and qk are defined as
usual in this proof. Hence, it suffices to show when n is even that

φ(zp1
1 zp2

2 ⋅ ⋅ ⋅ z
pn−1
n−1 ξpn) = ∑

1≤k<n
χ(k)=�
∣Vk ∣ even

φ ((zp1
1 , . . . , zpn−1

n−1 )∣V c
k /{k ,n})φ ((zp1

1 , . . . , zpn−1
n−1 )∣Vk) ,

(9.7)
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φ(zq1
1 zq2

2 ⋅ ⋅ ⋅ z
qn−1
n−1 ξqn) = ∑

1≤k<n
χ(k)=�
∣Vk ∣ even

φ ((zq1
1 , . . . , zqn−1

n−1 )∣V c
k /{k ,n})φ ((zq1

1 , . . . , zpqn−1
n−1 )∣Vk) .

(9.8)

Note that equations (9.7) and (9.8) are the same equation by the alternating adjoint
flipping condition and equation (9.6). Moreover, due to the defining property of Ξ, we
know with n even that

τ2(Z1 ⋅ ⋅ ⋅ Zn−1Ξ) = ∑
1≤k<n
χ(k)=�

τ2
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

Lη((F○E2)(∏p∈Vk
Zp))

⎞
⎟
⎠

= ∑
1≤k<n
χ(k)=�

τ2
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

⎞
⎟
⎠

τ2 (X ∣Vk ∣) .

Due to the form of X and the alternating adjoint flipping condition, we immediately
see that

τ2 (X ∣Vk ∣) =
⎧⎪⎪⎨⎪⎪⎩

0, if ∣Vk ∣ is odd,
φ ((zp1

1 , . . . , zpn−1
n−1 )∣Vk) , if ∣Vk ∣ is even,

and, for n even and k such that ∣Vk ∣ is even, we have

τ2
⎛
⎜
⎝

⎛
⎜
⎝

∏
p∈V c

k /{k ,n}
Zp
⎞
⎟
⎠

⎞
⎟
⎠
= 1

2
(φ ((zp1

1 , . . . , zpn−1
n−1 )∣V c

k /{k ,n}) + φ ((zq1
1 , . . . , zqn−1

n−1 )∣V c
k /{k ,n}))

= φ ((zp1
1 , . . . , zpn−1

n−1 )∣V c
k /{k ,n}) ,

thereby completing the proof. ∎

Proof of Theorem 9.5 The proof follows immediately by combining Propositions
9.2, 9.7, and 9.8. ∎

10 Maximizing bi-free entropy

In this section, we will prove Theorem 10.2 by obtaining an upper bound for the bi-
free entropy of a pair of operators and their adjoints based on the entropy of a pair of
matrices and demonstrate when equality is obtained. In particular, this generalizes an
essential result from [8, Section 5].

To begin, we must establish a formula for the bi-free entropy of non-self-adjoint
operators.
Definition 10.1 Let (A, φ) be a C∗-noncommutative probability space, and let
{X i , X∗

i }n
i=1 ∪ {X′

i}n′
i=1 ∪ {Yj , Y∗

j }m
j=1 ∪ {Y ′

j }m′
j=1 ⊆ A where X′

i and Y ′
j are self-adjoint

for all i and j. The bi-free entropy of ({X, X∗ , X′}, {Y, Y∗ , Y′}) is defined to be

χ∗(X, X∗ , X′ ⊔ Y, Y∗ , Y′) = 2n + 2m + n′ + m′

2
ln(2πe) + 1

2 ∫
∞

0
( 2n + 2m + n′ + m′

1 + t
− g(t)) dt,
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where

g(t) = Φ∗ (X +
√

tC� , X∗ +
√

tC∗
� , X′ +

√
tS ⊔Y +

√
tCr , Y∗ +

√
tC∗

r , Y′ +
√

tD) ,

where S and D consist of semicircular variables of mean 0, variance 1, and covariance
0 and C� and Cr consist of circular variables of mean 0, variance 1, and covariance 0
such that

({X, X∗ , X′}, {Y, Y∗ , Y′}) ∪ {(S i , 1)}n′
i=1 ∪ {(1, D j)}m′

j=1

∪ {({C�, i , C∗
�, i}, 1)}n

i=1 ∪ {(1, {Cr , j , C∗
r , j})}m

j=1

are bi-free.

Remark 10.1 Given any C∗-noncommutative probability space (A, φ), it is always
possible to find a larger C∗-noncommutative probability space that contains the
necessary bi-free elements from Definition 10.1. Indeed, one need only consider the
scalar reduced free product of the appropriate spaces and use Definition 2.4 to obtain
bi-freeness. The fact that the state is positive follows as it will be a vector state.

In the simplest case, one may ask why we do not simply define

χ∗({x , x∗} ⊔ {y, y∗}) = χ∗ ({R(x), I(x)} ⊔ {R(y), I(y)})

to trivially reduce to the self-adjoint case in a similar fashion to Remark 7.1(4) and why
the integrand in Definition 10.1 is well defined. Both of these questions are answered
via Remark 7.1(4) as

Φ∗ ({x +
√

tc� , x∗ +
√

tc∗� } ⊔ {y +
√

tcr , y∗ +
√

tc∗r })

= 1
2

Φ∗ ({R(x) +
√

tR(c�), I(x) +
√

tI(c�)} ⊔ {R(y) +
√

tR(cr), I(y) +
√

tI(cr)})

= 1
2

Φ∗ ({R(x) +
√

t√
2

s1 , I(x) +
√

t√
2

s2} ⊔ {R(y) +
√

t√
2

d1 , I(y) +
√

t√
2

d2})

= Φ∗ ({
√

2R(x) +
√

ts1 ,
√

2I(x) +
√

ts2} ⊔ {
√

2R(y) +
√

td1 ,
√

2I(y) +
√

td2}) ,

where s1 , s2 , d1, and d2 are as in Example 9.4. Hence, the integrand in Definition 10.1
is well defined with

χ∗({x , x∗} ⊔ {y, y∗}) = χ∗ ({
√

2R(x),
√

2I(x)} ⊔ {
√

2R(y),
√

2I(y)})

= χ∗ ({R(x), I(x)} ⊔ {R(y), I(y)}) + 4 ln(
√

2).

We normalize Definition 10.1 so that the following holds and generalizes [8,
Theorem 1.4] in the case d = 1.

Theorem 10.2 Let (A, φ) be a C∗-noncommutative probability space, and let x , y ∈ A
be such that x∗x and xx∗ have the same distribution with respect to φ and y∗y and yy∗
have the same distribution with respect to φ. With X and Y as in Section 9,

χ∗({x , x∗} ⊔ {y, y∗}) ≤ 2χ∗(X ⊔ Y)

and equality holds whenever the pair (x , y) is bi-R-diagonal and alternating adjoint
flipping.
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To prove Theorem 10.2, we need two technical lemmata. For the first, note that the
following does not immediately follow from Remark 2.4 as being bi-free over M2(C)
with respect to E2 does not imply being bi-free with respect to τ2.

Lemma 10.3 Let (A, φ) be a C∗-noncommutative probability space, let x , y ∈ A be
such that x∗x and xx∗ have the same distribution with respect to φ and y∗y and yy∗
have the same distribution with respect to φ, and let (c� , cr) be a bi-free circular pair in
A with mean 0, variance 1, and covariance 0 such that

({x , x∗}, {y, y∗}) ∪ {({c� , c∗� }, 1)} ∪ {(1, {cr , c∗r })}

are bi-free with respect to φ. Using the notation of Section 10, if

S� = c� ⊗ E1,2 ⊗ I2 + c∗� ⊗ E2,1 ⊗ I2 ∈ A2 and Sr = cr ⊗ I2 ⊗ E1,2 + c∗r ⊗ I2 ⊗ E2,1 ∈ A2 ,

then S� and Sr have semicircular distributions with respect to τ2 of mean 0 and variance
1 and

{(X , Y)} ∪ {(S� , 1A2)} ∪ {(1A2 , Sr)}

are bi-free with respect to τ2.

Proof As {({c� , c∗� }, 1)} ∪ {(1, {cr , c∗r })} are bi-free with respect to φ by Example
9.4, Remark 2.4 implies that (S� , 1) and (1, Sr) are bi-free with respect to E2. Moreover,
as c� and cr commute, s� and sr commute. Hence, we see for all n, m ∈ N that

τ2(sn
� sm

r ) = tr2(E2(sn
� sm

r )) = tr2(E2(sn
� )E2(sm

r ))

=
⎧⎪⎪⎨⎪⎪⎩

0, if n or m is odd,
φ ((c∗� c�)

n
2 )φ ((c∗r cr)

m
2 ) , if n and m are even,

by Example 9.4 and the alternating adjoint flipping condition. Therefore, as c∗� c� and
c∗r cr are known to have the same distributions as the square of a semicircular element
of mean 0 and variance 1 (see [17, Section 5.1]), we obtain that (s� , sr) is the bi-free
central limit distribution with mean 0, variance 1, and covariance 0 with respect to τ2.
Hence, {(S� , 1A2)} ∪ {(1A2 , Sr)} are bi-free with respect to τ2.

To complete the proof, it suffices to show that {(X , Y)} ∪ {(S� , Sr)} are bi-free
with respect to τ2. Therefore, by [3], it suffices to show for all n ∈ N, χ ∈ {�, r}n ,
nonconstant γ ∈ {1, 2}n , and Zk ∈ {X , Y , S� , Sr}, where

Zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X , if χ(k) = � and γ(k) = 1,
Y , if χ(k) = r and γ(k) = 1,
S� , if χ(k) = � and γ(k) = 2,
Sr , if χ(k) = r and γ(k) = 2,

that

τ2(Z1 ⋅ ⋅ ⋅ Zn) = ∑
π∈BNC(χ)

π≤γ

κτ2
π (Z1 , . . . , Zn),(10.1)
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where γ is representing the partition {{k ∣ γ(k) = 1}, {k ∣ γ(k) = 2}}. Note if
z1 , . . . , zn ∈ {x , y, c� , cr} are such that

zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x , if Zk = X ,
y, if Zk = Y ,
c� , if Zk = S� ,
cr , if Zk = Sr ,

then by Lemma 9.1 and the fact that ({x , x∗}, {y, y∗}) ∪ {(c� , 1)} ∪ {(1, cr)} are bi-
free with respect to φ, we have that

τ2(Z1 ⋅ ⋅ ⋅ Zn) =
⎧⎪⎪⎨⎪⎪⎩

0, if n is odd,
1
2 (φ (z

p1
1 ⋅ ⋅ ⋅ z

pn
n ) + φ (zq1

1 ⋅ ⋅ ⋅ z
qn
n )) , if n is even,

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if n is odd,
1
2 ∑π∈BNC(χ)

π≤γ
κ

φ
π (zp1

1 , . . . , zpn
n ) + κφ

π (zq1
1 , . . . , zqn

n ) , if n is even,

where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, if k is odd,
1, if k is even.

To show that this agrees with the right-hand side of equation (10.1), we divide the
discussion into several cases. To this end, let

IX ,Y = {k ∣ γ(k) = 1} and IS = {k ∣ γ(k) = 2}.

First, suppose that n is odd. If ∣IS ∣ is odd, then the right-hand side of equation
(10.1) is zero as there must be a cumulant involving an odd number of S� and Sr and
{(S� , Sr)} is a bi-free central limit distribution with 0 mean. Otherwise, ∣IX ,Y ∣ is odd.
In this case, we may rearrange the sum on the right-hand side of equation (10.1) to
add over all π ∈ BNC(χ) with π ≤ γ that form the same partition when restricted to
IS . Since summing over such partitions yields a product of moment terms in the X’s
and Y ’s where the sum of the lengths of the moments is ∣IX ,Y ∣ and since all odd moment
terms involving only X’s and Y ’s is zero by Lemma 9.1, this portion of the sum yields
zero. Hence, equation (10.1) holds when n is odd.

In the case n is even, note if ∣IS ∣ is odd, then the right-hand side of equation (10.1)
is still zero. However,

1
2 ∑

π∈BNC(χ)
π≤γ

κ
φ
π (zp1

1 , . . . , zpn
n ) + κφ

π (zq1
1 , . . . , zqn

n ) = 0

as there must be a cumulant involving an odd number of ({c� , c∗� }, {cr , c∗r }) and
(c� , cr) is a bi-free circular pair. Thus, we may assume that n, ∣IS ∣, and ∣IX ,Y ∣ are even.

Under these assumptions, we claim that

1
2 ∑

π∈BNC(χ)
π≤γ

κ
φ
π (zp1

1 , . . . , zpn
n ) + κφ

π (zq1
1 , . . . , zqn

n ) = ∑
π∈BNC(χ)

π≤γ

κτ2
π (Z1 , . . . , Zn).
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To see this, again we need only consider π ∈ BNC(χ) that form pair partitions
when restricted to IS and no block of π contains both an element of {k ∣ χ(k) = �}
and of {k ∣ χ(k) = r}, since {(S� , 1)} ∪ {(1, Sr)} are bi-free with respect to τ2 and
{({c� , c∗� }, 1)} ∪ {(1, {cr , c∗r })} are bi-free with respect to φ. For such a partition π, if
we let π̂ be the largest partition on IX ,Y such that π̂ ∪ π∣IS is an element of BNC(χ),
then by adding over all σ ∈ BNC(χ) with σ ≤ γ and σ ∣IS = π∣IS , it suffices to show that
1
2
(φ π̂ ((z p1

1 , . . . , z pn
n )∣IX ,Y )κ

φ
π∣IS

((z p1
1 , . . . , z pn

n ) ∣IS ) + φ π̂ ((zq1
1 , . . . , zqn

n )∣IX ,Y )κ
φ
π∣IS

((zq1
1 , . . . , zqn

n ) ∣IS ))

= (τ2)π̂ ((Z1 , . . . , Zn) ∣IX ,Y ) .
(10.2)

Note that

κ
φ
π∣IS
((zp1

1 , . . . , zpn
n ) ∣IS) = 0 or κ

φ
π∣IS
((zq1

1 , . . . , zqn
n ) ∣IS) = 0

if and only if π has a block with two ∗-terms or two non-∗-terms, as π∣IS is a pair
partition and (c� , cr) is a bi-circular pair. In this case, we would have that π̂ has a
block of odd length, and thus the right-hand side of equation (10.2) is also zero, as any
odd τ2-moment involving X and Y is zero. Otherwise, both φ-cumulants are 1 and
this forces every block of π̂ to be of even length and alternate between 1 and ∗ in the
χ-ordering. Since

φ((x∗x)m) = φ((xx∗)m) = τ2(X2m) and φ((y∗y)m) = φ((yy∗)m) = τ2(Y 2m)

and since (by the assumption that π does not contain a block containing elements of
{k ∣ χ(k) = �} and of {k ∣ χ(k) = r}) there is a single block of π̂ containing elements
of {k ∣ χ(k) = �} and {k ∣ χ(k) = r}, adding the two φ-terms together produces
exactly the τ2 term in equation (10.2). ∎

Lemma 10.4 Let (A, φ) be a C∗-noncommutative probability space, let x , y ∈ A, and
let (c� , cr) be a bi-free circular pair in A with mean 0, variance 1, and covariance 0 such
that

({x , x∗}, {y, y∗}) ∪ {({c� , c∗� }, 1)} ∪ {(1, {cr , c∗r })}

are bi-free with respect to φ. Then:
(1) If (x , y) is bi-R-diagonal, then (x +

√
tc� , y +

√
tcr) is bi-R-diagonal for all t ∈

(0,∞).
(2) If (x , y) is alternating adjoint flipping, then (x +

√
tc� , y +

√
tcr) is alternating

adjoint flipping for all t ∈ (0,∞).
(3) If x∗x and xx∗ (rsp.e y∗y and yy∗) have the same distribution with respect to φ,

then (x +
√

tc�)∗(x +
√

tc�) and (x +
√

tc�)(x +
√

tc�)∗ (resp. (y +
√

tcr)∗(y +√
tcr) and (y +

√
tcr)(y +

√
tcr)∗) have the same distribution with respect to φ.

Proof As (c� , cr) is bi-R-diagonal by Example 9.4 and as sums and scalar multiples
of bi-R-diagonal pairs are bi-R-diagonal by [7, Proposition 3.1], (i) follows.

To see that (ii) holds, first, we claim that for all n ∈ N, χ ∈ {�, r}2n , and z1 , . . . , zn ∈
{x , y, c� , cr} such that

zk ∈
⎧⎪⎪⎨⎪⎪⎩

{x , c�}, if χ(k) = �,
{y, cr}, if χ(k) = r,
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we have that

φ(zp1
1 ⋅ ⋅ ⋅ z

p2n
2n ) = φ(zq1

1 ⋅ ⋅ ⋅ z
q2n
2n ),

where

ps χ(k) =
⎧⎪⎪⎨⎪⎪⎩

1, if k is odd
∗, if k is even

and qs χ(k) =
⎧⎪⎪⎨⎪⎪⎩

∗, , if k is odd,
1 if k is even.

Recall that

φ(zp1
1 ⋅ ⋅ ⋅ z

p2n
2n ) = ∑

π∈BNC(χ)
κπ(zp1

1 , . . . , zp2n
2n )

and the bi-free cumulant is zero if any block of π contains both an element of
{x , x∗ , y, y∗} and an element of {c� , c∗� , cr , c∗r }. As the only cumulants involving
c� , c∗� , cr , c∗r with non-zero values are

κ1(�,�)(c� , c∗� ) = 1 = κ1(�,�)(c∗� , c�) and κ1(r ,r)(cr , c∗r ) = 1 = κ1(r ,r)(c∗r , cr),

for any fixed π ∈ BNC(χ) for which the blocks containing {c� , c∗� , cr , c∗r } do not cause
the bi-free cumulant to be zero, we may add over all elements of BNC(χ) with the
same blocks as π for those indices corresponding to elements of {c� , c∗� , cr , c∗r } to
obtain a product of moments involving {x , x∗ , y, y∗}, each of which is of even length
and alternates between 1 and ∗ in the χ-ordering. We may then use the alternating
adjoint flipping condition on (x , y) to exchange the powers and reverse this cumulant
reduction process to obtain φ(zq1

1 ⋅ ⋅ ⋅ z
q2n
2n ), thereby completing the claim. Thus, (ii)

then follows by linearity.
To see that (iii) holds, we desire to show that

φ (((x +
√

tc�)∗(x +
√

tc�))
n) = φ (((x +

√
tc�)(x +

√
tc�)∗)

n)

for all n ∈ N. To see how the left-hand side can be changed into the right-hand side,
arguments similar to the proof of Lemma 10.3 are used. First, we expand out the
product and expand the moment using linearity. Then, for each moment term, we
expand via the free cumulants and use the fact that mixed free cumulants vanish.
Cumulants involving an odd number of c� and c∗� vanish, and thus we can consider
only pair partitions when restricted to entries involving c� and c∗� . Any cumulant
involving just c� or just c∗� vanishes and can be ignored. By adding over all partitions
with the same blocks on c� and c∗� that do not vanish yields a product of moment terms
of the form φ((x∗x)m) and φ((xx∗)m). For any such terms, viewing the (2n)th term
as the first term does not change the value, as the distributions of x∗x and xx∗ are the
same, thereby effectively moving the x or c� term at the end to the beginning. One
then reverses the above process and obtains the right-hand side as desired. ∎

Proof of Theorem 10.2. As per Remark 10.1, we may assume without loss of gen-
erality that there exists a bi-free circular pair (c� , cr) (with mean 0, variance 1, and
covariance 0) in A such that

{({x , x∗}, {y, y∗})} ∪ {({c� , c∗� }, 1)} ∪ {(1, {cr , c∗r })}
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are bi-free. Therefore, as {(X , Y)} ∪ {(S� , Sr)} are bi-free with respect to τ2 by
Lemma 10.3, we obtain that

χ∗(X ⊔ Y) = ln(2πe) + 1
2 ∫

∞

0
( 2

1 + t
−Φ∗ (X +

√
tS� ⊔ Y +

√
tSr)) dt.

However, as

X +
√

tS� = (x +
√

tc�) ⊗ E1,2 ⊗ I2 + (x +
√

tc�)∗ ⊗ E2,1 ⊗ I2 ,

Y +
√

tSr = (y +
√

tcr) ⊗ I2 ⊗ E1,2 + (y +
√

tcr)∗ ⊗ I2 ⊗ E2,1

and as Lemma 10.4(iii) shows that the assumptions of Theorem 9.5 as satisfied, we
obtain that

Φ∗ ({x +
√

tc� , (x +
√

tc�)∗} ⊔ {y +
√

tcr , (y +
√

tcr)∗}) ≥ 2Φ∗ (X +
√

tS� ⊔ Y +
√

tSr)
(10.3)

for all t ∈ (0,∞). Hence, the inequality

χ∗({x , x∗} ⊔ {y, y∗}) ≤ 2χ∗(X ⊔ Y)

follows by comparing the above bi-free entropy formula with that from Definition 10.1.
In the case that (x , y) is bi-R-diagonal and alternating adjoint flipping, Lemma 10.4

implies that (x +
√

tc� , y +
√

tcr) is bi-R-diagonal and alternating adjoint flipping for
all t ∈ (0,∞); thus; equality holds in equation (10.3) by Theorem 9.5. ∎

11 Other results

In this section, we will examine other results from [8] that generalize to the bi-
free setting. As these results are less connected to bi-free entropy with respect to a
completely positive map and have proofs that can be adapted from [8] using the same
modifications from Sections 9 and 10 to deal with the χ-ordering, we simply state these
results.

Theorem 11.1 (Generalization of [8, Theorem 1.2]) Let (A, φ) be a C∗-
noncommutative probability space, let d ∈ N, and let (Ad , Ed , ε, τd) be as in Section 9.
Then:
(1) For all {x i , j}d

i , j=1 , {y i , j}d
i , j=1 ⊆ A, if

X =
d
∑

i , j=1
x i , j ⊗ E i , j ⊗ Id and Y =

d
∑

i , j=1
y i , j ⊗ Id ⊗ E i , j ,

then

Φ∗ ({x i , j , x∗i , j}d
i , j=1 ⊔ {y i , j , y∗i , j}d

i , j=1) ≥ d3Φ∗(X , X∗ ⊔ Y , Y∗).

Moreover, equality holds if ({X , X∗}, {Y , Y∗}) is bi-free from (Md(C)� , Md(C)r)
with respect to τd .

(2) If in (i) X and Y are self-adjoint, then

Φ∗ ({x i , j}d
i , j=1 ⊔ {y i , j}d

i , j=1) ≥ d3Φ∗(X ⊔ Y)
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with equality holding if ({X}, {Y}) is bi-free from (Md(C)� , Md(C)r) with
respect to τd .

Theorem 11.2 (Generalization of [8, Theorem 1.5]) Let (A, φ) be a C∗-
noncommutative probability space, let d ∈ N, and let (Ad , Ed , ε, τd) be as in Section 9.
Then:
(1) For all {x i , j}d

i , j=1 , {y i , j}d
i , j=1 ⊆ A, if

X =
d
∑

i , j=1
x i , j ⊗ E i , j ⊗ Id and Y =

d
∑

i , j=1
y i , j ⊗ Id ⊗ E i , j ,

then

χ∗ ({x i , j , x∗i , j}d
i , j=1 ⊔ {y i , j , y∗i , j}d

i , j=1) ≤ d2 (χ∗(X , X∗ ⊔ Y , Y∗) − 2 ln(d)) .

Moreover, equality holds if ({X , X∗}, {Y , Y∗}) is bi-free from (Md(C)� , Md(C)r)
with respect to τd .

(2) If in (i) X and Y are self-adjoint, then

χ∗ ({x i , j}d
i , j=1 ⊔ {y i , j}d

i , j=1) ≤ d2 (χ∗(X ⊔ Y) − ln(d))

with equality holding if ({X}, {Y}) is bi-free from (Md(C)� , Md(C)r) with
respect to τd .

To prove Theorem 11.2, we note that it is essential to prove the following.

Lemma 11.3 (Generalization of [8, Proposition 5.3]) Let (A, φ) be a C∗-
noncommutative probability space, let D� , Dr be ∗-subalgebras of A, let d ∈ N, and let
(Ad , Ed , ε, τd) be as in Section 9.
(1) If {c�, i , j}d

i , j=1 and {cr , i , j}d
i , j=1 are circular elements of A with mean 0 and variance

1 such that

{(D� , Dr)} ∪ {({c�, i , j , c∗�, i , j}, 1)}d
i , j=1 ∪ {(1, {cr , i , j , c∗r , i , j)}d

i , j=1

are bi-free, then

C� =
d
∑

i , j=1
c�, i , j ⊗ E i , j ⊗ Id and Cr =

d
∑

i , j=1
cr , i , j ⊗ Id ⊗ E i , j

are circular elements of mean 0 and variance d such that ({C� , C∗
� }, 1),

(1, {Cr , C∗
r }), and (D� ⊗Md(C) ⊗ Id , Dr ⊗ Id ⊗Md(C)) are bi-free with respect

to τd .
(2) If {s�, i , j}d

i , j=1 and {sr , i , j}d
i , j=1 are elements of A with mean 0 and variance 1 such

that s�, i , i and sr , i , i are semicircular elements for all i, s�, i , j and sr , i , j are circular
elements for all i , j, s∗�, i , j = s�, j, i and s∗r , i , j = sr , j, i for all i, j, and

{(D� , Dr)} ∪ {(s�, i , i , 1)}d
i=1 ∪ {(1, sr , i , i)}d

i=1 ∪ {({s�, i , j , s∗�, i , j}, 1)}1≤i< j≤d

∪ {(1, {sr , i , j , ss∗r , i , j)}1≤i< j≤d
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are bi-free, then

S� =
d
∑

i , j=1
s�, i , j ⊗ E i , j ⊗ Id and Sr =

d
∑

i , j=1
sr , i , j ⊗ Id ⊗ E i , j

are semicircular elements of mean 0 and variance d such that (S� , 1), (1, Sr), and
(D� ⊗Md(C) ⊗ Id , Dr ⊗ Id ⊗Md(C)) are bi-free with respect to τd .

Note that the proof of Lemma 11.3 is obtained by first generalizing [8, Lemma 5.4],
which clearly holds due to the bi-free cumulant characterization of the conjugate vari-
ables. The proof then proceeds via constructing the appropriate conjugate variables for
either (C� , Cr) or (S� , Sr) using the techniques from Section 9.
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