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Abstract
The objective of this research is to predict the delays in the departure of scheduled commercial flights through a
methodology that uses predictive tools based on machine learning/deep learning (ML/DL), with supervised training
in regression, based on the available flight datasets. Since the novel contribution of this work is, first, to make the
comparison of the predictions in terms of means and statistical variance of the different ML/DL models implemented
and, second, to determine the coefficients of the importance of the features or flight attributes, using ML methods
known as permutation importance, it is possible to rank the importance of flight attributes by their influence in
determining the delay time and reduce the problem of selecting the most important flight attributes. From the results
obtained, it is worth mentioning that the model that presents the best performance is the ensemble or combinatorial
method of random forest regressor models, with an acceptable prediction range (measured with the root-mean-
square-error).

Nomenclature
ACI Airports Council International
ADAM Adaptive Moment Estimation
AIBT actual on-block time
ANN artificial neural network
AOBT actual off-block time
ATM Air Traffic Management
BGR bagging gradient
DL deep learning
DTR decision trees
ETR extra trees
FAA Federal Aviation Administration
FSC full-service carrier
HBR Huber Regressor
IATA International Air Transport Association
ICAO International Civil Aviation Organization
KNN k-nearest neighbors
LCC low-cost carrier
LIR simple linear regression
LSTM long short-term memory
ML machine learning
MLP multi-layer perceptron
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NN neural network
RFR Random Forest
ReLU rectified linear unit
RMSE root-mean-square-error
RMSProp root mean square propagation
SGD stochastic gradient descent
SVM support vector machine
XGR extreme gradient boosting

1.0 Introduction
Demand for air transport worldwide has grown vertiginously in the last three decades [1, 2]. Airlines
require more capacity and more availability from airports (in infrastructure) to operate routes and
frequencies designed to respond to this demand. The global airport industry has also reacted by per-
manently expanding its infrastructure and even building new airports with a vast volume of public and
private investment [3]. However, the demand and the response have not grown equally fast: the capacity
offered or installed in many airports in the world cannot fully satisfy the needs of airlines. This situation
has resulted, first, in airport congestion and, consequently, in the generation of delays [4–6]. For this
reason, many studies, both technical and academic, state that delay is a concept that is closely linked to
the capacity of airports [7–9].

The volume of delays has been increasing in the last two decades, not only in its magnitude but also
in its negative economic impact, mainly in terms of costs [10–14]. In the aviation system of the United
States in 2019, 18.87% of all flights in the system had a delay [15]; in Europe, in 2019, 46.4% of all
takeoffs departed late (whatever the reason for the delay), and the average (time) of these delays (of all
late departed flights, concerning time scheduled departure) was 28.4 minutes [16]; in Colombia, the
country used as a case for this research, in 2019, 28.60% and 22.54% of domestic and international
flights, respectively, departed with delay [17]. Regarding the economic impact of delays, according to
Federal Aviation Administration (FAA) estimates [18], the cost generated in the United States aviation
system in 2019 was USD 33 billion (including all items); in Europe, the total cost of delays for 2012
was estimated at EUR 11.2 billion (in all respects) [19]; in Colombia, the cost of delays, only for airlines
(and only for passenger compensation), in 2019 was USD 6.5 million [17].

The objective of the present research is to predict the delays in the departures of scheduled commer-
cial flights, using the data of the complete airport network of Colombia (country-case study: 58 airports)
observing the data of 357,595 flight departures for the entire year 2018 (study period), including both
domestic and international departures. For this, and as a methodology, predictive tools based on machine
learning/deep learning (ML/DL) were used, with supervised training (that is, the delays of the dataset
flights used in training and testing are known) in prediction in regression (which will result in an actual
expected delay time for a flight departure). The novel contribution of this work is, on the one hand, that
it compares the predictions in terms of mean and statistical variance according to the different ML/DL
models implemented (ten in total), so that the optimum model can be chosen from among them and, on
the other hand, that it determines the coefficients of importance of the flight attributes, using ML meth-
ods known as permutation importance [20, 21], which allows ranking the importance of flight attributes
by their influence on the delay time and filtering out the less-important attributes of the flight. Finally,
all ML/DL models are retrained to analyse their new features by using the reduced dataset with the most
important attributes selected by the models to simplify dataset gathering and ML/DL model training.

2.0 Literature review
The two most frequent perspectives in which the delay of commercial flights (mainly scheduled flights)
is studied are its prediction and its propagation. Rich literature can be found on this second topic [22–38].
Other lines of research review the relationship of delays with (a) flight efficiency and other economic
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(for example, costs) and logistical aspects of delays [12, 14, 35, 39–46]; (b) aircraft ground operations
[47]; (c) airport capacity [48–50]; (d) aspects related to clients [51, 52]; and finally, (e) its generation,
characterisation, behaviour and structure [10, 41, 53–68].

On the order hand, prediction of scheduled flight delays has been analysed from different method-
ologies that can be grouped into at least six preponderant groups [54, 57, 69–71]: (1) statistical analysis
(regression models, correlation analysis, econometric models, Monte-Carlo, parametric tests, non-
parametric tests and multivariate analysis [MVA]); (2) probabilistic models (which encompass or include
analysis tools that estimate the probability of an event based on historical data); (3) network analy-
sis (mainly graph theory, although studies related to Bayesian network analysis are also included in
this category); (4) operations research (comprising advanced analytical methods such as optimisation,
simulations and queuing theory); (5) machine learning (ML) with regression prediction (in which the
most used methods include: k-nearest neighbor, recurrent NN, cascade NN, deep learning [CNN and
LSTM], SVM, fuzzy logic, and Random Forests); and finally (6) machine mearning in prediction in
binary classification (delayed/not delayed) and multiclass (different levels of delay), in which two com-
monly used classification methods include decision trees and Naive Bayes. Most ensemble models, such
as the Random Forest, fall into the latter category.

3.0 Application case
The data for the development of the present research are obtained from the country-case of application
(or study) Colombia, currently the third largest air market in the Latin American subcontinent, and fifth
in the Americas, by volume of traffic handled [108, 109].

In Colombia, the air transport industry was liberalised in the early 1990s. This liberalisation brought
structural reforms in both the airport and airline sectors, through an uninterrupted battery of public poli-
cies (still in force today), which include not only normative and regulatory aspects, but also aggressive
public and private investment programs in infrastructure and technology [110]. Regarding the manage-
ment of airport infrastructure, Colombia has followed the regional trend of granting the administration
of said infrastructures to the private sector. Since the mid-1990s, and in various temporary phases called
generations, the Colombian government has granted concessions to 19 airports, which manage the bulk
of air traffic in the entire network, including the largest and most important in the country [111]. As a
result of public policies – both privatisation and public and private investment in airport infrastructure
– and deregulation policies of the commercial aviation sector – airfares have been fully liberalised since
2012 [112] – since the beginning of the liberalisation of the industry in 1991 and until 2019, the total
number of passengers transported grew almost 800% [17].

On the other hand, the entry into the market in Colombia of aero-private operators with a full-service
business model (full-service carrier [FSC]), occurred very soon after the liberalisation of the sector
(mid-1990s). But the entry into the market of low-cost airlines (low-cost carrier [LCC]) was many years
after liberalisation (2012). In another order, it can be affirmed that air transport in Colombia has prac-
tically no competition (at the domestic level) with other means of transport, especially for medium and
long distances, due to two determining situations: first, the complex geography of the country (crossed
from southwest to northeast by three mountain ranges of the Andes mountain range), and, second, to
the deficiency (in infrastructure, coverage, capacity and technology) of the terrestrial (road) and rail
communication systems [113]. Figure 1 shows the geographical location of the most important airports
(by volume of managed traffic) of the Colombian airport network (and participants in this research).
Figure 2 shows the development of passenger air traffic in the last four decades.

The resounding drop in air traffic verified in 2020 (see Fig. 2) is due exclusively to the complete
suspension of commercial passenger air traffic (throughout the country’s airport network) between mid-
March and early August 2020, due to the health emergency generated by the COVID-19 pandemic. The
reopening and reactivation of the commercial aviation sector was very slow, in stages and by airports,
and developed throughout the last four months of 2020.

Finally, and exclusively for the present study, the Colombian Airport Authority uses the Standard
IATA Delay Codes-AHM 730 [72] to encode and record the causes of all the delays that occur in the
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Figure 1. Geographical location of the most important airports (by volume of managed traffic) of
the Colombian airport network (and participants in this research). Description: blue circle, privately
governed airports; red triangle, airports with public governance. BOG is the IATA code for the country’s
main airport, Bogotá-El Dorado, located in the capital city of Colombia. Source: Ref. [17].

departures of all scheduled flights in the entire national network of airports open to commercial traffic
every day of the year. In Colombia, the standard accepted by the national Airport Authority to mea-
sure the punctuality of the departure (or arrival) is up to 15 minutes 59 seconds (positive or negative)
compared to the scheduled time. The exact moment to measure the real time of departure is when towing
and push-back of the aircraft is initiated from its parking position on the apron.
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Figure 2. Development of passenger air traffic in Colombia (complete airport network), period
1979–2022. Source: Ref. [17].

4.0 Operational fundamentals of flight delays
What exactly is meant by delay, and how is it measured? Before providing an answer to this question, it
is worth noting that the air transport system has several actors or stakeholders. The three most important
(from an operational point of view) are: airports, airlines and the air traffic management system (ATM).
Each one of these actors has its own policies and operational strategies [114, 115]. For this reason,
the problem of delay cannot be attributed solely to airport operation (or management of its capacity).
Furthermore, the problem of delay cannot be attributed only to the operation of these three actors, since
there are other external factors that influence the appearance or aggravation of delays, one of which (the
most important) is adverse weather [62, 116, 117].

On the other hand, each country in the world has its own regulatory policy (to control and monitor
activity) of its civil aviation system, as well as management policies for its air transport infrastructure. All
of this makes it difficult, if not impossible, to count on a universal standard that defines and regulates
the concept of delay equally throughout the world [118]. Likewise, and out of necessity, each actor
in the air transport system (in each country) manages the problem of delays according to their own
operational strategies. This has led to the adoption of a globally coordinated approach on how to manage
delay, following certain examples or initiatives. This way, delay can be scalable between airports, both
locally/nationally and internationally. In addition, national regulators of commercial aviation (or control
and monitoring bodies) increasingly monitor the quality of air service. It is at this point that the concept
of punctuality is introduced and serves as a performance indicator [69].

Adopting recommendations or suggestions from national or supranational industry reference organ-
isations, airport authorities (or similar bodies) in many countries have implemented the criterion that
a commercial (scheduled) flight is punctual if it starts (or ends) in a range of 15 minutes (positive or
negative) compared to the programmed time. If not, that flight is considered to depart or arrive late
[16, 119, 120]. Some countries may apply this standard slightly differently in terms of the exact inter-
pretation of ‘15 minutes’. That is, in some cases punctuality is accepted up to 15 minutes 59 seconds
and in others, punctuality is limited to 14 minutes and 59 seconds. Early departures (sometimes called
‘negative delays’) cannot be considered a delay but depending on the timing of such anticipation they
can cause certain problems in airport operations. Unexpected departures can disrupt the departure flight
sequence and early arrivals can influence apron parking allocation [61].

Finally, and to complete the answer to the initial question, it remains to be determined from which
event or operation the time that leads to a flight being considered punctual or delayed is counted. Again,
globally, there are several criteria for when counting starts. Each national regulatory body and even
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each specific airport authority defines its policy in this regard. A widely used first standard is that, for
departures, the scheduled (reference) time is compared with the exact (and real) time of towing or push-
back. That is, at which point the tractor or trailer starts the withdrawal of the aircraft from its parking
position on the apron. Another standard is the comparison of the scheduled time with the actual off-
block time (AOBT). On the other hand, the arrival delay is usually calculated as the difference between
the scheduled arrival time and the actual on-block time (AIBT, literally in-block) at the parking space
on apron [121–123].

As mentioned, delays can have different origins, so it is very important for airport planners and
managers, as well as for national regulators of the air transport service, to know the reasons for the
delays. This knowledge helps, on the one hand, airport managers to generate operational strategies for
their mitigation and/or minimisation and, on the other, regulators or control agents of the air transport
service to identify those responsible for the delays and the actors harmed and, where appropriate, apply
suitable penalties or mandatory financial compensation (or similar) to the affected actors. For this, it
has been common for many countries to adopt (or adapt) the IATA Delay Codes-AHM 730 Standard
[72], in which all the possible reasons that generate a delay are specified and codified. All the possible
causes related to a delay are coded there, associated (by groups) with the operations of the airline, the
airport, and air traffic flow management (ATFM), as well as the meteorological and other diverse causes
(security, immigration, customs, government guidelines, etc.) [72].

5.0 Data and methodology
5.1 Data
For this research, a database with departures of scheduled commercial flights, domestic and interna-
tional, of the entire Colombian airport network (58 airports) for the whole year 2018 was used (of the
data provided by the Colombian aeronautical authority, only delays in flight departures are available).
Such database includes statistical information related to 357,595 flights, with a total of 5,721,520 data
entries (each flight data contains 16 associated flight attributes). Each flight attribute is associated with
the following relevant information: (a) type of traffic (domestic or international); (b) airline; (c) origin
airport (always national); (d) destination airport (national or international); (e) flight number (linked to
the airline, route and frequency of said flight); (f) scheduled departure date; (g) scheduled departure time;
(h) towing date (push-back); (i) towing time (push-back); (j) delay expressed in fraction of an hour;
(k) delay expressed in minutes; (l) flight situation; (m) departure status (according to the standard of
the country’s airport authority); (n) delay code (according to the Standard IATA Delay Codes-AHM
730 [72]), in which each code (89 possible) is associated with the reason that generates or causes said
delay; (o) reason for the delay; (p) observations associated with the flight and/or its delay (by the airport
authority).

Machine learning models require all input and output variables to be numeric. Encoding is a required
pre-processing step when working with categorical data, as it is the case of our different flight’s
attributes. Then, all the flight attributes or inputs must be converted into number via ordinal encoders
functions. In addition, data scaling is a recommended pre-processing step when working with many
machine learning algorithms, as it is this case with the ten models’ analysis. Unscaled target variables
on regression problems can result in exploding gradients causing the learning process to fail. Also, data
scaling is a recommended pre-processing step when working with deep learning neural networks as it is
the case of MLP model. Therefore, the target flight attribute data called here time (flight) delay (DEM)
must be standardised, that involve rescaling the distribution of data values (of DEM), then the mean of
observed values is 0 and the standard deviation is 1. It is sometimes referred to as ‘whitening’. This can
be thought of as subtracting the mean value or centreing the data. Like normalisation, standardisation
can be useful, and even required in some machine learning algorithms when the input data has values
with differing scales. Standardisation assumes the data fit a Gaussian distribution with a well-behaved
mean and standard deviation, as it is in this case. But even this standardised Gaussian pre-processing it
is recommended to be applied, if this expectation is not met, to get more reliable results.
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5.2 Typology of implemented models
ML/DL models mathematically represent some types of universal approximators [73] of the function
f , such that it fulfills: Y = f (X). So, in the present work ten ML/DL models are proposed and used
to map the Y output (delay time) with a finite and arbitrary (available attributes) set of X inputs (flight
attributes, which can be up to ten in its most extensive version of the dataset), although of these ten
models dare defined in Table 1, only a single DL-type model is developed and used, the so-called multi-
layer perceptron (MLP) [74].

The MLP model, whose architecture is shown in Fig. 1, has been generated using the keras/tensorflow
libraries, which consist of two dense layers (connections of all neurons in the previous layer with all
neurons in the posterior layer) of 9 neurons in the first layer and 36 neurons in the second, using the
activation function ReLU (rectified linear unit) [75–78], so that neurons can learn the non-linear rela-
tionships between the output and the input (of each neuron). The ReLU function is defined as: y = max
(0, x), in which y represents the neuron output and x the neuron input. The ReLU function has several
advantages: its computation is easy and, therefore, training times are short; it also converges quickly and
does not present saturations (a problem that does occur when other activation functions such as sigmoid
and hyperbolic tangent are used by having a linear output); then ReLU neurons activation do not present
the vanishing gradient problem (which prevent changing or updating the model weights because the
derivatives of weights sensitivity are nearly zero); they are sparsely activated (sparsity feature), which
simplifies the existing connectivity or couplings between all neurons; and, finally, allows the ML/DL
model to learn the non-linear relationships between the input x and the output y.

The rest of the models developed in this work, and referred in the Table 1, are the following: the
support vector machine (SVR) model, a very robust model in both linear and non-linear predictions
because the dimensional space of the features has been increased [79]; the Random Forest (RFR) model,
which is an ensemble-type method that improves the results of any of its simplest constituent algorithms
by combinations of these [21, 80]; the simple linear regression (LIR) model [81]; the bagging gradient
(BGR) model, which improves predictions by producing multigroup by combinations and repetitions
[82–84]; the extreme gradient boosting (XGR) model, which from weaker models generates stronger
models using the descending gradient as an optimising method [85, 86]; the Huber Regressor (HBR)
model, which is also very robust in training the data with outliers (or atypical values) by penalising
them through ad hoc cost functions [87, 88]; the extra trees (ETR) model, which implements many
more decision trees to better fit learning than simple decision tree (DTR) methods [89, 90]; the DTR
model, which is the simple model of decision trees, which is reused due to its self-explanatory capacity
of the patterns learned by the ML [91]; the k-nearest neighbors (KNN) model, which predicts closest
neighbours based on its K parameter [92]. The ‘R’ at the end of model names indicates that the model
has been implemented for regression analysis. Table 1 lists, at the summary level, the models used.

5.3 Training ML/DL models
Training the models is part of the core ML process. In this work, each of the ten ML/DL models has been
trained separately with the dataset under four possible scenarios: the first scenario with the ten full flight
attributes (9 inputs+ 1 output), the second scenario reducing scenario one to only six flight attributes (5
inputs+ 1 output), the third scenario considering only flight attributes that could be known in advance
(5 inputs+ 1 output), and finally the fourth scenario reducing the third one to only four flight attributes
(3 inputs+ 1 output) (see Fig. 3). The reduced scenarios are aimed at evaluating whether the initial flight
attributes of the dataset can be reduced. Another aspect to highlight from this paper is having carried out
the statistical model training by implementing the k-fold and cross-validation techniques, to ensure that
there are no biases in the training due to having chosen special subsets from the dataset for training/test,
resulting in a more robust evaluation of the performance of ML/DL models.

The training has been implemented by dividing the dataset into batches of 128 samples each, subse-
quently, the ML/DL model processes the data forward (from the inputs to the output layer), to predict or
estimate the model output values. At this point, with the error obtained by measuring the predicted value
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Table 1. Models used in this research

Model Acronym Main characteristic
Multi-layer

perceptron
MLP Supervised machine learning model consisting of fully connected

neurons of feedforward artificial neural network (ANN) for
regression analysis of deep learning model type.

Support vector
machine

SVR Supervised machine learning model based on constructing a set of
hyperplanes in a high dimensional space searching to
maximise different data distance for regression analysis.

Random Forest RFR Supervised machine learning model as an ensemble learning
method that operates by constructing a multitude of decision
trees as conditional for regression analysis.

Simple linear
regression

LIR Supervised machine learning model approaching linearly the
relationship between a scalar response and several explanatory
variables (also known as independent variables) for regression
analysis.

Bagging gradient BGR Supervised machine learning model for regression by bootstrap
aggregation, also known as bagging, is an ensemble method
works by training multiple models independently and
combining later (using some deterministic averaging method)
resulting in a strong model. This final model is more robust
than those individual weak learners’ components.

Extreme gradient
boosting

XGR Supervised machine learning model for regression is an ensemble
constructed from weak decision trees model. Trees are added
one at a time to the ensemble and fit to correct the prediction
errors made by prior models. It is scalable.

Huber Regressor HBR Supervised machine learning model for a robust regression using
the Huber loss function that is less sensitive to outliers in data,
via penalising the outlier data training and learning.

Extra trees ETR Supervised machine learning model for regression consisting of
extremely randomised trees, or extra trees for short, is an
ensemble method that combines the predictions from many
unpruned decision trees. Predictions are made by averaging the
prediction of the decision trees.

Decision trees DTR Supervised machine learning model for regression, based on
decision support hierarchical models that uses a tree-like
model of decision and their possible consequences, including
chance event outcomes, resource costs and utility. It is one way
to display an algorithm that only contains conditional control
statements.

K-nearest
neighbours

KNN Supervised machine learning model for regression is a
non-parametric method (not making any assumption on
underlying data) and one of the simplest algorithms. The target
or output is predicted by local interpolation of the targets
associated of the KNN in the training set.

versus the target value, the training method goes backward (from the output layer to the input layer) to
update the model weights (or connections between neurons) of all neurons of all layers of the model,
through the backpropagation method [93–95]. This method of backward propagation of the error starts
obtaining the total error through the appropriate defined cost function. Here, the root-,eam-square-error
(RMSE) applied metric results from comparing the values (of the batch) estimated by the model, with
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Figure 3. Layers and neurons type architecture of the developed MLP model. Source: authors.

the real or target values collected from the known supervised features of the dataset. This core process
of ML can be explained as the process distribution of the total error between the different contributions
made by all the weights or nodes of the model, which is conducted in turn by the stochastic gradient
descent (SGD) method [96, 97]. The SGD method calculates the partial derivatives of the error versus
each of the weights, which is a way of measuring the model sensitivity of the error compared to each of
the weights of the artificial neural network. The adjective ‘stochastic’ of the SGD method comes from
the fact that the gradient is calculated by randomly chosen batches and not for the entire dataset.

The equations corresponding to MLP [74, 98] are those associated with neuron layers, in which a
first layer corresponds to the input (represented by the X tensor), and the last output layer (associated
with the Y tensor). Between them, the hidden layers to be implemented are inserted. Each layer contains
a variable number of neurons (or nodes) that can be activated with the activation functions, which can
be of various types [99]. The input and output a neuron are shown schematically in Fig. 4.

In Fig. 4, xi represents the inputs of feature i of the input layer, wij represents the weight of feature i of
the previous layer in connection with neuron j of the posterior layer, Σ represents the transfer function
(sum of all the inputs coming from the outputs of all the neurons of the previous layer with neuron j
corrected with the bj bias of layer j, which produces the net output (transfer function + bias) Netj . The
chosen activation function σ is then applied to each neuron (for example, tanh or sigmoid, although
ReLU has been chosen here), which in turn produces the output Oj . From here, the connections of the
output of this neuron are established again, together with all the neurons of its layer, with the neurons of
the next layer, until reaching the last output layer Yj (which can be several neurons of output, although
in the case of regression prediction it is constituted by a single neuron). This inflow-outflow is called
‘forward flow’ or ‘propagation’ (from the input layer through all the neurons in the intermediate layers,
to the final output layer). θ j is the threshold value of neuron j, to activate its output function (if it exists).

In this work, the RMSE has been used as the cost function. Equation (1) defines this error with the
norm 2 || ||, in which E is the error, and n is the number of samples in the dataset, y (x) is the actual
output (provided by the dataset under supervised learning method) and ŷ(x) is the output estimated by
the model.

E=
√

1

n

∑
x

‖(y (x)− ŷ (x)
)‖2 (1)

In ML, once the cost function is obtained, the fundamental process for the automatic adjustment of
the weights of the model is implemented via BP [93]. Such method calculates the gradient of said total
error (in this case the RMSE) compared to each of the weights or connections of the neurons of each
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Figure 4. Neuron connections of MLP networks. Source: Ref. [100].

layer of the model, for which the rule of chain derivation applies, to propagate said error backward or
to distribute the error between all the model weights, neuron by neuron, layer by layer. If the method
converges, the new adjustment of weights of the model is sought to produce a smaller error when it
is iterated with the next batch of input samples X. This is the essence of ML, minimising some loss
function (cost or error), adjusting the contributions of the weights of the model neurons connections
per each dataset batch and repeating the BP process adjustment to all dataset iterations implemented.
Learning that is sufficiently guaranteed when using the SGD method by the theorems of the existence
of the null derivation at the points of minimum error. The following group of Equations (2) shows the
derivation chain rule in artificial neuron networks (ANN) [101, 102].

∂E

∂wij

= ∂E

∂oj

∂oj

∂wij

= ∂E

∂oj

∂oj

∂netj

∂netj

∂wij

(2a)

∂netj

∂wij

= ∂

∂wij

(
n∑

k=1

wkjok

)
= ∂

∂wij

wijoi = oi (2b)

The problems of searching the cost function minimums are solved through different optimisers, gener-
ically known as the SGD [99]. These optimisers are responsible for avoiding the solution from getting
trapped in any of the local minimums that the cost function presents when it is not a convex function, for
which each of them has implemented different strategies to find the global optimum. In the present work,
the adaptive moment estimation (ADAM) optimiser has been used because it is one of the most efficient
optimisers in terms of its high convergence speed and robust stability [100], which is an improved ver-
sion of the RMSProp that implements a variable/adaptive speed (or learning step) and a moment or
inertia that tries to avoid getting caught in the local minima of the cost function. The following group
of Equations (3) describes the update of the weights by the ADAM optimiser [100].

mw
(t+1)← β1mw + (1+ β1) ∇w l(t) (3a)

vw
(t+1)← β2vw

(t) + (1− β2) (∇w l(t))2 (3b)
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Table 2. List of flight attributes, and their participation in the different scenarios of the model

Flight Scenario in which
attribute Description the attribute participates
TRF Type of traffic (domestic/international) 1, 3
AEL Airline 1, 2, 3, 4
ORI Origin airport name (departure) 1, 2, 3, 4
DES Destination airport (name) 1, 3
NVU Flight number 1, 2, 3, 4
FPS Scheduled departure date does not participate
HPS Scheduled departure time does not participate
FRM Push-back date does not participate
HRM Push-back time does not participate
DEA Time delay (according to Standard IATA Delay

Codes-AHM 730)
does not participate

DEM Actual time delay (in minute) 1, 2, 3, 4
EVU Flight status (can be on time or delayed) does not participate
CDE Delay code (according to Standard IATA Delay

Codes-AHM 730)
1, 2

MDE Reason for delay (according to Standard IATA Delay
Codes-AHM 730)

1

OBS Observations (from the airport authority) 1
EAC Flight status (can be on time, delayed, early or canceled) 1, 2

m̂w = mw
(t+1)

1+ β1
(t+1)

(3c)

v̂w = vw
(t+1)

1+ β2
(t+1)

(3d)

w(t+1)←wt − η
m̂w√

v̂w + ε
(3e)

In the Equations (3), w(t+1) represents the weights in iteration t+ 1; η represents learning speed or
learning step;∇w l(t) represents the gradient of the cost function l with respect to the weights; ε is a
minimum value to avoid dividing by 0 (in keras 10-7 is used); β1 y β2 are the forgetting factors for the
gradient or first moment and the second moment respectively; mw

(t+1) is the moving mean of the weights
or first moments in the iteration t+ 1; vw

(t+1) is the moving variance (or second moment) of the weights
in the iteration t+ 1. The variables with hat indicate that they are estimators and the superscripts with
the variable t correspond to each of the iterations (or learning cycles). This is the process of fitting the
MLP/DL model. On the other hand, in models based on decision trees, the adjustment is made mainly
by induction and pruning methods of the decision trees [101, 102].

The dataset learning process is repeated in this work 150 times (iterations) for the entire dataset and
only for the MLP/DL model (considered sufficient to achieve an asymptotic or stable RMSE value),
which marks the maximum fine adjustment possible of the model in the learning of the dataset, or
until a sufficient adjustment of the error is obtained for the rest of the non-DL models, characterised by
belonging to the ensemble or boosting or stacking type, in which they improve the simplest models of
decision trees by their appropriate combinations [82].

To give more robustness to the value of the metrics obtained from the RMSE, k-folds techniques have
been implemented [103, 104]. Specifically, three groups have been applied to divide the dataset between
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Figure 5. RMSE comparison resulting from the learning obtained for each of the ten models, trans-
forming the delay time into a standard distribution (0 mean and 1 for standard deviation), referred to
scenario 1 resulting from choosing ten flight attributes, nine inputs (TRF, AEL, ORI, DES, NVU, CDE,
MDE, OBS, EAC) and one output (DEM). Source: authors.

three different ways of grouping the training and test data subsets. The training data, as its name implies,
is used to train the model and the test data to evaluate the learning performance of the model. However,
the model can never see the test data during the learning process to make an objective evaluation. In
addition, with cross-validation techniques this training is repeated a variable number of times. Because
target delay flight attribute was standardised as necessary step of data pre-processing, the loss or cost
function RMSE of each ML/DL model it is also characterised statistically, in terms of a mean and a
standard deviation, resulting all of this in a more robust way performance measured compared to the
case when a single configuration of training and test subset is used. It should be emphasised that all
these methods are stochastic, due both to the use of the SGD method, and to the own stochastic nature
of the dataset, so their results are not deterministic, but rather are probabilistic.

5.4 Statistical examination
Before training, different examinations or statistical controls were applied to have a feature insight.
For this purpose, different tests has been implemented to determine if flight attribute distributions
are Gaussians (or normal) (Shapiro-Wilk, D’Agostino and Anderson-Darling tests), or whether flight
attributes are not correlated with the output (linear Pearson, Spearman Rank, Kendall Rank, and
chi-squared tests), or whether the flight attributes are not stationary (ADFuller test), or whether
flight attributes have equal distribution as the output (student’s test, paired student, ANOVA, Mann-
Whitney U, Kruskal-Wallis H, and Friedman tests). These tests, of statistical characterisation of flight
attributes, serve to know amongst other things, whether their learning process will be easy or which
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Figure 6. Comparative analysis of the ten models’ performance (RMSE), in its original scale of minutes
of delay, referred to as scenario 1, choosing ten flight attributes, nine inputs (TRF, AEL, ORI, DES, NVU,
CDE, MDE, OBS, EAC) and one output (DEM). Source: authors.

data transformation must be required to facilitate it. These techniques are an enhancement of dataset
preprocessing to facilitate ML training.

5.5 Determination of the importance of the flight attributes
To rank the importance of flight attributes in determining flight delay time, the permutation importance
(PI) method [20, 21] has been implemented. This method consists of applying inspection techniques
to trainable estimators; each model proposed and configured for this work offers a different response
regarding the selection of the most significant attributes of the flights. The PI method consists of ran-
domly permuting the features among themselves and measuring in each case how the output (delay
time) varies through the training of the new dataset (permuted or sometimes called corrupted in the
scientific literature) with each ML/DL model, which allows establishing the coefficient of importance
or the sensitivity of the output (time delay) to each feature j called cj (see Equation (4)).

cj = s− 1

K

K∑
k=1

sk,j (4)

In Equation (4) s is the result of training the ML model when it is trained with the D dataset without
permuting. Next, each feature j associated with a column of dataset D is randomly permuted with the
other features to produce a permuted version of the dataset D̃(j, k), in which the subscript k represents
the repetitions used to manage the features, K is the maximum number of permutations, and sk, j is the
new result of training the ML model for each feature j repeated k times with the permuted (or corrupted)
dataset D̃(j, k).
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Figure 7. Relative importance coefficients in increasing order, of the nine full flight attributes consid-
ered as inputs of scenario 1, when determining the flight delay time (DEM) as output. Source: authors.

6.0 Results
Before training the ten ML/DL models implemented, the outliers (or atypical data values) are removed
from the dataset. If they are retained, the models are forced to learn marginal patterns of said flight
attributes, which is detrimental to a good generalisation in the prediction of the flight delay time. In
this work, four methods have been used to identify and remove outliers, two of which are properly
unsupervised ML methods, such as the local outlier factor (LOF) and one class SVM (OCS) methods,
which cluster normal data and mark as outliers those that are outside these perimeters of normal values.
The third method is Isolation Forest (IF), which applies binary decision tree theory that does not require
pre-grouping within standard profiles, making it faster and more efficient in detecting outliers. The
fourth method, the elliptic envelope (EE) [105], calculates the outliers by the method of the minimum
covariance determinant, which must meet the applicability condition that the number of samples (flights)
must be higher than the square of flight attributes, which is true in this case.

Subsequently, the learning of the ten ML/DL models has been evaluated for four flight attributes
selection scenarios, to show the prediction sensitivity of the models depending on which flight attributes
are chosen. Table 2 shows the list of flight attributes and indicates in which model scenario each flight
attribute participates.

The models’ comparative results of the RMSE performances are shown for full scenario 1. This
full scenario 1 removes 6 of the 16 initial flight attributes (because some of the them are redundant),
resulting in the ten full following flight attributes: TRF, AEL, ORI, DES, NVU, CDE, MDE, OBS, EAC
and DEM, in which the first 9 are inputs and the last one is the output to be predicted (DEM is the delay
time measured in minutes) (Fig. 5).

Figure 5 shows the performances, measured with the RMSE metric, are very similar for all models
and their value is below 0.5, except for the behaviour of two more dispersed models (MLR and SVR).

https://doi.org/10.1017/aer.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.41


The Aeronautical Journal 125

Figure 8. Comparative results of the RMSE obtained by the 10 ML/DL models when trained under
reduced scenario 2, with only five flight attributes. It can be seen how the model learning performance
(in terms of RMSE) is roughly identical to full scenario 1. Source: authors.

The RFR model is the one with the highest performance with an RMSE of 0.449 and a standard deviation
value of 0.0013, which evidence that the model is robust.

It is already explained on subsection 5.1 (Data), that the DEM flight attribute has been standardised to
facilitate the learning of the ML/DL models. For this reason, Fig. 6 shows the results of the ML models
performance (measured with the RMSE metric), but in its original scale of delay times in minutes (which
is done by reversing the standardisation process applied to the DEM), and evidence that the prediction
errors (on their natural minute scale) are less than 16 minutes (for the best RFR model). That is, when
introducing the nine flight attributes, a delay time is predicted that has an error of fewer than 16 minutes,
which is a remarkable result for the features considered.

Next, reduced scenario 2 is generated, after applying PI method whereby each of the ten ML/DL
models auto-selects the five best flight attributes that better determine the delay time, from among the
nine full flight attributes inputs of the scenario (the tenth flight attribute is the output). That is, each
model ranks the flight attributes inputs by their importance in determining the delay time, assigning
them a (relative) importance coefficient.

Figure 7 shows the ranking of importance assigned by the RFR model to the nine input features, in
which the last five are the most important (ORI, AEL, NVU, CDE, EAC) in increasing order.

To evaluate the quality selection of the five most important or significant flight attributes (EAC,
CDE, NVU, AEL, ORI), now arranged in descending order, the models are retrained with this new
reduced scenario 2, considering as output the flight attribute DEM, to compare the learning models
performance between the two scenarios. The results of the RMSE obtained in this reduced scenario 2
are shown in Fig. 8, where it can be seen they roughly get the same results when using the nine input
flight attributes of full scenario 1. In fact, even the RMSE improves slightly for reduced scenario 2, which
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Figure 9. RMSE comparative analysis of the 10 models under a more realistic dataset scenario 3 (five
inputs: TRF, AEL, ORI, DES, NVU and one output: predicting delay (DEM)), in which the best RFR
model obtains an RMSE in predicting flight delay of 33.8 minutes. Source: authors.

Figure 10. Rank of the importance of the five input flight attributes considered in scenario 3 (TRF,
DES, ORI, NVU, AEL) in increasing order. Source: authors.

https://doi.org/10.1017/aer.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.41


The Aeronautical Journal 127

Figure 11. RMSE comparison of models for reduced scenario 4, with three inputs (ORI, NVU, AEL)
and DEM as time delay to be predicted, in which the best RFR model obtains the same RMSE of the
prediction of flight delay of 33.8 minutes than on scenario 3. Source: authors.

shows that the learning patterns are better grasped by the models when they are trained on this reduced
scenario 2 (using only the five more significant flight attributes) than when they are trained using the full
scenario 1.

Since both scenarios full 1 and reduced 2 involve a series of flight attributes that are measured a
posteriori and, therefore, are not known in advance, such as the EAC (flight status according to airport
authority standard), CDE (delay code according to Standard IATA Delay Codes-AHM 730), MDE (rea-
son for delay according to Standard IATA Delay Codes-AHM 730) and OBS (observation of flight from
the airport authority), in this paper, the four aforementioned flight attributes from the dataset have been
removed to make the predictions of flight delay departures more realistic (according to real data known
before the flight departure). Particularly, a new realistic scenario 3 is now defined with only six total
flight attributes, five of which are inputs (TRF, AEL, ORI, DES, NVU) and one output (DEM).

After models have been conveniently trained, an RMSE of 33.8 minutes is obtained by the best RFR
model (approximately double that when the four eliminated flight attributes were retained), results are
shown in Fig. 9.

The reason for this loss of precision when eliminating these four keys flight attributes (EAC, CDE,
MDE, OBS) is that other variables that are not registered in the dataset may influence the level of delay,
such as the type of aircraft (mainly its size), the level of congestion at the airport, weather conditions,
ATM conditions, etc. When PI method is applied to scenario 3 of six flight attributes (5 inputs +1
output) to get the importance coefficients of the flight attributes in determining the flight delay time, the
significance ranking is shown in Fig. 10 (flight attributes selected by the best RFR model).

Reduced scenario 4 (similar process to get the reduce scenario 2) is generated by applying reduction
to scenario 3, to keep only the best three flight attributes that auto select the best (RFR) models when
applying the PI method.
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Figure 12. Time distribution of the flight departure delay. Source: authors.

Figure 13. Unimodal distribution (density) function of a flight delay (at departure). Source: authors.
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Figure 11 shows the comparison of the RMSE for the 10 ML/DL models of scenario 4 consisting
of four flight attributes (three inputs: ORI, NVU, AEL, and one output: DEM). The results show that,
despite the reduction of features (to only the three most important), the same results are obtained as
in scenario 3 when five inputs (flight attributes) are used. This shows that the feature auto-reductions
conducted by the PI method have been carried out correctly and, most importantly, the dataset can
significantly be reduced or simplified, thereby saving model training time and dataset memory, without
any loss in the accuracy of the time delay predictability (DEM).

Figure 12 shows the distribution of the flight delay time (DEM) dataset flight attribute in terms
of minimum (-15 minutes) and maximum (240 minutes), with the quantiles 25% and 75% and mean
(15 minutes).

Finally, Fig. 13 shows that the continuous distribution function (designated as Density in the figure)
of the flight delay time is unimodal, corresponding to the 15 minutes mean of the distribution.

In summary, it can be stated that with the specific dataset flight attributes provided to the models
for training purposes, the predictions of the delay time made by the ML/DL models are acceptable.
Depending on the scenario considered, such models include error ranges between 16 and 33 minutes,
which implies acceptable range values that are similar or even better than those obtained in the related
research literature [70, 71, 106, 107].

7.0 Conclusions
As the periodic reports of the main international civil aviation organisations (IATA, ACI, ICAO, etc.)
show, the demand for air transport has evidenced continuous and relevant growth for almost three
decades. Airport authorities around the world are trying to respond to this demand by expanding air
infrastructure, building new airports, optimising the use of existing capacity, improving ATM proce-
dures, etc. Even so, many airports (mainly large and international ones) continue to present congestion
(often severe in certain periods of the day), a situation that inevitably leads to delays, which can be aggra-
vated by adverse weather. Therefore, the most accurate prediction methods have become indispensable,
as they contribute to formulating strategies (efficient use of capacity, better management of operations,
optimisation of ATM procedures, etc.) to mitigate the proliferation of delays and prevent their spread
into other airports in the network.

Therefore, the present research proposes a comparative analysis of the performance (measured in
RMSE) of flight time delay prediction (at the departure of a flight) of ten ML/DL models under dif-
ferent scenarios configured by the known flight attributes registered on the dataset for each flight. The
ML models are in their most advanced variants (combinatorial models), such as ensemble techniques in
their different methodologies such as voting, bagging algorithms (e.g., segmenting the dataset to obtain
the advantages of training each model with different subsets), stacking (using outputs from some mod-
els to train others) and boosting (specifically penalising unwanted errors). All these strategies serve to
compensate or balance the errors of each model, so that the ensemble ML models focus on generalising
better the learning process. The DL/MLP model has also been included in the comparison (although it
was not the winning model because it was not adjusted in its design parameters and hyperparameters).
The comparative RMSE results for the transformed time delay (using standardised output data) are of
the order of 0.45 and 0.96 (for the winning RFR model) depending on the flight attributes, or scenarios
considered in the training process, which translates into (acceptable) prediction range errors between
16 and 33 minutes in time delay flights departures.

On the other hand, in this work the PI method is implemented, which allows the input flight attribute
to be auto ranked by their importance in determining the time delay by each model. Said flight attribute
selection is re-evaluated on the corresponding reduced dataset scenarios, verifying that said auto reduc-
tions do not affect the precision (RMSE) of the time delay forecast and, in addition, allow reducing the
size of the dataset.

Finally, although for the study case implemented here there is an extensive database of flight depar-
tures for a whole year associated with the entire national airport network and with many flight attributes
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(linked to each flight), there are constraints that prevent better ML performance. That is, certain impor-
tant flight attributes are missing (e.g., weather conditions, aircraft size, airport congestion level, ATM
condition, runway system capacity, aircraft turnaround time, etc.), that if included in the dataset could
significantly improve the time delay ML prediction. Another possible line of research would be to com-
pare the behaviour of the prediction models developed here for the current case study (Colombian air
transport system and using the same flight attributes) with another case study (air transport system of
another country) with the same or similar characteristics.
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