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For a finite group G, the minimal faithful permutation representation degree, denoted
by μ(G), is defined as the smallest n ∈ {0, 1, 2, . . .} such that G embeds in Sym(n). The
task of determining μ(G) for an arbitrary G is a complex undertaking, and can be linked
to addressing a difficult minimisation problem concerning the lattice of subgroups of G
(see [11, 17]). It is interesting to note that the relationship between the minimal degrees
of quotient groups and their parent groups is quite uncertain. Despite the fact that the
quotient group may be simpler than the parent group, its lattice of subgroups may be
more restrictive so that, when solving the minimisation problem, the minimal degree
of the quotient group can actually be greater than the minimal degree of the parent
group [23]. In such cases, the parent group is called exceptional. Though exceptional
groups are not particularly rare, this terminology, introduced in the 1980s in [11], has
persisted and this class of groups has been explored by a number of researchers (see
[7, 11, 21, 22]).

In the dissertation, we study the delicate relationship between the minimal degrees
of finite groups and their respective quotient groups. We address some gaps in the
current literature, rectify some existing flaws, and introduce new terminologies and
directions for future research. The thesis is a blend of mathematical argument and
concrete examples, supported by the use of computer algebra software (in particular,
[4, 9, 28]).

In Chapter 1, we provide an overview of the historical context of the concepts
presented within the thesis, and highlight the contributions of researchers to this
evolving field (in particular, [8–16, 18–20, 24–27, 29]), establishing the framework for
the study that follows. In Chapter 2, we provide some essential background information
for the subsequent chapters. We also revisit the work of Lemieux [21, 22] and provide
a more accurate classification of the minimal degrees of groups of order p4, where
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p is an odd prime. We conclude this chapter by establishing an explicit isomorphism
between some groups from Burnside’s 1911 classification of groups of order p4 [6]
and some groups appearing in a 2017 paper by Britnel et al. [5], in the context of the
classification of exceptional groups of order p5. In Chapter 3, we reproduce a class
of exceptional groups of order p5, described in the aforementioned 2017 paper, but
providing more direct and simplified proofs. This is followed by Chapter 4, where we
present a comprehensive classification of all exceptional groups of order 243 = 35,
providing detailed explanations and proofs. This study serves as an adjustment to
and amplification of a table that was previously published in [5]. In Chapter 5, we
investigate minimal degrees of groups associated with certain wreath products. We
also construct sequences of groups that have the property where some proper quotients
are isomorphic to subgroups that have the same minimal degree, thus possessing what
is known as the almost exceptional property which arises in the context of the abelian
quotients conjecture [19, 20]. In addition, we demonstrate the possibility of having
an almost exceptional group with an arbitrarily long chain of normal subgroups such
that all of their respective quotients have the same minimal degree. Furthermore, it is
possible to have an unlimited number of pairwise incomparable subgroups with the
same minimal degree. The results depend on a theory of semidirect products where
the base group is a vector space of dimension k over a field with p elements, with p a
prime and k a positive integer. The base group is extended by a cyclic group of order
p, which is represented by a k × k matrix, adapting a technique from [10, 15]. A final
application is made to construct sequences of groups with the property that the direct
products have minimal degrees that grow linearly with the number n of factors, while
their respective quotients, realised as central products, have minimal degrees that grow
exponentially with n. This generalises a result of Neumann [23].

The thesis is supported by three appendices. In Appendix A, we provide detailed
information about minimal degrees of groups of order at most 63, extending a table in
[12]. In Appendix B, we provide a comprehensive analysis of the minimal degrees of
groups of order 243 and their corresponding quotient groups of order 81. In Appendix
C, we present a table of wreath product groups of various orders, up to 500, including
their minimal degrees.

Some of this research is available in [1–3].
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