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MODULES OVER HEREDITARY NOETHERIAN
PRIME RINGS, II

SURJEET SINGH

1. Introduction. Let R be a hereditary noetherian prime ring ((hnp)-ring)
with enough invertible ideals. Torsion modules over bounded (hnp)-rings were
studied by the author in [10; 11]. All the results proved in [10; 11] also hold
for torsion R-modules having no completely faithful submodules. In Section 2,
indecomposable injective torsion R-modules which are not completely faithful
are studied, and they are shown to have finite periodicities (Theorem (2.8)
and Corollary (2.9)). These results are used to determine the structure of
quasi-injective and quasi-projective modules over bounded (hnp)-rings
(Theorems (2.13), (2.14) and (2.15)). It was proved by Eisenbud and Robson
[3] that if R has only finitely many maximal idempotent ideals, then R is an
intersection of Dedekind prime rings. In Section 3, it is shown that any
(hnp)-ring with enough invertible ideals is an intersection of Dedekind prime
rings. The notations and terminology are essentially the same as in [10; 11]
except that ‘(hnp)-ring, not right primitive’ has been replaced by ‘bounded
(hnp)-ring’ in view of Lenagan [8].

2. Periodicity theorem. Throughout R is an (hnp)-ring with enough in-
vertible ideals and Q is its classical quotient ring. Eisenbud and Robson [2; 3]
called a module M to be completely faithful if every submodule of each of its
factor modules is faithful. The following is an immediate consequence of [3,
Theorem (3.1)].

Lemma (2.1). If U is any uniform torsion R-module, then either U is com-
pletely faithful or every finitely generated submodule of U s unfaithful.

The proof of the following theorem is essentially the same as that of [10,
Theorem 4].

THEOREM (2.2). Let E be an indecomposable injective torsion R-module, such
that E 1s not completely faithful. There exists an infinite properly ascending chain
of submodules

(1) 0) =xR<xR<xR<...<xyR<...<E

such that x ;11R/x R is a simple R-module, the members of the chain are the only
submodules of E and E = \U,, x,R. Further, there exists a« non-negative integer n
such that x 1 R/x ;R = x ;1R /x,R if and only if i = j(mod n).
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This # is called the periodicity of E and the series (1) given above is called
the composition series of E. If n > 0, E is said to be of finite periodicity. One of
the main results of this section is that any indecomposable injective, torsion
R-module which is not completely faithful, is of finite periodicity (Theorem
(2.8)).

Eisenbud and Robson [3, p. 91] introduced the concept of cycles of maximal
ideal. Let P and P’ be two non-zero idempotent maximal ideals of R. Using
the fact that P M P’ contains an invertible ideal X, [3, Proposition (1.6)]
yields that 0,(P) = 0,(P’) if and only if P = P, where 0,(P) =
{x € Q|xP C P}. This fact gives that any two cycles of prime ideals in R are
disjoint or equal. Let 4 be a maximal invertible ideal of R. 4 is an intersection
of a cycle of prime ideals Py, P, . .., P,[3]. We say that each P, belongs to A.
By [3, Corollary (4.7)] every non-zero prime ideal P of R belongs to a cycle,
and hence to a maximal invertible ideal. Let M be a non-faithful simple R-
module and P = anng(M). If P belongs to a maximal invertible ideal 4, we
say M belongs to 4.

In the notation of Theorem (2.2), if P; = ann(x;R/x;_1R) for every 1 > 0,
then the sequence (Py, Ps, Ps, . . .) is called the prime sequence of E. The prime
ideals P1, Ps, P, . . . are said to be associated with E. If E is of finite periodicity
n, then the above prime sequence is periodic and its first # members P,, P, . . .,
P, are all distinct.

Henceforth E will be an indecomposable injective torsion R-module such
that E is not completely faithful and

0) =xR<xiR<xR<...<x,R<...<E

is its composition series. Further (P, P, ..., P, ...) is the prime sequence
of E.

LEMMA (2.3). Let X be any uniserial module over a right artinian ring S and let
X=X>X1>X:>...>X,=(0)
be its umique composition series. If for any 1 with 0 <1 <t — 1, P, = ann
(X /X is1), then X P, = X 1.
Proof. Since X, J(S) = X1 and P; D J(S), the result follows.
LEmMMaA (2.4). In E, x;11P i1 = xR,

Proof. Let A = ann (x;11R). As A # (0) by Lemma (2.1), R/4 is general-
ized uniserial [1, Corollary (3.2)] and P, D 4, the result follows from
Lemma (2.3).

LeEMMaA (2.5). Let xR be a uniserial torsion, unfaithful R-module and A =
ann (xR). Thering S = R/A is generalized uniserial and has homogeneous socle.
Further, if e1S, ¢S, ..., €,S is a Kupisch series of S satisfying d(e;11S) =
1 + d(e;S) for i < n, then xR = ¢,S.
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Proof. Given in the proof of [10, Theorem 4].

LeEmMmA (2.6). If E s of fintte periodicity n, and Py, P, ..., P, are first n
members of the prime sequence of E, then the ideal P,P,_, . .. Py is not eventually
idempotent and the ideal N't=1 P;1s a maximal tnvertible ideal.

Proof. For any k& > 0,
Lpn (PpPpei . . . P1)¥ = (0)
and by Lemma (2.4)
Xpn (PpPre1 . .. P1)*1 = x,R # (0).

Hence B = P,P,_; ... P; is not eventually idempotent. By [3, Theorem
(4.2)], B = XC for some invertible ideals X and an eventually idempotent
ideal C. Clearly X # R. Hence there exists a maximal invertible ideal 4 con-
taining X. We claim that 4 C P; for every 1. Now the maximal ideals con-
taining A* for any ¢ > 0 are among Py, Ps, ..., P,. Let A P, for some 1.
For that 7, R/A! admits no simple module isomorphic as an R-module to a
simple summand of R/P;. Now, the number of summands in the expression
of R/A" as a direct sum of indecomposable right ideals is independent of ¢.
Hence as 4' %= A for all ¢, for a large enough £, the generalized uniserial
ring R/A" admits a uniserial module M of length greater than x. Since the
number of non-isomorphic simple R/A4 ‘-module does not exceed 7, the com-
position series of M, has at least two distinct isomorphic composition factors.
Since thesocle of M pisasimple R/P j-module for some j, the injective hull E (M)
is equivalent to E (see the definition in [10]). Thus the periodicity of E (M)
and hence of M is also n. Thus R/A4* admits #» non-isomorphic simple modules.
As R/A" does not admit any simple module isomorphic to a simple summand
of R/P;, and the prime ideals of R containing 4 are among P, P2, ..., P,,
we get that R/A* has less than # non-isomorphic simple modules. This is a
contradiction. Hence 4 C N1 P; and R/A admits # non-isomorphic simple
modules. Then [3, Proposition (2.5) and Corollary (4.7)] yield that Py, P, .. .,
P, constitute the set of all members of a cycle of prime idealsand 4 = Nj—; P..
This completes the proof.

THEOREM (2.7). Let M be a non-fatthful simple module over an (hnp)-ring R
with enough invertible ideals. If the cycle of prime ideals to which P = ann (M)
belongs, is of length n, then the injective hull E(M) of M is of periodicity n, and
the members of the cycle to which P belongs constitute the totality of distinct prime
ideals associated with E(M).

Proof. Now E = E(M) is not completely faithful. We show that E is of
finite periodicity. On the contrary let E be of zero periodicity. Then P is an
idempotent maximal ideal. Let (P = P,, Ps, ..., P,) be the cycle to which
P belongs [3, Corollary (4.7)]. Then X = N; P, is a maximal invertible ideal.
On similar lines as in Lemma (2.6) for some large enough k, R/X* admits a
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uniserial module N of length > #, and N has repeated composition factors.
Hence E(N) is of finite periodicity. Further the prime ideals associated with
E(N) are among P/s (1 £ 4 < n) and as seen in proof of Lemma (2.6), they
constitute a cycle. Consequently P is also a prime ideal associated with E (V).
This shows that E(N) is of periodicity #» and is equivalent to E(M) i.e.,
E(N) and E(M) have submodules F and F’ respectively such that F # E(N)
and E(N)/F =~ E(M)/F’ [10, p. 1180]. Hence E(M) is also of periodicity =
and the prime ideals associated with E(M), being same as with E(N), consti-
tute a cycle.

Since any indecomposable injective torsion R-module which is not com-
pletely faithful is an injective hull of a simple non-faithful R-module, we get
the following.

TaEOREM (2.8). (Periodicity Theorem) If E is an indecomposable injective
torsion module over an (hnp)-ring R with enough invertible ideals and if E is not
completely faithful, then E s of finite periodicity n; the distinct prime ideals
associated with E are members of a cycle of prime ideals in R and their inter-
section 1s a maximal invertible ideal.

Since any bounded (hnp)-ring has enough invertible ideals [8] and it admits
no torsion completely faithful module, we get the following.

COROLLARY (2.9). Any indecomposable injective torsion module over a bounded
(hnp)-ring is of finite periodicity.

THuEOREM (2.10). Let E be an indecomposable injective torsion R-module, which
is not completely faithful. If the periodicity of E is n and (P1, Py, ..., Py, ...) 1s
the prime sequence of E, then R/P,P,_, . .. Py 1s a generalized uniserial ring with
homogeneous socle.

Proof. Let (0) = xeR < x1R < ... < x,R < ... < E be the composition
series of E. Consider x,R. If A = ann (x,R), by Lemma (2.5) R/A is a general-
ized uniserial ring with homogeneous socle. Since P; = ann (x;R/x;_1R) for
1 <1 =< n,and hence P,P,_; ... P, C A, the result will follow if we show that
A = PP, ... Py By (10, Theorem 2], R = R/A has a Kupisch series &R,
&R, ..., &R, withd(é,R) = ifor 1 £ i £ n. Further x,R =~ ¢,R by Lemma
(2.4) and

énPn...Pi+1:éinOrigl.

Suppose that 4 £ P,P,_; ... P;. Then the composition length d(R/4) <
d(R/P,,Pn_l oo Pl) Since J(R/A) = thI/A and ](R/Pnpn—l e Pl) =
NP/ PP, ...Piq the number of components in the expressions of R/4 and

R/P,P,_, ... P as direct sums of indecomposable right ideals are the same.
Hence there exists a primitive idempotent ¢ + P,P,_, ... Py of R/P, ... P,
such that d(e + 4)R/4) < d(e + P,P,—y ... P,)R/P, ... P;). Now

(e + A)R/A = &R for some i and by using Lemma (2.5) we have &,RP, . ..
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P;=¢éRandé;RP,P,_,...P;= (0).On theother hand as (e + 4)R/A isa proper
homomorphic image of (¢ + P,P,_y ... P1)- R/P,P,_; ... P, we get from
Lemma (2.4) (¢ + P,P,_1...P1)- RP,P,_,...P;, # (0) where R = R/P,P,_;
... P;.Butobviously (¢ + P,Py_y...P1)RP,P,_;...P; = (0). Hence we get
a contradiction.

By Theorem (2.7), X = M=, P;, where Py, P,, ..., P, are distinct prime
ideals associated with E, is a maximal invertible ideal. We say that E belongs
to the maximal invertible ideal X. It can be easily seen that any indecompos-
able injective torsion R-module E’ is equivalent to E if and only if E’ is not
completely faithful and it also belongs to X.

As defined in [11, § 3] any torsion module M over a bounded (hnp)-ring S
is said to be a primary module if for every pair of uniform elements x, y € M,
E(xS) and E(yS) are equivalent. Here any torsion R-module M having no
completely faithful submodule is said to be a primary module if for every pair
of uniform elements x, y in M, E(xR) and E(yR) are equivalent. Now notice
that given x € E, xX'® = (0) for some #(x) > 0. This property holds for
every E’ equivalent to E. Using this fact we obtain the following.

LEMMA (2.11). Let M be a torsion R-module having no completely faithful sub
module. Then M is primary R-module if and only if there exists a maximal in-
vertible 1deal X such that for each x € M, xX'® = 0 for some t(x) = 1.

We say that M is an X-primary module. We give a few applications of the
above results to quasi-projective and quasi-injective R-modules. Quasi-pro-
jective torsion modules over bounded (hnp)-rings were studied in [11]. For
definitions of quasi-injective and quasi-projective modules refer to [10]. It was
shown in [11, Theorem 14] that if a bounded (hnp)-ring R admits no indecom-
posable injective torsion module of zero periodicity, then any torsion quasi-
projective R-module is reduced. This along with Corollary (2.9) yield the
following.

THEOREM (2.12). Any torsion quasi-projective module over a bounded (hnp)-
ring s reduced.

This result along with [11, Theorem 13] yields the following.

THEOREM (2.13). A torsion module over a bounded (hnp)-ring R is quasi-

projective if and only if each of its primary components N 1is projective as an
R/ann (N)-module.

Let us recall that given two indecomposable injective torsion modules over a
bounded (hnp)-ring R, we defined in [10], M (E, E’) as the kernel of a homo-
morphism from E to E’ such that the kernel of every homomorphism from E
to E’ contains M (E, E'). If E is of finite periodicity » and E’ is equivalent to E,
then d(M(E, E')) = n — 1.
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TuEOREM (2.14). Let N be a torsion primary module over a bounded (hnp)-
ring R. N s quasi-injective if and only if N 1is injective as an R/ann (N)-module.

Proof. Let N be quasi-injective. By [10] N = @ Y., N; where N; are
uniform such that

ld(Ny) — d(Ny)| = d(M(Ey, Ey))

forall<,j € I, where EE; = E(N;). Since all these E; are equivalent, they have
the same finite periodicity #, by Theorem (2.8). Hence

1) [dN) —d(Np)| =n—1

for all 7, j € I. Thus if any N, is injective and hence of infinite length then
every N; is of infinite length and hence injective [11, Lemma 2(a)], in that
case IV is faithful and injective. Let no N; be of infinite length. Then N is
reduced and because of (1) there exists a positive integer k such that d(N;) < &
for all 7. By similar arguments as in [11, Theorem 12] we get ann (N) # (0).
Consequently N is a quasi-injective faithful module over the artinian ring
R/ann (N). Hence N is injective as an R/ann (N)-module. The converse is
obvious.

Since very torsion module over a bounded (hnp)-ring is a direct sum of
primary modules [11, Lemma 9], the above theorem and [10, Theorem 7],
give the following.

THEOREM (2.15). Let M be a module over a bounded (hnp)-ring R. Then M 1s
quasi-injective if and only if it satisfies one of the following:

(1) If M 1s not a torsion module, then M 1s injective;

(2) if M 1s a torsion module, then every primary component N of M 1is injective
as an R/ann (N)-module.

3. Quotient rings. Throughout this section R is an (hnp)-ring with enough
invertible ideals. Eisenbud and Robson [3, Theorem (4.9)] proved that if R
has only finitely many idempotent maximal ideals, then R is an intersection of
Dedekind prime rings. By following the techniques of Kuzmanovitch [7] we
prove that any (hnp)-ring with enough invertible ideals is an intersection of
Dedekind prime rings (Theorem (3.10)).

To avoid the trivial case we suppose that R is not a simple artinian ring.
Throughout let 4 be a maximal invertible ideal of R. As R satisfies the re-
stricted minimum condition [2, Theorem (1.3)], the set

€ (4) = {c € R:cx € A implies x € 4}
={c € R:xc € 4 impliesx € A}
={c€R:cR+ 4 = R}

{c € R:cR+ A™ = Rc + A™ = R for any m}.
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LEmma (3.1). € (4) is a multiplicative set and any member of € (A) is
regular.

Proof. Let ¢ € € (4) and let the left annihilator I(c) # (0). Since N,4™ =
(0), for some m, I(c) C A™, [3, Lemma (4.1)]. Then ¢ is not a regular module
A™. This is a contradiction. The fact that 4 (4) is multiplicatively closed is
obvious.

For any right ideal I of R, the largest two-sided ideal contained in I is called
the bound of I. I is said to be bounded, in case its bound in nonzero. For any
essential right ideal I of R we know that R/I is of finite length [2, Theorem
(1.3)]. Now any two distinct maximal invertible ideals of R are comaximal.
An ideal C(5# R) of R is said to belong to a maximal invertible ideal 4 if
A C C for some ¢. Clearly any proper ideal can belong to not more than one
maximal invertible ideal. Let & be the family of all those proper ideals of R
which belongs to some maximal invertible ideal.

LeEmMmA (3.2). Let B be any proper ideal of R. Then
k
(1) B = f\ Ci, where each C; belongs to a maximal invertible ideal, say A ;, and

i=1
these A ; are distinct; and

(i1) the maximal invertible ideals A ; are uniquely determined by B.

Proof. Now R/B = @ Y.'-1é;R; R = R/B, &; are primitive orthogonal
idempotents of R. Each &,R is a non-faithful uniserial R-module; hence its
R-injective hull E; cannot be completely faithful. Consequently E; belongs to
some maximal invertible ideal I,(1 £ ¢ £ t). If B; = ann (¢;R), then each
B belongs to I; and B = N;B;. Combining those B; which belong to same
maximal invertible ideal, we can write

E=N¢,
i=1

where C; belongs to some maximal invertible ideal, say 4;, and these 4, are
distinct. This proves (i).

To prove (ii) let B = M%_1D;, D; belongs to some maximal invertible ideal
A and these 4, are distinct. Since the C; are pairwise comaximal, we have

R/B~® ) R/C;
i=1

similarly R/B = @& Y ;.1 R/D;. Now each R/C; can be expressed as the
direct sum of uniserial right R-modules. For two distinct C,’s the corresponding
uniserial modules are not equivalent. The same thing can be said about the
R/D;. Using the Krull-Schmidt, Azumaya Theorem we get that for each C;,
given a'uniserial direct summand of R/C,, there is a D; such that this uniserial
direct summand is isomorphic to a uniserial direct summand of R/D/’s.
Hence, A4 ; is the same as 4 ;/. This proves (ii).

So given a proper ideal B of R, B = MN',_,C;, where each C; belongs to some
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maximal invertible ideal 4 ; and the 4 ; are distinct. These maximal invertible
ideals 4,(1 <1 £ k) are said to be associated with B; the expression B =
MN:_1C, is called an mi-decomposition of B.

LeEmMA (3.3). Let B be a proper ideal of R. R/B admits a simple module, which
as an R-module belongs to a maximal invertible ideal A if and only if A 1s associ-
ated with B.

Proof. Let B = Mj_,C; be an mi-decomposition of B and 4y, ds, .. ..., 4,
be the respective maximal ideals associated with B. Let M be a simple R/B-
module which as an R-module belongs to 4. Let P = anng(M); then P D B.
Hence P D C; for some 7. However 4 * C C; for some 7. We get 4; C P. Also
A C P. Since any two distinct maximal invertible ideals are comaximal we get

= A ;. This proves necessity.

To prove sufficiency, let 4 = 4,;. Let P be a prime ideal containing C,.
Then A, C P, that is A C P. This yields that P is a member of the cycle of
which 4 is an intersection. Clearly then any R/P-simple module, as an R-
module, belongs to 4 ; this is also a simple R/B module.

LemMmA (3.4). Let K be an essential right ideal of R and A be a maximal in-
vertible ideal of R. Then a composition factor of R/K belongs to A if and only if
there exists a bounded right ideal I containing K such that A is associated with

the bound of I.

Proof. If B is the bound of I then R/I is a faithful R/B-module. Since R/I is
a homomorphic image of R/K, the sufficiency follows from Lemma (3.3) and
the fact that R/B is embeddable in a direct sum of finitely many copies of R/1.

By Eisenbud and Robson [3, Theorem (3.1)] R/K is a direct sum of a
completely faithful and an unfaithful module. Since R/K has a composition
factor belonging to A, R/K is not completely faithful. Consequently

R/K = I/K ® J/K

for some right ideals I and J containing K such that J/K is nonzero and
unfaithful as an R-module, and I/K, if non-zero, is completely faithful. Then
J/K has a composition factor belonging to 4. However R/I = J/K. Conse-
quently R/I is unfaithful and by Lemma (3.3) 4 is associated with the bound
of I. This proves necessity and completes the proof of the lemma.

Let ©’(A4) be the set of those regular elements b of R such that R/bR has
no composition factor belonging to 4. Proofs of the next two lemmas are
essentially on the same lines as respective proofs of Lemmas (2.3) and (2.4) in
[7]; in the proofs replace M by maximal invertible ideals 4 and the expression
of an ideal as a product of prime ideals by its mi-decomposition.

LemMma (3.5). €(4) = €' (4)

LEMMA (3.6). Let Kr CaRCR and a 'K =1{r € R:ar € K}. Then
aR/K = R/aK.

LEMMA (3.7). R satisfies Ore conditions with respect to € (4).
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Proof. Take a € R, b € € (A4). Take K = a='(aR N bR). Then R/K =
aR/(@R M bR) = (aR + bR)/bR. Consequently as R/bR is artinian [2,
Theorem (1.3)], R/K is artinian. Hence by [2, Theorem 1.3)] K is an essential
right ideal of R. Asb € % (4), by Lemma (3.5) R/K has no composition factor
belonging to 4. If K + 4 # R, then K + A is a bounded right ideal whose
bound B contains 4, and consequently B belongs to 4. This will contradict
Lemma (3.4). Hence K + 4 = R. Then 1 = d + x for some d € K, x € A.
Then d € €(4) N K and ad = br for some r € R. Hence R satisfies the
right Ore condition with respect to % (4). Similarly R satisfies the left Ore
condition with respect to € (4).

Let Q be the classical quotient ring of R and R, be the set of all those
elements in Q which are of the form ab=!, a € R, b € ¥ (4). Then R, is an
over-ring of R, and hence by [7, Proposition (1.6)], R, is an (hnp)-ring.

Lemma (3.8). (i) J(R4) = AR, = R4A.

(i) For all k=1, (ARJ)* = A*R,, A*R, N R = A* and R/A* =
R,/ (AR \)* under the canonical map \ : R/A*— R /AR 4 given by \(r + A¥) =
x + A*R,.

(iii) For any right ideal I of R, I + A*R, = IR, + A*R,.

Proof. Since for any ¢ € € (A), % € R/A % = 6 implies & = ¢ and further
as Rc + 4 = R, we get R/A is a right R -module and all its R-submodules
are R, -submodules. Now any elements of AR, is of the type ad™!, ¢ € A4,
dé €A); dR+ A4 = R yield (d + a)R + A = R. Consequently d + a €
% (A4). Hence 1 + ad—! = (d + a)d—! is invertible in R4. This proves that
ARy CJ(Ry).

R/A being semi-simple artinian is completely reducible as an R-module
hence also as R -module. The mapping

/I R/A _)RA/ARA

given by n(x + A) = x + AR, is an R -homomorphism. Given any d €
% (A4), since ud +v = 1 for some u € R, v € A, we get d' + AR, = u +
AR 4. This shows 7 is onto. Hence R,/AR  is a completely reducible R 4-
module. This yields J(R,) C AR,. Hence J(R,) = AR, = R A. This im-
mediately yields (J(R,))* = A*R, for every k. Now x € A*R, M R yields
x = ad~! for some a € A% d € ¥ (4). This yields xd € A*. Consequently
x € A* as dis a regular module A*. Hence A*R, M R = A*.

Now the mapping X\ : R/4A* — R,/A*R, given by Nx + A%) = x + A*R,
is a ring homomorphism. On the same lines as for the mapping 5, A is onto.
\ is also one-to-one, since 4*R, M R = A* Hence R/A* =~ R,/A*R 4. This
proves (i) and (ii); (iii) is immediate from (ii).

Let S = {g € Q: ¢B C R for some non-zero ideal B of R}.

LeEmMa (3.9). S is an overring of R and is a simple Dedekind prime ring.

Proof. Obviously S is an overring of R. Let I be any non-zero two-sided ideal
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of S. Then I N\ R # (0). As R has enough invertible ideals, I M\ R contains
an invertible ideal B; then 1 € B~'B C [ yields I = S; hence S is simple.
Also by [7, Proposition (1.6)] S is an (hnp)-ring. Since S contains no proper
idempotent ideal, S is a Dedekind prime ring [3, Theorem (1.2)].

TuEOREM (3.10). Any (hnp)-ring R with enough invertible 1deals is an inter-
section of Dedekind prime rings.

Proof. Let A be a maximal invertible ideal of R. By Lemma (3.9), J(R,) =
AR, # (0). Hence R, has only finitely many maximal ideals and is bounded
[3, Theorem (4.10)]. By Lenagan [9], R, has enough invertible ideals. Conse-
quently by [3, Theorem (4.9)], R, is an intersection of Dedekind prime rings
Thus if we show that R is an intersection of rings R4, where 4 ranges over all
maximal invertible ideals and the ring S in Lemma (3.9), the result follows.

Let T be the intersection. Clearly R C 7. Consider x € T. Let C =
{a € R|xa € R}. There exists a non-zero two sided ideal B of R, such that
xB C R. Let B’ be the largest ideal of R satisfying xB’ C R. Clearly B’ # (0).
Suppose B’ # R. Let B’ = M }_;C; be an mi-decomposition of B’ and let C,
belong to the maximal invertible ideal 4,. Then 4 * C C; for all 7 and some
fixed k. Now for any maximal invertible ideal 4 of R, x € R, implies that
there exists d € R such that xd € R and dR + A = R. Consequently d € C
and C+4+ 4 = R. This yields C4+ N1 44 =R. But N, A C B CC.
Hence C = R. This proves thatx € R. Hence R = T This proves the theorem.

Acknowledgment. 1 take this opportunity to thank the referee for his various
suggestions.

REFERENCES

—

. D. Eisenbud and P. Griffith, Serial rings, J. Algebra 17 (1971), 389-400.
2. D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970),
67-84.
— Hereditary noetherian prime rings, J. Algebra 16 (1970), 86-101.
L. Fuchs, Abelian groups (Pergamon Press, 1960).
A. W. Goldie, Semi prime rings with maximum conditions, Proc. London Math. Soc. 10
(1960), 201-220.
6. ]J. Kuzamanovitch, Completions of Dedekind prime rings as second endomorphism rings,
Pacific J. Math. 36 (1971), 721-729.
Localizations of Dedekind prime rings, J. Algebra 21 (1972), 371-393.
T H. Lenagan, Bounded hereditary noetherian prime rings, J. London Math. Soc. 6 (1973),
241-246.
9. H. Marubayashi, Modules over bounded Dedekind prime rings, Osaka ]J. Math. 9 (1972),
95-110.
10. S. Singh, Quasi-injective and quasi-projective modules over hereditary noetherian prime rings,
Can. J. Math. 26 (1974), 1173-1185.
Modules over hereditary noetherian prime rings, Can. J. Math. 27 (1975), 867-883.

A

=

e

11.

Guru Nanak Dev University,
Amritsar, India

https://doi.org/10.4153/CJM-1976-008-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-008-3

