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Abstract Let G be a Baumslag–Solitar group. We calculate the intersection γω(G) of all terms of the
lower central series of G. Using this, we show that [γω(G), G] = γω(G), thus answering a question of
Bardakov and Neschadim [1]. For any c ∈ N, with c ≥ 2, we show, by using Lie algebra methods, that
the quotient group γc(G)/γc+1(G) of the lower central series of G is finite.
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1. Introduction

Baumslag–Solitar groups are groups that admit a presentation of the form

BS(m,n) = 〈a, t | t−1amt = an〉,

where m,n are non-zero integers. They were introduced in [2] as examples of two-
generator one-relator groups with proper quotients isomorphic to the group itself (that is,
the groups do not satisfy the Hopf property). Since then, Baumslag–Solitar groups and
their properties have been extensively studied by various authors, and they have been
the test bed for various conjectures and theories.

Our work is mainly concerned with the residual nilpotence of these groups. A sur-
vey about the residual properties of these groups is given in [11]. In [1], Bardakov and
Neschadim studied the lower central series of Baumslag–Solitar groups and computed
the intersection of all terms of the lower central series for some special cases of the non-
residually nilpotent Baumslag–Solitar groups. Let G be any Baumslag–Solitar group
and denote by γc(G), c ∈ N, the terms of the lower central series of G. In the present
paper, one of our aims is to compute explicitly the intersection γw(G) =

⋂
c γc(G) for

the non-residually nilpotent Baumslag–Solitar groups.
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Throughout this paper, a Baumslag–Solitar group is denoted by BS(m,n). Since
BS(m,n), BS(n,m) and BS(−m,−n) are pairwise isomorphic, we may assume, without
loss of generality, that the integers m and n in the presentation of BS(m,n) satisfy the
condition 0 < m ≤ |n|.

One of our main results is the following.

Theorem 1. Let G = BS(m,n), with 0 < m ≤ |n|, gcd(m,n) = d ≥ 1, m = dm1 and
n = dn1.

(1) If n1 6≡ m1 (mod p) for every prime number p, then γω(G) is the normal closure of
the set {ad, [t−kaµtk, aν ] | k ∈ Z, µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d} in G.

(2) If there is a prime number p such that n1 ≡ m1 (mod p), then γω(G) is the normal
closure of the set {[t−kaµtk, aν ] | k ∈ Z, µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d} in G.

Next, we are concerned with the following question of [1]. Let G = BS(m,n), with
0 < m ≤ |n|. Is it true that γω(G) = [γω(G), G]? In fact, we are able to answer the above
question affirmatively.

Theorem 2. Let G = BS(m,n), with 0 < m ≤ |n|. Then [γω(G), G] = γω(G).

In § 5, by using Lie algebra methods, we show that for a Baumslag–Solitar group G,
the quotient groups γc(G)/γc+1(G), with c ≥ 2, of the lower central series of G are finite.

2. Auxiliary results

Let G be a group. For elements a, b of G, we write [a, b] for the commutator of a and
b, that is [a, b] = a−1b−1ab. We denote 〈g1, . . . , gc〉 the subgroup of G generated by the
elements g1, . . . , gc. For subgroups A and B of G, we write [A,B] = 〈[a, b], a ∈ A, b ∈ B〉.
For a positive integer c, let γ1(G) = G and, for c ≥ 2, let γc(G) = [γc−1(G), G] be the
c-th term of the lower central series of G. We point out that γ2(G) = [G,G] = G′, that
is, the derived group of G. We write γω(G) for the intersection of all terms of the lower
central series of G, that is, γω(G) =

⋂
c≥1 γc(G). We say G is a residually P group if for

every element 1 6= g ∈ G, there is a normal subgroup Ng of G not containing g such that
G/Ng has the property P. In case P is nilpotency, we say that the group is residually
nilpotent. Equivalently, we say that G is a residually nilpotent group if γω(G) = {1}. For
the rest of the paper, Nω denotes the intersection of all finite index normal subgroups
of G and (Np)w denotes the intersection of all finite index normal subgroups of G with
some index power of a fixed prime number p.

The following proposition summarizes some residual properties concerning
Baumslag–Solitar groups.

Proposition 1. Let G be the Baumslag–Solitar group with presentation

G = BS(m,n) = 〈t, a | t−1amt = an〉,

with 0 < m ≤ |n|. Then,

(1) The group G is residually finite if and only if m = 1 or |n| = m.
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(2) The group G is residually nilpotent if and only if m = 1 and n 6= 2 or |n| = m = pr,
r> 0 for some prime number p.

(3) The group G is residually finite p-group for some prime number p if and only if
m = 1 and n ≡ 1 (mod p) or n = m and m = pr or n = −m, p = 2 and m = 2r,
r ≥ 1.

Remark 1.

(1) The residual finiteness of the Baumslag–Solitar groups was originally studied
in [2] and completed in [8]. Recently, Moldavanskii in [10] calculated Nω for
Baumslag–Solitar groups.

(2) In [12], Raptis and Varsos gave necessary conditions for the residual nilpotence of
HNN-extensions with base group a finitely generated abelian group. Proposition 1
(2) follows from [12]: it is a special case of [12, Corollary 2.7].

(3) Proposition 1 (3) follows from the study of Kim and McCarron in certain one relator
groups (see [5, Main Theorem]). Also, Moldavanskii in [9] (see also [11]) calculated
(Np)ω for BS(m,n).

Lemma 1. Let G be a group and N be a normal subgroup of G. Let x, y ∈ G such that
[x, y] ∈ N .

(1) Then for all κ ∈ N, [xκ, y], [x, yκ] ∈ N and [xκ, y] ≡ [x, yκ] ≡ [x, y]κ (mod [N,G]).
(2) If [x, ym] ∈ [N,G] for some m ∈ N, then [x, y]m ∈ [N,G].
(3) If [xm, y] ∈ [N,G] for some m ∈ N, then [x, y]m ∈ [N,G].

Proof.

(1) This is straightforward.
(2) Let [x, ym] ∈ [N,G] for some m ∈ N. By Lemma 1 (1) (for κ = m), we have

[x, ym] = [x, y]mw, with w ∈ [N,G], and so [x, y]m ∈ [N,G].
(3) Let [xm, y] ∈ [N,G]. By Lemma 1 (1) (for κ = m), we have [xm, y] = [x, y]mw1,

with w1 ∈ [N,G], and so [x, y]m ∈ [N,G]. �

The following result gives us a relation among residually finite, residually nilpotent
and residually finite p-group for some prime number p.

Lemma 2. Let G be a finitely generated group. Then Nω ≤ γω(G) ≤ (Np)w. Moreover,⋂
p prime

(Np)w = γω(G).

Proof. Since a finite p-group is nilpotent, we have every residually finite p-group is
also residually nilpotent. Hence, G/(Np)ω is residually nilpotent and so γω(G) ≤ (Np)ω.
Since G is finitely generated and G/γω(G) is residually nilpotent, we have G/γω(G) is
residually finite. We claim that Nω ≤ γω(G). Let g ∈ Nω and g /∈ γω(G). Since G/γω(G)
is residually finite, there exists a normal subgroup Ng of G such that g /∈ Ng, γω(G) ⊆ Ng

and G/Ng is finite, which is a contradiction since g ∈ Nω.
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Write B =
⋂

p prime

(Np)ω. To get a contradiction, we assume that g ∈ B and g /∈ γω(G).

In the next few lines, let G̃ = G/γω(G). Since G is finitely generated and G̃ is residually

nilpotent, there exists an epimorphism φ from G̃ onto a finitely generated nilpotent group
H with φ(gγω(G)) 6= 1. Since H is polycyclic, we have H is residually finite. Thus, there

exists a finite nilpotent group Ĥ and an epimorphism φ̂ : G̃ → Ĥ with φ̂(gγω(G)) 6= 1.

Since Ĥ is the direct product of its Sylow p-subgroups, there exist a prime number p and
a Sylow p-subgroup Sp of Ĥ such that φ̂(gγω(G)) ∈ Sp \{1}. Since Sp is a finite p-group,
we have g /∈ (Np)ω, and so g 6∈ B, which is a contradiction. �

Lemma 3. Let

G = 〈t, x1, . . . , xn | x
p
ri
i

i = 1, i = 1, . . . , n, [xi, xj ] = 1〉 ∼= Z ∗
(
Z
p
r1
1

× · · · × Zprnn

)
,

where n ≥ 2, p1, . . . , pn are distinct prime numbers. Then γω(G) is the normal closure
of the set {[t−kxit

k, xj ] : i, j ∈ {1, . . . , n}; i 6= j; k ∈ Z} in G.

Proof. The elements xi have orders p
ri
i , and so the orders of xi and xj are coprime for

every i 6= j. We write G̃ = G/γω(G). By the definition of residual nilpotence, for every

non-trivial element g̃ ∈ G̃, there exist a finite nilpotent group Ĥ and an epimorphism
φ̂ : G̃ → Ĥ such that φ̂(g̃) 6= 1. On the other hand, Ĥ is the direct product of finite
Sylow p-subgroups Sp. But since the orders of t−kxit

k and xj are also coprime, t−kxit
k

and xj belong to different direct factors Sp of Ĥ. So if [t−kxit
k, xj ] are non-trivial in G̃,

they always vanish under any φ̂, a contradiction. Therefore, [t−kxit
k, xj ] ∈ γω(G) for all

k ∈ Z and i, j ∈ {1, . . . , n}, with i 6= j.
For the converse, we will show that G/N is residually nilpotent, where N is the normal

closure of the set {[t−kxit
k, xj ] : i, j ∈ {1, . . . , n}; i 6= j; k ∈ Z} in G. Let g ∈ G/N with

g 6= 1. If the exponent sum of t in g is non-zero, then we can take the homomorphism
φ : G/N → Z with xi 7→ 0 and t 7→ 1. Then φ(g) 6= 1, and since Z is residually nilpotent,
the result follows. On the other hand, assume that the exponent sum of t in g is zero.
Notice that the relations [t−kxit

k, xj ] are equivalent to [t−sxit
s, tlxjt

−l] for every s, l ∈ Z.
Using these relations, g can be written as

g = (t−s1x
w1
1 ts1 · · · t−sm1x

wm1
1 tsm1 ) · · · (t−q1x

z1
k t

q1 · · · t−qmkx
zmk
k tqmk ),

where the words

(t−s1x
w1
1 ts1 · · · t−sm1x

wm1
1 tsm1 ), . . . , (t−q1x

z1
k t

q1 · · · t−qmkx
zmk
k tqmk )

are reduced. Since g 6= 1, at least one of the w1, . . . , wm1
, . . . , z1, . . . , zmk

6= 0. Then
we take the homomorphism φ : G/N → Z ∗ Z

p
ri
i

with φ(〈t〉) = Z, φ(〈xi〉) = Z
p
ri
i

and

φ(xj) = 0 for all j 6= i. Since Z ∗ Z
p
ri
i

are residually nilpotent (see [4, Theorem 4.1]), the

result follows. �
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Lemma 4. For a positive integer m, with m ≥ 2, let G = 〈t, a | am = 1〉. Then γω(G)
is the normal closure of the set {[t−kaµtk, aν ] : k ∈ Z;µ, ν ∈ N; gcd(µ, ν) = 1;µν = m}
in G.

Proof. Let m = p
r1
1 · · · prnn , with n ≥ 2 be the prime number decomposition of m.

For i ∈ {1, . . . , n}, let qi = m

p
ri
i

. Since gcd(q1, . . . , qn) = 1, there are di ∈ Z such that

q1d1 + · · · + qndn = 1. For i ∈ {1, . . . , n}, let ui = aqidi . Then, for any i ∈ {1, . . . , n},
the order of ui is p

ri
i and a = u1u2 · · ·un. Since G ∼= Z ∗ (Z

p
r1
1

× · · · ×Zprnn
), G admits a

presentation as in Lemma 3, and the isomorphism between the two presentations implies
that each xi maps to ui.

Let M = {[t−kuit
k, uj ]; i, j ∈ {1, . . . , n}; i 6= j; k ∈ Z} be the generating set of γω(G)

described in Lemma 3 and K = {[t−kaµtk, aν ] : k ∈ Z;µ, ν ∈ N; gcd(µ, ν) = 1;µν = m}.
Write K for the normal closure of the set K in G. We claim that γω(G) = K. We first
show that γω(G) ⊆ K. Let [t−kuit

k, uj ] ∈ M, and without loss of generality, we assume

that i < j. Write s1 = p
ri+1
i+1 · · · p

rj−1
j−1 p

rj+1
j+1 · · · prnn and s2 = p

r1
1 · · · pri−1

i−1 . Then

[
t−kuit

k, uj
]

=
[
t−kaqiditk, aqjdj

]
=

[
t−k

(
a
p
r1
1 ...p

ri−1
i−1

p
rj
j

)dis1

tk,

(
a
p
ri
i

···p
rj−1
j−1

p
rj+1
j+1

···prnn
)djs2

]
.

Working in G/K,[
t−k

(
a
p
r1
1 ···p

ri−1
i−1

p
rj
j

)
tk,

(
a
p
ri
i

···p
rj−1
j−1

p
rj+1
j+1

···prnn
)]

= 1

for all k ∈ Z. By using the commutator identities [xy, z] = [x, z]y[y, z], [x, yz] =

[x, z][x, y]z, [x−1, y] = ([x, y]−1)x
−1

and [x, y−1] = ([x, y]−1)y
−1

repeatedly, we get[
t−k

(
a
p
r1
1 ···p

ri−1
i−1

p
rj
j

)dis1

tk,

(
a
p
ri
i

···p
rj−1
j−1

p
rj+1
j+1

...prnn

)djs2
]

= 1

for all k ∈ Z. Hence, [t−kuit
k, uj ] ∈ K for i < j. Applying similar arguments as above,

we have, for
i > j, [t−kuit

k, uj ] ∈ K. Consequently, γω(G) ⊆ K.
For the converse, since a = u1u2 · · ·un, gcd(µ, ν) = 1 and µν = m, the elements of K

are

[t−kaµtk, aν ] = [t−k(u1 · · ·un)µtk, (u1 · · ·un)ν ] = [t−k(ui1 · · ·uil)
µtk, (uj1 · · ·ujn−l

)ν ],

with {ui1 , . . . , uil}
⋃
{uj1 , . . . , ujn−l

} = {u1, . . . , un} and

{ui1 , . . . , uil}
⋂
{uj1 , . . . , ujn−l

} = ∅. Now one can easily show by using the com-

mutator identities [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z repeatedly that the
elements of K belong to γω(G). Therefore, K ⊆ γω(G) and so γω(G) = K. �
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2.1. Known results on Baumslag–Solitar groups

Moldavanskii in [10] has shown the following.

Proposition 2. [10, Theorem 1]. Let G = BS(m,n), with 0 < m ≤ |n| and
d = gcd(m,n). Then Nω coincides with the normal closure of the set {[tkadt−k, a] : k ∈ Z}
in G.

By Proposition 2 and Lemma 2, we get the following result, which we will use repeatedly
in the following.

Corollary 1. Let G = BS(m,n), with 0 < m ≤ |n| and d = gcd(m,n). Then for all
k, x, y ∈ Z, [(t−kadtk)x, ay] ∈ γω(G) and [(t−katk)y, (ad)x] ∈ γω(G).

Proof. Since [t−kaytk, adx] = [ay, (adx)t
−k

]t
k

and γω(G) is normal in G, it suffices to
prove that [t−kadxtk, ay] ∈ γω(G) for all k, x, y ∈ Z. By Proposition 2 and Lemma 2, we
get [t−kadtk, a] ∈ γω(G) for all k ∈ Z. By using a double induction argument on x and
y, we obtain the desired result. �

Moreover, Moldavanskii in [9] (see also [11]) has shown the following.

Proposition 3. Let G = BS(m,n), p be a prime number and let m = prm1 and
n = psn1, where r, s ≥ 0 and m1, n1 are not divisible by p. Let also d = gcd(m1, n1),
m1 = du and n1 = dv. Then

(1) if r 6= s or if m1 6≡ n1 (mod p), then (Np)w coincides with the normal closure of

ap
ξ

in G, where ξ = min{r, s}.
(2) if r = s and m1 ≡ n1 (mod p), then (Np)w coincides with the normal closure of the

set {t−1ap
ruta−prv, [tkap

r
t−k, a] : k ∈ Z} in G.

3. Calculation of γω(BS(m,n))

Proposition 4. Let G = BS(m,n), with 0 < m ≤ |n| and gcd(m,n) = 1. Then

(1) If there is a prime p such that n ≡ m (mod p), then γω(G) is the normal closure of
the set {[t−katk, a] : k ∈ Z} in G.

(2) If n 6≡ m (mod p) for any prime integer p, then γω(G) is the normal closure of a
in G.

Proof.

(1) Assume that there is a prime number p such that n ≡ m (mod p). Since gcd(m,n) =
1, we have p divides neither m nor n and so m and n satisfy the conditions of
Proposition 3 (2). Therefore, we have (Np)w is the normal closure in G of [t−katk, a].
On the other hand, by Proposition 2, we have Nω is the normal closure in G of the set
{[t−katk, a] : k ∈ Z}. Hence, the description of γω(G) is an immediate consequence
of Lemma 2.
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(2) Assume thatm 6≡ n (mod p) for every prime number p. Since gcd(m,n) = 1, we have
by Proposition 3 (1), (Np)ω is the normal closure of a in G. So a ∈

⋂
p prime

(Np)w.

By Lemma 2, we obtain the required result. �

Remark 2. Notice that in the above Proposition, when m = 1 and n 6= 2, then the
commutators [t−katk, a] are trivial and hence γω(G) = {1}. On the other hand, for
m = 1, n = 2, we have [a, t] = a and therefore γw(G) is the normal closure of a.

Lemma 5. Let G = BS(m,n), with 0 < m ≤ |n|, let gcd(m,n) = d and let µ, ν be
positive integers such that 1 ≤ µ, ν ≤ d, gcd(µ, ν) = 1 and µν = d. Then [t−kaµtk, aν ] ∈
γω(G) for all k ∈ Z.

Proof. By Corollary 1, we have [t−kadtk, a] ∈ γω(G). Hence, in the case d is a power of
a prime number, that is, µ= 1 or ν= 1, the required result follows. Thus, in what follows,
we may assume that µ, ν > 1. Fix some k ∈ Z and let us denote u = t−kaµtk. Assume
that [u, aν ] ∈ γi(G) for some i ≥ 2. Since [uν , aν ] = [t−kaµνtk, aν ] = [t−kadtk, aν ],
it follows from Corollary 1 that [uν , aν ] ∈ γω(G) and hence, [uν , aν ] ∈ γj(G) for all
j ∈ N. In particular, we have [uν , aν ] ∈ γi+1(G). Since [u, aν ] ∈ γi(G) and [uν , aν ] ∈
γi+1(G) = [γi(G), G], we get, by Lemma 1 (3) (for N = γi(G)), [u, aν ]ν ∈ γi+1(G).

Similarly, since [u, aµν ] = [u, ad] = [aµ, tkadt−k]t
k

and γω(G) is normal in G, it follows
from Corollary 1 that [u, aµν ] ∈ γω(G). In particular, we have [u, aµν ] ∈ γi+1(G). As
before, by Lemma 1 (2), we get [u, aν ]µ ∈ γi+1(G). Thus, [u, aν ]ν , [u, aν ]µ ∈ γi+1(G).
Since gcd(µ, ν) = 1, we have [u, aν ] ∈ γi+1(G). We carry on this process, and we obtain
the required result. �

We are now able to give the proof of our main theorem.

Theorem 1. Let G = BS(m,n), with 0 < m ≤ |n|, gcd(m,n) = d ≥ 2, m = dm1 and
n = dn1. Then

(1) If n1 6≡ m1 (mod p) for every prime number p, then γω(G) is the normal closure of
the set {ad, [t−kaµtk, aν ] : k ∈ Z, µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d} in G.

(2) If there is a prime number p such that n1 ≡ m1 (mod p), then γω(G) is the normal
closure of the set {[t−kaµtk, aν ] : k ∈ Z, µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d} in G.

Remark 3. Notice that if n1 6≡ m1 (mod p) for every prime p, then n1 − m1 6≡ 0
(mod p) for every prime p; therefore, n1 − m1 = ±1. Hence, the two possibilities of
Theorem 1 can be simplified as to whether m1 = n1 ± 1 or not.

Proof.

(1) Let T be the normal closure of the set {ad, [t−kaµtk, aν ] : k ∈ Z, µ, ν ∈ N, gcd(µ, ν) =
1 and µν = d} in G. We first show that T ⊆ γω(G). By Lemma 5, it is enough to
show that ad ∈ γω(G). Let d = p

r1
1 · · · prκκ be the prime number decomposition of

d. For i ∈ {1, . . . , κ}, we write m = p
ri
i m

′
1i and n = p

ri
i n

′
1i where m′

1i = d

p
ri
i

m1

and n′1i = d

p
ri
i

n1. Now, n′1i −m′
1i = d

p
ri
i

(n1 −m1). Since pi - (n1 −m1), we obtain
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pi - (n′1i−m′
1i). By Proposition 3 (1), we have ap

ri
i ∈ (Npi)ω for every i ∈ {1, . . . , κ}

and so ad ∈ (Npi)ω for any i ∈ {1, . . . , κ}. By Proposition 3 (1), for every q /∈
{p1, . . . , pκ}, we have a ∈ (Nq)ω, which again implies that ad ∈ (Nq)ω. Therefore,
ad ∈

⋂
p prime

(Np)w. By Lemma 2, we have ad ∈ γω(G) and so T ⊆ γω(G). On the

other hand, by Lemma 4, G/T ∼= (Z ∗Zd)/γω(Z ∗Zd), which is residually nilpotent.
Hence, γω(G) ⊆ T . Therefore, γω(G) = T, and we obtain the required result.

(2) Assume that there is some prime p such that n1 ≡ m1 (mod p) and let M be the
normal closure of the set {[t−kaµtk, aν ] : k ∈ Z, µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d}
in G. By Lemma 5, we have M ⊆ γω(G). We claim that G/M is residually nilpotent.
Notice that G/M has a presentation of the form

G/M = 〈a, t | t−1amt = an, [t−kaµtk, aν ] = 1, k ∈ Z〉

with µ, ν ∈ N, gcd(µ, ν) = 1 and µν = d. Let g be an element in G/M . Then g is a
word in a, t.

Assume first that the exponent sum of t in g is non-zero. Then there is a map
φ : G/M → Z such that a 7→ 0 and t 7→ 1. It can easily be seen that φ is a
homomorphism and that φ(g) 6= 1. Since Z is nilpotent, the result follows.

Assume now that the exponent sum of t in g is zero. Then g can be written in
reduced form

g = aρ0
(
tε1aρ1t−ε1

) (
tε1+ε2aρ2t−(ε1+ε2)

)
· · ·(

tε1+···+εκ−1aρκ−1t−(ε1+···+εκ−1)
)
aρκ , (3.1)

with |ρi| < m, if ε1 + · · · + εi ≤ −1 and |ρi| < n if ε1 + · · · + εi ≥ 1. Write each
aρi = adλiari , with ri ∈ {0, . . . , d − 1}, t−kaρitk = (t−k(ad)λitk)(t−karitk). Using
the identity t−kaζtk = aζ [aζ , tk], we rewrite all the above and replace them in the
expression (3.1). Then, using the identity ab = ba[a, b] as many times as needed and
the identities

[ab, c] = [a, c] [[a, c], b] [b, c], (3.2)

[a, bc] = [a, c] [a, b] [[a, b], c], (3.3)

g has an expression of the form

g = aλ [(ad)λ1 , tk1 ] · · · [(ad)λs , tks ] · w,

where λ1, . . . , λs ∈ N and w is a product of group commutators of the form
[h1, . . . , hr], with r ≥ 2 and h1, . . . , hr ∈ {a, . . . , ad−1} ∪ {tk : k ∈ Z \ {0}}. Note
that dλ1, . . . , dλs < m1, n1. Next, we separate two cases.
(a) Let w = 1. For the next few lines, let G1 = BS(m1, n1) = 〈t̄, ā : (t̄)−1(ā)m1 t̄ =

(ā)n1〉. Since gcd(m1, n1) = 1 and n1 ≡ m1 (mod p) for a prime integer p, we
have, by Proposition 4 (1) and (3.2), γω(G1) is the normal closure of the set
{[t̄−kāt̄k, ā] : k ∈ Z} in G1. Then there is a natural homomorphism ψ : G/M →
G1/γω(G1) with a 7→ ā and t 7→ t̄ such that ψ(g) 6= 1. Since G1/γω(G1) is
residually nilpotent, the result follows.
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(b) Let w 6= 1. Then it suffices to map G/M to (G/M)/〈ad〉 ∼= (Z ∗Zd)/γω(Z ∗Zd).
The image of g is w 6= 1, which is reduced. The result follows from that fact
that (G/H)/〈ad〉 ∼= (Z ∗ Zd)/γω(Z ∗ Zd) is residually nilpotent. �

4. The group [γω(G), G]

Lemma 6. Let G = BS(m,n), with 0 < m ≤ |n|, and let d = gcd(m,n). Then

(1) [t−kadtk, ad] ∈ [γω(G), G] for all k ∈ Z.
(2) [t−kadtk, a]d ∈ [γω(G), G] for all k ∈ Z.
(3) [t−katk, ad]d ∈ [γω(G), G] for all k ∈ Z.

Proof. Throughout the proof, we write uk = t−kadtk, with k ∈ Z. By Corollary 1,
[uk, a

d] ∈ γω(G) for all k ∈ Z. Furthermore, we write m = dm1 and n = dn1, where
gcd(m1, n1) = 1.

(1) Since [uk, a
d] = ([u−k, a

d]−1)t
k

and [γω(G), G] is normal in G, it suffices to show that
[uk, a

d] ∈ [γω(G), G] for all k ∈ N. We use induction on k. Assume at first that k = 1.
Since, as aforementioned, [u1, a

d] ∈ γω(G) and since [u
m1
1 , ad] = [t−1amt, ad] =

[an, ad] = 1, it follows from Lemma 1 (3) (for N = γω(G)) that [u1, a
d]m1 ∈

[γω(G), G]. Since [u1, a
dn1 ] = [ad, tant−1]t = [ad, am]t = 1 in [γω(G), G], by

Lemma 1 (2) (for N = γω(G)), we get [u1, a
d]n1 ∈ [γω(G), G]. But gcd(m1, n1) = 1,

and so the result follows for k = 1.
Assume that [uk, a

d] ∈ [γω(G), G] for some k ∈ N. Then, by Lemma 1 (1) (for
N = [γω(G), G]), we have [uxk, a

d] ∈ [γω(G), G] for any x ∈ N. Hence,

[
u
m1
k+1, a

d
]

=
[
t−(k+1)amtk+1, ad

]
=
[
t−k(t−1amt)tk, ad

]
=
[
u
n1
k , ad

]
∈ [γω(G), G].

Since [uk+1, a
d] ∈ γω(G), it follows from Lemma 1 (2) (for N = γω(G)) that

[uk+1, a
d]m1 ∈ [γω(G), G].

As above, since [uk, a
d] ∈ [γω(G), G], we have, by Lemma 1 (1) (for N =

[γω(G), G]) that [uk, a
dm1 ] ∈ [γω(G), G] and therefore

[
uk+1, a

dn1
]t−1

=
[
t−(k+1)adtk+1, an

]t−1

= [uk, ta
nt−1] = [uk, a

m]

= [uk, a
dm1 ] ∈ [γω(G), G].

But [γω(G), G] is normal in G, so [uk+1, a
dn1 ] ∈ [γω(G), G]. Again, by Lemma 1 (2)

(for N = γω(G)), [uk+1, a
d]n1 ∈ [γω(G), G]. Since gcd(m1, n1) = 1, we obtain the

required result.
(2) By Corollary 1, [uk, a] ∈ γω(G), and by Lemma 6 (1), [uk, a

d] ∈ [γω(G), G] for all
k ∈ Z, the result follows from Lemma 1 (2) (for N = γω(G).

(3) By Corollary 1, [t−katk, ad] ∈ γω(G). Since [t−katk, ad] = ([tkadt−k, a]−1)t
k
, the

result follows from Lemma 6 (2). �
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Proposition 5. Let G = BS(m,n), with 0 < m ≤ |n| and let d = gcd(m,n) be a
power of a prime integer p. Then [t−kadtk, a], [t−katk, ad] ∈ [γω(G), G] for all k ∈ N.

Proof. Let d = pµ, with µ ≥ 1. Thus, we may write m = prm1 and n = psn1,
where µ = min{r, s} and gcd(p,m1) = gcd(p, n1) = 1. Throughout the proof, we write
uk = t−kadtk and vk = t−katk. By Corollary 1, we have [uk, a], [vk, a

d] ∈ γω(G) for
all k ∈ N. We separate several cases. In the following, we repeatedly use the fact that
[γω(G), G] is normal in G.

(1) Let r = s. In this case, we have d = pr. At first, we show that [uk, a] ∈ [γω(G), G]
for all k ∈ N. We use induction on k. Let k = 1. Since

[u
m1
1 , a] = [t−1amt, a] = [an, a] = 1 ∈ [γω(G), G]

and [u1, a] ∈ γω(G), we have from Lemma 1 (3) (for N = γω(G)) that [u1, a]m1 ∈
[γω(G), G]. Furthermore, by Lemma 6 (2), [u1, a]p

r ∈ [γω(G), G]. But gcd(m1, p
r) =

1 and so we have [u1, a] ∈ [γω(G), G]. Thus, our claim is valid for k = 1.
Assume that [uk, a] ∈ [γω(G), G] for some k ∈ N. Using Equation (3.2) as many

times as needed and since [uk, a] ∈ [γω(G), G], we get [u
n1
k , a] ∈ [γω(G), G]. Since[

u
m1
k+1, a

]
=
[
t−(k+1)amtk+1, a

]
=
[
t−kantk, a

]
=
[
u
n1
k , a

]
∈ [γω(G), G]

and [uk+1, a] ∈ γω(G), it follows from Lemma 1 (3) (for N = γω(G)) that

[uk+1, a]m1 ∈ [γω(G), G]. Furthermore, by Lemma 6 (2), [uk+1, a]p
r ∈ [γω(G), G].

But gcd(m1, p
r) = 1 and so we have [uk+1, a] ∈ [γω(G), G]. Therefore, [uk, a] ∈

[γω(G), G] for all k ∈ N. By Equation (3.2), we get

[uk, a] =
[
ap

r
, tk, a

]
∈ [γω(G), G]

for all k ∈ N.
Next we show that [vk, a

pr ] ∈ [γω(G), G] for all k ∈ N. As before, we use induction
on k. Let k = 1. Since

[v1, a
prn1 ] = [v1, a

n] = [a, tant−1]t = [a, am]t = 1 ∈ [γω(G), G]

and [v1, a
pr ] ∈ γω(G), it follows from Lemma 1 (2) (for N = γω(G)) that

[v1, a
pr ]n1 ∈ [γω(G), G]. Furthermore, by Lemma 6 (3), [v1, a

pr ]p
r ∈ [γω(G), G].

But gcd(pr, n1) = 1, and so we have [v1, a
pr ] ∈ [γω(G), G]. Thus, our claim is true

for k = 1.
Assume that [vk, a

pr ] ∈ [γω(G), G] for some k ∈ N. Using Equation (3.3) as many

times as needed and since [vk, a] ∈ [γω(G), G], we get [vk, (a
pr )m1 ] = [vk, a

m] ∈
[γω(G), G]. Since

[t−(k+1)atk+1, an] = [t−katk, am]t = [vk, a
m]t

and [γω(G), G] is normal in G, we get [vk+1, a
n] = [vk+1, (a

pr )n1 ] ∈ [γω(G), G].

Since [vk+1, a
pr ] ∈ γω(G), we have from Lemma 1 (1) (for N = γω(G)) that
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[vk+1, a
pr ]n1 ∈ [γω(G), G]. Furthermore, by Lemma 6 (3), [vk+1, a

pr ]p
r ∈ [γω(G), G].

But gcd(n1, p
r) = 1 and so we have [vk+1, a

pr ] ∈ [γω(G), G]. Therefore [vk, a
pr ] ∈

[γω(G), G] for all k ∈ N. By (3.2), we get

[vk, a
pr ] = [a, tk, ap

r
] ∈ [γω(G), G]

for all k ∈ N.
(2) Let r < s. In this case, we have d = pr. By similar arguments as in case (1), we get

[uk, a] ∈ [γω(G), G] for all k ∈ N. Thus, it remains to show that [vk, a
pr ] ∈ [γω(G), G]

for all k ∈ N. By Corollary 1 (for y = x = 1 and d = pr), [vk, a
pr ] ∈ γω(G) for

all k ∈ N. By Lemma 6 (3) (for d = pr), [vk, a
pr ]p

r ∈ [γω(G), G] for all k ∈ N. We
separate two cases.

(a) Let 2r ≤ s and fix a positive integer k ≥ 1. By Lemma 1 (1) (for N = γω(G),

x = vk+1, y = ap
r
, κ = prps−2rn1), we have[

vk+1,
(
ap

r
)prps−2rn1

]
≡
[
vk+1, a

pr
]prps−2rn1

(mod [γω(G), G]). (4.1)

Since [vk+1, a
pr ]p

r ∈ [γω(G), G], we get [vk+1, a
pr ]p

rps−2rn1 ∈ [γω(G), G], and

so by Equation (4.1), we have [vk+1, a
psn1 ] ∈ [γω(G), G]. But [vk+1, a

psn1 ] =

[vk, ta
psn1t−1]t = [vk, a

prm1 ]t. Since [γω(G), G] is normal in G, we get[
vk, a

prm1

]
∈ [γω(G), G]. (4.2)

Since [vk, a
pr ] ∈ γω(G), it follows from Lemma 1 (1) (for N = γω(G), x = vk,

y = ap
r
, κ = m1) that[

vk, a
prm1

]
≡
[
vk, a

pr
]m1

(mod [γω(G), G]).

By Equation (4.2), we obtain [vk, a
pr ]m1 ∈ [γω(G), G]. Since [vk, a

pr ]p
r ∈ [γω(G), G]

and gcd(m1, p
r) = 1, we have [vk, a

pr ] = [t−katk, ad] ∈ [γω(G), G].

(b) Let 2r > s and fix a positive integer k ≥ 1. Since [vk, a
pr ] ∈ γω(G), it follows from

Lemma 1 (1) (for x = vk, y = ap
r
, κ = m1) that [vk, a

prm1 ] ∈ γω(G) and[
vk, a

prm1

]
≡
[
vk, a

pr
]m1

(mod [γω(G), G]).

Since [γω(G), G] is normal in G,

[
vk, a

prm1

]p2r−s

≡
[
vk, a

pr
]p2r−sm1

(mod [γω(G), G]). (4.3)
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Since [vk+1, a
psn1 ] = [vk, ta

psn1t−1]t = [vk, a
prm1 ]t and [vk, a

prm1 ] ∈ γω(G), we
have [

vk+1, a
psn1

]
≡
[
vk, a

prm1

]
(mod [γω(G), G]).

By Equation (4.3), we get

[
vk+1, a

psn1

]p2r−s

≡
[
vk, a

pr
]p2r−sm1

(mod [γω(G), G]). (4.4)

Since [vk+1, a
pr ] ∈ γω(G) and r < s, it follows from Lemma 1 (1) (for x = vk+1,

y = ap
r
, κ = ps−rn1) that

[
vk+1, a

psn1

]
≡
[
vk+1, a

pr
]ps−rn1

(mod [γω(G), G]). (4.5)

By Equations (4.4) and (4.5), we have

[
vk, a

pr
]p2r−sm1

≡
[
vk+1, a

pr
]pr

(mod [γω(G), G]). (4.6)

Since [vk+1, a
pr ]p

r ∈ [γω(G), G], we obtain by Equation (4.6) that [vk, a
pr ]p

2r−sm1 ∈
[γω(G), G]. Since gcd(pr, p2r−sm1) = p2r−s, we get [vk, a

pr ]p
2r−s ∈ [γω(G), G]. If

3r ≤ 2s, then, by applying similar arguments as in case 2r ≤ s, we have [vk, a
pr ] ∈

[γω(G), G]. If 3r > 2s, then, by applying similar arguments as in case 2r > s, we

get [vk, a
pr ]p

3r−2s ∈ [γω(G), G]. Since 2r − s > 3r − 2s > · · · and since there is y
such that (y + 1)r ≤ ys (for r

s−r ∈ N, let y = r
s−r , and for r

s−r /∈ N, let y be the

integral part of r
s−r ), by continuing this process, we obtain [vk, a

pr ] ∈ [γω(G), G].

(3) Let s < r. By applying similar arguments as in case (2), we obtain the required
result.

By cases (1), (2) and (3), we get the desired result. �

Proposition 6. Let G = BS(m,n), with 0 < m ≤ |n|, and let Nω be the intersection
of all finite index subgroups of G. Then Nω ≤ [γω(G), G].

Proof. Let d = gcd(m,n). Since, by Lemma 2, Nω ≤ γω(G), and by Proposition 2,
Nω coincides with the normal closure of the set {[t−kadtk, a] : k ∈ Z} in G, it
suffices to show that [t−kadtk, a] ∈ [γω(G), G] for all k ∈ Z. Furthermore, since

[t−kaxtk, ay] = ([tkayt−k, ax]−1)t
k

and [γω(G), G] is normal in G, it is enough to show that
[t−kadtk, a], [t−katk, ad] ∈ [γω(G), G] for all k ∈ N. For d = 1, the required result follows
from Lemma 6 (1) and so, from now on, we may assume that d > 1. Let d = p

µ1
1 . . . p

µλ
λ

be the prime factor decomposition of d. To prove the result, we use induction on λ.
For λ= 1, the required result follows from Proposition 5. Assume that the result is true

https://doi.org/10.1017/S0013091523000305 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000305


544 C. E. Kofinas and others

for some λ ≥ 1 and let d = p
µ1
1 . . . p

µλ+1
λ+1 . Thus, we may write m = p

r1
1 . . . p

rλ+1
λ+1 µ

and n = p
s1
1 . . . p

sλ+1
λ+1 ν, where µi = min{ri, si} and gcd(pi, µ) = gcd(pi, ν) = 1,

with i = 1, . . . , λ + 1. For j ∈ {1, . . . , λ + 1}, let u = a
p
µj
j and let Kj be the sub-

group of G generated by the set {u, t}. For convenience, we write mj = m/(p
µj
j ),

nj = n/(p
µj
j ) and dj = d/(p

µj
j ). We point out that Kj = BS(mj , nj) (see [7,

Lemma 7.10]). Since gcd(mj , nj) = p
µ1
1 . . . p

µj−1
j−1 p

µj+1
j+1 . . . p

µλ+1
λ+1 , by our inductive argu-

ment, we get [t−kudj tk, u] ∈ [γω(Kj),Kj ] ⊆ [γω(G), G], that is,

[
t−ka

p
µj
j

dj tk, a
p
µj
j

]
∈

[γω(G), G] and so

[
t−kadtk, a

p
µj
j

]
∈ [γω(G), G]. Since [t−kadtk, a] ∈ γω(G), it follows

that [t−kadtk, a]
p
µj
j ∈ [γω(G), G]. Therefore, for j1, j2 ∈ {1, . . . , λ + 1}, with j1 6= j2, we

have [t−kadtk, a]
p
µj1
j1 , [t−kadtk, a]

p
µj2
j2 ∈ [γω(G), G]. Since gcd

(
p
µj1
j1

, p
µj2
j2

)
= 1, we get

[t−kadtk, a] ∈ [γω(G), G] and the result follows. �

Corollary 2. Let G = BS(m,n), with 0 < m ≤ |n| and gcd(m,n) = 1. Then
[γω(G), G] = γω(G).

Proof. Let us assume first that there is some prime number p such that m ≡ n
(mod p). Then by Proposition 4 (1), γω(G) = Nω, and so by Proposition 6, γω(G) =
[γω(G), G]. On the other hand, if m 6≡ n (mod p) for every prime integer p, then
m − n = ±1 and so the relation t−1amt = an becomes t−1an±1t = an or equiva-
lently t−1an±1ta−(n±1) = a∓1 or [t, a−(n±1)] = a∓1. By Proposition 4 (2), we have
a ∈ γω(G). Since [t, a−(n±1)] = a∓1, we obtain a ∈ [γω(G), G]. By Proposition 4 (2),
γω(G) ⊆ [γω(G), G] and the result follows. �

Proposition 7. Let G = BS(m,n), with 0 < m ≤ |n|, let d = gcd(m,n) and let µ,
ν be positive integers, with 1 ≤ µ, ν ≤ d, such that gcd(µ, ν) = 1 and d = µν. Then
[t−kaµtk, aν ] ∈ [γω(G), G] for all k ∈ Z.

Proof. Fix some k ∈ Z. By Proposition 2, [t−kadtk, a] ∈ Nω and so by Proposition 6,
we have [t−kadtk, a] = [t−kaµνtk, a] ∈ [γω(G), G]. Using Equation (3.3) as many times
as needed and since [γω(G), G] is a normal subgroup of G, we obtain [t−kaµνtk, aν ] ∈
[γω(G), G]. By Lemma 5, [t−kaµtk, aν ] ∈ γω(G) and so by Lemma 1 (3) (for N = γω(G)),
[t−kaµtk, aν ]ν ∈ [γω(G), G]. By Proposition 2, Proposition 6 and since Nω is a normal
subgroup of G, we get [t−katk, ad] ∈ [γω(G), G]. Using Equation (3.2) as many times
as needed and since [γω(G), G] is a normal subgroup of G, we obtain [(t−katk)µ, aµν ] =
[t−kaµtk, aµν ] ∈ [γω(G), G]. By Lemma 5, [t−kaµtk, aν ] ∈ γω(G) and so by Lemma 1 (2)
(for N = γω(G)), we have [t−kaµtk, aν ]µ ∈ [γω(G), G]. But gcd(µ, ν) = 1; therefore, we
get the result. �

So now we may give an answer to the question of Bardakov and Neschadim.

Theorem 1. Let G = BS(m,n), with 0 < m ≤ |n|. Then [γω(G), G] = γω(G).
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Proof. Let d = gcd(m,n), with m = dm1, n = dn1 and gcd(m1, n1) = 1. Let n = m.
By Theorem 1 (1), Proposition 7 and [γω(G), G] ≤ γω(G), we have [γω(G), G] = γω(G).
If there is a prime number p such that m1 ≡ n1 (mod p), then by Theorem 1 (2),
Proposition 7 and [γω(G), G] ≤ γω(G), we have the required result. Finally, let m1 6≡ n1
(mod p) for every prime number p. By Proposition 7 and Theorem 1 (2), it is sufficient
to show that ad ∈ [γω(G), G]. Since m1 6≡ n1 (mod p) for every prime number p, we
have m1 − n1 = ±1. Hence, the relation t−1amt = an implies that t−1ad(n1±1)t = adn1

or equivalently t−1ad(n1±1)t = ad(n1±1)a∓d or [ad(n1±1), t] = a∓d. By Theorem 1 (2),
ad ∈ γω(G) and so we obtain the required result. �

5. Quotient groups

Our purpose in this section is to show by means of a Lie algebra method that each
quotient group γc(G)/γc+1(G) is finite for any Baumslag–Solitar group G. Throughout
this section, for any group G, we write grc(G) = γc(G)/γc+1(G), with c ∈ N. Also, by
a Lie algebra we mean a Lie algebra over Z. Let gr(G) denote the (restricted) direct
sum of the abelian groups grc(G). It is well known that gr(G) has the structure of a Lie
algebra by defining a Lie multiplication [aγr+1(G), bγs+1(G)] = [a, b]γr+s+1(G), where
aγr+1(G) and bγs+1(G) are the images of the elements a ∈ γr(G) and b ∈ γs(G) in the
quotient groups grr(G) and grs(G), respectively, and [a, b]γr+s+1(G) is the image of the
group commutator [a, b] in the quotient group grr+s(G). Multiplication is then extended
to gr(G) by linearity.

Let F be a free group of finite rank n ≥ 2. It is well known that gr(F ) is a free Lie
algebra of rank n. Let N be a normal subgroup of F. For c ∈ N, let Nc = N ∩ γc(F ).
Note that N1 = N . Furthermore, for all c ∈ N, we write Ic(N) = Ncγc+1(F )/γc+1(F ).
Form the (restricted) direct sum L(N) of the abelian groups Ic(N). Since N is normal
in F, L(N) is an ideal of gr(F ) (see [6]).

The following result is probably known, but we give a proof for completeness.

Lemma 7. Let F be a free group of finite rank n, with n ≥ 2, and N be a normal
subgroup of F. Then, for all c ∈ N, grc(F/N) ∼= grc(F )/Ic(N).

Proof. For all c ∈ N, γc(F/N) = γc(F )N/N . We have the following natural
isomorphisms as abelian groups

grc(F/N) ∼= γc(F )N
γc+1(F )N =

γc(F )(γc+1(F )N)

γc+1(F )N

∼= γc(F )
γc(F )∩(γc+1(F )N) .

Since γc+1(F ) ⊆ γc(F ), by the modular law, we have γc(F ) ∩ (γc+1(F )N) =
γc+1(F )(γc(F ) ∩N). Therefore, for all c ∈ N,

grc(F/N) ∼=
γc(F )

γc+1(F )(γc(F ) ∩N)
∼=

grc(F )
γc+1(F )Nc
γc+1(F )

=
grc(F )

Ic(N)

as abelian groups in a natural way. �
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For the rest of this section, let F be a free group of rank 2, with a free generating set
{x, y}.

Proposition 8. For a non-zero integer κ, let Rκ = {xγ2(F ), κ(yγ2(F ))} and let LRκ

be the Lie subalgebra of gr(F ) generated by Rκ. Then LRκ is free on Rκ and, for any
c ∈ N, LRκ ∩ grc(F ) has finite index in grc(F ).

Proof. Write x = xγ2(F ) and y = yγ2(F ). Let gr1,R(F ) be the subgroup of gr1(F )
generated by Rκ = {x, κy}. It is a free abelian group of rank 2 and has a finite index
|κ| in gr1(F ). For a positive integer c, let Lc,Rκ = LRκ ∩ grc(F ). That is, Lc,Rκ is
spanned by all Lie commutators of the form [yi1 , . . . , yic ] with yij ∈ Rκ, j = 1, . . . , c.

Clearly, LRκ =
⊕

c≥1 Lc,Rκ . Let w(x, y) be a non-zero Lie commutator in grc(F ) and let
r be the number of occurrences of y in w(x, y). By the linearity of Lie bracket, we have
κrw(x, y) = w(x, κy). Since grc(F ) is an abelian group generated by the basic Lie commu-
tators v(x, y) (of length c) and since for each v(x, y) there exists a non-zero power of κ, say
κr , depending on the number of occurrences of y, such that κrv(x, y) = v(x, κy) ∈ Lc,Rκ ,
we get Lc,Rκ has a finite index in grc(F ). So rank(Lc,Rκ) = rank(grc(F )).

Since gr(F ) is a free Lie algebra on the set {x, y} and LRκ is generated as a Lie algebra
by the set {x, κy}, the natural Lie homomorphism ψ from gr(F ) into LRκ , with ψ(x) = x
and ψ(y) = κy, is surjective. It is easily verified that, for any positive integer c, ψ induces
a Z-linear mapping ψc from grc(F ) onto Lc,Rκ . Namely, ψc(u(x, y)) = u(x, κy) for all
u(x, y) ∈ grc(F ). Since Lc,Rκ has finite index in grc(F ) and grc(F ) is a free abelian group
of finite rank, we obtain ψc is an isomorphism of abelian groups. Let w ∈ Kerψ. Since
gr(F ) is graded, without loss of generality, we may assume that w = wγc+1(F ) ∈ grc(F )
for some w ∈ γc(F ) and c ∈ N. To get a contradiction, we assume that w = w(x, y) ∈
γc(F ) \ γc+1(F ). Then

0 = ψ(w) = ψ(w(x, y)) = ψc(w(x, y)).

Since ψc is an isomorphism, we have w(x, y) = 0 in grc(F ). This implies that w(x, y) ∈
γc+1(F ), a contradiction. By the above, ψ is an isomorphism of Lie algebras. Hence, LRκ

is a free Lie algebra with a free generating set Rκ. By the elimination theorem (see,
for example, [3, Chapter 2, Section 2.9, Proposition 10]), LRκ = 〈x〉 ⊕ L({κy} o {x}),
where the free Lie algebra L({κy} o {x}) is the ideal in LRκ generated by κy. Clearly,

L({κy} o {x}) = 〈κy〉 ⊕
(⊕

c≥2 Lc,Rκ

)
. �

Remark 4. The fact that ψc is an isomorphism in the above proof can also be shown
as follows. Since grc(F ) is a free abelian group of finite rank, we have Q ⊗Z grc(F ) is a
finite-dimensional vector space over Q, and any Z-basis of grc(F ) may be regarded as
a Q-basis of Q ⊗Z grc(F ). Thus, ψc may be extended to a Q-linear mapping ψc from
Q ⊗Z grc(F ) onto Q ⊗Z Lc,Rκ . Since rank(Lc,Rκ) = rank(grc(F )), we obtain ψc is an
isomorphism of vector spaces and so ψc is an isomorphism of abelian groups.

Proposition 9. For m,n ∈ Z \ {0}, let N be the normal closure of the element r =
yn−m[x, ym] in F. Then, for any c ∈ N, with c ≥ 2, grc(F/N) is a finite abelian group.
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Proof. Write δ = n − m, x = xγ2(F ) and y = yγ2(F ). Assume that δ 6= 0 and let
Rδ = {x, δy}. By Proposition 8, LRδ

is a free Lie algebra on the set Rδ. Note that
I1(N) = 〈δy〉. Since L(N) is an ideal in gr(F ), we have L({δy} o {x}) ⊆ L(N). Hence,
for all c ≥ 2, Lc,Rδ

⊆ Ic(N). By Proposition 8, for any c ≥ 2, Lc,Rδ
has finite index in

grc(F ) and so Ic(N) has finite index in grc(F ). By Lemma 7, we obtain, for any c ≥ 2,
grc(F/N) is a finite abelian group.

Thus, we may assume that δ= 0. In this case, let Rm = {x,my}. Then I1(N) = {0}.
We use similar arguments as before. By Proposition 8, LRm is a free Lie algebra on
the set Rδ. Note that I2(N) = 〈[x,my]〉. Since L(N) is an ideal in gr(F ), we have⊕

c≥2 Lc,Rm ⊆ L(N). Hence, for all c ≥ 2, Lc,Rm ⊆ Ic(N). By Proposition 8, for any
c ≥ 2, Lc,Rm has finite index in grc(F ) and so Ic(N) has finite index in grc(F ). By
Lemma 7, we obtain, for any c ≥ 2, grc(F/N) is a finite abelian group. �

Corollary 3. For m,n ∈ Z \ {0}, let G = BS(m,n) = 〈t, a | an−m[t, am] = 1〉. Then,
for any c ∈ N, with c ≥ 2, grc(G) is a finite abelian group.

Proof. For m,n ∈ Z\{0}, let N be the normal closure of the element r = yn−m[x, ym]
in F. Write t = xN and a = yN. Clearly, the quotient group F/N has a presentation
〈t, a | an−m[t, am] = 1〉. So, by Proposition 9, we obtain the desired result. �
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