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1. Introduction

Fano varieties are the building blocks of rationally connected varieties. They have been
studied for a long time and have often been used to produce counterexamples to long-
standing conjectures. Classically, Fano varieties were assumed to be smooth. However,
during the last decades, progress in the area has provided tools and posed problems deal-
ing with mildly singular Fano varieties. The classification of singular Fano varieties seems
to be hopeless in higher dimensions without bounding the singularities. Nevertheless,
we know many partial classification-type results about two-dimensional Fano varieties,
also known as del Pezzo surfaces, thanks to the combined efforts of many people (see
[1,3,17,22,23,25,26,34]).

The classification problem for Fano manifolds is closely related to the problem of the
existence of Kähler–Einstein metrics on them (see [27]). It has been conjectured by Yau,
Tian and Donaldson that a Fano manifold admits a Kähler–Einstein metric if and only
if it is K-polystable. One direction of this conjecture, the K-polystability of Kähler–
Einstein Fano manifolds, follows from the works of Tian, Donaldson, Stoppa and Berman
(see [4,14,28,31]). The other direction has been recently proved by Chen, Donaldson
and Sun in [10–12] and independently by Tian in [32]. Unfortunately, this result is not
easy to apply since K-polystability is usually very hard to check.

The problem of the existence of a Kähler–Einstein metric on smooth del Pezzo surfaces
has been explicitly solved by Tian in [30]. For del Pezzo surfaces with quotient singu-
larities, we do not have such an explicit solution (for orbifold metrics), since del Pezzo
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surfaces with quotient singularities have not been classified. So, it seems natural to con-
sider this problem imposing some additional restrictions on the class of singular del Pezzo
surfaces. In this paper, we will consider singular del Pezzo surfaces that are quasi-smooth
and well-formed hypersurfaces in weighted projective spaces (see [18, Definition 6.9]).

Let Sd be a hypersurface in P(a0, a1, a2, a3) of degree d, where 1 � a0 � a1 � a2 � a3

are some natural numbers. Then Sd is given by

φ(x, y, z, t) = 0 ⊂ P(a0, a1, a2, a3) ∼= Proj(C[x, y, z, t])

where wt(x) = a0, wt(y) = a1, wt(z) = a2, wt(t) = a3, and φ is a quasi-homogeneous
polynomial of degree d with respect to these weights. The equation

φ(x, y, z, t) = 0 ⊂ C4 ∼= Spec(C[x, y, z, t])

defines a three-dimensional hypersurface quasi-homogeneous singularity (V,O), where
O = (0, 0, 0, 0). Recall that Sd is called quasi-smooth if the singularity (V,O) is isolated.
Recall that Sd is called well-formed if

gcd(a1, a2, a3) = gcd(a0, a2, a3) = gcd(a0, a1, a3) = gcd(a0, a1, a2) = 1

and each positive integer gcd(a0, a1), gcd(a0, a2), gcd(a0, a3), gcd(a1, a2), gcd(a1, a3),
gcd(a2, a3) divides d. If the hypersurface Sd is quasi-smooth and well-formed, then
it follows from [24, Theorem 7.9], [24, Proposition 8.13], [24, Remark 8.14.1], [24,
Theorem 11.1] and the adjunction formula that the following conditions are equivalent:

• The inequality d < a0 + a1 + a2 + a3 holds.

• The singularity (V,O) is a rational singularity.

• The singularity (V,O) is a Kawamata log terminal singularity.

• The hypersurface Sd is a del Pezzo surface with quotient singularities.

Starting from now, we set d <
∑n

i=0 ai and set the hypersurface Sd as quasi-smooth and
well-formed. We define I = a0 + a1 + a2 + a3 − d. This is usually called the index of the
hypersurface Sd ⊂ P(a0, a1, a2, a3). For every positive integer I, we have infinitely many
possibilities for the sextuple (a0, a1, a2, a3, d, I) such that there exists a quasi-smooth
well-formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index
I = a0 + a1 + a2 + a3 − d. This is not surprising since we know there are infinitely many
families of del Pezzo surfaces with quotient singularities.

Problem 1.1. Describe all sextuples (a0, a1, a2, a3, d, I) such that there exists a quasi-
smooth well-formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and
index I = a0 + a1 + a2 + a3 − d.

This problem was posed by Dmitri Orlov a long time ago to test his conjecture about the
existence of a full exceptional collection on del Pezzo surfaces with quotient singularities.
Later his conjecture was proved by Kawamata, Elagin, Ishii and Ueda (see [15,19,21]).

The first step in solving Problem 1.1 was done by Johnson and Kollár, who proved the
following.
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Theorem 1.2 ([20, Theorem 8]). Suppose that I = 1. Then

• either (a0, a1, a2, a3, d) = (2, 2m + 1, 2m + 1, 4m + 1, 8m + 4) for some m ∈ N,

• or the quintuple (a0, a1, a2, a3, d) lies in the sporadic set⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1, 1, 3), (1, 1, 1, 2, 4), (1, 1, 2, 3, 6), (1, 2, 3, 5, 10), (1, 3, 5, 7, 15), (1, 3, 5, 8, 16),

(2, 3, 5, 9, 18), (3, 3, 5, 5, 15), (3, 5, 7, 11, 25), (3, 5, 7, 14, 28), (3, 5, 11, 18, 36),

(5, 14, 17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100), (7, 11, 27, 37, 81),

(7, 11, 27, 44, 88), (9, 15, 17, 20, 60), (9, 15, 23, 23, 69), (11, 29, 39, 49, 127),

(11, 49, 69, 128, 256), (13, 23, 35, 57, 127), (13, 35, 81, 128, 256)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Moreover, for each listed quintuple (a0, a1, a2, a3, d), there exists a quasi-smooth well-
formed hypersurface in P(a0, a1, a2, a3) of degree d = a0 + a1 + a2 + a3 − 1.

The second step in solving Problem 1.1 was done by Cheltsov and Shramov, who solved
Problem 1.1 for I = 2 (see [9, Corollary 1.13]).

For Cheltsov, Johnson, Kollár and Shramov, the main motivation to prove Theorem 1.2
was the Calabi problem for del Pezzo surfaces with quotient singularities and, in particu-
lar, the Calabi problem for quasi-smooth well-formed hypersurfaces in P(a0, a1, a2, a3) of
degree d < a0 + a1 + a2 + a3. Regarding the latter, Gauntlett, Martelli, Sparks and Yau
proved the following.

Theorem 1.3 ([16]). The surface Sd does not admit an orbifold Kähler–Einstein
metric if I > 3a0.

Thus, the Calabi problem for quasi-smooth well-formed hypersurfaces in P(a0, a1, a2, a3)
of degree d < a0 + a1 + a2 + a3 has a negative solution if I > 3a0. Conversely, Araujo,
Boyer, Demailly, Galicki, Johnson, Kollár and Nakamaye proved that the Calabi problem
for quasi-smooth well-formed hypersurfaces in P(a0, a1, a2, a3) of degree d = a0 + a1 +
a2 + a3 − 1 almost always has a positive solution.

Theorem 1.4 ([2, 5, 13, 20]). Suppose that I = 1. Then Sd admits an orbifold
Kähler–Einstein metric except possibly the case when (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15)
and the polynomial φ(x0, x1, x2, x3) does not contain the monomial x1x2x3.

The proof of Theorem 1.4 implicitly uses the α-invariant introduced by Tian for smooth
Fano varieties in [29]. For Sd, its algebraic counterpart can be defined as

α(Sd) = sup

{
λ ∈ Q

∣∣∣∣∣
the log pair (Sd, λD) is log canonical

for every effective Q-divisor D ≡ −KSd

}
,

and one can easily extend this definition to any Fano variety with at most Kawamata log
terminal singularities. Tian, Demailly and Kollár showed that the α-invariant plays an
important role in the existence of an orbifold Kähler–Einstein metric on Fano varieties
with quotient singularities (see [6,13,29], [8, Theorem A.3]). In particular, we have the
following.
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Theorem 1.5 ([13, 29], [8, Theorem A.3]). If α(Sd) > 2/3, then Sd admits an
orbifold Kähler–Einstein metric.

Araujo, Boyer, Demailly, Galicki, Johnson, Kollár and Nakamaye proved that α(Sd) >
2/3 if I = 1 except exactly one case when (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the poly-
nomial φ(x0, x1, x2, x3) does not contain the monomial x1x2x3 (in this case α(Sd) =
7/10 < 2/3 by [7]). A similar approach was used by Boyer, Cheltsov, Galicki, Nakamaye,
Park and Shramov for I � 2 (see [5,7,9]).

It seems unlikely that Problem 1.1 has a nice solution for all I at once. However,
the results by Cheltsov, Johnson, Kollár and Shramov indicate that it is possible to
solve Problem 1.1 for any fixed I. The main purpose of the present paper is to prove
this and to give an algorithm that solves Problem 1.1 for any fixed I, that is, that
finds the set of quintuples (a0, a1, a2, a3, d) such that there exists a quasi-smooth well-
formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index I =
a0 + a1 + a2 + a3 − d.

We hope that our classification can be used to produce a vast number of examples of
non-Kähler–Einstein del Pezzo surfaces with quotient singularities using different kinds
of existing obstructions. For example, recently Spotti proved the following.

Theorem 1.6 ([27]). Let S be a del Pezzo surface with at most quotient singularities,
and let N be the biggest natural number such that Sd has a quotient singularity C2/G
with N = |G|, where G is a finite subgroup in GL2(C) that does not contain quasi-
reflections. Then S does not admit an orbifold Kähler–Einstein metric if K2

SN � 12.

Using our classification, we immediately obtain a huge number of examples of quasi-
smooth well-formed hypersurfaces in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 that
do not admit an orbifold Kähler–Einstein metric by Theorem 1.6 such that the obstruction
found by Gauntlett, Martelli, Sparks and Yau, i.e. Theorem 1.3, is not applicable. The
following tuples (a0, a1, a2, a3, d) come from § 4.

• The tuple (1, 3, 4, 8, 12) from the series (1, 3, 3a + 1, 3b + 2, 3a + 3b + 3) with I = 4
satisfies both Theorem 1.3 and Spotti’s inequality.

• The tuple (1, 3, 7, 8, 15) from the series (1, 3, 3a + 1, 3b + 2, 3a + 3b + 3) with I = 4
satisfies Theorem 1.3 but not Spotti’s inequality.

• The tuple (2, 2, 3, 7, 10) from the series (2, 2, 2a + 1, 2b + 1, 2a + 2b + 2) with I = 4
does not satisfy Theorem 1.3 but satisfies Spotti’s inequality.

• The tuple (2, 2, 3, 3, 6) from the series (2, 2, 2a + 1, 2b + 1, 2a + 2b + 2) with I = 4
satisfies neither Theorem 1.3 nor Spotti’s inequality.

These examples show that the previous inequality by Gauntlett, Martelli, Sparks and Yau
(Theorem 1.3) is independent of the new inequality discovered by Spotti (Theorem 1.6).
Thus, Spotti’s inequality is a new and powerful obstruction to the existence of orbifold
Kähler–Einstein metrics on del Pezzo surfaces with quotient singularities.

Now, we state the main result of the paper.
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Theorem 1.7. The tuples (a0, a1, a2, a3, d) such that there exists a quasi-smooth
well-formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index
I = a0 + a1 + a2 + a3 − d are precisely those that either belong to Tables A1 and A2
(Appendix A), or are ordered, satisfy conditions (i)–(iv) from Theorem 2.2 and have one
of the following forms where x, y ∈ Z:

• Class 1 tuples (a0, a1, b2 + xm, b3 + ym, b2 + b3 + (x + y)m), where
— a0, a1 are positive integers such that I = a0 + a1,

— m = lcm(a0, a1),

— b2, b3 are positive integers.

• Class 2 tuples (a0, a1, a2, b3 + xm, a1 + b3 + xm), where
— a0, a1, a2 are positive integers such that I = a0 + a2 and I > a0 + a1,

— m = lcm(a0, a1, a2),

— b3 is a positive integer.

• Class 3 tuples (a0, a1, a2, b3 + xm, a0 + b3 + xm), where
— a0, a1, a2 are positive integers such that I = a1 + a2 and I > a0 + a2,

— m = lcm(a0, a1, a2),

— b3 is a positive integer.

• Class 4 tuples (a0, a1, b2 + xm, (a1/2) + b2 + xm, a1 + 2b2 + 2xm), where
— a0, a1 are positive integers such that I = a0 + (a1/2),

— m = lcm (a0, (a1/2)),

— b2 is a positive integer.

• Class 5 tuples (a0, a1, b2 + xm, (a0/2) + b2 + xm, a0 + 2b2 + 2xm), where
— a0, a1 are positive integers such that I = (a0/2) + a1 and I > a0 + (a1/2),

— m = lcm ((a0/2), a1),

— b2 is a positive integer.

• Class 6 tuples (a0, a1, b2 + xm, b3 + xm, d + 2xm) = (I − k, I + k, a + xm, a + k +
xm, 2a + I + k + 2xm), where

— I is the index,

— k is a positive integer such that I − k is positive,

— m = lcm(a0, a1, k) = lcm(I − k, I + k, k),

— a is a positive integer.
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Quasi-smoothness and well-formedness conditions are given in Theorems 2.1 and 2.2.
A tuple (a0, a1, a2, a3, d) is ordered if a0 � a1 � a2 � a3 � d. The fact that we need to
consider only conditions (i) to (iv) of Theorem 2.2 is proved in Proposition 2.9.

The second main result is the following.

Theorem 1.8. If there exists a quasi-smooth well-formed hypersurface for a tuple
from a class n series given in Theorem 1.7, then there also exists a quasi-smooth well-
formed hypersurface for all the other ordered tuples in the series, that is, all the other
ordered tuples with the same ai and bi but different x or y.

This result is proved in Theorem 2.10.
For any fixed I, there are only finitely many series in Theorem 1.7. Let us check this for

class 1. A series in class 1 is given by ordered tuples (a0, a1, b2 + xm, b3 + ym, b2 + b3 +
(x + y)m) where x, y ∈ Z and a0, a1, b2, b3,m are fixed positive integers. Since a0 + a1 =
I, there are only finitely many choices for a0 and a1. The number m = lcm(a0, a1) is
uniquely determined by a0 and a1. Since x, y ∈ Z, we are interested in only b2 and b3

modulo m. A series is uniquely determined by a0, a1, b2, b3 and m, so there are only
finitely many series in class 1. Similarly for classes 2 to 6.

According to Theorem 1.8, checking one tuple from every such series determines
whether every tuple in the series is such that there exists a quasi-smooth well-formed
hypersurface. So, the algorithm to classify the hypersurfaces for an index I reduces to
checking conditions (i)–(iv) of Theorem 2.2 for finitely many tuples.

In § 2, we prove Theorems 1.7 and 1.8, leaving computations to § 3. The main tool we
use is Theorem 2.2, which lists the quasi-smoothness and well-formedness conditions. The
complete lists of the classified hypersurfaces for indices I from 1 to 6 are given in § 4.
Appendix B contains the computer code of the algorithm.

Theorems 1.7 and 1.8 provide the algorithm to solve Orlov’s problem, Problem 1.1, for
any fixed I, as well as giving the general form of the answer for any I. The surprisingly
rigid form describes the hypersurfaces for all indices at once, without needing to calculate
them explicitly.

2. Technical result

The following theorem describes the tuples (a0, a1, a2, a3, d) such that there exists a
quasi-smooth well-formed hypersurface. Conditions (iv), (v) and (vi) are taken from [20,
Conditions 2.1, 2.2 and 2.3].

Theorem 2.1. There exists a quasi-smooth well-formed hypersurface in P(a0, a1, a2, a3)
of degree d < a0 + a1 + a2 + a3 and index I = a0 + a1 + a2 + a3 − d iff all of the following
conditions hold:

(i–ii) The hypersurface is well-formed.

(iii) The hypersurface is not degenerate, that is, none of the weights ai equals the degree
of the hypersurface.

(iv) For every i, there exists j (j may equal i) such that there exists a monomial xmi
i xj

of degree d, where mi � 1.
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(v) For every i < j such that gcd(ai, aj) > 1, there is a monomial xbi
i x

bj

j of degree d,
where bi, bj � 0 and bi + bj � 2.

(vi) For every i < j, either there is a monomial xbi
i x

bj

j of degree d or there exist k < l such

that the indices i, j, k, l are pairwise different and there are monomials xci
i x

cj

j xk and

xdi
i x

dj

j xl of degree d, where bi, bj , ci, cj , di, dj � 0 and bi + bj � 2 and ci + cj � 1
and di + dj � 1.

We will use the following form of the theorem, adding results from [9, Theorem 2.3]
and [9, Definitions 1.10 and 2.2].

Theorem 2.2. There exists a quasi-smooth well-formed hypersurface in P(a0, a1, a2, a3)
of degree d < a0 + a1 + a2 + a3 and index I = a0 + a1 + a2 + a3 − d iff all of the following
conditions hold:

(i) For every i < j, gcd(ai, aj) | d.

(ii) For every i < j < k, gcd(ai, aj , ak) = 1.

(iii) d > a3.

(iv) For every i, there exists j (j may equal i) such that ai | d − aj .

(v) For every i < j such that gcd(ai, aj) > 1, one of the following holds:
— ai | d,

— aj | d,

— ai | d − aj ,

— aj | d − ai,

— there exists bj � 2 such that ai | d − ajbj and d − ajbj � 0.

(vi) For every i < j, (at least) one of the following holds:
— one of the following holds:

∗ ai | d,

∗ aj | d,

∗ ai | d − aj ,

∗ aj | d − ai,

∗ there exists bj � 2 such that ai | d − ajbj and d − ajbj � 0.

— for pairwise different indices i, j, k, l satisfying k < l, both of the following hold:
∗ one of the following holds:

· ai | d − ak,

· aj | d − ak,
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· there exists cj � 1 such that ai | d − ak − ajcj and d − ak − ajcj � 0.

∗ one of the following holds:
· ai | d − al,

· aj | d − al,

· there exists dj � 1 such that ai | d − al − ajdj and d − al − ajdj � 0.

and one of the following conditions holds:

(type I) I = ai + aj for some i �= j,

(type II) I = ai + (aj/2) for some i �= j,

(type III) (a0, a1, a2, a3, d) = (I − k, I + k, a, a + k, 2a + I + k), where 1 � k < I and
a � I + k,

(type IV) (a0, a1, a2, a3, d) belongs to one of the infinite series listed in Table A1 or to
the sporadic set given in Table A2 (Appendix A).

Throughout this paper, condition (x) refers to condition (x) of Theorem 2.2. Type X
refers to type X of Theorem 2.2. Tuples of type IV are simply read from the tables, so
the rest of the paper is concerned with types I–III.

Type III of Theorem 2.2 was changed from 0 � k < I in [9, Theorem 2.2] to 1 � k < I,
as the only tuple from the case k = 0 already exists in the tables for type IV.

The aim of this paper is to find all the tuples (a0, a1, a2, a3, d) such that there exists
a quasi-smooth well-formed hypersurface, given a fixed index I. At first, it is easier to
deal with a superset of such tuples, namely, when only conditions (i)–(iv) are satisfied.
Proposition 2.9 shows that for tuples of type I–III, this weaker set of conditions suffices;
that is, for every such tuple, there exists a quasi-smooth well-formed hypersurface.

Below, we consider a certain subset of the tuples of types I–III. If a tuple belongs to
this subset, we assign a unique class number and an infinite series to it.

Definition 2.3. Given an index I, an ordered tuple (a0, a1, a2, a3, d) is assigned a
unique class number if it satisfies one of the following:

• Class 1: I = a0 + a1.

• Class 2: I = a0 + a2 and I > a0 + a1.

• Class 3: I = a1 + a2 and I > a0 + a2.

• Class 4: I = a0 + (a1/2) and a3 = (a1/2) + a2.

• Class 5: I = (a0/2) + a1 and I > a0 + (a1/2) and a3 = (a0/2) + a2.

• Class 6: The tuple is of type III, that is, it satisfies
(a0, a1, a2, a3, d) = (I − k, I + k, a, a + k, 2a + I + k),
where 1 � k < I and a � I + k.
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Definition 2.4. Infinite series for tuples of classes 1–6.

• For class 1 tuples, the corresponding series is (a0, a1, a2 + xm, a3 + ym, a2 + a3 +
(x + y)m), where m = lcm(a0, a1) and x, y ∈ Z.

• For class 2 tuples, the corresponding series is (a0, a1, a2, a3 + xm, a1 + a3 + xm),
where m = lcm(a0, a1, a2) and x ∈ Z.

• For class 3 tuples, the corresponding series is (a0, a1, a2, a3 + xm, a0 + a3 + xm),
where m = lcm(a0, a1, a2) and x ∈ Z.

• For class 4 tuples, the corresponding series is (a0, a1, a2 + xm, (a1/2) + a2 + xm, a1 +
2a2 + 2xm), where m = lcm (a0, (a1/2)) and x ∈ Z.

• For class 5 tuples, the corresponding series is (a0, a1, a2 + xm, (a0/2) + a2 + xm, a0 +
2a2 + 2xm), where m = lcm ((a0/2), a1) and x ∈ Z.

• For class 6 tuples, the corresponding series is (a0, a1, a2 + xm, a3 + xm, d + 2xm) =
(I − k, I + k, a + xm, a + k + xm, 2a + I + k + 2xm), where m = lcm(a0, a1, k) =
lcm(I − k, I + k, k) and x ∈ Z.

The parameters x and y are bounded below such that the tuple is ordered.

By an infinite series (a0, a1, a2 + xm, a3 + ym, a2 + a3 + (x + y)m) for a class 1 tuple,
we mean the set {(a0, a1, a2 + xm, a3 + ym, a2 + a3 + (x + y)m) | x, y ∈ Z} where all the
tuples (b0, b1, b2, b3, e) in the set are ordered, that is, b0 � b1 � b2 � b3 � e. Analogously
for classes 2–6.

Below, we prove Proposition 2.8, which implies that every tuple of type I–III for which
there exists a quasi-smooth well-formed hypersurface is of some class 1–6. In fact, we
show more: every tuple of type I–III satisfying conditions (i)–(iv) is of some class 1–6.
First, we state three lemmas, the proofs of which are in § 3.

Lemma 2.5. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + (au/2), where one of t and u is equal to 2 and the other is less than 2. Then,
either I = ai + aj for some i < j � 2 or I = a0 + (a1/2) or I = (a0/2) + a1.

Lemma 2.6. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + a3 or I = (at/2) + a3 or I = at + (a3/2), where t ∈ {0, 1, 2}. Then, either
I = ai + aj for some i < j � 2 or I = a0 + (a1/2) or I = (a0/2) + a1.

Lemma 2.7. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + (au/2), where t, u ∈ {0, 1} and t �= u. Then a3 = (au/2) + a2.

Proposition 2.8. An ordered tuple of type I, II or III satisfying conditions (i)–(iv) is
of some class 1–6.

Proof. Follows directly from the three lemmas above. �

Using Proposition 2.8, we can show the following.
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Proposition 2.9. Every tuple (a0, a1, a2, a3, d) of type I, II or III satisfying conditions
(i)–(iv) also satisfies conditions (v) and (vi); that is, there exists a quasi-smooth well-
formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index I =
a0 + a1 + a2 + a3 − d.

Using the last two propositions, we can prove the main theorem.

Theorem 2.10. If an ordered tuple (b0, b1, b2, b3, e) is of type I, II or III and satisfies
conditions (i)–(iv), then for every ordered tuple (a0, a1, a2, a3, d) in its corresponding
infinite series given in Definition 2.4, there exists a quasi-smooth well-formed hypersurface
in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index I = a0 + a1 + a2 + a3 − d.

The proofs of Proposition 2.9 and Theorem 2.10 are in § 3.
Proposition 2.8 implies that all the tuples for which there exists a quasi-smooth well-

formed hypersurface lie in the infinite series given in Definition 2.4 or belong to Tables
A1 or A2. Theorem 2.10 says that we need to check only one tuple for conditions (i)–(iv)
to see whether all the tuples in the series are such that there exists a quasi-smooth well-
formed hypersurface. Because there are only finitely many infinite series for any index
I (by the argument given below Theorem 1.8), this provides an effective algorithm to
classify the hypersurfaces for a fixed I.

3. Proofs

To prove Lemmas 2.5 and 2.6, we use condition (iv) of Theorem 2.2, choosing i = 3
to express the weight a3 in terms of a0, a1 and a2. Then, we try to express the index
I = a0 + a1 + a2 + a3 − d in terms of the weights as in the statement of the lemma. If
unsuccessful, we use condition (iv) again, choosing i = 2 to express a2 in terms of a0

and a1. The weights a0, a1, a2, a3 are ordered integers with 1 � a0 � a1 � a2 � a3.

Lemma 2.5. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + (au/2), where one of t and u is equal to 2 and the other is less than 2. Then,
either I = ai + aj for some i < j � 2 or I = a0 + (a1/2) or I = (a0/2) + a1.

Proof. Let us define the index v with

{t, u, v} = {0, 1, 2}
v ∈ {0, 1}.

We find
d = av +

au

2
+ a3.

Using condition (iv) with i = 3, we find a3 | d − aj , giving a3 | av + (au/2) − aj , where
j ∈ {t, u, v, 3}. Noting that −a3 < av + (au/2) − aj < 2a3, we can define x such that

x ∈ {0, a3}
x = av +

au

2
− aj .
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The cases (j, x) ∈ {(v, 0), (v, a3), (u, a3), (3, a3)} easily give contradictions. If (j, x) =
(u, 0), then (au/2) = av and I = at + av. If (j, x) = (t, 0), then at = av + (au/2) and
I = au + av. It is left to consider (j, x) ∈ {(3, 0), (t, a3)}. For both of these, we can define
y such that

y ∈ {0, at}
a3 =

au

2
+ av − y

d = au + 2av − y

I = at +
au

2
.

Using condition (iv) with i = 2, we find a2 | au + 2av − y − ak where k ∈ {t, u, v, 3}. It is
easy to see that au + 2av − y − ak ∈ {a2, 2a2}. We consider these cases separately.

First, we consider a1 = a2. If {t, u} = {0, 2}, then I = a0 + (a1/2) or I = (a0/2) + a1.
This leaves the case {t, u} = {1, 2}. We find

y ∈ {0, a1}
a3 =

a1

2
+ a0 − y

d = a1 + 2a0 − y

I =
3
2
a1.

Since I = (3/2)a1, we find 2 | a1. Using condition (i) and a1 = a2, we find a1 | 2a0.
Since (a1/2) | a0, a1, a2, condition (ii) implies (a0, a1, a2) = (1, 2, 2). We find a3 = 2, and
condition (ii) gives us a contradiction.

Next, we consider au + 2av − y − ak = 2a2 and a1 < a2. By definition v ∈ {0, 1}. Since
v = 0 gives a contradiction, we find v = 1. Similarly, k � 1 gives a contradiction. We find
(k, t, v, u) = (0, 0, 1, 2), giving

y ∈ {0, a0}
a2 = 2a1 − a0 − y

a3 = −a0

2
+ 2a1 − 3

2
y

d = −a0 + 4a1 − 2y

I =
a0

2
+ a1 − y

2
.

If y = 0, then I = (a0/2) + a1. This leaves the case y = a0. We find a3 = 2a1 − 2a0 = a2

and d = 4a1 − 3a0. Condition (i) implies a2 | a0, giving a1 = a2, a contradiction.
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Finally, we consider au + 2av − y − ak = a2 and a1 < a2. We find 2a3 + y = a2 + ak,
giving y = 0 and ak = a2 = a3. Therefore

a3 = a2 =
au

2
+ av

d = au + 2av

I = at +
au

2
.

If t = 2, then I = au + av. This leaves the case u = 2. We find a2 = 2av. Since av |
av, a2, a3, condition (ii) implies (a0, a1, a2, a3) = (1, 1, 2, 2). We find I = a0 + a1. �

Lemma 2.6. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + a3 or I = (at/2) + a3 or I = at + (a3/2), where t ∈ {0, 1, 2}. Then, either
I = ai + aj for some i < j � 2 or I = a0 + (a1/2) or I = (a0/2) + a1.

Proof. We define u, v with

{t, u, v} = {0, 1, 2}
u < v.

First, let us consider I = at + a3. We find

d = au + av.

Condition (iv) gives a3 | d − aj where j ∈ {0, 1, 2, 3}. Condition (iii) gives d > a3, and we
find

d − aj = a3.

This implies I = at + au + av − aj . If j ∈ {0, 1, 2}, we find I = ap + aq where p < q � 2,
as required. This leaves the case j = 3, giving au + av = 2a3. We find au = av = a3, and
condition (ii) implies (a0, a1, a2, a3) = (1, 1, 1, 1). So, I = a0 + a1.

Next, let us consider I = (at/2) + a3. We find

d = au + av +
at

2
.

Condition (iv) gives us a3 | au + av + (at/2) − aj , where j ∈ {t, u, v, 3}. We find

a3 = au + av +
at

2
− aj .

This implies I = at + au + av − aj . So, it suffices to consider j = 3, giving

d = 2a3.

Using condition (iv), we find a2 | au + av + (at/2) − ak, where k ∈ {t, u, v, 3}, giving
a2 = au + av + (at/2) − ak. Since a2 � a3, we find a2 = a3, giving d = a2 + a3. From the
definition of the index, we find I = a0 + a1.
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Finally, we consider I = at + (a3/2). We find

d = au + av +
a3

2
.

Condition (iv) gives a3 | au + av + (a3/2) − aj , where j ∈ {t, u, v, 3}. So, we can define x
such that

x ∈
{

a3

2
,
3a3

2

}

x = au + av − aj .

If (j, x) ∈ {(t, (a3/2)) , (u, (a3/2)) , (v, (a3/2))}, then I = ap + aq, where p < q � 2, as
required. The cases (j, x) ∈ {(u, (3a3/2)) , (v, (3a3/2)) , (3, (3a3/2))} give contradictions.
This leaves the cases (j, x) ∈ {(3, (a3/2)) , (t, (3a3/2))}. For both of these, we can define
y such that

y ∈ {0, at}

a3 =
2au + 2av − 2y

3

d =
4au + 4av − y

3
.

Condition (iv) implies a2 | (4au + 4av − y − 3ak/3), where k ∈ {0, 1, 2, 3}. We can define
z such that

z ∈ {a2, 2a2}

z =
4au + 4av − y − 3ak

3
.

We consider the values of z separately.

• If z = a2, then d = 2a3 + y = ak + a2. We find y = 0 and a2 = a3, giving d = a2 + a3.
From the definition of the index, we find I = a0 + a1.

• If z = 2a2, then a2 � au, av, at implies k = 0 and k �= u. By definition u < v, so
(k, t, u, v) = (0, 0, 1, 2). We find

y ∈ {0, a0}

a2 =
−3a0 + 4a1 − y

2
a3 = −a0 + 2a1 − y

d = −2a0 + 4a1 − y

I =
a0

2
+ a1 − y

2
.
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If y = 0, then I = (a0/2) + a1. If y = a0, we find

a2 = a3 = 2a1 − 2a0

d = 4a1 − 3a0.

Condition (i) implies a3 | a0, and condition (ii) implies a3 = 1, which is a contradic-
tion since 2 | a3. �

Lemma 2.7. Let (a0, a1, a2, a3, d) be an ordered tuple that satisfies conditions (i)–(iv)
and I = at + (au/2), where t, u ∈ {0, 1} and t �= u. Then a3 = (au/2) + a2.

Proof. We have

d =
au

2
+ a2 + a3.

Using condition (iv), we find a3 | (au/2) + a2 − aj , where j ∈ {0, 1, 2, 3}, giving (au/2) +
a2 − aj ∈ {0, a3}. If (au/2) + a2 − aj = 0, we find a3 = (au/2) + a2, as required. This
leaves the case (au/2) + a2 − aj = a3, giving u = 1 and j = 0. We have

a3 = −a0 +
a1

2
+ a2

d = −a0 + a1 + 2a2.

Using condition (iv), we find a2 | −a0 + a1 − ak, where k ∈ {0, 1, 2, 3}, giving −a0 +
a1 − ak ∈ {−a2, 0}. Since a3 � ak, the case −a0 + a1 − ak = −a2 gives a contradiction.
Therefore, we find a1 = a0 + ak, giving

a1 = 2a0

a3 = a2

d = a0 + 2a2.

Condition (i) implies a2 | a0. Condition (ii) implies a2 = 1, which is a contradiction since
2 | a1. �

Proposition 2.9. Every tuple (a0, a1, a2, a3, d) of type I, II or III satisfying conditions
(i)–(iv) also satisfies conditions (v) and (vi); that is, there exists a quasi-smooth well-
formed hypersurface in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index I =
a0 + a1 + a2 + a3 − d.

Proof. By Proposition 2.8, it suffices to consider tuples of classes 1–6.

Classes 1–3 : I = at + au, where t < u � 2. We can define v such that

{t, u, v} = {0, 1, 2}
d = av + a3.

If (i, j) = (v, 3), then conditions (v) and (vi) are satisfied, since a3 | d − av.
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If (i, j) = (t, u), then condition (iv) implies au | d − ak where k ∈ {t, u, v, 3}. If k ∈
{t, u}, conditions (v) and (vi) hold. If k ∈ {v, 3}, then au | av or au | a3. Condition (i)
implies au | av, a3 and (ii) implies au = 1. Therefore au | d, so (v) and (vi) hold.

If (i, j) �= (t, u), (v, 3), then either gcd(ai, aj) | av or gcd(ai, aj) | a3. Condition (i)
implies gcd(ai, aj) | av, a3, and (ii) implies gcd(ai, aj) = 1, so (v) is satisfied.

It is left to consider condition (vi) for pairs (i, j) �= (t, u), (v, 3). Note that the order
of i, j is not important in (vi). Similarly, the order of k, l is not important in the second
part of (vi). So, it suffices to consider

i ∈ {t, u}
j ∈ {v, 3}.

Using condition (iv), we find
ai | d − ak

where k ∈ {0, 1, 2, 3}. If k ∈ {i, j}, then (vi) is satisfied. If k ∈ {v, 3}, then ai | av or ai | a3,
and as before we find ai | d, so (vi) is satisfied. This leaves the case

k ∈ {t, u}
k �= i.

We define l with

l ∈ {v, 3}
l �= j.

The indices i, j, k, l are pairwise different, and ai | d − ak and aj | d − al. So, by the second
part of (vi), condition (vi) holds.

Classes 4–5 : I = at + (au/2), where t, u ∈ {0, 1} with t �= u. By Lemma 2.7, we have

a3 =
au

2
+ a2

d = 2a3 = au + 2a2.

If j = 3, then aj | d, so conditions (v) and (vi) are satisfied.
If (i, j) = (u, 2), then a2 | d − au, so (v) and (vi) hold.
If (i, j) = (t, 2), then (iv) implies at | d − ap where p ∈ {t, u, 2, 3}. If p ∈ {t, 2, 3}, then

(v) and (vi) are satisfied. If p = u, then at | 2a2. Using conditions (i) and (ii), we find
at ∈ {1, 2}, giving at | d. So, (v) and (vi) are satisfied.

If (i, j) = (t, u), ignoring the order of i and j, then (iv) implies au | d − aq, where
q ∈ {t, u, 2, 3}. If q ∈ {t, u, 3}, then (v) and (vi) are satisfied. If q = 2, then au | a2, giving
au | d, so (v) and (vi) are satisfied.

Class 6 : (a0, a1, a2, a3, d) = (I − k, I + k, a, a + k, 2a + I + k), where 1 � k < I and
a � I + k. We have

d = a0 + 2a3 = a1 + 2a2.

If (i, j) ∈ {(0, 3), (1, 2)}, then (v) and (vi) are satisfied.
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If (i, j) = (2, 3), we find a3 | d − a0 and a2 | d − a1. By denoting (i, j, k, l) = (2, 3, 0, 1)
in the second part of (vi), condition (vi) holds. For condition (v), note that (i) implies
gcd(a2, a3) | a0, a1; therefore gcd(a2, a3) = 1, and (v) is satisfied.

If (i, j) ∈ {(0, 1), (0, 2), (1, 3)}, then (iv) implies

a0 | d − ap

where p ∈ {0, 1, 2, 3}. We show that for any p, we have either a0 | d or a0 | d − a2.

• If p ∈ {0, 3}, then a0 | d.

• If p = 1, then (i) and (ii) imply a0 ∈ {1, 2}, giving a0 | d.

• If p = 2, then a0 | d − a2.

Similarly, we can show that either a1 | d or a1 | d − a3. Therefore, conditions (v) and (vi)
are satisfied for (i, j) ∈ {(0, 2), (1, 3)}. Also, conditions (v) and (vi) are satisfied for (i, j) =
(0, 1) if either a0 | d or a1 | d.

It is left to consider (i, j) = (0, 1) with

a0 | d − a2

a1 | d − a3.

Choosing (i, j, k, l) = (0, 1, 2, 3), we see by the second part of condition (vi) that (vi) is
satisfied. Next, we check (v). From the above, we see that

gcd(a0, a1) | d − a2

gcd(a0, a1) | d − a3.

Therefore, gcd(a0, a1) | a2, a3, and condition (ii) gives gcd(a0, a1) = 1. So, (v) is
satisfied. �

Theorem 2.10. If an ordered tuple (b0, b1, b2, b3, e) is of type I, II or III and satisfies
conditions (i)–(iv), then for every ordered tuple (a0, a1, a2, a3, d) in its corresponding
infinite series given in Definition 2.4, there exists a quasi-smooth well-formed hypersurface
in P(a0, a1, a2, a3) of degree d < a0 + a1 + a2 + a3 and index I = a0 + a1 + a2 + a3 − d.

Proof. By Proposition 2.9, it is sufficient to show the tuple (a0, a1, a2, a3, d) satisfies
conditions (i)–(iv). Note that (iii) clearly holds for all classes 1–6. By Proposition 2.8, it
suffices to consider tuples of classes 1–6.

Class 1 : I = a0 + a1, giving
d = a2 + a3.

From Definition 2.4, there exist x and y such that

m = lcm(a0, a1)

(a0, a1, a2, a3, d) = (b0, b1, b2 + xm, b3 + ym, e + (x + y)m)

and the tuple is ordered, that is, a0 � a1 � a2 � a3 � d.
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First, we check condition (i). Since i < j, we find i ∈ {0, 1, 2}.
• If i ∈ {0, 1}, then ai = bi and ai | m, giving gcd(ai, aj) = gcd(bi, bj). By assump-

tion, the tuple (b0, b1, b2, b3, e) satisfies conditions (i)–(iv), so gcd(bi, bj) | e, giving
gcd(ai, aj) | d.

• For (i, j) = (2, 3), we note d = a2 + a3.

Next, we check condition (ii). Since i < j < k, we find i ∈ {0, 1}, giving ai = bi and
ai | m. Therefore, gcd(ai, aj , ak) = gcd(bi, bj , bk), and by assumption gcd(bi, bj , bk) = 1.

Finally, we check condition (iv).

• If i ∈ {0, 1}, then ai = bi and ai | m. By assumption, there exists j such that bi |
e − bj , giving ai | d − aj .

• If i ∈ {2, 3}, we note d = a2 + a3.

Classes 2–3 : I = at + a2, where t ∈ {0, 1}. We can define u such that

{t, u} = {0, 1}
d = au + a3.

From Definition 2.4, there exist x and y such that

m = lcm(a0, a1, a2)

(a0, a1, a2, a3, d) = (b0, b1, b2, b3 + xm, e + xm).

First, we check condition (i). Since i < j, we find i ∈ {0, 1, 2}, giving ai = bi and ai | m.
We have gcd(ai, aj) = gcd(bi, bj). By assumption gcd(bi, bj) | e, giving gcd(ai, aj) | d.

For condition (ii), we similarly find gcd(ai, aj , ak) = gcd(bi, bj , bk) = 1.
Finally, we consider condition (iv). It holds for i = 3, since d = au + a3. If i �= 3, then by

assumption there exists j such that bi | e − bj . Since ai = bi and ai | m, we find ai | d − aj .

Classes 4–5 : I = at + au/2, where t and u are such that

{t, u} = {0, 1}.
From Definition 2.4, there exist x and y such that

a3 =
au

2
+ a2

d = 2a3 = au + 2a2

m = lcm
(
at,

au

2

)
(a0, a1, a2, a3, d) = (b0, b1, b2 + xm, b3 + xm, e + 2xm).

First, we check condition (i). We have i < j.
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• If j = 3, we note d = 2a3.

• If (i, j) = (u, 2), we note d = au + 2a2.

• If i = t or j = t, then at = bt and at | m, giving gcd(ai, aj) = gcd(bi, bj). By assump-
tion gcd(bi, bj) | e, giving gcd(ai, aj) | d.

Next, we check condition (ii).

• If i = t or j = t, we find at = bt and at | m, giving gcd(ai, aj , ak) = gcd(bi, bj , bk) = 1.

• If (i, j, k) = (u, 2, 3), then using a3 = (au/2) + a2, we find gcd(au, a2, a3) = gcd
((au/2), a2). We have au = bu and (au/2) | m, therefore gcd((au/2), a2) = gcd((bu/2),
b2) = gcd(bu, b2, b3). By assumption gcd(bu, b2, b3) = 1, giving gcd(au, a2, a3) = 1.

Finally, we check condition (iv).

• If i = 3, we note d = 2a3.

• If i = 2, we note d = au + 2a2.

• If i = t, then ai = bi and ai | m. By assumption there exists j such that bi | e − bj ,
therefore ai | d − aj .

• If i = u, then

au = bu

au | 2m.

From Definition 2.4

e = 2b3 = bu + 2b2.

By assumption there exists j such that bu | e − bj . We show there exists k such that
au | e − ak.

• If j ∈ {0, 1}, then aj = bj , giving au | e − aj .

• If j ∈ {2, 3}, then either bu | b2 or bu | b3, giving bu | e. This implies au | e − au.

Now, since au | 2m, we find au | d − ak. So, condition (iv) is satisfied.

Class 6 : there exist a and k such that

1 � k < I

a � I + k

(a0, a1, a2, a3, d) = (I − k, I + k, a, a + k, 2a + I + k).

We have

d = a0 + 2a3 = a1 + 2a2.
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From Definition 2.4, we have

m = lcm(a0, a1, k)

(a0, a1, a2, a3, d) = (b0, b1, b2 + xm, b3 + xm, e + 2xm).

First, we check condition (i). Since i < j, we have i ∈ {0, 1, 2}.
• If i ∈ {0, 1}, then ai = bi and ai | m, giving gcd(ai, aj) = gcd(bi, bj). By assumption

gcd(bi, bj) | e, giving gcd(ai, aj) | d.

• If (i, j) = (2, 3), then gcd(a2, a3) = gcd(a2, k). Since k | m, we find gcd(a2, k) =
gcd(b2, k) = gcd(b2, b3). By assumption gcd(b2, b3) | e, giving gcd(a2, a3) | d.

Next, we check condition (ii). Since i < j < k, we have i ∈ {0, 1}, giving ai = bi and
ai | m. We find gcd(ai, aj , ak) = gcd(bi, bj , bk) = 1.

Finally, we check condition (iv).

• If i = 3, we note d = a0 + 2a3.

• If i = 2, we note d = a1 + 2a2.

• If i∈{0, 1}, then ai = bi and ai |m. By assumption bi | e − bj , giving ai | d − aj . �

4. Small index cases

In this section, we give the complete lists of quasi-smooth well-formed hypersurfaces for
indices I = 1, 2, . . . , 6. The parameters x and y are non-negative integers with x � y. We
first list the two-parameter series, then one-parameter series and lastly sporadic cases.

Tables 1 and 2 for indices 1 and 2, respectively, are already known from [20, Theorem 8]
and [9, Corollary 1.13], respectively.

Tables 3–6 for indices 3–6, respectively, are new.
The author has computed the lists for all I � 100. The lists grow as the cube of the

index and the computation time grows as the fifth power of I.
Differences from [9, Corollary 1.13]. There is a misprint in the list for I = 2 in [9],

namely, the second occurrence of (3, 4, 6, 7, 18) should instead be (3, 4, 5, 7, 17). In the

Table 1. Index 1.

(a0, a1, a2, a3) d (a0, a1, a2, a3) d (a0, a1, a2, a3) d

(2, 2x + 3, 2x + 3, 4x + 5) 8x + 12 (1, 1, 1, 1) 3 (1, 1, 1, 2) 4
(1, 1, 2, 3) 6 (1, 2, 3, 5) 10 (1, 3, 5, 7) 15
(1, 3, 5, 8) 16 (2, 3, 5, 9) 18 (3, 3, 5, 5) 15
(3, 5, 7, 11) 25 (3, 5, 7, 14) 28 (3, 5, 11, 18) 36
(5, 14, 17, 21) 56 (5, 19, 27, 31) 81 (5, 19, 27, 50) 100
(7, 11, 27, 37) 81 (7, 11, 27, 44) 88 (9, 15, 17, 20) 60
(9, 15, 23, 23) 69 (11, 29, 39, 49) 127 (11, 49, 69, 128) 256
(13, 23, 35, 57) 127 (13, 35, 81, 128) 256
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list below (Table 2), the tuple (3, 4, 5, 7, 17) is contained in the series (3, 3x + 4, 3x +
5, 6x + 7, 12x + 17), which has been extended to include x = 0. The tuple (1, 1, 2, 2, 4) is
contained in the series (1, 1, x + 1, y + 1, x + y + 2).

Table 2. Index 2.

(a0, a1, a2, a3) d (a0, a1, a2, a3) d

(1, 1, x + 1, y + 1) x + y + 2 (1, 2, x + 2, x + 3) 2x + 6
(1, 3, 3x + 3, 3x + 4) 6x + 9 (1, 3, 3x + 4, 3x + 5) 6x + 11
(3, 3x + 3, 3x + 4, 3x + 4) 9x + 12 (3, 3x + 4, 3x + 5, 3x + 5) 9x + 15
(3, 3x + 4, 3x + 5, 6x + 7) 12x + 17 (3, 3x + 4, 6x + 7, 9x + 9) 18x + 21
(3, 3x + 4, 6x + 7, 9x + 12) 18x + 24 (4, 2x + 5, 2x + 5, 4x + 8) 8x + 20
(4, 2x + 5, 4x + 10, 6x + 13) 12x + 30 (1, 3, 4, 6) 12
(1, 4, 5, 7) 15 (1, 4, 5, 8) 16
(1, 4, 6, 9) 18 (1, 5, 7, 11) 22
(1, 6, 9, 13) 27 (1, 6, 10, 15) 30
(1, 7, 12, 18) 36 (1, 8, 13, 20) 40
(1, 9, 15, 22) 45 (2, 3, 4, 5) 12
(2, 3, 4, 7) 14 (3, 4, 5, 10) 20
(3, 4, 6, 7) 18 (3, 4, 10, 15) 30
(5, 13, 19, 22) 57 (5, 13, 19, 35) 70
(6, 9, 10, 13) 36 (7, 8, 19, 25) 57
(7, 8, 19, 32) 64 (9, 12, 13, 16) 48
(9, 12, 19, 19) 57 (9, 19, 24, 31) 81
(10, 19, 35, 43) 105 (11, 21, 28, 47) 105
(11, 25, 32, 41) 107 (11, 25, 34, 43) 111
(11, 43, 61, 113) 226 (13, 18, 45, 61) 135
(13, 20, 29, 47) 107 (13, 20, 31, 49) 111
(13, 31, 71, 113) 226 (14, 17, 29, 41) 99

Table 3. Index 3.

(a0, a1, a2, a3) d (a0, a1, a2, a3) d

(1, 2, 2x + 3, 2y + 3) 2(x + y) + 6 (1, 1, 2, 2x + 3) 2x + 4
(1, 5, 10x + 5, 10x + 7) 20x + 15 (1, 5, 10x + 7, 10x + 9) 20x + 19
(1, 7, 9, 13) 27 (1, 7, 9, 14) 28
(1, 9, 13, 20) 40 (1, 13, 22, 33) 66
(1, 14, 23, 35) 70 (1, 15, 25, 37) 75
(5, 7, 11, 13) 33 (5, 7, 11, 20) 40
(11, 21, 29, 37) 95 (11, 37, 53, 98) 196
(13, 17, 27, 41) 95 (13, 27, 61, 98) 196
(15, 19, 43, 74) 148
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Table 4. Index 4.

(a0, a1, a2, a3) d

(1, 3, 3x + 4, 3y + 5) 3(x + y) + 9
(1, 3, 3x + 5, 3y + 5) 3(x + y) + 10
(1, 3, 3x + 5, 3y + 7) 3(x + y) + 12
(2, 2, 2x + 3, 2y + 3) 2(x + y) + 6
(1, 1, 3, 3x + 5) 3x + 6
(1, 2, 2, 2x + 3) 2x + 4
(1, 2, 3, 6x + 4) 6x + 6
(1, 2, 3, 6x + 5) 6x + 7
(1, 2, 3, 6x + 7) 6x + 9
(1, 2, 3, 6x + 8) 6x + 10
(1, 7, 21x + 7, 21x + 10) 42x + 21
(1, 7, 21x + 10, 21x + 13) 42x + 27
(1, 7, 21x + 14, 21x + 17) 42x + 35
(1, 7, 21x + 17, 21x + 20) 42x + 41
(2, 3, 3x + 4, 3x + 5) 6x + 10
(2, 3, 3x + 5, 3x + 6) 6x + 12
(2, 4, 2x + 5, 2x + 7) 4x + 14
(2, 6, 6x + 9, 6x + 11) 12x + 24
(3, 5, 15x + 5, 15x + 6) 30x + 15
(3, 5, 15x + 10, 15x + 11) 30x + 25
(3, 5, 15x + 11, 15x + 12) 30x + 27
(3, 5, 15x + 16, 15x + 17) 30x + 37
(6, 6x + 9, 6x + 11, 6x + 11) 18x + 33
(6, 6x + 11, 12x + 20, 18x + 27) 36x + 60
(6, 6x + 11, 12x + 20, 18x + 33) 36x + 66
(1, 10, 13, 19) 39
(1, 10, 13, 20) 40
(1, 13, 19, 29) 58
(1, 14, 21, 31) 63
(1, 19, 32, 48) 96
(1, 20, 33, 50) 100
(1, 21, 35, 52) 105
(2, 7, 10, 15) 30
(2, 9, 12, 17) 36
(5, 6, 8, 9) 24
(5, 6, 8, 15) 30
(9, 11, 12, 17) 45
(10, 13, 25, 31) 75
(11, 17, 20, 27) 71
(11, 17, 24, 31) 79
(11, 31, 45, 83) 166
(13, 14, 19, 29) 71
(13, 14, 23, 33) 79
(13, 23, 51, 83) 166
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Table 5. Index 5.

(a0, a1, a2, a3) d (a0, a1, a2, a3) d

(1, 4, 4x + 5, 4y + 7) 4(x + y) + 12 (1, 4, 4x + 7, 4y + 9) 4(x + y) + 16
(2, 3, 6x + 5, 6y + 7) 6(x + y) + 12 (2, 3, 6x + 7, 6y + 7) 6(x + y) + 14
(2, 3, 6x + 7, 6y + 11) 6(x + y) + 18 (1, 1, 4, 4x + 7) 4x + 8
(1, 2, 3, 6x + 5) 6x + 6 (1, 2, 3, 6x + 7) 6x + 8
(1, 3, 4, 12x + 5) 12x + 8 (1, 3, 4, 12x + 9) 12x + 12
(1, 3, 4, 12x + 13) 12x + 16 (1, 9, 36x + 9, 36x + 13) 72x + 27
(1, 9, 36x + 13, 36x + 17) 72x + 35 (1, 9, 36x + 27, 36x + 31) 72x + 63
(1, 9, 36x + 31, 36x + 35) 72x + 71 (3, 7, 42x + 7, 42x + 9) 84x + 21
(3, 7, 42x + 23, 42x + 25) 84x + 53 (3, 7, 42x + 35, 42x + 37) 84x + 77
(3, 7, 42x + 37, 42x + 39) 84x + 81 (1, 13, 17, 25) 51
(1, 13, 17, 26) 52 (1, 17, 25, 38) 76
(1, 25, 42, 63) 126 (1, 26, 43, 65) 130
(1, 27, 45, 67) 135 (6, 7, 9, 10) 27
(11, 13, 19, 25) 63 (11, 25, 37, 68) 136
(13, 19, 41, 68) 136

Table 6. Index 6.

(a0, a1, a2, a3) d (a0, a1, a2, a3) d

(1, 5, 5x + 6, 5y + 9) 5(x + y) + 15 (1, 5, 5x + 7, 5y + 8) 5(x + y) + 15
(1, 5, 5x + 7, 5y + 9) 5(x + y) + 16 (1, 5, 5x + 8, 5y + 8) 5(x + y) + 16
(1, 5, 5x + 8, 5y + 12) 5(x + y) + 20 (1, 5, 5x + 9, 5y + 11) 5(x + y) + 20
(1, 5, 5x + 9, 5y + 12) 5(x + y) + 21 (2, 4, 4x + 5, 4y + 5) 4(x + y) + 10
(2, 4, 4x + 5, 4y + 7) 4(x + y) + 12 (2, 4, 4x + 7, 4y + 7) 4(x + y) + 14
(2, 4, 4x + 7, 4y + 9) 4(x + y) + 16 (3, 3, 3x + 4, 3y + 5) 3(x + y) + 9
(3, 3, 3x + 5, 3y + 7) 3(x + y) + 12 (1, 1, 5, 5x + 9) 5x + 10
(1, 2, 4, 4x + 5) 4x + 6 (1, 2, 4, 4x + 7) 4x + 8
(1, 2, 5, 10x + 8) 10x + 10 (1, 2, 5, 10x + 9) 10x + 11
(1, 2, 5, 10x + 13) 10x + 15 (1, 2, 5, 10x + 14) 10x + 16
(1, 3, 3, 3x + 5) 3x + 6 (1, 3, 5, 15x + 7) 15x + 10
(1, 3, 5, 15x + 8) 15x + 11 (1, 3, 5, 15x + 12) 15x + 15
(1, 3, 5, 15x + 13) 15x + 16 (1, 3, 5, 15x + 17) 15x + 20
(1, 3, 5, 15x + 18) 15x + 21 (1, 4, 5, 20x + 6) 20x + 10
(1, 4, 5, 20x + 7) 20x + 11 (1, 4, 5, 20x + 11) 20x + 15
(1, 4, 5, 20x + 12) 20x + 16 (1, 4, 5, 20x + 16) 20x + 20
(1, 4, 5, 20x + 17) 20x + 21 (1, 4, 5, 20x + 21) 20x + 25
(1, 4, 5, 20x + 22) 20x + 26 (1, 11, 55x + 11, 55x + 16) 110x + 33
(1, 11, 55x + 16, 55x + 21) 110x + 43 (1, 11, 55x + 22, 55x + 27) 110x + 55
(1, 11, 55x + 27, 55x + 32) 110x + 65 (1, 11, 55x + 33, 55x + 38) 110x + 77
(1, 11, 55x + 38, 55x + 43) 110x + 87 (1, 11, 55x + 44, 55x + 49) 110x + 99
(1, 11, 55x + 49, 55x + 54) 110x + 109 (2, 3, 3, 6x + 4) 6x + 6
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Table 6. Continued

(2, 3, 3, 6x + 7) 6x + 9 (2, 3, 4, 12x + 5) 12x + 8
(2, 3, 4, 12x + 7) 12x + 10 (2, 3, 4, 12x + 9) 12x + 12
(2, 3, 4, 12x + 11) 12x + 14 (2, 3, 4, 12x + 13) 12x + 16
(2, 3, 4, 12x + 15) 12x + 18 (2, 5, 5x + 8, 5x + 9) 10x + 18
(2, 5, 5x + 9, 5x + 10) 10x + 20 (2, 8, 4x + 9, 4x + 13) 8x + 26
(2, 10, 20x + 15, 20x + 19) 40x + 40 (2, 10, 20x + 25, 20x + 29) 40x + 60
(5, 7, 35x + 8, 35x + 9) 70x + 23 (5, 7, 35x + 14, 35x + 15) 70x + 35
(5, 7, 35x + 28, 35x + 29) 70x + 63 (5, 7, 35x + 29, 35x + 30) 70x + 65
(8, 4x + 9, 4x + 11, 4x + 13) 12x + 35 (9, 3x + 11, 3x + 14, 6x + 19) 12x + 47
(1, 16, 21, 31) 63 (1, 16, 21, 32) 64
(1, 21, 31, 47) 94 (1, 22, 33, 49) 99
(1, 31, 52, 78) 156 (1, 32, 53, 80) 160
(1, 33, 55, 82) 165 (2, 13, 18, 27) 54
(2, 15, 20, 29) 60 (3, 7, 8, 12) 24
(7, 10, 15, 19) 45 (11, 19, 29, 53) 106
(13, 15, 31, 53) 106

Appendix A. Tables

Tables A1 and A2 are taken from [9, Appendix B]. They contain one-parameter infinite
series and sporadic cases, respectively, of values of (a0, a1, a2, a3, d, I). The last columns
represent the cases in [33] from which the sextuples (a0, a1, a2, a3, d, I) originate (note
that sometimes a sextuple (a0, a1, a2, a3, d, I) originates from several cases in [33]). The
parameter n is any positive integer.

Differences from [9, Appendix B]: the tuple (3, 3, 4, 4, 12) with I = 2 has been removed
from Table A2, because it already appears in the series (3, 3n, 3n + 1, 3n + 1, 9n + 3) with
I = 2 in Table A1.

Table A1. Infinite series.

(a0, a1, a2, a3) d I Source

(1, 3n − 2, 4n − 3, 6n − 5) 12n − 9 n VII.2(3)
(1, 3n − 2, 4n − 3, 6n − 4) 12n − 8 n II.2(2)
(1, 4n − 3, 6n − 5, 9n − 7) 18n − 14 n VII.3(1)
(1, 6n − 5, 10n − 8, 15n − 12) 30n − 24 n III.1(4)
(1, 6n − 4, 10n − 7, 15n − 10) 30n − 20 n III.2(2)
(1, 6n − 3, 10n − 5, 15n − 8) 30n − 15 n III.2(4)
(1, 8n − 2, 12n − 3, 18n − 5) 36n − 9 2n IV.3(3)
(2, 6n − 3, 8n − 4, 12n − 7) 24n − 12 2n II.2(4)
(2, 6n + 1, 8n + 2, 12n + 3) 24n + 6 2n + 2 II.2(1)
(3, 6n + 1, 6n + 2, 9n + 3) 18n + 6 3n + 3 II.2(1)
(7, 28n − 18, 42n − 27, 63n − 44) 126n − 81 7n − 1 XI.3(14)
(7, 28n − 17, 42n − 29, 63n − 40) 126n − 80 7n + 1 X.3(1)
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Table A1. Continued

(7, 28n − 13, 42n − 23, 63n − 31) 126n − 62 7n + 2 X.3(1)
(7, 28n − 10, 42n − 15, 63n − 26) 126n − 45 7n + 1 XI.3(14)
(7, 28n − 9, 42n − 17, 63n − 22) 126n − 44 7n + 3 X.3(1)
(7, 28n − 6, 42n − 9, 63n − 17) 126n − 27 7n + 2 XI.3(14)
(7, 28n − 5, 42n − 11, 63n − 13) 126n − 26 7n + 4 X.3(1)
(7, 28n − 2, 42n − 3, 63n − 8) 126n − 9 7n + 3 XI.3(14)
(7, 28n − 1, 42n − 5, 63n − 4) 126n − 8 7n + 5 X.3(1)
(7, 28n + 2, 42n + 3, 63n + 1) 126n + 9 7n + 4 XI.3(14)
(7, 28n + 3, 42n + 1, 63n + 5) 126n + 10 7n + 6 X.3(1)
(7, 28n + 6, 42n + 9, 63n + 10) 126n + 27 7n + 5 XI.3(14)
(2, 2n + 1, 2n + 1, 4n + 1) 8n + 4 1 II.3(4)
(3, 3n, 3n + 1, 3n + 1) 9n + 3 2 III.5(1)
(3, 3n + 1, 3n + 2, 3n + 2) 9n + 6 2 II.5(1)
(3, 3n + 1, 3n + 2, 6n + 1) 12n + 5 2 XVIII.2(2)
(3, 3n + 1, 6n + 1, 9n) 18n + 3 2 VII.3(2)
(3, 3n + 1, 6n + 1, 9n + 3) 18n + 6 2 II.2(2)
(4, 2n + 3, 2n + 3, 4n + 4) 8n + 12 2 V.3(4)
(4, 2n + 3, 4n + 6, 6n + 7) 12n + 18 2 XII.3(17)
(6, 6n + 3, 6n + 5, 6n + 5) 18n + 15 4 III.5(1)
(6, 6n + 5, 12n + 8, 18n + 9) 36n + 24 4 VII.3(2)
(6, 6n + 5, 12n + 8, 18n + 15) 36n + 30 4 IV.3(1)
(8, 4n + 5, 4n + 7, 4n + 9) 12n + 23 6 XIX.2(2)
(9, 3n + 8, 3n + 11, 6n + 13) 12n + 35 6 XIX.2(2)

Table A2. Sporadic cases.

(a0, a1, a2, a3) d I Source (a0, a1, a2, a3) d I Source

(1, 3, 5, 8) 16 1 VIII.3(5) (2, 3, 5, 9) 18 1 II.2(3)
(3, 3, 5, 5) 15 1 I.19 (3, 5, 7, 11) 25 1 X.2(3)
(3, 5, 7, 14) 28 1 VII.4(4) (3, 5, 11, 18) 36 1 VII.3(1)
(5, 14, 17, 21) 56 1 XI.3(8) (5, 19, 27, 31) 81 1 X.3(3)
(5, 19, 27, 50) 100 1 VII.3(3) (7, 11, 27, 37) 81 1 X.3(4)
(7, 11, 27, 44) 88 1 VII.3(5) (9, 15, 17, 20) 60 1 VII.6(3)
(9, 15, 23, 23) 69 1 III.5(1) (11, 29, 39, 49) 127 1 XIX.2(2)
(11, 49, 69, 128) 256 1 X.3(1) (13, 23, 35, 57) 127 1 XIX.2(2)
(13, 35, 81, 128) 256 1 X.3(2) (1, 3, 4, 6) 12 2 I.3
(1, 4, 6, 9) 18 2 IV.3(3) (1, 6, 10, 15) 30 2 I.4
(2, 3, 4, 7) 14 2 IX.3(1) (3, 4, 5, 10) 20 2 II.3(2)
(3, 4, 6, 7) 18 2 VII.3(10) (3, 4, 10, 15) 30 2 II.2(3)
(5, 13, 19, 22) 57 2 X.3(3) (5, 13, 19, 35) 70 2 VII.3(3)
(6, 9, 10, 13) 36 2 VII.3(8) (7, 8, 19, 25) 57 2 X.3(4)
(7, 8, 19, 32) 64 2 VII.3(3) (9, 12, 13, 16) 48 2 VII.6(2)
(9, 12, 19, 19) 57 2 III.5(1) (9, 19, 24, 31) 81 2 XI.3(20)
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Table A2. Continued

(10, 19, 35, 43) 105 2 XI.3(18) (11, 21, 28, 47) 105 2 XI.3(16)
(11, 25, 32, 41) 107 2 XIX.3(1) (11, 25, 34, 43) 111 2 XIX.2(2)
(11, 43, 61, 113) 226 2 X.3(1) (13, 18, 45, 61) 135 2 XI.3(14)
(13, 20, 29, 47) 107 2 XIX.3(1) (13, 20, 31, 49) 111 2 XIX.2(2)
(13, 31, 71, 113) 226 2 X.3(2) (14, 17, 29, 41) 99 2 XIX.2(3)
(5, 7, 11, 13) 33 3 X.3(3) (5, 7, 11, 20) 40 3 VII.3(3)
(11, 21, 29, 37) 95 3 XIX.2(2) (11, 37, 53, 98) 196 3 X.3(1)
(13, 17, 27, 41) 95 3 XIX.2(2) (13, 27, 61, 98) 196 3 X.3(2)
(15, 19, 43, 74) 148 3 X.3(1) (5, 6, 8, 9) 24 4 VII.3(2)
(5, 6, 8, 15) 30 4 IV.3(1) (9, 11, 12, 17) 45 4 XI.3(20)
(10, 13, 25, 31) 75 4 XI.3(14) (11, 17, 20, 27) 71 4 XIX.3(1)
(11, 17, 24, 31) 79 4 XIX.2(2) (11, 31, 45, 83) 166 4 X.3(1)
(13, 14, 19, 29) 71 4 XIX.3(1) (13, 14, 23, 33) 79 4 XIX.2(2)
(13, 23, 51, 83) 166 4 X.3(2) (6, 7, 9, 10) 27 5 XI.3(14)
(11, 13, 19, 25) 63 5 XIX.2(2) (11, 25, 37, 68) 136 5 X.3(1)
(13, 19, 41, 68) 136 5 X.3(2) (11, 19, 29, 53) 106 6 X.3(1)
(13, 15, 31, 53) 106 6 X.3(2) (11, 13, 21, 38) 76 7 X.3(1)

Appendix B. Source code

The computer code below classifies the hypersurfaces of index I. For simplicity, the tuples
from the tables are left out. The full program and source code are available from the
author. It is written in the functional programming language Haskell.

1 −− C l a s s i f y i n g quasi−smooth wel l−formed weighted hype r su r f a c e s .

−− Erik Paemurru

3

data Tuple = Quint Int Int Int Int Int Int Int de r i v i ng ( Eq , Ord , Show )

5 −− ( a0 , a1 , a2 , a3 , dd , mm, cc )

−− dd − degree

7 −− mm − s e r i e s modulo−number ( lcm of sma l l e r weights )

−− cc − s e r i e s c l a s s−number ( from 1 to 6)

9

main = do

11 putStr ( ”Enter index , f o r which to so l v e :\n” ++ ”Index = ” )

strL <− getLine

13 mapM putStrLn (map show ( so l v e ( read strL : : Int ) ) )

15 −− The ’ so lve ’ func t i on c l a s s i f i e s the hype r su r f a c e s . I t s e l e c t s the wel l−formed

−− quasi−smooth tup l e s from the l i s t o f a l l t up l e s . The input ’ i i ’ i s the index .

17 −− The r e s u l t i s a l i s t o f 7−tup l e s in the above form . Using the d e f i n i t i o n o f the

−− i n f i n i t e s e r i e s , i t i s easy to wr i t e down the corresponding s e r i e s . Tuples from

19 −− the t ab l e s must a l s o be added , which has not been implemented here .

s o l v e i i = map ( f i l t e r conds ) ( makeTuples i i )

21

lcm3 a b c = lcm a ( lcm b c )

23 gcd3 a b c = gcd a ( gcd b c )

25 −− div a b g i v e s a/b rounded down

−− divUp a b g iv e s a/b rounded up

27 divUp a b = −((−a ) ‘ div ‘ b)

29 −− makeTuples − generate a l l tup l e s f o r g iven index , without checking cond i t i on s

makeTuples i i = [ makeClass cc i i | cc <− [ 1 . . 6 ] ]
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31

−− makeClass − generate a l l t up l e s f o r g iven index and c l a s s

33 makeClass cc i i

| cc == 1 = concat [ makeClassWei a0 ( i i − a0 ) 0 ( lcm a0 ( i i − a0 ) ) cc i i |
35 a0 <− [ 1 . . ( i i ‘ div ‘ 2) ] ]

| cc == 2 = concat [ makeClassWei a0 a1 ( i i − a0 ) ( lcm3 a0 a1 ( i i − a0 ) ) cc i i |
37 a0 <− [ 1 . . ( i i ‘ div ‘ 2) ] , a1 <− [ a0 . . ( i i −a0−1) ] ]

| cc == 3 = concat [ makeClassWei a0 a1 ( i i − a1 ) ( lcm3 a0 a1 ( i i − a1 ) ) cc i i |
39 a1 <− [ 2 . . ( i i ‘ div ‘ 2) ] , a0 <− [ 1 . . ( a1−1) ] ]

| cc == 4 = concat [ makeClassWei ( i i −k ) (2∗k ) 0 ( lcm ( i i −k ) k ) cc i i |
41 k <− r e v e r s e [ (max ( i i ‘ divUp ‘ 3) 1) . . ( i i −1) ] ]

| cc == 5 = concat [ makeClassWei (2∗k ) ( i i −k ) 0 ( lcm ( i i −k ) k ) cc i i |
43 k <− [ 1 . . ( ( i i ‘ divUp ‘ 3)−1) ] ]

| cc == 6 = concat [ makeClassWei ( i i −k ) ( i i+k ) k ( lcm3 ( i i −k ) ( i i+k ) k ) cc i i |
45 k <− r e v e r s e [ 1 . . ( i i −1) ] ]

47 −− makeClassWei − c r ea t e tuples , g iven sma l l e r weights a0 , a1 , xx and the number mm

makeClassWei a0 a1 xx mm cc i i

49 −− f o r c==1, xx i s not used

| cc == 1 = [ Quint a0 a1 b2 b3 ( b2+b3 ) mm cc | b2 <− [ a1 . . ( a1+mm−1) ] ,

51 b3 <− [ b2 . . ( b2+mm−1) ] ]

−− f o r c==2, xx = a2

53 | cc == 2 = [ Quint a0 a1 xx b3 ( a1+b3 ) mm cc | b3 <− [ xx . . ( xx+mm−1) ] ]

−− f o r c==3, xx = a2

55 | cc == 3 = [ Quint a0 a1 xx b3 ( a0+b3 ) mm cc | b3 <− [ xx . . ( xx+mm−1) ] ]

−− f o r c==4, xx i s not used

57 | cc == 4 = [ Quint a0 a1 b2 ( b2 + ( a1 ‘ div ‘ 2) ) (2∗( b2 + ( a1 ‘ div ‘ 2) ) ) mm cc |
b2 <− [ a1 . . ( a1+mm−1) ] ]

59 −− f o r c==5, xx i s not used

| cc == 5 = [ Quint a0 a1 b2 ( b2 + ( a0 ‘ div ‘ 2) ) (2∗( b2 + ( a0 ‘ div ‘ 2) ) ) mm cc |
61 b2 <− [ a1 . . ( a1+mm−1) ] ]

−− f o r c==6, xx = k

63 | cc == 6 = [ Quint a0 a1 b2 ( b2+xx ) ( a1 + 2∗b2 ) mm cc | b2 <− [ a1 . . ( a1+mm−1) ] ]

65 −− conds − checks a l l the wel l−formedness , quasi−smoothness cond i t i on s f o r a tup l e

conds tup l e = and [ cond j tup l e | j <− [ 1 . . 4 ] ]

67

−− cond j − checks cond i t i on ( j ) f o r a g iven tup l e

69 cond j ( Quint a0 a1 a2 a3 dd )

| j == 1 = and [ dd ‘mod ‘ ( gcd a i a j ) == 0 | ( ai , a j ) <− pa i r s ]

71 | j == 2 = and [ gcd3 a i a j ak == 1 | ( ai , aj , ak ) <− t r i p l e s ]

| j == 3 = a3 < dd

73 | j == 4 = and [ or [ ( dd − a j ) ‘mod ‘ a i == 0 | a j <− weights ] | a i <− weights ]

where

75 weights = [ a0 , a1 , a2 , a3 ]

pa i r s = [ ( a0 , a1 ) , ( a0 , a2 ) , ( a0 , a3 ) , ( a1 , a2 ) , ( a1 , a3 ) , ( a2 , a3 ) ]

77 t r i p l e s = [ ( a0 , a1 , a2 ) , ( a0 , a1 , a3 ) , ( a0 , a2 , a3 ) , ( a1 , a2 , a3 ) ]
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