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A SUBNORMAL OPERATOR AND ITS DUAL

ROBERT F. OLIN AND LIMING YANG

ABSTRACT. It is shown that the essential spectrum of a cyclic, self-dual, subnormal
operator is symmetric with respect to the real axis. The study of the structure of a cyclic,
irreducible, self-dual, subnormal operator is reduced to the operator S, with bpep = D.
Necessary and sufficient conditions for a cyclic subnormal operator S, with bpep = D
to be self-dual are obtained under the additional assumption that the measure on the unit
circle is log-integrable. Finally, an approach to a general cyclic, self-dual, subnormal
operator is discussed.

0. Introduction. Let A be a separable Hilbert space over the complex field C and
let L(7{) be the algebra of all linear bounded operators on % . The operator S in L(#)
is a subnormal operator if there is a Hilbert space X containing # and if there is a
normal operator N on X which leaves H invariant such that N restricted to # is S. Let
S be a pure subnormal operator on 4 (that is, S is a subnormal operator with no normal
direct summand). If N is the minimal normal extension of S, then the dual T of S is the
restriction of N* to the space X © . A subnormal operator S is self-dual if S is unitarily
equivalent to its dual 7 (this notion was introduced by J. Conway in [1]). The reader can
consult [2] and [3] for a thorough exposition of subnormal operators.

The relations between a subnormal operator and its dual have been examined by nu-
merous people (for example, see the papers [1], [6] and [10]). This work continues this
investigation. We give some necessary and sufficient conditions for a cyclic, irreducible,
subnormal operator to be self-dual. The main tools used in this paper are Thomson’s re-
centresults (see [9]) on analytic bounded point evaluations for the space P?(1) and our re-
cent results (see [8]) on the boundary behavior of functions in the algebra P2()NL>® ().

In Section 1, we explain the notation used already and present the notation, terminol-
ogy and well-known facts that are related to our work.

In Section 2, we obtain the following set inclusion relating the essential spectrum of
the minimal normal extension to the essential spectra of a subnormal operator and its
dual:

Te(N) C 0(S) U oe(T7).

It is shown that if a function f in P?(y) is zero u a.e. in neighborhood of a point on
the boundary, then f has to be the zero function. We are then able to prove the essential
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spectrum of a cyclic, self-dual, subnormal operator is symmetric with respect to the real
axis.

In Section 3, our analysis of the class of cyclic, irreducible, self-dual, subnormal op-
erators is reduced to one where the focal point is on those operators in this collection
whose set of bounded point evaluations is the open unit disc.

Section 4 gives some necessary and sufficient conditions for a cyclic subnormal oper-
ator, whose set of bounded point evaluations is the open unit disc, to be self-dual under
additional hypotheses that the scalar spectral measure restricted to the unit circle is log-
integrable.

Finally, in Section 5, we give an approach to the classification problem for an arbitrary
cyclic, self-dual, subnormal operator.

1. Preliminaries. For an operator T in L(#), the sets o(T) and o.(T) consist of the
spectrum and essential spectrum of 7', respectively. If S is a subnormal operator, then the
minimal normal extension N can be written in a matrix format as follows:

S X
0 T
where T is the dual of S. For a finite compactly supported measure ¢ on C, the Hilbert
space P2(u) denotes the closure of polynomials in L?(1) and the operator S|, is multipli-
cation by z on P?(y). Similarly, the minimal normal extension of S, is N,,, multiplication

by z on L*(u1), and the dual of S, will be denoted by T,. Let u* denote the measure
obtained from y as follows:

.

B (A) = p(A%)
where A is any Borel subset of C and A* = {z : 7 € A}. It is well-known that every cyclic
subnormal operator is unitarily equivalent to S, for a suitable choice of u. Recently,

J. Thomson [9] proved that every pure, cyclic, subnormal operator has a nontrivial set of
analytic bounded point evaluations. In fact, he obtained much more.

THOMSON’S THEOREM. If p is any compactly supported measure on C, then there
is a Borel partition {Ag, Ay, ...} of the support of p such that if p, = p|a,, then the
Jollowing statements are true.

@ P*(p) = L2 (o) ® Pr(u1) @ - -.

() If n > 1, then S,, is irreducible. Equivalently, P*(u,) contains no nontrivial

characteristic functions.
(¢) Ifn > 1 and G, = abpe(uy,), then G, is a simply connected region with spt(u,) C
G, and bpe(i,) = G,.

(d) If'S, is an irreducible operator and G is the set of analytic bounded point evalua-
tions for p, then the Banach algebras P?(u)NL*>(1) and H®(G) are algebraically
and isometrically isomorphic and weak-star homeomorphic.

Suppose S,, is an irreducible subnormal operator. Using Thomson’s Theorem, we let
~ be the isometric isomorphism from H*(G) onto P?(i) N L®(i), where G is the sim-
ply connected region comprised of all bounded point evaluations for P2(i). For f in
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P%(u) N L®(u), the operator Mj‘,‘ consists of multiplication by f on P?(y); that is,
Mig=fg, forge P(u).

Let ¢ be a Riemann map of G onto the unit disc D. From the properties of the iso-
morphism ~, the function ¢ is in P2(i) N L*(x) and

(2, K{)= (), forallAeG
where K is the kernel function for P2(i). For f € P(), let
fO) = (F.K5).

The pull back of  to the closed unit disc is denoted by v; that is, v = o $~!. Let w be
the harmonic measure for G with respect to a fixed point. Finally, we denote ¢ = ™!
The following theorem is found in [8].

THEOREM 1.1. Let p, v be as above. The following facts hold true:
(1) The measure p|sg is absolutely continuous with respect to the harmonic measure
w.

(2) 1 is one-to-one almost everywhere from a carrier of v|ap to a carrier of usg.
(3) The operator S,, is unitarily equivalent to M:’b on P(v).

For f € H®(G) and f € P*(u) N L>(), we will need nontangential limits of f on
a carrier of p restricted to 8G. Looking at the last theorem, we may assume that 1) is
a one-to-one map from a Borel set E C 8D to a Borel set F C 0G with v(E°) = 0
and pu(F°) = 0. Observing f o ¢ is in H*°(D), we can choose a Borel set E; C E with
m(E1) = 0 and for every point & in E \ E;, we have the radial limit of f o 1

lim f 0 4(re”) = (f oY)’ (e").

(Actually we may compute (f o 1)*(e”?) as a nontangential limit m a.e.)
Define

(11) [ W) = (o))

for each w € (E \ E;), where we find a unique ¢” in E \ E) so that w = (). This
radial limit /*(w) is well-defined on a carrier of p|sg. The following theorem was also
proved in [8].

THEOREM 1.2. Iff € H™(G) and f € PX(u) N L®(y), then f(w) = f*(w) almost
everywhere with respect to |G-
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2. Essential spectra of self-dual subnormal operators. A fundamental inclusion
in this area of operator theory is that

o(N) C a(S),

a fact originally proved by Paul Halmos. We now present another central inclusion be-
tween the essential spectrum of N and the essential spectra of S and its dual 7. Recalling
the fact that

o(S) = o(T")
(see [1]), we can derive the Halmos result from our Proposition 2.1.

PROPOSITION 2.1.  Let S be a pure subnormal operator on H{ with the minimal nor-
mal extension N on X and let T be the dual of S. then

0e(N) C 0(S) U oe(T").

PROOF. Suppose to the contrary that there is a point Ag € g.(N) \ (Ue(S) U ae(T*)).
Choose an infinite sequence of unit vectors {f,} in X which converges to zero weakly
and

IV = Xolall — .

For each n, let f, = g, + h, be the decomposition of £, with respect to the orthogonal
decomposition of X = H @& H*. It follows that

1S — X0)"gall — 0,

and that
(T — Xo)*ha|| — O.

For each n let g, = g. + g2 be the decomposition of g, with respect to the orthogonal
decomposition
H = Ker(S — Xo)* @ Ran(S — \).

We now see ﬁ converges to zero in norm since Ay € og.(S)°. Therefore, there is a sub-
sequence {g,, } converging in norm to a vector g since g, is in Ker(S — \o)*, a finite
dimensional space. Using the same argument, we can show that there is a subsequence
{hn, } converging in norm to a vector h. Hence, f,,, converges in norm to a unit vector f.
This is a contradiction to the fact that f, goes to zero weakly.

REMARK. If S has a compact self-commutator, then an easy matricial argument
shows

0o(N) = g(S)U Ue(T*)-

When S is a self-dual subnormal operator, J. Conway [1] shows that the spectrum of
S and the spectrum of N are symmetric with respect to the real axis. It is natural to ask
the following question.
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QUESTION. Is the essential spectrum of a self-dual subnormal operator symmetric
with respect to the real axis?

We have not resolved this issue. The goal for this section is to supply an affirmative
answer when S has a cyclic vector. First, we establish a result which is similar to the
Riesz theorem for the classical Hardy spaces.

THEOREM 2.2. Let S, be an irreducible subnormal operator on P*(p) with bpep =
G. Let \g € 0G and let A = O()\y,60) be the open disc with center at Ay and radius b.
Suppose f € P(u) is zero almost everywhere with respect to |s. Then f = 0 almost
everywhere with respect to .

PROOF. Suppose that f is a nonzero function. Let L be a connected subset of
O(Xo, 1—52‘1) N 0G and let ¢ be the Riemann map from C \ L to the open unit disk. Let-
ting A be a constant times ¢, we may assume that 4 is in H°(G), |h| < 1 off A, and
|A(w)| > 1 for some w € AN G with {f,K,) # 0. Using Thomson’s Theorem, we have
h € P2(u)NL>®(u) and & = h a.e. pu|zc. Now A"f converges to zero in L?(i)-norm, while
|(k"f,K,)| = |[W*(W)| |{f, K. )| does not converge to zero. This is a contradiction.

The following lemma is an old chestnut. For the sake of completeness we include its
proof.

LEMMA 2.3. Let S, be an irreducible subnormal operator on P?(i) with bpep = G
and My € G. Then there is a small positive constant 6o > 0 such that S, is similar to S,
where Ho = /‘lAf, and Ao = 0()\0,50).

PROOF. There is a constant M > 0 so that for all polynomial p
2 Rl Ay — Y2512 212
J ol di <M [l = 2oPlpP du = M [ |z = MoPlpP du+ M [ |z = doPlpif dy
— 52 2 RN 2
= 3§ [ |pP du+ Mllz = oll%, [ Iof*
The first inequality follows since bpep = abpep. Choose §y to be small enough such that
1 —Mbéy > 0.

We then have
(1 — Mso) [ |pf? dp < Milz = Xoll%, [ IpI? dpso.
Obviously, we have
[1pPduo < [1pP dp.
The last two inequalities yield the desired result: S, is similar to S,,.

THEOREM2.4. Let S, be an irreducible, self-dual, subnormal operator on P*(11) and
bpep = G. Then OG is symmetric with respect to real axis.

PROOF. There is a unitary operator U from P?(y) to P?(u)* so that
USU* =T,
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Suppose that there exists Ao € G and X\¢ ¢ 0G. Since o(S,,) is symmetric with respect
to the real axis and
0.(Sy) = 0G,

it follows that Ao € G. Using Lemma 2.3, we choose 6o > 0 small enough such that
O(%0,80) C G and S,,, is similar to S, where

Ko = Moo sy

It follows then that S, is an irreducible subnormal operator. Using [3], p. 280, we choose
a function g € L?(yo) which is orthogonal to P?(up) and |g| > 0 almost everywhere with
respect to pip. Define

_ & OCo,b0F

0, O(Xo,00).

Clearly 4 is orthogonal to P?(p). Putf = Ul; plainly |f| > 0 almost everywhere with
respect to . Since 4 is orthogonal to P?(u) and f is a cyclic vector, we may choose a
sequence of polynomials {p,} so that

(@) — b
in L?(11) norm. Since U is a unitary operator, we see that for any polynomial p
[P du= [Ip@PIP dp.
Hence {p,} must converge to a function ¢ in P?(u). It is easy to show that
h(z) =f(2)1(2) a.e. pu.

Therefore, #(z) = 0 almost everywhere with respect to |o(, 5,)- However, according to
Theorem 2.2, the function ¢ has to be zero. This is a contradiction since 4 is not the zero
function. The proofis completed.

In [3], p. 408, Conway uses our last theorem in the proof of Proposition 6.5. Conway
does not prove the theorem; he asserts its validity follows from the fact that the spectrum
is symmetric with respect to the real axis. To see that more justification is needed one
should ponder why the following subnormal operator is not self-dual.

It is easy to construct a measure p enjoying the following properties:

(1) o(S,) =D.

(2) The support of p is symmetric with respect to the real axis.

(3) abpe(u) = D\ L, where L = {z: |z| < 1,Rez < 0,Imz = 1}. It then follows

from Thomson’s Theorem that

0e(S,) = GDUL.

COROLLARY 2.5. Suppose S, is an irreducible, self-dual, subnormal operator on
P?(w) with bpe(u) = G. We then have

o(N,) = 0G U {\,}
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where {\,} C G is a sequence of isolated points.

PROOF. It is well-known that for any normal operator N

a(N) \ oe(N) = {)‘n}

where {),} is a sequence of isolated points. Using the remark after Proposition 2.1 and
the result of Theorem 2.4, we have

0e(N) = 0.(S,) = 8G.

3. Reformulation of the problem; a reduction to the unit disc. Suppose S, is
an irreducible, cyclic, self-dual, subnormal operator on P?(i) with bpe() = G. The-
orem 2.4 implies that G is equal to G*. Let 1 be a Riemann map from D to G where
1¥(0) = a € G is a real number and v'(0) > 0. If we define the analytic function 1y on
D by setting o(z) = ¥(Z), then v, is also a Riemann map with the properties 0(0) = a
and (0) > 0. From the uniqueness of the Riemann map, one sees (z) = (z). We
define the measure v on D as done in Theorem 1.1.

THEOREM 3.1.  We use the notation and results of preceding paragraph. Let S,, be
a cyclic irreducible operator on P*(i1) with bounded point evaluations bpey = G. Then
the operator S,, is self-dual if and only if the following two properties hold:

(1) The operator S, is a self-dual subnormal operator on P2(v).

(2) The operator S, is unitarily equivalent to Mw (multiplication by ) on the space

P2(v)) and Y(2) = Y().

PROOF. Suppose conditions (1) and (2) are satisfied. Let U be a unitary operator
from P2(v)* to P?(v) such that
Us,U=T,.

If P(N,) denotes the operator of multiplication by 1) on L?(v), then it can be written
matricially as
0

on L*(v) = PX(v) @ P*(v)*. Using the lifting theorem [2], p. 128, there exists a unitary
operator ¥ on L2(v) so that

o [% 3

V*N,V = N.
Thus, for every function f € L*°(v), we have
V)Y = f(V)

where f(N}) is the operator obtained by multiplication by f(2) on L*(v). Using Theo-
rem 1.2, we know that 1)|5p is equal to the nontangential limit of 1 almost everywhere
with respect to v|,p. This implies

D(E) = % ae.v
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Hence,
V*’I}(N,,)V = "Z)(NV)*~

However, V' can be expressed matricially as

0 U
r=[¢ o]
with respect to the decomposition L2(v) = P*(v) @ P*(v)*. A trivial matrix computation
shows
U M:'L U=T,.

Since ¥(N, ) is the minimal normal extension of M:/Z’ see [5] or [7], it follows from con-
dition (2) that S, is self-dual.

Now suppose that S, is a self-dual subnormal operator. Let o = ¢~! be the Riemann
map from G to D, then ¢ € P%(n). Setv = p o ¢~ ', then according to Theorem 1.1,
we know that S, is unitarily equivalent to M; on P2(v). Also by the argument before the
theorem, we can show

¥(@) = 9@

So (2) is proved.

Looking at Theorem 1.1 again, we know that S, is unitarily equivalent to M’v.‘, on P2(u).
It also follows from Theorem 1.2 that every function in the algebra P?(u) N L (i) has
nontangential limit almost everywhere with respect to u|s; which guarantees

D= ¢@ ae.p

Using the same argument as above, we can show that Mg is self-dual. That is, S, is
self-dual. The assertion in (1) is verified.

Theorem 3.1 says that the study of a cyclic, self-dual, subnormal operator can be done
under the additional assumption that bpey = D.

4. Self-dual, cyclic, subnormal operators having the unit disc as their set of
bounded point evaluations. In this section, we study the class of self-dual operators
mentioned at the end of the last section. That is, a cyclic, self-dual, subnormal operator

S, with bpep = D. We always assume that dzmﬂ is log-integrable. That is,

dplap
where m is the normalized Lebesgue measure (dm = —2-’7;d0). The latter assumption im-
plies (in fact it’s equivalent to) that the operator, multiplication by z on P?(|5p), is pure.

By Szego’s Theorem (see [4], p. 136), there is an outer function » € H? such that

blop = |"|2m-
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From the results in [1] and Corollary 2.5, we can assume

€] =|r |2m + Z Biba; + 2(71517 + 7I‘Sb )

i=1

where the notation §, denotes point mass measure at a; the constants 3;,7;, v J’ are strictly
positive; the constants g; are real; and the constants b; have nonzero imaginary parts. For
a € D, we define
Z—a
Palz) = 1 —az
—az

LEMMA4.1. Let ¢ be an infinite Blaschke product whose zeros are exactly ay, ay, . . .
with each having multiplicity one. Let h be a function in H2. If

) |1 '“"', Ih(@| 4@ < oo,
then
[remeizpan =5 - ("  panyitanian
for every polynomial p.

PROOF. If p, = g, @a, - - * Pa,, then the sequence { ¢, } converges to ¢ in the weak-
star topology. Hence, using Cauchy integral formula, we have

[P@hh @3 dm = lim / P@RERE)zHn dm

5 P(Z)h(Z)h(Z)
= lim 25 21rl / pn(2) dz
— laif®

hmz 0 — - Pa)h(a)h(@).
Now note that
n 1 —|af?

5 gy P Wl ) < > "‘g, Ip@a) @)

< ol 55 [y ol ) < oo

An easy application of the Lebesgue dominated theorem yields the desired result.

THEOREM 4.2. Let p be as in (x). The operator S, is self-dual if and only if
(a) The set {a;,b;, Bj} is the zero set of a nonzero function in H®. In the case, our
notation for the Blaschke factor of this function is

‘p = H(Pa,‘ H‘prSOI;J;
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(b) The zeros of p and the weights of p are related as follows:

_ 32 1—‘11-2
ﬁl - |r(al)| l_(pz&(ai)la
/i Ib |

and

S B+ +7J() < o0.

PROOF.  Suppose both (a) and (b) hold. Let

( Zp(z)52) e on D,
Z(a)l/ (£ (@) z=a,

f@)= \f(w—(,)l/( b))
- ;JL( %j(bj)!/(g,@ 1))

CLAM 1. f L P(p).
The validity of the claim is a simple computation:

(p.f) = [ prri@zg dm+ ¥ Bip@) @) + ¥ (vp®) ) +1pE) 5))
_ [ s /(@
= [pr@zp dm — 30 — dhptara@ [ (@)
= 0= I Prerer®) /(o)

3z
N
Il
s

AlX
SIS

b
b))

s

&
N
Il

S

)
b))

AlX
=y

_ — 5P BB B [ (L= (B;
S0 — e )rb)r) | (%j @)
=0.
Note that the last equality follows from Lemma 4.1.

CLAIM 2. {p(z)f : p is a polynomial} is dense in P?(u)".

It is sufficient to show that if g € L?(u) is orthogonal to both P?(11) and span{p(z)/},
then g is the zero function. If g is the function with these properties, then for every
polynomial p

(ppf.g) =0
because
PR(u)f C L*(u) closure of {pz)f}.

It follows that for every polynomial p

/prﬁz'—)zgdm =0.
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Since r(Z) is an outer function, we see that
/ przgdm =10
for every polynomial p. Thus, there is a function g € H*(6D) such that

(@) r8lap = go.

On the other hand, we see that for every polynomial p

<p@f,g> = 0.
This implies that for any polynomial p
[ prr@zpagdm = Ir@)P(1 - ap(adgta) = [ pridgo(l — aiks, dm
where ky(z) = ;. Therefore,
r(@)(1 — ah)p(ago(a) = |r@)*(1 — a})p(ai)g(a:)

where g is the analytic extension to the disc. It follows that for all i

() r(aig(a;) = go(ai)-
Using the same method, we can show that for all
(© rbedy) = &), r(b)eby) = go(b)).

Now let K, be the reproducing kernel for P?(y) and let
n = HI Pa, H1 P, P,
= J=

For each A\ € D and for each polynomial p we have

p(N)

®n(N)
»(2)
©n(2)

= / ;fn((zZ))P(Z)erI-{,\ dm+ gﬂi'(:;n(ai)p(ai)K)\(ai) 7

p(V)

—=p(2)K> dp

+ 3 (1L p®IT B + 1 2 GpEIKE))

i=1

»(2) K,\(az) KA(b) ,KA(b )
/ @ )p(z)r(z)(rK,\ +Z(ﬁ, @ ko, +Vi=—= ;(7); bt r(b) b.)) dm.
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Since there are polynomials p, such that p,r converges to go in H2, we now have that for

alln
go(\) ¢(N)
r(A) a(A)
¢(2) Ky(a;) Ky\(b:) ,KA(b)
o )go(z)(rK Z( @) ko, +7; &) ky, + Y — ) b'_)) dm
LD 0K du.

The last equality follows from (a), (b), and (c). The sequence of functlons - converges
to 1 in both P*°(1) and H*°(0D) in the weak-star topology. Hence, for all E D we have

go(\)
[ekndu = 0

Therefore, go = 0. It now follows that g is the zero function. This establishes Claim 2.
Let U be the operator form P?(y) to P*()* defined by

(Up)2) = p2) (@)
for every polynomial p. By the assumption, it is easy to check pu = (lf(z)|2u)*. Thus,

1pl? = [ @RI @P du = [Ip@P (f@F du)” = [Ip@)I du.
This means U is a unitary operator. Also we have
USup = zp(2)f(z) = z2Up = T, Up

for every polynomial p. Therefore, S,, is a self-dual subnormal operator.

Now suppose S,, is a self-dual subnormal operator, that is, there is a unitary operator
U such that

=0.

US,U* =T,

If )
<. 0D
= { 2’
h { ;

b b

then 4 is orthogonal to P?(i1). Let s = U*h. The function UK, is the kernel function for
P*(u)* and
<S,K)\) = <h, UK)\>.

From the definition of 4 and the fact that the defining values of 4 agree with the analytic
extension of 4 to D almost everywhere i, we see

(h, UK,) = (h,UKy) = (h,UK; ) = 0.

Hence,
(s,Kq) = (s, Kp,) = (s,Kp) =

https://doi.org/10.4153/CJM-1996-021-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-021-1

A SUBNORMAL OPERATOR AND ITS DUAL 393

It now follows that {a;, b;, 5;} is a zero set of a nonzero bounded analytic function. As
before, we write ¢ = [1 g, I1 s, ®s, and let Ul = f. It follows then that for all poly-
nomials p that (Up)(z) = p(2)f(z). Since U is a unitary operator we now see that for all
polynomials p; and p;

[P@P@du@ = [ @O due)
= [p@pREI@F dv@).

It now follows from Stone-Weierstrass theorem that

= lf@Pu".
This means @)
r2)
Z)l = —= a.e.mondD,
VOI= e
Ifa)| =1,
and
y! _ Y;
e = \L: (6l = E
For every polynomial p,
/ pefdu=0.
Thus,
/ poffdm = 0.

since 7 is an outer function. Hence, on 0D the function ¢f7 € H3. Therefore, there are
an inner function ¢ and an outer function & so that

of F = z¢k.
Thus, on 6D, we have
k@) = |r(2)].
So k(z) = ar(Z) where a is a constant of modulus one. This means on 8D, we may assume
that )
Z)_ -
= —=Zp¢.
I=
Let -
4= { ép, ondD
0, onD,
we notice that

[p@yadu= [pEzr@r@dn=o.
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Therefore, g € P*() N L™(w). It follows now from Theorem 1.2 that ¢¢ is an inner
function, 7, that has zeros at all atoms of . However, since

¢l=¢

and ¢ has single zeros at precisely those atoms, it follows that ¢ is a constant. Without
loss of generality, we may assume on 0D, the function f is equal to z'zp%. For every

polynomial p, o
/ (p—aipfdu =0.
Hence,
[ L-piir? am+ £ (@piappiia) = o.
Pa, Pa,
Therefore,

[P @ dm+ =~ (@pla)siia) = 0.

A simple computation shows that

- @)p@)Bf@)| = InaP(1 ~ alp(a)|

This implies

Bi = In@)P( —ah)/

i‘(ai)l-
a
Using the same method, we can prove that for all j
A= B B = 16:12) /1 Lol = 1rE 1B = 18:2) /| 2= (B
1% = @I = 16 /| 2| = el il - 1B, /| %j(b,)'.

Also we have
2B+ 0+ < oo

since p is a finite measure. The proof of the Theorem is now completed.

5. An approach to the general case. Theorem 4.2 shows that the atoms of the
scalar spectral measure play an important role in the study of self-dual cyclic subnormal
operators. The next theorem shows if the set of atoms is not too large, then the structure
of this cyclic operator is understood.

THEOREM 5.1. Let S, be a cyclic irreducible subnormal operator on P*(u) with
bpep = G. Suppose the set of atoms of the scalar spectral measure | is a zero set of a
nonzero function in H°(G). Then S,, is a self-dual subnormal operator if and only if the
Jfollowing two properties hold:

(1) G is symmetric with respect to the real axis. In this case, we let 1) be the Riemann
map from D to G so that Im (0) = 0, 1/(0) > 0, and y(z) = Y(Z). Moreover, the analytic
Toeplitz operator Ty is cyclic on H*(&D).
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(2) There is po satisfying the conditions of Theorem 4.2 such that S, is unitarily
equivalent to the operator of multiplication by V(= M;" ) on P2(o).

PROOF. The sufficiency is obvious. We assume that S, is a self-dual subnormal op-
erator. Using Theorem 2.4, we know that G is symmetric with respect to the real axis;
so we choose a Riemann map as in (1). Letv = p o ¢!, where ¢ = y~!. According to
Theorem 3.1, the operator S|, is unitarily equivalent to multiplication by 9 on P?(v) and
S, is a self-dual subnormal operator with bper = D. Using the hypotheses, we conclude
that there is a nonzero function in H°°(D) whose zero set is the set of all atoms of v. Let
f € P?(v)* be a cyclic vector and let ¢ be an inner function in H> whose zero set is
precisely the set of all atoms of v. We have then that

/p(bfdu =0.

Thus, P*(v|sp) is pure. Therefore,

o d m > —00.
[1 g(ddlaD)d

m

According to Theorem 4.2, there is a measure i satisfying the conditions of the the-
orem so that S, is unitarily equivalent to S,,. Hence, S, is unitarily equivalent to the
multiplication by ¢ on P2(u).

Now we need only show T is cyclic. In fact, using Clary’s Theorem (see [3], p. 370),
we know that S,,; is quasisimilar to S,,; therefore, M“Z° is quasisimilar to T,,. This means
T, has a cyclic vector. The theorem is proved.

REMARK. We believe that the conditions (1) and (2) are the necessary and sufficient
conditions for an irreducible cyclic subnormal operator to be self-dual. We believe that
our hypothesis on the atoms is a by product of the hypothesis of self-duality.
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