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Abstract. The classical maximum principle is utilized to obtain maximum
principles for functionals which are defined on solutions of fourth, sixth and eighth-
order elliptic equations. The principles derived lead to uniqueness results.
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1. Introduction. It is well known that every subharmonic function in a bounded
domain � (i.e. �u ≥ 0 in �) satisfies the classical maximum principle

max
�

u = max
∂�

u. (1.1)

The subbiharmonic function u(x) = −x4
1 − |x|2 in the ball � = {(x1, . . . , xn)| |x| <

R} (i.e. �2u ≤ 0 in �) shows that there are no classical maximum principles for the
biharmonic operator �2u (and for higher-order elliptic operators at all). Still some
results can be proven.

The first proof of a maximum principle for an elliptic equation of higher-order
was given by Miranda [4]. The Miranda result was extended to semilinear equations
by Schaefer [5] and used to deduce the non-existence of solution to certain boundary
value problems. An extension of this last maximum principle to a sixth-order equation
may be found in [6]. There are other works dealing with maximum principles for fourth
and sixth-order equations and their applications (see [1], [2], [3], [7] (Chapter 10), [9]
and the references cited therein). A general maximum principle for an equation with
constant coefficients of order 2m was established by Tseng and Lin ([8]).

Our purpose here is to deduce some maximum principles for a class of fourth and
sixth-order equations which do not appear to be contained in the above mentioned
works. A maximum principle for an equation of eighth-order with non-constant
coefficients is also presented. From these maximum principles we obtain uniqueness
results for a class of higher-order equations in a plane domain �. If the domain is
on the line, then we briefly indicate some uniqueness results for problems of order
2m (m ≥ 5).

2. Maximum principles and uniqueness results. Let � be a bounded domain in
the plane with a smooth boundary ∂�. We denote partial derivatives ∂u/∂xi by u,i and
use the summation convention, so that, e.g., the square of the gradient of u becomes
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(∂u/∂x1)2 + (∂u/∂x2)2 = |∇u|2 = u,i u,i . The scalar product of the gradients of two
functions, say u and v, may be written as ∇u · ∇v = u,i v,i.

First, we consider a fourth-order equation

�2u − a(x)�u + b(x)u = 0 in �, (2.1)

where

a > 0, �(1/a) ≤ 0 (2.2)

and

b ≥ 0. (2.3)

We have the following result.

LEMMA 2.1. If u ∈ C4(�) ∩ C2(�) is a (classical) solution of (2.1), then the functional
F1 given by

F1 = a(x)
2

u2 + (|∇u|2 − u�u) (2.4)

assumes its maximum value on ∂�.

From Lemma 2.1 we now deduce a slight extension of Schaefer’s result (6, Theorem
4).

THEOREM 2.1. There is at most one classical solution of the boundary value problem
⎧⎨
⎩

�2u − a(x)�u + b(x)w(u) = f in �

u = g,
∂u
∂n

= h on ∂�,
(2.5)

where a, b satisfy (2.2) and (2.3) and w is a C1 function for which bw′ > 0 in �.

Here and throughout the paper ∂/∂n denotes the outward normal derivative
operator.

It is quite obvious how Theorem 1 and Theorem 4 in [5] have to be modified to
obtain the above stated results. The details are left to the reader.

We now prove a maximum principle for the sixth-order equation

�3u − a(x)�2u + b(x)�u − c(x)u = 0 in � ⊂ IR2, (2.6)

where

c > 0, �(1/c) ≤ 0. (2.7)

LEMMA 2.2. Let u ∈ C6(�) ∩ C4(�) be a (classical) solution of (2.6) and suppose
that (2.2), (2.3) and (2.7) are satisfied. Then the functional F2 given by

F2 = c(x)
2

u2 + a(x)
2

(�u)2 + |∇(�u)|2 − �u�2u (2.8)

assumes its maximum value on ∂�.
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Proof. The assumption (2.2) implies that

�(c(x)u2)/2 ≥ c(x)u�u +
2∑

i=1

(
1√
c

c,i u + √
cu,i

)2

≥ c(x)u�u.

Similarly,

�(a(x)(�u)2)/2 ≥ a(x)�u�2u.

Now

�(|∇(�u)|2) = 2(�u),ij (�u),ij +2∇(�u) · ∇(�2u).

�(�u�2u) = (�2u)2 + 2∇(�u) · ∇(�2u) + �u�3u.

Hence

�F2 ≥ 2(�u),ij (�u),ij − (�2u)2 + b(x)(�u)2 in �.

Since the inequality

2v,ij v,ij ≥ (�v)2 (2.9)

holds in two dimensions, we obtain

�F2 ≥ 0 in �. �
An immediate consequence of Lemma 2.2 is the following uniqueness result.

THEOREM 2.2. There is at most one classical solution of the boundary value problem
⎧⎨
⎩

�3u − a(x)�2u + b(x)�u − c(x)u = f in �

u = g, �u = h,
∂(�u)

∂n
= i on ∂�,

(2.10)

where a, b, c satisfy (2.2), (2.3) and (2.7).

Proof. Assume that u1 and u2 are solutions of (2.10) and let v = u1 − u2. The
function v satisfies (2.6) and

v = �v = ∂(�v)
∂n

= 0 on ∂�. (2.11)

Since �v = 0 on ∂� we obtain that |∇(�v)|2 = ( ∂(�v)
∂n )2 on ∂�.

Hence, by Lemma 2.2 and (2.11),

F2 ≤ max
∂�

F2 = 0 in �. (2.12)

Consequently,

−�v�2v ≤ 0 in �. (2.13)

https://doi.org/10.1017/S001708950600320X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950600320X


550 CRISTIAN-PAUL DANET

Integrating (2.13) over � and using Green’s identity we conclude that

|∇(�v)| = 0 in �,

and by continuity �v ≡ 0 in �. Since v = 0 on � we are led to the conclusion that
v ≡ 0 in �. �

Next we deal with classical solutions (i.e. C8(�) ∩ C6(�)) of

�4u − a(x)�3u + b(x)�2u − c(x)�u + du = 0 in � ⊂ IR2, (2.14)

where

d > 0. (2.15)

A uniqueness result can be inferred from the following maximum principle

LEMMA 2.3. Let u be a classical solution of (2.14). Assume that (2.2), (2.3), (2.7)
and (2.15) are satisfied. Then the functional

F3 = c(x)
2

(�u)2 + a(x)
2

(�2u)
2 + d(|∇u|2 − u�u) + |∇(�2u)|2 − �2u�3u (2.16)

assumes its maximum value on ∂�.

Proof. Using (2.2) and (2.7), we have

�(c(x)(�u)2)/2 ≥ c(x)�u�2u,

�(a(x)(�2u)2)/2 ≥ a(x)�2u�3u.

By inequality (2.9) we get

d�(|∇u|2 − u�u) = d(2u,ij u,ij −(�u)2 − u�2u) ≥ −du�2u,

�(|∇(�2u)|2 − �2u�3u) = 2(�2u),ij (�2u),ij − (�3u)2 − �2u�4u ≥ −�2u�4u.

Hence from equation (2.14) we obtain

�F3 ≥ 0 in �. �
THEOREM 2.3. There is at most one classical solution of the boundary value problem

⎧⎨
⎩

�4u − a�3u + b(x)�2u − c�u + du = f in �

u = g, �u = h, �2u = i,
∂(�2u)

∂n
= j on ∂�,

(2.17)

where a satisfies (2.2), b satisfies (2.3), c satisfies (2.7), d > 0, and the curvature k of ∂�

is positive.

Proof. To establish this result, we suppose that u1 and u2 are two solutions of
(2.17). Defining v = u1 − u2, we see that v satisfies (2.14) and

v = �v = �2v = ∂(�2v)
∂n

= 0 on ∂�. (2.18)
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Since v = �2v = 0 on ∂�, we obtain

∂F3

∂n
= c�v

∂(�v)
∂n

+ a�2v
∂(�2v)

∂n
+ d

(
2
∂v

∂n
∂2v

∂n2
− ∂v

∂n
�v − v

∂(�v)
∂n

)

+ 2
∂(�2v)

∂n
∂2(�2v)

∂n2
− ∂(�2v)

∂n
�3v − �2v

∂(�3v)
∂n

on ∂�.

By (2.18) we have

∂F3

∂n
= 2d

∂v

∂n
∂2v

∂n2
on ∂�. (2.19)

By introducing normal coordinates in the neighbourhood of the boundary, we can
write

�v = ∂2v

∂n2
+ ∂2v

∂s2
+ k

∂v

∂n
, (2.20)

where ∂v
∂s denotes the tangential derivative of v.

Since v = �v = 0 on ∂�, relation (2.20) becomes

∂2v

∂n2
= −k

∂v

∂n
,

which gives

∂F3

∂n
= −2dk

(
∂v

∂n

)2

≤ 0 on ∂�.

This contradicts Hopf’s lemma at a point P ∈ ∂�, where F3 (F3 �≡ constant) assumes
its maximum value. Hence F3 is constant in �. Thus ∂F3

∂n = 0 on ∂� and consequently
∂v
∂n = 0 on ∂�. By the boundary conditions it follows that F3 = 0 in �. Using Green’s
identity we arrive at v = 0 in �. �

Finally we shift our attention from the two dimensional to the one dimensional
case and mention the following result (� denotes an open interval (α, β)).

THEOREM 2.4. There can be at most one classical solution of the problem
{

u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = f in �

u = g1, u′′ = g2, u′′′ = g3, . . . , u(m) = gm on ∂�,
(2.21)

where m ≥ 6 is even, d ≥ 0 and b ≥ 0, a, c > 0, (1/a)′′, (1/c)′′ ≤ 0 in �.

The result follows since the function

F4 = u′′u(2m−2) − 2u′′′u(2m−3) + 3u(4)u(2m−4) − · · · + (m − 3)u(m−2)u(m+2)

− (m − 3)u(m−1)u(m+1)/2 − ((m − 3)/2 + 1)
[(

u(m))2 − u(m−1)u(m+1)]
+ [

(u
′′′

)2 − du
′′
u(4)] + c(x)(u′′)2/2 + a(x)u2/2

assumes its maximum value on ∂�, where u is a solution of

u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = 0 in �.
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Similarly, we can treat the problem
{

u(2m) + du(6) − c(x)u(4) + b(x)u′′ − a(x)u = f in �

u = g1, u′′ = g2, u′′′ = g3, . . . , u(m) = gm on ∂�,
(2.22)

where m ≥ 5 is odd.
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