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1. INTRODUCTION

Flexibility in model specification is one of the key features pursued by applied
economists while using nonparametric method. This is because different applica-
tions need different model specifications that are often guided by economic theory
or practical experience. In addition, there are potentially multiple discrete covari-
ates in many economic datasets. It is hence an empirical concern to handle discrete
covariates appropriately in the estimation procedures of economic applications.

In this paper, we address the above two concerns in estimating the generalized
additive model with an unknown link function as

H(x) = G
( K∑

k=1

fk(x
k)

)
, (1)

where H(·) is a function that can be consistently estimated (such as nonparametric
regression), but the link function G(·) and the component functions fk(·)’s are
unknown with x ≡ (x1, . . . ,xK) ∈ R

d and xk ∈ R
dk . The first concern is addressed

by allowing a flexible grouping of the covariates in the sub-vectors xk for k =
1, . . . ,K.1 In this way, a researcher can group the covariates according to economic
theory or practical experience, instead of having to restrict one or all of sub-
vectors to be univariate. The second concern is addressed by allowing discrete
covariates in the estimation procedure. The parametric version of this functional
restriction has been implemented in many economic applications, including the
very popular specification of constant elasticity of substitution in the estimation of
production function. See, e.g., Kmenta (1967), Hodges (1969), Paraskevopoulos
(1979), Antras (2004), Klump, McAdam, and Willman (2007), and Berkowitz, Ma,
and Nishioka (2017), among others.

To identify the model primitives of G(·) and fk(·)’s, we transform the model
(1) by a known mapping into a new model with the link function G(·) and
some univariate component functions f̃k(·)’s. We then identify the new model
by applying some existing identification approach to the generalized additive
model with univariate components. Closely following the identification strategy,
we propose a three-step procedure to estimate the link G(·) and the original
components fk(·). The consistency and asymptotic normality is then established
for the estimator of the link G(·) at a one-dimensional convergence rate and for
the estimator of the component fk(·) at a dk-dimensional convergence rate.

Our paper contributes to the estimation of the generalized additive model. With
a known link function and only univariate component functions, Chen et al. (1996),
Linton and Härdle (1996), Horowitz and Mammen (2004), and Ma (2012), among
others, estimated the univariate components at a one-dimensional convergence
rate. Their estimators, hence, have no curse of dimensionality. With an unknown
link and only univariate components, Horowitz (2001), Horowitz and Mammen

1The generalized additive model requires that the component functions are non-overlapping in their arguments,
namely any two of x1, . . . ,xK do not share common elements.
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(2007, 2011), and Lin et al. (2018), among others, recovered the univariate
components still at a one-dimensional convergence rate and hence avoided the
curse of dimensionality. Jacho-Chávez, Lewbel, and Linton (2010; JLL hereafter)
generalized the framework with only univariate components (and an unknown link)
to allow multivariate components, as long as one component function is univariate.
Our paper further generalizes the model to allow for a flexible specification of
additivity, and the existence of a univariate component function is not needed. In a
related area, Lewbel, Lu, and Su (2015) provided a nonparametric test of whether
the monotonic transformation structure is correctly specified. With a weaker
notion of separability, Pinkse (2001) developed the estimators of f̃1(·), . . . , f̃K(·)
in a nonparametric regression with weak separability as E(Y|X = x,Z = z) =
G̃(x, f̃1(z1), . . . , f̃K(zK)) where G̃ is monotone in f̃1, . . . , f̃K , and furthermore all of
f̃1(·), . . . , f̃K(·) are monotone in their respective first arguments. He showed that the
functions f̃1(·), . . . , f̃K(·) can be identified up to a monotonic transformation. The
generalized additive model is in general identified up to location and sign-scale
normalizations.2 The papers most relevant to ours are Horowitz (2001) and JLL in
this research line. To clarify our contributions relative to them, consider model (1)
with K = 2 and d1,d2 ≥ 2. Horowitz (2001) identified such a model by further
imposing an additive structure on both f1(·) and f2(·) as f1(x1) = ∑d1

k=1 f1k(x1
k)

and f2(x2) = ∑d2
k=1 f2k(x2

k). Although such an extra additive structure reduces the
dimensionality of this problem to 1, it is vulnerable to misspecification error.
Relevant economic theory might rule out any additional additive structure on
the components of f1(·) and f2(·). JLL identified this model by imposing an
additive structure on one of f1(·) and f2(·) as f1(x1) = f11(x1

1)+ f12(x1
2, . . . ,x

1
d1

) or
f2(x2) = f21(x2

1) + f22(x2
2, . . . ,x

2
d2

). The extra additive structure imposed by JLL
is weaker than the one of Horowitz (2001), but their identification requires a
large image/support condition (see Condition I2(iv) of their Assumption I) which
substantially restricts its applicability in real empirical applications. Their identifi-
cation strategy also rules out discrete elements in x1 and x2 (see condition I1 of their
Assumption I), and hence further restricts their applicability in real applications.3

In contrast, we identify such a model without imposing any extra additive structure
or any large image/support condition. Our identification approach also allows for
discrete elements in x1 and x2.

Our paper also contributes to the research on the identification of model
primitives by exploiting the monotonicity restrictions on nonparametric functions.
One of our key identification steps exploits the monotonicity of the unknown link
G(·) to transform the original model into a new model with univariate components.

2Other related papers include Ma and Song (2015) who estimated the unknown link function of varying index
coefficient models by the means of B-splines, as well as Kohler and Krzyz̈ak (2017) and Schmidt-Hieber (2020).
The latter two articles estimated nonparametric regression by deep neural network methods, and have natural links
to the generalized additive model.
3Note that discrete regressors are still not allowed to enter any component functions in their extension to handle
discrete regressors (see Section 6 of Jacho-Chávez, Lewbel, and Linton, 2010).
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Our identification is hence established by this connection between our model with
a flexible grouping and the transformed model with univariate components. The
identification of the latter has been well studied. The monotonicity of transfor-
mation function has been employed to identify the model primitives of different
variants of transformation model by, e.g., Khan (2001), Chen (2002, 2010a, 2010b,
2012), and Chen and Zhang (2020). Moreover, the monotonicity of nonparametric
function on latent random variables has been used to identify the non-separable
models by, e.g., Chesher (2003) and Matzkin (2003). In the auction literature, the
monotonicity of bidding strategy helps to identify the value distribution by, e.g.,
Guerre, Perrigne, and Vuong (2000, 2009), Athey and Haile (2002), Li and Zheng
(2009), Marmer and Shneyerov (2012), Gentry and Li (2014), and Li and Liu
(2018). The monotonicity of strategies is also used to identify discrete games by,
e.g., Tang (2010), De Paula and Tang (2012), Grieco (2014), and Liu, Vuong, and
Xu (2017), with a notable exception of Lewbel and Tang (2015). To test whether
monotonicity restrictions hold, Hoderlein et al. (2016) provided a testing procedure
in the structural model without strategic interaction; while Liu and Vuong (2020)
proposed nonparametric tests for monotonicity of strategies in Bayesian games.4

The rest of this paper is organized in the following way. Section 2 presents our
generalized additive model with two component functions. It also lays out our
strategy to identify the link function G(·) and the component functions fk(·) for
k = 1,2. In Section 3, we propose a nonparametric estimation procedure closely
following the identification strategy. Section 4 then establishes the large-sample
properties of our estimators. In Section 5, a simulation is used to demonstrate
the finite sample performance of our nonparametric estimators. Section 6 briefly
discusses how to extend our framework to cases with discrete covariates and more
than two components. Section 7 concludes. The appendix collects the proofs of our
theorems. The Supplementary Material (SM) collects some notations and technical
lemmas (as well as their proofs).

2. THE MODEL AND IDENTIFICATION

We consider the generalized additive model with an unknown link function as
follows:

H(x) = G
( K∑

k=1

fk(x
k)

)
, (2)

where H(·) is a function that can be identified directly by the joint distribution
of observables and can therefore be consistently estimated, such as the mean
regression function E(Y|X = ·) or the quantile regression function QY|X(τ0|·) for
a given τ0, and x = (x1, · · · ,xK) such that xk ∈ R

dk for dk ≥ 1. The parameters of

4While maintaining the monotonicity restriction on bidding strategies, Liu and Luo (2017) proposed a nonparametric
inference procedure to compare the valuation distributions in first price auctions.

https://doi.org/10.1017/S0266466624000318 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000318


NONPARAMETRIC IDENTIFICATION AND ESTIMATION 5

interest include the unknown link function G(·) and the component functions fk(·)
for k = 1, . . . ,K.

For ease of exposition, we focus on the case of two component functions in the
link, i.e., the model is simplified as

H(x) = G(f1(x
1)+ f2(x

2)), (M1)

where the unknown link function G(·) is monotonic, x ≡ (x1,x2) ∈ R
d and

xk ∈ R
dk for k = 1,2. We will return to the general case with more than two

components in Section 6.2. Clearly, d = d1 + d2. Throughout the paper, we let
X ≡ (X1,X2) be a random vector in R

d with Xk denoting a random vector in
R

dk . Let x ≡ (x1,x2) be the realized value of X with xk ∈ R
dk , for k = 1,2. In

addition, let pV(·) and pVs|Vt(·|vt) denote the probability density function of any
given random vector/variable V and the conditional density function of Vs given
Vt = vt, respectively.

In this paper, we provide the identification and estimation of G(·) and fk(·)’s
under reasonably weak restrictions motivated by empirical concerns. Specifically,
we allow for a flexible division of (x1,x2) guided by economic theory or practical
experience,5 and discrete variables in x1 and/or x2. The latter is motivated by
the presence of discrete variables in many economic datasets. For presentation
purposes, we first consider the case of (x1,x2) to only have continuous variables.
We then return to the case with discrete variables in Section 6.1.

We obtain the nonparametric identification of (M1) in three steps. In the first
step, we transform it into a new generalized additive model with univariate
components. The new model has the same link function as (M1). In the second step,
the transformed model is identified by a strategy adapted from Horowitz (2001).
The original component functions are identified in the third step by applying the
inverse of step-one transformation.

We first transform the original model (M1) into a new model with univariate
components. Such a transformation is given by the following theorem.

Theorem 1. Under a strictly monotonic link function G(·), the generalized
additive model (M1) can be transformed equivalently to

H(z) = G(f̃1(z
1)+ f̃2(z

2)), (M2)

where H(z) = E[H(X)|ζ1(X1) = z1,ζ2(X2) = z2], the inverse of f̃k(·) is f̃ −1
k (s) =∫

G(s + f−k(x−k)) · w−k(x−k)dx−k, and ζk(xk) = ∫
H(x) · w−k(x−k)dx−k with freely

chosen nonnegative weight functions wk(·) for k = 1,2 where −k denotes the index
other than k in {1,2}.

Theorem 1 transforms the original model (M1) into a new model (M2) which
is easier to analyze for two reasons. First, the new function H(·) can be identified,

5For example, let (x1,x2) = (x1,x2,x3,x4). Our model allows all possible divisions, such as x1 = (x1,x2),x2 = (x3,x4)

or x1 = x1,x2 = (x2,x3,x4).
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since the function H(·) and hence its weighted integrals ζk(·)’s are identified.
Second, both of the new components f̃1(·) and f̃2(·) are univariate. Moreover, the
functions f̃k(·)’s and their inverses are monotonic when the link G(·) is monotonic.
To simplify the notation, hereafter let Z = (Z1,Z2) with Zk = ζk(Xk), and z = (z1,z2)

with zk ∈ R for k = 1,2.
Before proceeding with the identification of new model (M2), we give the

identifying assumptions as follows.

Assumption I (Identification condition). (i) Location normalization: f̃1(z1
0) =

f̃2(z2
0) = 0 for some interior point (z1

0,z
2
0) in the support of Z.

(ii) Scale normalization:
∫

w3(z1)/f̃ ′
1(z

1)dz1 = 1 where w3(·) is some nonnega-
tive weight function by choice.

(iii) Monotonicity: the link function G(·) is strictly monotonic.

Parts (i) and (ii) of Assumption I specify the location and scale normalizations
needed for the identification. Similar normalizations have been adopted by the
literature (see, e.g., Horowitz, 2001) to identify the generalized additive model.
Note that our identification strategy still works (with minor change) if the location
normalization is relaxed to f̃k(zk

0) = f̃k0 with some known constant f̃k0 ∈ R for k =
1,2. We can also adopt other location and scale normalizations, such as the ones
of JLL. Part (iii) imposes a monotonicity condition on the link function G(·). Such
a monotonicity condition is used to guarantee the existence of f̃k(·)’s and their
inverses.

In the second step, we turn to identify the new model (M2). Such an identi-
fication is achieved in two stages by applying a strategy adapted from Horowitz
(2001). In the first stage, we identify the transformed components f̃1(·) and f̃2(·).
In the second stage, the unknown link G(·) is identified.

We now turn to the identification of transformed components f̃k(·)’s. Let H(z) =
E[H(X)|Z = z], and ∂kg(z) = ∂g(z)/∂zk for any multivariate function g(z). The
identification idea comes from the following two basic equations:

∂1H(z) = G′(f̃1(z1)+ f̃2(z
2)) · f̃ ′

1(z
1), (3)

∂2H(z) = G′(f̃1(z1)+ f̃2(z
2)) · f̃ ′

2(z
2). (4)

Letting (4) be divided by (3), we obtain

f̃ ′
2(z

2)

f̃ ′
1(z

1)
= ∂2H(z)

∂1H(z)
. (5)

We next multiply both sides by w3(z1) and integrate (i) by z1 on the whole support
of Z1 ≡ ζ1(X1) and (ii) by z2 from z2

0 to z2, and get

f̃2(z
2) =

∫ z2

z2
0

f̃ ′
2(z

2)dz2 ·
∫

w3(z
1)/f̃ ′

1(z
1)dz1 =

∫ z2

z2
0

∫
∂2H(z)

∂1H(z)
·w3(z

1)dz1dz2,

(C1)
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where the first equality comes from the location and scale normalizations imposed
by Assumption I. The second transformed component function f̃2(·) is hence
identified by (C1).

The identification of f̃1(·) follows a similar strategy. Specifically, applying
previous strategy to f̃ ′

1(z
1)/f̃ ′

2(z
2) = [∂1H(z)]

/
[∂2H(z)], we get

f̃1(z
1) =

[∫ z1

z1
0

∫
∂1H(z)

∂2H(z)
·w4(z

2)dz2dz1
]/[∫

w4(z
2)/f̃ ′

2(z
2)dz2

]
. (6)

We can identify the first transformed component f̃1(·) if the denominator∫
w4(z2)/f̃ ′

2(z
2)dz2 can be identified. This is achieved by the scale normalization

and (5) as

1∫
w4(z2)/f̃ ′

2(z
2)dz2

=
∫ w3(z1)

f̃ ′
1(z1)

dz1

∫ w4(z2)

f̃ ′
2(z2)

dz2
=

∫
w3(z1)∫ f̃ ′

1(z1)

f̃ ′
2(z2)

·w4(z2)dz2
dz1 =

∫
w3(z1)∫

∂1H(z)
∂2H(z) ·w4(z2)dz2

dz1,

which introduces an expression to identify the first transformed component f̃1(·)
as follows:

f̃1(z
1) = c ·

∫ z1

z1
0

∫
∂1H(z)

∂2H(z)
·w4(z

2)dz2dz1, (C2)

where c = ∫
ω3

(
z1

) ·
[∫ [

∂1H(z)
/
∂2H(z)

] · ω4
(
z2

)
dz2

]−1
dz1. Consequently, the

first transformed component function f̃1(·) is identified by (C2).
After identifying the transformed components f̃k(·)’s, we now investigate the

identification of the unknown link G(·). The function T(z) = f̃1(z1) + f̃2(z2) is
identified once the transformed components f̃1(·) and f̃2(·) are identified. The
unknown link function G(·) is then identified by the nonparametric regression of
H(X) on T(Z), namely E

[
H(X)

∣∣T(Z)
]
, due to the following result:

E
[
H(X)

∣∣T(Z) = τ
] = E

[
H(Z)

∣∣T(Z) = τ
] = G(τ ), (L1)

where the first equality comes from the fact that, given T(Z), the conditional
expectation of H(X) and H(Z) = E

[
H(X)

∣∣Z]
are the same by the law of iterated

expectation; and the second equality holds due to the restriction given by (M2).
In particular, when H(X) is a nonparametric regression E(Y|X), by the law of
iterated expectation, the identification equation (L1) for the link G(·) can be further
simplified as

G(τ ) = E
[
Y
∣∣T(Z) = τ

]
. (L2)

In the final step, we use the inverse of step-one transformation to identify the
original components f1(·) and f2(·). Notice that the original link G(·) has already
been identified in step two. This is accomplished by the following mapping from
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the inverse of step-one transformation:

fk(x
k) = f̃k(ζk(x

k)), for k = 1,2, (7)

which can be derived by replacing s with fk(xk) in the expressions of f̃ −1
k (·) of

Theorem 1 and exploring the equality of (M1). Both of the original component
functions fk(·) for k = 1,2 are then identified, since ζk(·)’s are identified functions
by their definitions in Theorem 1, and f̃k(·)’s have been identified in step two.

We summarize the above discussion on the identification of the link function
G(·) and the original component functions fk(·)’s in the following theorem whose
proof is omitted.

Theorem 2. Suppose Assumption I holds. Given the expressions in (C1), (C2),
and (L1) are well defined, the link function G(·) is identified by (L1), and the orig-
inal component functions are identified by (7) where the transformed component
functions f̃k(·)’s are given by (C2) and (C1), and the weighted integrals ζk(·)’s are
defined by Theorem 1 for k = 1,2. In particular, when H(x) = E(Y|X = x), the link
function G(·) is identified by a simplified expression as (L2).

Theorem 2 identifies the link G(·) and the original components fk(·)’s for k = 1,2
by applying Horowitz’s (2001) strategy to the transformed model (M2) in Theo-
rem 1. In addition, Theorem 2 establishes the identification of model primitives
when there are only two components within the link. Such an identification strategy
can be easily extended to the case of more than two components (i.e., K > 2). We
will briefly discuss such an extension in Section 6.2.

Remark 1. Theorem 2 shows that the link G(·) and components fk(·)’s are
identified under each chosen set of weights wk(·), k = 1, . . . ,4. The choice of
weights wk(·) affects the efficiency of estimating G(·) and fk(·)’s.

3. ESTIMATION

This section only considers estimating the parameter of interest in the case of
nonparametric (mean) regression for H(·), i.e., H(x) = E(Y|X = x). We leave other
cases of H(·) (such as the case of quantile regression) for future research. In the
case of nonparametric regression, note that

E
[
Y
∣∣Z = z

] = H(z) = G
(
f̃1(z

1)+ f̃2(z
2)

)
(8)

by the law of iterated expectation. That is, our estimation problem is essentially
the same as Horowitz (2001), in which all component functions are univariate, if
the true ζ1(·) and ζ2(·) were used in our estimation. Consequently, we propose
a three-step estimation procedure by the kernel method to recover the parameter
of interest, namely the link function G(·) and the component functions fk(·) for
k = 1,2. We leave other nonparametric alternatives such as the sieve method
proposed by, e.g., Ai and Chen (2003) and Chen (2007), for future research. In
the first step, the nonparametric regression H(·) and its partial integrals ζk(·)’s are
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recovered by the local polynomial method, then the partial derivatives ∂kH(·) for
k = 1,2 are estimated by another local polynomial regression of Y on two generated
regressors Ẑ1 = ζ̂1(X1) and Ẑ2 = ζ̂2(X2). In step two, the (transformed) components
f̃k(·)’s are estimated through the expressions of (C2) and (C1) by replacing ∂kH(·)
for k = 1,2 with their step-one estimates, and the link G(·) is recovered through
the local polynomial regression according to (L2). In the third step, the original
components fk(·) for k = 1,2 are then recovered according to (7) by replacing f̃k(·)
and ζk(·) with their nonparametric estimates.

Such a kernel estimation approach has several attractive features. First, the
estimation strategy closely follows the identification idea laid out in Section 2.
In particular, it transforms the estimation problem with multivariate components
to the one with univariate components. The latter has been well studied in the
literature. Second, it can group (X1,X2) in a flexible way. This flexibility can
be important to adopt the generalized additive model in empirical applications,
since many applications may specify some or even all component functions to be
multivariate. Third, we only need one continuous variable in X1 and X2, namely,
the other covariates in X1 and X2 can be all discrete. For presentation purposes,
we consider the case of (X1,X2) to only have continuous variables here. We will
return to the case with discrete variables in Section 6.1.

Specifically, our estimation approach proceeds in three steps as follows.

Step 1. Estimation of ∂kH(·). We first use a local rth-order polynomial method
to estimate H(x) = E[Y|X1 = x1,X2 = x2]6. We use a leave-one-out estimator
Ĥ−j(x), namely, the intercept of

α̂ = argmin
α

∑
i�=j

(
Yi −

∑
0≤|k|≤r

αk(Xi − x)k)2
K

(Xi − x

hH

)
,

where k = (k1,k2, . . . ,kd) is a d-tuple of integers, |k| = k1 + k2 + ·· · + kd, (Xi −
x)k = (X1

i −x1)k1 × (X2
i −x2)k2 ×·· ·× (Xd

i −xd)kd , and K(x1, . . . ,xd) = �d
�=1k(x�)

with k(·) being a univariate kernel function (i.e., a multiplicative kernel is used in
the multivariate case). More details of local polynomial regression can be found in
Appendix S.1 of SM. The generated regressors are estimated by ζ̂1

(
X1

i

) = (
1
/

n
) ·∑n

j=1 Ĥ−j
(
X1

i ,X
2
j

)
and ζ̂2

(
X2

i

) = (
1
/

n
) ·∑n

j=1 Ĥ−j
(
X1

j ,X
2
i

)
with the weights wk(·)

to be the marginal densities of Xk on SXk , namely wk(·) = pXk(·), for k = 1,2.
Finally, the partial derivatives ∂kH(·) can be recovered by another local rth-order

polynomial estimation, i.e., the slope coefficients of

β̂ = argmin
β

n∑
i=1

(
Yi −

∑
0≤k1+k2≤r

βk1,k2 (̂ζ1
(
X1

i

)− z1)k1 (̂ζ2
(
X2

i

)− z2)k2
)2

· k
( ζ̂1

(
X1

i

)− z1

hH

)
k
( ζ̂2

(
X2

i

)− z2

hH

)
.

Denote the derivative estimators by ∂kĤ(z) for k = 1,2.

6Here, r is also the smoothness of unknown functions and densities. See Assumption 3.
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Step 2. Estimation of the transformed model. The transformed component
functions f̃k(·)’s are estimated by the sample analogue of (C2) and (C1) as follows:

̂̃f 1

(
z1) = ĉ

∫ z1

z1
0

∫
∂1Ĥ(z)

∂2Ĥ(z)
ω4

(
z2)dz2dz1,

̂̃f 2

(
z2) =

∫ z2

z2
0

∫
∂2Ĥ(z)

∂1Ĥ(z)
ω3

(
z1)dz1dz2,

where ĉ=∫
ω3

(
z1

)[∫ [
∂1Ĥ(z)

/
∂2Ĥ(z)

] ·ω4
(
z2

)
dz2

]−1
dz1.

The link function G(·) is then estimated by the intercept of

γ̂ = argmin
γ

n∑
i=1

(
Yi −

∑
0≤k≤r

γk (̂f̃ 1

(̂
Z1

i

)+̂̃f 2

(̂
Z2

i

)− τ)k
)2

k
(̂̃f 1

(̂
Z1

i

)+̂̃f 2

(̂
Z2

i

)− τ
)

hG

)
,

where Ẑk
i = ζ̂k(Xk

i ) for k = 1,2.

Step 3. Estimation of the original component functions fk(·)’s. Lastly, the
original component functions f1(·) and f2(·) are estimated by

f̂k
(
xk

) =̂̃f k

(̂
ζk

(
xk

))
, for k = 1,2.

Three remarks are in order. First, our estimators essentially have similar asymptotic
properties to Horowitz’s (2001) estimators if the true partial integrals ζk(·)’s
were used so that the first step is not needed. Second, we use local polynomial
regressions instead of local constant ones to address the boundary bias issue (see
also Fan and Gijbels, 1992). Third, the step-two estimation of the link G(·) can
be viewed as a result of estimating it by a sample analogue of (L2). It can also be
viewed as a result of recovering G(·) by a sample analogue of a moment condition
of G(τ ) = E[Y|f1(X1)+ f2(X2) = τ ] which comes from (M1) and the law of iterated
expectation.

4. LARGE SAMPLE PROPERTIES

In this section, we study the large sample properties of the estimators pro-
posed in Section 3. Let d1 ≥ d2 only for presentation purposes.7 We first state
the assumptions under which the large sample properties of our estimators are
established. Let int(�) denote the interior of any given set �. Let SW be the
support of a random vector/variable W, and let SG be defined as {τ : τ = f1(x1)+
f2(x2) for some (x1,x2) ∈ S(X1,X2)}.

Assumption 1 (DGP). {(Yi,Xi)}n
i=1 is an i.i.d. sample from the distribution of

(Y,X) which satisfies (M1) and (i) E(|Y|4+s|X = x) ≤ C for some finite C, positive
s, and all x ∈ SX; (ii) Var(Y|X = x) is continuous in x.

7If d1 < d2, we can define x1 = x2 and x2 = x1. It then follows that d1 > d2 where dk denotes the dimension of xk for
k = 1,2. We then study the new model of H(x1,x2) = G

(
f 1(x

1)+ f 2(x
2)

)
where H(x1,x2) = H(x1,x2), f 1(x

1) = f2(x2),
and f 2(x

2) = f1(x1).
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Assumption 2 (Distribution of X). The random vector X satisfies (i) SX is com-
pact; (ii) the distribution of X is absolutely continuous with respect to Lebesgue
measure and has density of pX(·) > 0 in the interior of SX; (iii) there exist some
compact intervals I1 ⊂ int

(
SZ1

)
, I2 ⊂ int

(
SZ2

)
and some c > 0 such that (a)

f̃ ′
k(z

k) ≥ c for all zk ∈ Ik and k = 1,2, (b) P(X : Zk ∈ Ik,k = 1,2) > 0, (c) zk
0 ∈ Ik

where zk
0 is defined in Assumption I for k = 1,2, (d) |G′(·)| ≥ c on SG.

Assumption 3 (Smoothness of G, fk, and pX). (i) The link function G(·) is (r+1)

times continuously differentiable. (ii) The component functions fk(·) for k = 1,2
and density pX(·) are (r +1) times differentiable with respect to any mixture of its
arguments with uniformly continuous derivatives on their supports SXk and SX .

Assumption 4 (Weights). (i) For k = 1,2, the weight function wk(·) = pXk(·).
(ii) For k = 3,4, the weight function wk(·) is nonnegative and bounded with

support Swk ⊂ Ik−2 such that wk(·) has (r + 1)th continuous derivatives on Swk

with
∫

wk(zk−2)dzk−2 = 1.

Assumption 5 (Kernel). The univariate kernel function k(·) is symmetric,
bounded, and continuously differentiable on its support [−1,1] For any d′ ≥ 1
and a kernel function K(·) on [−1,1]d′

, there is K(s1, . . . ,sd′) = �d′
j=1k(sj). Let

Hj(u) = ujK(u) for all integers j = (j1,j2, . . . ,jd) and u ∈ R
d. Then Hj(u) is

Lipschitz continuous on [−1,1]d for all j with 0 ≤ |j| ≤ 2r +1.

Assumption 6 (Bandwidth). As n → ∞, the bandwidth sequences hH , hH, and
hG go to zero and satisfy:

(i) nhd+r+1
H /log(n) → ∞, nh6

H/log(n) → ∞, nh3
G/log(n) → ∞,

(ii) hd2
H /hH → 0, log(n)2/[nhd1/2+r+1

H h3
H] → γ1, n ·hd2

H ·h2r
H → γ̃1,

(iii) hr+1
H /hG → 0, n ·hd1

H ·h2
G → ∞, nh2r+3

G → γ2, n ·h2r+2
H ·hG → γ3, nhd2+2r+2

H →
γ̃2,

(iv) hr
H/hG → 0, hG/hH → δG, n ·h2r

H ·hG → γ4,

where γ1,. . .,γ4, γ̃1, γ̃2, and δG are some nonnegative constants.

Assumption 1 describes the model and data generating process (DGP). Assump-
tion 2(i) and (ii) gives some regularity conditions on the support and density
function of the random vector X. With the normalization conditions in Assump-
tion I, Assumption 2(iii) provides sufficient conditions to identify the component
functions fk(·)’s and the link function G(·).

Assumption 3 contains some smoothness conditions on the link function G(·),
the component functions fk(·)’s, and the density function pX(·). They require
those functions having a smoothness of (r + 1). This ensures that our Taylor-
series expansions have proper orders. In addition, they imply that the transformed
component functions f̃k(·)’s also have (r + 1) derivatives which are uniformly
continuous on their supports.

Assumption 4 describes the condition on the weight functions wk(·) for k =
1, . . . ,4. For k = 1,2, it uses the marginal density of Xk on SXk as the weight wk(·)

https://doi.org/10.1017/S0266466624000318 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000318


12 SONGNIAN CHEN ET AL.

to estimate the partial integrations ζk(·) in step one of our estimation approach laid
out in Section 3. Other weights for w1(·) and w2(·) can also be used. For k = 3,4,
it requires the weight function wk(·) to be (r+1) times continuously differentiable
on its support.

Assumption 5 gives the restrictions on the univariate kernel function k(·) which
builds all multivariate kernel functions throughout this paper in a multiplicative
way. This assumption is also used in other local polynomial literature. See, e.g.,
Kong, Linton, and Xia (2010) and JLL. This assumption is utilized to derive the
uniform asymptotic representation of local polynomial estimators.

Assumption 6 specifies the conditions on the choices of bandwidths used
in our kernel estimation. These conditions permit various combinations of
bandwidths hH , hH, and hG. For example, they are satisfied when hH ∈(
n−1/(r+1+d),n−(r+1)/[r·(2r+3)]

)
, and hH = hG = n−(r+1)/[r·(2r+3)] for large enough r.

They ensure that the remainder terms are negligible in each stage of our estimation.
In particular, conditions (ii)–(iv) control the contributions from the previous
estimation steps to the asymptotic variances of f̂k(·) and Ĝ(·) for k = 1,2.

We now present the asymptotic results of our estimators of the component
functions fk(·) and the link function G(·) for k = 1,2. We first consider the
estimation of original component functions fk(·) for k = 1,2. Our third theorem
gives the asymptotic properties of the estimators f̂k(·) for k = 1,2.

Theorem 3. Suppose that Assumptions I and 1–6 hold. Then, for every k = 1,2,
as n → ∞: (i) supxk∈SXk

∣∣̂fk(xk)− fk(xk)
∣∣ → 0 in probability, and (ii) for any xk ∈

SXk ,
√

nhdk
H

(̂
fk
(
xk

)− fk
(
xk

)−Bnfk(x
k)

)
d→ N

(
0,σ 2

k (xk)
)

with

Bnfk(x
k) =hr

HBk(ζk(x
k))+hr+1

H

[
f̃ ′
k(ζk(x

k))Dk(x
k)+ B̃k(ζk(x

k))
]
, (9)

σ 2
k (xk) =f̃ ′

k(ζk(x
k))2 ·

[∫ (
e′

1S−1
r Vμ

k (t)
)2Kk(t)

2dt
]∫

E
[(

Y −H(x)
)2∣∣X = x

]
pXk|X−k (xk|x−k)2

·pX(x)dx−k,

(10)

where Bk( ·), B̃k( ·), and Dk(xk) are given by Appendix A, and e1, Sr, and Vμ

k (t)
are defined in Appendix S.1 of SM.

Theorem 3 establishes the uniform consistency and asymptotic normality of our
estimators of original component functions fk(·) for k = 1,2. It shows that the only
contributions from previous estimation steps are in the resulting biases of f̂k(·) for
k = 1,2 in the final step. The variances of previous steps do not contribute into the

variances of f̂k(·), namely the asymptotic variances of̂̃f k(·) do not enter the ones of

f̂k(·). In particular, since the estimator can be represented as f̂k(·) =̂̃f k (̂ζk(·)), the
asymptotic bias term Bnfk(x

k) consists of two parts. The first part hr
HBk(ζk(xk))

is the bias of the infeasible estimator ˇ̃fk(ζk(·)) of fk(·) if the (unobserved) true

ζk(·)’s were used in all three steps. Specifically, the infeasible estimator ˇ̃fk(·) of
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the transformed component function f̃k(·) is obtained by using the true ζk(·)’s,
instead of their estimators ζ̂k(·)’s, to recover ∂kH(·) in the first step. The second
part hr

H · [f̃ ′
k(ζk(xk))Dk(xk)+ B̃k(ζk(xk))] is the additional bias brought by using the

estimators ζ̂k(·)’s, instead of the true functions ζk(·)’s, in all three steps.
Two additional remarks are in order. First, the asymptotic bias terms Bnfk(x

k)

for k = 1,2 is controllable in general when we use bandwidths satisfying Assump-

tion 6, i.e., limsupn→∞
√

nhdk
H Bnfk(x

k) < ∞ holds. Second, there are two ways

to consistently estimate the asymptotic variances σ 2
k (xk) for k = 1,2. The first

way exploits the expression of σ 2
k (xk) and replaces its population terms with

their nonparametric consistent estimators. The other way is to estimate σ 2
k (xk) by

adapting the bootstrap method for nonparametric regression. See, e.g., Härdle and
Bowman (1988), Hall (1992), and Hall and Horowitz (2013), among others.

We next consider the estimation of link function G(·). Our next theorem
summarizes the large sample properties of our link estimator Ĝ(·). Let SG be the
compact set {τ : τ = f1(x1)+ f2(x2) for some (x1,x2) ∈ SX} where SX is the support
of X.

Theorem 4. Let Assumptions I and 1–6 hold. Then, as n → ∞: (i) supτ∈SG

∣∣Ĝ(τ )

− G(τ )
∣∣ → 0 in probability, and (ii) for any τ ∈ SG,

√
nhG · (Ĝ(τ ) − G(τ ) −

BnG(τ )
) d→ N

(
0,σ 2

G(τ )
)

with

BnG(τ ) = hr+1
G e′

1G{SG
r }−1SG,r+1

r Gr+1(τ )

−hr+1
H G′(τ )

2∑
k=1

E
[
f̃ ′
k(ζk(X

k))Dk(X
k)+ B̃k(ζk(X

k))
∣∣T = τ

]

−hr
HG′(τ )

2∑
k=1

E
[
Bk(ζk(X

k))
∣∣T = τ

]
,

(11)

σ 2
G(τ ) =Var(Y|T = τ)

pT(τ )

∫ (
e′

1G{SG
r }−1μG(u)

)2
k(t)2dt + δG ·σ 2

G2(τ ), (12)

where δG is given by Assumption 6, Bk( ·), B̃k( ·), Dk(xk), and σ 2
G2(τ ) are defined

in Appendix A, and e1G,{SG
r },SG,r+1

r ,Gr+1(τ ), and μG(u) are provided by Appendix
S.1 of SM.

Theorem 4 shows the uniform convergence and asymptotic normality of our
kernel estimator of link G(·). Several remarks are in order. First, the asymptotic
bias BnG(τ ) consists of three terms. The first term hr+1

G e′
1G{SG

r }−1SG,r+1
r Gr+1(τ )

comes from the infeasible estimation of link G(·) when the (unobserved) true ζk(·)
and f̃k(·) for k = 1,2, instead of their estimators, were used in the second step to
recover G(·). It is a bias term of a standard nonparametric regression. The other
two terms are the additional biases caused by using the feasible estimators ζ̂k(·)
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and̂̃f k(·) for k = 1,2, instead of their true functions, in the second step to estimate
G(·). Second, similar to the case of f̂k(·)’s, the asymptotic bias is controllable under
Assumption 6. Third, our asymptotic variance σ 2

G(τ ) can be estimated through
replacing its population quantities with their consistent estimators.

5. A SIMULATION STUDY

This section demonstrates the finite sample performance of our estimator by some
Monte Carlo experiments. We adopt the following DGP with the sample sizes of
400 and 800, each replicated 200 times:

Y = 1{f1(X1)+ f2(X
2
1,X

2
2)−U > 0},

where the regressors X1, X2
1 , and X2

2 are independent truncated normal on [−3,3]
with mean 0 and standard deviation of 2, and the error term U is independent of
all regressors and distributed according to standard normal N(0,1). The true link
and component functions are specified as

G(τ ) = �(τ), f1(x
1) = x1, f2(x

2
1,x

2
2) = x2

1 · x2
2,

where �(·) is the distribution function of standard normal.
Two remarks are in order. First, under this specification, the partial integrals are

ζ1(x1) = E[�(x1 +X2
1 ·X2

2)] and ζ2(x2
1,x

2
2) = E[�(X1 +x2

1 ·x2
2)], and the transformed

components are the correspondent inverse functions with f̃1(ζ1(x1)) = x1 and
f̃2(ζ2(x2

1,x
2
2)) = x2

1 ·x2
2. Second, the location normalization then requires z1

0 = ζ1(0)

and z2
0 = ζ2(0,0) since f̃1(ζ1(0)) = 0 and f̃2(ζ2(0,0)) = 0. The symmetry of

distributions of X1 and X2 implies that ζ1(0) = ζ2(0,0) = �(0) = 0.5, which is
used in the simulation. The scale normalization holds in the model with a constant

weight function w3(z1) =
(∫ 0.7

0.3

[
f̃ ′
1(z1)

]−1
dz1

)−1 ·1{0.3 ≤ z1 ≤ 0.7}.
We next provide the implementation details of our estimation method. Let

σ̂ (W) denote the standard error of a given random variable W. To estimate f1(·),
f2(·,·), and G(·), we use local linear regressions with a second-order Gaussian
kernel and the bandwidths of hH = min

{
σ̂ (X1), σ̂ (X2

1), σ̂ (X2
2)

} · n−1/7, hH =
min

{
σ̂ (̂Z1), σ̂ (̂Z2)

} · n−1/8, and hG = σ̂
(̂
f1(X1)+ f̂2(X2

1,X
2
2)

) · n−1/5 following the
simplified Silverman’s rule of thumb (Silverman, 1986; Hansen, 2009). The weight
function w4(·) is chosen according to w4(z2) = 5

3 · 1{0.2 ≤ z2 ≤ 0.8}. Meanwhile,
we replicate the estimators of JLL (a.k.a. “JLL estimators” in our paper) to do
a side-by-side comparison. The details are given as follows. In the estimation of
JLL, we also choose the second-order Gaussian kernel to do local linear regressions
in all stages, use linear extrapolation to extend the integrand function when we do
numerical integration and apply Silverman’s rule of thumb to pick the bandwidths.
To compute the integrals in our and JLL’s estimators, we adopt the midpoint rule
to calculate them numerically.

We now show the performance of our estimators and JLL estimators of f1(·),
f2(·,·), and G(·) to demonstrate how well our estimation procedure can recover the
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Table 1. Simulation results for the estimation of component function f1(x1).

Ours JLL

n x1 Bias SD RMSE Bias SD RMSE

−1 0.109 0.162 0.194 0.141 0.249 0.286

400 0 −0.005 0.121 0.121 0.018 0.246 0.246

1 −0.104 0.161 0.191 −0.148 0.272 0.309

−1 0.095 0.115 0.149 0.129 0.220 0.254

800 0 0.002 0.101 0.100 −0.007 0.165 0.164

1 −0.089 0.126 0.154 −0.122 0.185 0.221

Table 2. Simulation results for the estimation of component function f2(x2
1,x

2
2).

Ours JLL

n x2
1 x2

2 Bias SD RMSE Bias SD RMSE

−1 −1 −0.115 0.237 0.263 −0.107 0.346 0.361

0 −1 −0.007 0.199 0.199 0.017 0.253 0.253

400 1 −1 0.083 0.239 0.252 0.084 0.315 0.326

−1 1 0.065 0.251 0.258 0.095 0.288 0.303

0 1 −0.008 0.201 0.201 −0.006 0.248 0.248

1 1 −0.078 0.242 0.254 −0.097 0.301 0.315

−1 −1 −0.103 0.168 0.197 −0.061 0.257 0.263

0 −1 −0.005 0.151 0.151 −0.028 0.191 0.193

800 1 −1 0.086 0.182 0.201 0.030 0.245 0.247

−1 1 0.069 0.182 0.194 0.037 0.266 0.268

0 1 −0.022 0.152 0.153 0.023 0.210 0.210

1 1 −0.095 0.176 0.200 −0.056 0.267 0.273

component and link functions at different locations. In particular, we report the
bias (Bias), the standard deviation (SD), and the root mean square error (RMSE)
for all estimators. Table 1 summarizes the simulation results for the estimation
of components f1(·), Table 2 is for f2(·,·), and Table 3 for the estimation of link
G(·). We report in Tables 1–3 the simulation results for ours and JLL estimators
at different points in the interior of the support of each function, where the left
sections display the results for our estimators and right sections for JLL.

Tables 1 and 2 show the estimation of components f1(·) and f2(·,·), respectively.
Table 1 shows the performance of our component estimator f̂1(x1) for x1 = −1,0,1.
They show that our estimator f̂1(·) performs reasonably well even under the
moderate sample size of 400. When the sample size increases from 400 to 800, the
RMSEs of f̂1(·) decline significantly. Moreover, the estimation biases are relatively
small under both sample sizes of 400 and 800. Table 2 reports the estimation
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Table 3. Simulation results for the estimation of link function G(τ ).

Ours JLL

n τ Bias SD RMSE Bias SD RMSE

−3 0.000 0.006 0.006 0.013 0.039 0.041

400 0 0.000 0.062 0.061 0.002 0.049 0.049

3 0.001 0.010 0.010 −0.016 0.045 0.047

−3 0.001 0.005 0.005 0.010 0.027 0.028

800 0 0.002 0.043 0.042 0.001 0.041 0.041

3 0.000 0.004 0.004 −0.007 0.026 0.026

results for f2(x2
1,x

2
2) for all x2

1 = −1,0,1 and x2
2 = −1,1. We first look at the case of

x2
2 = −1, which is shown in the upper sections of Table 2. The biases are relatively

small under both n = 400 and n = 800. In addition, the decrease of RMSEs is
significant when the sample size increases from 400 to 800. Our estimation of the
two-dimensional function f2(·,·) hence performs reasonably well. We then look at
the case of x2

2 = 1 shown in the lower sections of Table 2. Similar to the case of
x2

2 = −1, it confirms that (i) the biases are relatively satisfactory under both sample
sizes of 400 and 800 and (ii) our estimator becomes closer to its true value as the
sample size increases.

Table 3 gives the performance of our link estimator Ĝ(τ ) for τ = −3,0,3.
In general, our link estimator performs relatively well, although it is given by a
nonparametric regression with a regressor generated by a two-step nonparametric
estimation. The biases are reasonably small under n = 400 and n = 800. In
addition, the RMSEs decrease when the sample size increases from 400 to 800.

Tables 1–3 also compare our results with JLL estimators. We can see that (i)
our estimators have smaller variances and RMSEs than JLL estimators with two
exceptions in the estimation of f1( ·), f2( ·), and G( ·) and (ii) our estimators have
biases in a magnitude similar to JLL. Thus, our estimators perform well in finite
sample even though we do not require the existence of an univariate component
like JLL. We also compare our method with Pinkse (2001) in finite sample before
concluding our simulation section. In the context of Pinkse (2001), the above
model can be represented as

H(x1,x2) = G̃
(
x1, f̃2(x

2)
)
,

where H(x1,x2
1,x

2
2) = �(x1 + x2

1x2
2), f̃2(x2) = x2

1x2
2, and G̃(x1,t) = �(x1 + t). The

estimation of H(·) is the object of comparison here. To implement his approach, we
apply local linear method for the first-step estimation and a weighted local constant
regression for the second-step estimation. The second-step estimation closely
follows the definition of his estimator. We also use the second-order Gaussian
kernel and bandwidths following the rule of thumb. The weight is chosen according
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to the simulation study of Pinkse (2001). We report the simulation results of his
third estimator, namely Sπ , here.

Table 4 shows the simulation results for ours, JLL, and Pinkse’s estimators of
the overall function H(x1,x2

1,x
2
2) under sample sizes 400 and 800. The comparison

shows that (i) the RMSEs of our estimator decline significantly when the sample
size increases from 400 to 800; (ii) our estimator has smaller variances and RMSEs
than both of JLL and Pinkse’s (2001) estimators in most cases; and (iii) our biases
are comparable to the best ones between JLL and Pinkse (2001).

6. EXTENSIONS

6.1. Discrete Covariates

We now turn to the case with discrete covariates in (x1,x2). Let Xk = (Xk
d,X

k
c) with

discrete regressors Xk
d ∈ R

ak (ak ≥ 1) and continuous regressors Xk
c ∈ R

bk (bk ≥ 1)
for k = 1,2.

With mixed data of discrete and continuous regressors, our transformation and
identification results, namely Theorems 1 and 2, still hold under proper choices
of weight functions wk(·) for k = 1, . . . ,4 and proper definition of integration with
respect to discrete variables. We follow Li and Racine (2007) to accommodate both
discrete and continuous regressors in our estimation. We mainly need to modify
the kernel regression estimators of ζ̂k(xk) for k = 1,2 and Ĥ−j(x) in Step 1 (outlined
in Section 3) as follows:

ζ̂1(x
1) = 1

n

n∑
j=1

Ĥ−j
(
x1,X2

j

)
, ζ̂2(x

2) = 1

n

n∑
j=1

Ĥ−j
(
X1

j ,x
2
)
,

where Ĥ−j
(
x
)

comes from the intercept of a leave-one-out local polynomial
estimation

min
α

∑
i�=j

(
Yi −

∑
0≤|k|≤r

αk(Xci − xc)
k)2

KhH,λ(x,Xi),

where k = (k1,k2, . . . ,kb1+b2), KhH,λ(x,X) = �
b1
�=1k

( x1
c�−X1

c�
hH

) · �
b2
�=1k

( x2
c�−X2

c�
hH

) ·
�

a1
�=1λ

N1
�
(x,X)

1� · �a2
�=1λ

N2
�
(x,X)

2� , and Nk
� (x,X) = 1{Xk

d� �= xk
d�}. Here, we use a multi-

plicative kernel function for the multivariate regressors. A univariate kernel of
k(·) is adopted for the continuous regressors, and another univariate kernel of

l(Xk
d�,x

k
d�,λk�) = λ

1{Xk
d�

�=xk
d�

}
k� is employed for the discrete (and unordered) regressors

with a bandwidth λk� ∈ [0,1].8

With the above adaption in our estimation (to accommodate the mixed data of
discrete and continuous regressors), we can obtain the large sample properties of

8If the discrete regressors are ordered, then a univariate kernel of l(Xk
d�,x

k
d�,λk�) = λ

|Xk
d�−xk

d� |
k� can be applied in this

case. See Li and Racine (2007) for more details.
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Table 4. Simulation results for estimating original regression function
H(x1,x2

1,x
2
2).

Ours JLL Pinkse (2001)

x1 x2
1 x2

2 Bias SD RMSE Bias SD RMSE Bias SD RMSE

n = 400

−1 −1 −1 −0.004 0.095 0.095 0.012 0.109 0.109 −0.012 0.105 0.106

0 −1 −1 −0.046 0.076 0.089 −0.081 0.102 0.130 −0.075 0.071 0.103

1 −1 −1 −0.024 0.036 0.043 −0.073 0.082 0.110 −0.049 0.034 0.060

−1 0 −1 0.039 0.073 0.083 0.101 0.095 0.138 0.052 0.062 0.081

0 0 −1 −0.004 0.084 0.084 0.014 0.106 0.106 0.003 0.079 0.079

1 0 −1 −0.045 0.070 0.083 −0.092 0.100 0.135 −0.057 0.061 0.083

−1 1 −1 0.020 0.039 0.044 0.068 0.065 0.094 0.050 0.035 0.061

0 1 −1 0.035 0.075 0.082 0.093 0.097 0.134 0.078 0.073 0.107

1 1 −1 −0.010 0.093 0.094 −0.010 0.108 0.108 0.008 0.107 0.107

−1 −1 1 0.019 0.038 0.042 0.068 0.063 0.093 0.050 0.033 0.060

0 −1 1 0.031 0.072 0.078 0.095 0.088 0.129 0.078 0.075 0.109

1 −1 1 −0.016 0.098 0.099 −0.007 0.092 0.092 0.007 0.100 0.100

−1 0 1 0.040 0.072 0.082 0.096 0.089 0.131 0.054 0.060 0.081

0 0 1 −0.004 0.087 0.087 0.008 0.096 0.096 0.004 0.078 0.078

1 0 1 −0.046 0.074 0.087 −0.095 0.095 0.134 −0.055 0.058 0.080

−1 1 1 0.011 0.092 0.093 0.011 0.101 0.101 −0.016 0.115 0.116

0 1 1 −0.036 0.079 0.086 −0.082 0.092 0.122 −0.078 0.075 0.108

1 1 1 −0.021 0.038 0.043 −0.075 0.079 0.108 0.051 0.036 0.062

n = 800

−1 −1 −1 0.001 0.070 0.070 0.020 0.092 0.094 0.000 0.088 0.088

0 −1 −1 −0.034 0.059 0.068 −0.066 0.081 0.105 −0.065 0.058 0.088

1 −1 −1 −0.018 0.032 0.037 −0.048 0.048 0.048 0.042 0.026 0.049

−1 0 −1 0.036 0.060 0.069 0.072 0.085 0.111 0.056 0.049 0.074

0 0 −1 −0.001 0.065 0.064 −0.008 0.090 0.090 0.003 0.065 0.065

1 0 −1 −0.033 0.058 0.066 −0.083 0.075 0.112 −0.048 0.048 0.068

−1 1 −1 0.018 0.032 0.037 0.050 0.066 0.083 0.044 0.026 0.052

0 1 −1 0.034 0.059 0.068 0.057 0.078 0.096 0.068 0.060 0.091

1 1 −1 0.001 0.075 0.074 −0.026 0.082 0.085 0.005 0.081 0.081

−1 −1 1 0.016 0.028 0.032 0.051 0.064 0.082 0.046 0.028 0.054

0 −1 1 0.031 0.061 0.069 0.061 0.078 0.099 0.071 0.061 0.093

1 −1 1 −0.005 0.077 0.077 −0.021 0.086 0.078 0.008 0.085 0.085

−1 0 1 0.031 0.055 0.063 0.085 0.090 0.123 0.057 0.045 0.072

0 0 1 −0.007 0.068 0.068 0.006 0.089 0.089 0.005 0.066 0.066

1 0 1 −0.038 0.059 0.070 −0.072 0.073 0.103 −0.047 0.049 0.067

−1 1 1 0.003 0.073 0.072 0.025 0.098 0.101 −0.004 0.088 0.088

0 1 1 −0.033 0.061 0.069 −0.064 0.084 0.106 −0.068 0.059 0.090

1 1 1 −0.018 0.032 0.032 −0.049 0.052 0.072 −0.043 0.025 0.050
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f̂k(·) for k = 1,2 and Ĝ(·) similar to those summarized by Theorems 3 and 4. In
particular, the asymptotic variance of f̂k(·) has an order of O

(
1
/
(nhbk

H )
)

instead of

O
(
1
/
(nhdk

H )
)

where bk < dk.

6.2. Multiple Component Functions

We next briefly discuss the extension of our method from the baseline model with
two components to the case with more than two components.

Let K > 2. For any k = 2, . . . ,K, let Hk(x1,xk) = ∫
H(x) ·pX̃−k(x̃−k) dx̃−k where

X̃−k is obtained by excluding X1 and Xk from X, and x̃−k is obtained by excluding
x1 and xk from x. This constructed Hk(x1,xk) is identified if the original H(x) is
identified. We can transform the original model (2) with K components into the
following new model with two components as

Hk(x
1,xk) = Gk(f1(x

1)+ fk(x
k)), (13)

where Gk(τ ) = ∫
G

(
τ − fk(xk)+∑K

�=2 f�(x�)
) · pX̃−k(x̃−k)dx̃−k is monotonic if the

original link function G(·) is monotonic.
Our previous idea can be applied directly to the new model (13) to identify f1(·)

and fk(·). Specifically, for any k = 2, . . . ,K, we use an idea similar to Theorem
1 to transform the new model (13) into the following model with two univariate
components:

Hk(z
1,zk) = Gk(f̃1(z

1)+ f̃k(z
k)), (14)

where Hk(z1,zk) = E[Hk(X1,Xk)|ζ1(X1) = z1,ζk(Xk) = zk], the inverse of
f̃�(·) is f̃ −1

� (s) = ∫
Gk(s + f−�(x−�)) · w−�(x−�)dx−�, and ζ�(x�) = ∫

Hk(x1,xk) ·
w−�(x−�)dx−� with freely chosen weight functions w−�(·) for � = 1,k where x−� is
xk if � = 1 and is x1 if � = k. The transformed components f̃1(·) and f̃k(·) can then
be identified by ( C2) and (C1), respectively, where H(·) is replaced by Hk(·).
The original components are identified as fk(xk) = f̃k(ζk(xk)) for all k = 1, . . . ,K.
Once all of fk(·), k = 1, . . . ,K, are identified, the original link G(·) is identified by
G(τ ) = E

[
H(X)

∣∣∑K
k=1 fk(Xk) = τ

]
. Similar to the case with two components (i.e.,

K = 2), we can closely follow the above identification strategy to estimate the link
G(·) and the components f�(·) in three steps for � = 1, . . . ,K. Let k = 2, . . . ,K. In
the first step, we estimate the transformed function Hk(z1,zk) by the nonparametric
sample analogue of its definition as Ê[Hk(X1,Xk)|̂ζ1(X1) = z1,ζ̂k(Xk) = zk], where
Hk(x1,xk) = ∫

H(x) · pX̃−k(x̃−k) dx̃−k and ζ̂�(X�)’s are also given by the sample
analogues of ζ�(X�) = ∫

Hk(X1,Xk) · w−�(X−�)dX−� for � = 1,k. Given the first-
step estimator Ĥk(z1,zk), the second step follows Horowitz’s (2001) estimation
procedure to estimate the transformed components f̃1(·) and f̃k(·) according to
(C2) and (C1), respectively, with H(·) replaced by Hk(·) in the transformed model

(14). Moreover, the link G(·) is recovered by Ĝ(τ ) = Ê
[
Y
∣∣∑K

�=1
̂̃f �(̂ζ�(X�)) = τ

]
.

In step three, the original components are then recovered by f̂�(·) =̂̃f �(̂ζ�(·)) for

https://doi.org/10.1017/S0266466624000318 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000318


20 SONGNIAN CHEN ET AL.

� = 1, . . . ,K. Note that we will obtain (K − 1) estimates for the first component
f1(·). We hence aggregate them by their average to estimate f1(·).

7. CONCLUSION

In this paper, we consider estimating the generalized additive model with a flexible
grouping and an unknown link function. To identify the model primitives, we
transform the model into a new model with univariate components. We then
identify the new model by applying the existing strategy for the generalized
additive model with univariate components. Closely following the identification
strategy, we propose a three-step procedure to estimate the link and original
components. The consistency and asymptotic normality are then established for
the link estimator at a one-dimensional convergence rate and for the component
estimators at the convergence rates corresponding to their own dimensions.

This paper adopts a multi-step kernel method to estimate the component and
link functions in the generalized additive model with a flexible additive structure
and unknown link. Hahn, Liao, and Ridder (2018) studied nonparametric two-step
sieve M estimation in a general class of semi/nonparametric models. As the sieve
method is convenient to implement in practice, it is interesting to use a multi-step
sieve method to estimate the component and link functions in our framework. This
is an interesting topic for future research.

Appendix

Appendix A defines some key notation on convergence rates, bias, and variance terms.
Appendix B proves the theorems given in the text. Appendix S.1 of SM introduces some
additional notation on local polynomial regression for the convenience of discussion in the
text and proofs. All technical lemmas are stated and shown in Appendix S.2 of SM.

A. Key Notation on Convergence Rates, Bias, and Variance Terms

For k = 1,2,

σ 2
G2(τ ) = G′(τ )2

2∑
k=1

∫
c2(2−k)ω5−k(Z

−k
i )2

·
{∫ (

qk(Z0
ki)

′e′
dS̃−1

r Vμ̃
k (t)

)2Kk(t)
2dt

}
· Var(Y|Z = Z0

ki)

pZ(Z0
ki)

dZ−k
i ,

(A.1)

Jnk(x
k) = 1

nhdk
H

n∑
i=1

Kk
(Xk

i − xk

hH

) · Yi −H(xi)

pXk|X−k (xk|X−k
i )

e′
1S−1

r Vμ
k

(Xk
i −xk

hH

)
, (A.2)

Dk(x
k) = e′

1S−1
r Sr+1

r

∫
Hr+1(xk,x−k)pX−k (x−k)dx−k, (A.3)
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J̃nk(z
k) = c2−k

nhH

n∑
i=1

ω5−k(Z
−k
i )

[
qk(Zki)

′e′
dS̃−1

r
Yi −H(Xi)

pZ(Zki)
Vμ̃

k

( ζk(Xk
i )− zk

hH

)
Kk

( zk − ζk
(
Xk

i

)
hH

)

−qk(Z0
ki)

′e′
dS̃−1

r
Yi −H(Xi)

pZ(Z0
ki)

Vμ̃
k

( ζk(Xk
i )− zk

0

hH

)
Kk

( zk
0 − ζk

(
Xk

i

)
hH

)]

Bk
(
zk) = c2−k

∫ zk

zk
0

∫
qk(ν)′D(ν)ω5−k

(
ν−k)dν−kdνk,

B̃k
(
zk) = c2−k

∫ zk

zk
0

∫
qk(ν)′D(ν)ω5−k

(
ν−k)dν−kdνk,

D(z) = e′
dS̃−1

r S̃r+1
r Hr+1(z),

D(z) = ẽ1D1(z)+ ẽ2D2(z),

where c = ∫
ω3

(
z1) ·

[∫ [
∂1H(z)

/
∂2H(z)

] ·ω4
(
z2)

dz2
]−1

dz1, Vμ
k (uk) = ∫

μ(uk,t−k)K−k

(t−k)dt−k, Vμ̃
k (ũk) = ∫

μ̃(ũk, t̃−k)k−k(t̃
−k)dt̃−k, T = f1(X1) + f2(X2), X1i = (x1,X2

i ),

X2i = (X1
i ,x2), Z1i = (z1,Z2

i ), Z2i = (Z1
i ,z2), Z0

1i = (z1
0,Z

2
i ), Z0

2i = (Z1
i ,z2

0), KK(uk) =∫ uk

−∞ kk(t
k)dtk, xk

s denotes the sth element of xk, e1 = (1,0,0, . . . ,0)′ is an Nr × 1 vec-
tor, e1G = (1,0,0, . . . ,0)′ is an (r + 1) × 1 vector, ẽ1 = (1,0)′, ẽ2 = (0,1)′, q2(ν) =[
− ∂2H(ν)

[∂1H(ν)]2 , 1
∂1H(ν)

]′
, q1(ν) =

[
1

∂2H(ν)
, − ∂1H(ν)

[∂2H(ν)]2

]′
, and

Dk(z) = −pZ(z)−1 ∂

∂zk

{ 2∑
�=1

∂

∂z�
H(z)

∫
D�(x

�)pX�|Z(x�|z)dx� ·pZ(z)

}
,

where Dk(x
k)’s are given by (A.3), respectively.

Furthermore, let ξH = hr+1
H +

√
log(n)

/(
nhd

H

)
, ξH = hr+1

H +
√

log(n)
/(

nh2
H

)
, ξ ′

H =
hr
H+

√
log(n)

/(
nh4

H
)
, and ξHk = hr+1

H +
√

log(n)
/(

nhdk
H

)
for k = 1,2. LetSZ be a compact

set range of {(z1,z2) : z1 = ζ1(x1) and z2 = ζ2(x2) for some (x1,x2) ∈ SX}, and let SZk be
a compact set range of {zk : zk = ζk(x

k) for some xk ∈ SXk } for k = 1,2.

B. Proofs of Theorems

B.1. Proof of Theorem 1

Proof. By definition, for k = 1,2, we have

ζk(x
k)=

∫
H(x)w−k(x

−k)dx−k =
∫

G
(
f1(x1)+ f2(x2))w−k(x

−k)dx−k =δk
(
fk(x

k)
)
,

(B.1)

where the second equality comes from the model restriction (M1). Here, the dependence
of δk(·) on the function f−k(·) is abbreviated for simplicity of notation. It is easy to verify
that δk(·) is strictly monotonic and hence has an inverse function δ−1

k (·) if G(·) is strictly

monotonic. Thus, fk(x
k) = δ−1

k (ζk(x
k)). BecauseH(z)= E[H(X)|ζ1(X1) = z1,ζ2(X2) = z2]
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by definition, it follows that

H(z) = E
[
G

(
f1(X1)+ f2(X2)

)∣∣∣ζ1(X1) = z1,ζ2(X2) = z2]
= E

[
G

(
δ−1

1 (ζ1(X1))+ δ−1
2 (ζ2(X2))

)∣∣∣ζ1(X1) = z1,ζ2(X2) = z2]
= G

(
δ−1

1 (z1)+ δ−1
2 (z2)

)
.

The desired conclusion is therefore established by letting f̃k(z
k) = δ−1

k (zk) for k = 1,2. �

B.2. Proof of Theorem 3

Proof. Only the case for k = 2 is proved. The proof for k = 1 is similar. The definition
of f̂2(x2) gives the following decomposition:

f̂2
(
x2)− f2

(
x2) = [̂

f̃ 2
(̂
ζ2

(
x2))− f̃2

(̂
ζ2

(
x2))]+ [

f̃2
(̂
ζ2

(
x2))− f̃2

(
ζ2

(
x2))]

, (B.2)

where both terms on the right-hand side of equality converge to 0 uniformly over x2 ∈ SX2

in probability by SM Lemmas S.3 and S.6. Part (i) is hence established. The rest of the proof
is to show part (ii). The first term on the right-hand side of (B.2) can be simplified as

̂̃f 2
(̂
ζ2

(
x2))− f̃2

(̂
ζ2

(
x2)) =̂̃f 2

(
ζ2

(
x2))− f̃2

(
ζ2

(
x2))+Op

(
ξH2(ξ ′

H + ξH1)
)
, (B.3)

uniformly over x2 as n → ∞, where the third (remaining) term on the right-hand side is

due to
∫ ζ̂2(x2)

ζ2(x2)

∫ [ ∂2Ĥ(z)
∂1Ĥ(z)

− ∂2H(z)
∂1H(z)

]
w3(z1)dz1dz2 = Op

(
ξH2(ξ ′

H + ξH1)
)
, which is derived

by applying a Taylor expansion similar to (17) of SM Lemma S.6 on the (unweighted)
integrand and SM Lemmas S.3 and S.5. Take a Taylor expansion to the second term on the
right-hand side of (B.2) to obtain

f̃2
(̂
ζ2

(
x2))− f̃2

(
ζ2

(
x2)) = f̃ ′

2
(
ζ2

(
x2))(̂

ζ2
(
x2)− ζ2

(
x2))+Op

(
ξ2

H2

)
,

uniformly over x2 as n → ∞. Consequently, with bandwidths satisfying Assumption 6, the

asymptotic representations of̂̃f 2(·) given by SM Lemma S.6, and ζ̂2(·) given by SM Lemma
S.3 imply that

f̂2(x2)− f2(x2) = f̃ ′
2(ζ2(x2)) · Jn2(x2)+ J̃n2(ζ2(x2))−E[J̃n2(ζ2(x2))]

+hr+1
H

[
f̃ ′
2(ζ2(x2))D2(x2)+ B̃2(ζ2(x2))

]+hr
HB2(ζ2(x2))

+op(hr
H +hr+1

H ), (B.4)

uniformly over x2 as n → ∞. The asymptotic normality of part (ii) then follows by
applying the Lindeberg–Feller central limit theorem (see Theorem 7.2.1 of Chung, 2001)
to (B.4). The asymptotic bias is an immediate consequence of (B.4), and the asymptotic

variance Var
(√

nhd2
H ·

[
f̃ ′
2(ζ2(x2))Jn2(x2)+ J̃n2(ζ2(x2))

])
= σ 2

2 (x2)+ o(1) is obtained by

a calculation similar to the one of asymptotic variance of a kernel density estimator. This
completes the whole proof. �
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B.3. Proof of Theorem 4

Proof. For any i = 1, . . . ,n, let T = T(x) = f1(X1) + f2(X2), Ti = T(Xi) = f1(X1
i ) +

f2(X2
i ), T̂i = T̂(xi) = f̂1i(X

1
i ) + f̂2i(X

2
i ), and pT (·) be the probability density function of

T, where f̂ki(·) is the estimator of fk(·) leaving observation i out for k = 1,2. Since we
have supx∈SX

∣∣̂T(x) − T(x)
∣∣ similar to SM Lemma S.4, we can derive the asymptotic

representation for any τ ∈ SG,

Ĝ(τ )−G(τ )

= 1

nhG

n∑
i=1

e′
1GSG

n,r(τ )−1k
( Ti − τ

hG

){
Yi −μG(Ti − τ)′βG(τ )

}
μG

( Ti − τ

hG

)
+ 1

nh2
G

n∑
i=1

e′
1GSG

n,r(τ )−1·
[( ∂

∂u
tG(u,Yi;τ)k(u)+ tG(u,Yi;τ)k′(u)

)∣∣∣
u= Ti−τ

hG

]
· (T̂(Xi)−Ti

)+op

(
hr+1

G +√
log(n)/(nhG)

)

=:�1n(τ )+�2n(τ )+op

(
hr+1

G +√
log(n)/(nhG)

)
(B.5)

uniformly over τ ∈ SG as n → ∞, where tG(u,Yi;τ) = μG(u)
(
Yi −μ(u)′BhGβG(τ )

)
. The

first term �1n(τ ) is the uniform Bahadur representation for local polynomial regression in
Kong, Linton, and Xia (2010). The second term �2n(τ ) represents the error caused by using
generated regressor T̂i. Thus, we have the uniform convergence of supτ∈SG

∣∣Ĝ(τ )−G(τ )
∣∣

and thus part (i) is proved. Similar to SM Lemma S.5, �1n(τ ) can be decomposed into a
bias leading term and a stochastic leading term, i.e.,9

�1n(τ ) = 1

nhG

n∑
i=1

e′
1G{SG

r }−1 Yi −G(Ti)

pT (τ )
μG

(Ti − τ

hG

)
k
(Ti − τ

hG

)
+B0(τ )+RGn,

(B.6)

where RGn = op
(
hr+1

G +√
1/(nhG)

)
, and B0(τ ) = e′

1G{SG
r }−1SG,r+1

r Gr+1(τ ) · hr+1
G . As

for �2n(τ ), we can further decompose as under Assumption 6,

�2n(τ ) = 1

nh2
G

n∑
i=1

e′
1G{SG

r }−1pT (τ )−1B1(Ti,Yi,τ ) ·
(

E[̂T(Xi)|Xi]−Ti

)
+ 1

nh2
G

n∑
i=1

e′
1G{SG

r }−1·

pT (τ )−1B1(Ti,Yi,τ ) ·
(

T̂(Xi)−E[̂T(Xi)|Xi]
)

+op

(
hr+1

G +hr+1
H +hr

H +√
1/(nhG)

)
=:�21n(τ )+�22n(τ )+op

(
hr+1

G +hr+1
H +hr

H +√
1/(nhG)

)
, (B.7)

where B1(Ti,Yi,τ ) =
(

∂
∂u tG(u,Yi;τ)k(u)+ tG(u,Yi;τ)k′(u)

)∣∣∣
u= Ti−τ

hG

, E[̂T(Xi)|Xi] − Ti =
∑2

k=1 Bnfk(X
k
i ) = ∑2

k=1
{
hr
HBk(ζk(X

k
i )) + hr+1

H

[
f̃ ′
k(ζk(X

k
i ))Dk(X

k
i ) + B̃k(ζk(X

k
i ))

]}
, and

T̂(Xi) − E[̂T(Xi)|Xi] = ∑2
k=1

(
f̃ ′
k(ζk(X

k
i )) · Jnk(X

k
i ) + J̃nk(ζk(X

k
i )) − E[J̃nk(ζk(X

k
i ))|Xi]

)
.

�21n(τ ) is the additional bias due to the generated regressor T̂(Xi). Similar to the arguments
in (13) of SM Lemma S.5, we get

�21n(τ ) = −e′
1G{SG

r }−1pT (τ )−1 1

hG

∫
μG

( T−τ

hG

)
k
( T−τ

hG

)
G′(T)·E[ 2∑

k=1

Bnfk(X
k
i )

∣∣Ti = T
]
pT (T)dT+R0n

= −G′(τ )·E
[ 2∑

k=1

{
hr
HBk(ζk(x

k))+hr+1
H

[
f̃ ′
k(ζk(x

k))Dk(x
k)+B̃k(ζk(x

k))
]}∣∣∣T =τ

]
+R0n, (B.8)

9Here, We derive a weaker, pointwise representation rather than the uniform representation in SM Lemma S.5.
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where R0n = op(hr+1
H + hr

H), and the last equality is due to (i) change of variables, (ii)

Taylor expansion, and (iii) the fact that e′
1G{SG

r }−1 ∫
μG(u)k(u)du = e′

1Ge1G = 1.
Next consider �22n(τ ). It represents the additional stochastic term induced by T̂(Xi).

Similar to SM Lemma S.5, under Assumption 6, �22n(τ ) can be written as

�22n(τ ) =− e′
1G{SG

r }−1pT (τ )−1 1

nhG

n∑
i=1

μG

(Ti − τ

hG

)
k
(Ti − τ

hG

)
G′(Ti)

·
2∑

k=1

(
f̃ ′
k(ζk(X

k
i )) · Jnk(X

k
i )+ J̃nk(ζk(X

k
i ))−E[J̃nk(ζk(X

k
i ))|Xi]

)+R1n,

(B.9)

where R1n = op
(
hr+1

G +hr+1
H +hr

H+√
1/(nhG)

)
. Follow the U-Statistics arguments similar

to Lemma 8 of Horowitz (1998),10 (B.9) can be represented as

�22n(τ ) = e′
1G{SG

r }−1(∫ μG(u)k(u)du
)
G′(τ )

2∑
k=1

{�22n,k(τ )−E[�22n,k(τ )]

+ �̃22n,k(τ )−E[�̃22n,k(τ )]}+R1n

= G′(τ )

2∑
k=1

�22n,k(τ )+G′(τ )

2∑
k=1

�̃22n,k(τ )+R1n,

for all τ ∈ SG, where �22n,k(τ ) = 1
nhH

∑n
i=1 c2−kω5−k(Z

−k
i )qk(Z0

ki)
′e′

dS̃−1
r Vμ̃

k(
Zk

i −zk
0

hH

)
Yi−H(Zi)

pZ(Z0
ki)

Kk
( zk

0−Zk
i

hH

)
, �̃22n,k(τ ) = − 1

n
∑n

i=1 f̃ ′
k

(
ζk(X

k
i )

) pX1|T (Xk
i |τ)

pXk |X−k (Xk
i |X−k

i )

(
Yi −

H(Xi)
)
, and E[�22n,k(τ )] = E[�̃22n,k(τ )] = 0. �22n,k(τ ) is the stochastic term due to

the estimation of f̃k( ·), i.e., J̃nk(ζk(X
k
i )), and has an order of Op(1/

√
nhH). �̃22n,k(τ )

is induced by the estimation of ζk(X
k
i ), i.e., f̃ ′

k(ζk(X
k
i )) · Jnk(X

k
i ) with a variance of order

O(1/
√

n). Therefore, �̃22n,k(τ ) is of smaller order than �22n,k(τ ) and we conclude that

�22n(τ ) = G′(τ )

2∑
k=1

�22n,k(τ )+R1n. (B.10)

By combining the bias leading terms of (B.6) and (B.8), the asymptotic bias of Ĝ(τ ) can
be established. By the stochastic parts of (B.6) and (B.10), the asymptotic normality and
correspondent variance follow from Lindeberg–Feller central limit theorem. This complete
the whole proof. �

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0266466624000318.

10Note that we use our SM Lemma S.1 instead of Horowitz’s (1998) Lemma 5 to characterize the projection error of
U-statistics.
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