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1. Introduction

Macdonald’s inner product formula, conjectured in [4], was recently proved for
arbitrary root systems by Cherednik [1], using the double affine Hecke algebras.
In addition to Cherednik’s proof, a combinatorial proof by Macdonald [4] and
representation-theoretic proof by Etingof and Kirillov Jr. [2] have been given
for the A,,_1 case. The aim of the present note is to give a short proof for the
A,_1 case by means of asymptotic analysis wjtselberg type integrals. One
of our motivations is in the argument on the integral representation of solutions
of eigenvalue problems of the Macdonald type [7]. In that case, choice of cycles
associated with the integral corresponds to the choice of different solutions. Such
study on the cycles leads to the present argument, another proof of the inner product
conjecture for the Macdonald symmetric polynomials of tyipe 1. Our argument
includes a new proof of the corresponding constant term conjecture as a special
case (see also [5]).

Throughout this note, we considgeas a real number satisfyingf ¢ < 1 and
t = ¢*, wherek € N.

2. Inner product formula

We begin recalling some fundamental facts. For a basic reference, we refer the
reader to [6].
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A partition X is a sequence = (A1, \2,..., A,) Of non-negative integers in
decreasing ordefi; > \» > --- > A, > 0. The number of nonzero elementsis
called the length ok, denoted by(\). The sum of the\; is the weight of\ denoted
by |A|. Given a partition\, we define the conjugate partitioth = (A}, A5, ..., AL)
by \; = Card(j; \; > i}.

On patrtitions, the dominance (or natural) ordering is defined by

Azpus | AN=|p and A4+ XN >pr+---+p; foralli> 1

We consider the ringC[z] = Clz1,...,z,] of polynomials inn variables
z = (z1,...,2y,). The subring of all symmetric polynomials is denotediiy]°~ .
For f = Y5 fs2? € C[z], we define

F=> fazb
B

and let[f]; denote the constant term 6f
The inner product is defined by

(F,9) = —[/3A%,

for f,g € C[z], with

A=A(r)= H MZ H (zi/255 )k,

rcidicn BTilT Qo0 ki

where(a; ¢)so = [1is0(1 <aq') and(a; q)n = (a; ) oo/ (9" ¢)oo-

Then there is a unique family of symmetric polynomiBlg ) = Py(z;q,t) €
C[z]® indexed by the partition = ()y,. .., A,) such that
(1) Py = my + Zpcncaumyp,
where eachn,, expresses the monomial symmetric polynomial indexed.byhe
polynomialsP, are calledMacdonald symmetric polynomigsssociated with the

root system of typed,,_1).
Our aim is to prove the following.

THEOREM.We have
k-1 1 <:>q)\i—/\j+7'tj—i
1 <:>q>\i_/\j_7'tj*’i '

(P, Py = ]

1<i<j<n r=1

When\ = 0 (so thatP, = 1), the formula gives the constant termAfzx).
This is the constant term conjecture of typg_1 (see [3]).
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3. Proof of theorem

LEMMA. If m > n, for a polynomiak)(x) = ¢(z1,...,z,), we have

1 >"/ 1 dzq...dz,

— —  A@)Y(z) —————=

(27r\/<:>1 ™ 1<1i—£m (yi/z5, @)k (z)v (=) T1...Tn
1<j<n

= 2 2

{i1yomnin} OSIyeonln<h—1
c{1,...,n}

1<i<nl(yi/xj;Q)k 71

1<j<n

1 dzy...dz,
X Resﬁi(yilqll,...,yinq’") H A(m)z/)(x)lxnl |
n)}

whereiy, . .., i, are distinct, andl'™ = {(t1,...,t,) € C"; [t;] = L(1 < i <
with the standard orientation.

Proof. For a polynomiat)(z1, z2) and 0< I < k <1, we have the equality
(z1/22; Q) (T2/ 715 Q) dzy dz
Res. _ T1,Tp)— —
31200y fa1s )k (072 O Yo, 22) T1 T2
[ . —1 . d
_ W/ )e(z2q" [y i byt 12) ¥2. (3.1)

(7% @)i(@ @ r—1-1(y/z2; @) 2

Because(y/z2; q);, divides (yq'/z2; q)r(z2q¢7" /y; q)k, the 1-form (3.1) has no
poles on thex,-plane. This shows that the set of poles of

1 dzq dzo

mA(wlawz)TP(xlafEZ) T1s |

1<i<m
1<j<2

is the union of(x1, 72) = (yi,¢, yi,q') for 1 < iy # i < mand 0< I < k <1,
which implies the assertion of the above Lemma inrthe 2 case. Repeating this
procedure, we have the desired result in case of general O

Itis known ((3.11) in [4]) that

Shnmne = [ 2 o2
A

1<i<m (yixj; 7)o 1<i<m YiZy, q)k

1<j<n 1<j<n

(3.2)
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with

1 <:>qa(s)tl(s)-|-l
1 @qa(s)Jrltl(s) :

by = bA(Qat) = H

SEX

Here the sum is taken over all partitioAssuch that(\) < min{m,n}, and the
arm-lengtha(s) (resp. the leg-lengtl(s)) is defined bya(s) = \; <5 (resp.
I(s) = X, ) for a squares = (4, j) in the diagramh.

The formula (3.2) in then = n case with the orthogonality relation gives

brPA(y)(Px, Py)

_ 1 < 1 >”/T H 1 P/\(x)A(m)dxl'“dmn

nl 2/ <1 " <ij<n (yi/m‘j;Q)k T1...%p
ol Z Z eSJE:(yo(l)q’l,---,ya(n)qln)

C 0EGRK 0Ky, ln <h—1

1<i,j<n (Yi/ 755 @)k T1...Tp

x{ H 1 P,\(gs)A(x)dxl"'dxn}

= Z Re%=(y1q’1,---,ynql")

0<l1, .o ln<k—1

x{ 11 1 PA(x)A(x)idxl'“dxn}. (3.3)

1<i,j<n (yi/®j5 @)k T1...Tp

Here the second equality is given by Lemma above and the third equality by the
symmetry of the summand with respect to the variables (z1, ..., z,).

Next, by changing the integration variables on the right-hand side according to
x; — Y;xT;, WE have

1 Uiy |
S Rescgn) Tty T (220
0<ly,ln<hi—1 1<i,j<n (y].m].,Q)k 1<izj<n \YiTi )y

dzq...dz
XP)\(ylmla cee aynwn)in }a
T1...Tp

which tends to
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o (zz2)k . (21 opo1)F

>

0<l1, .y ln <k—1

RS _ (g1, qim) {

x {(rz)™

YIS

0K,y sln <k—1

+ lower order terms

\ n (q)\i+(nfi)k+l;q)k
(¢, @)k-1

1> fyi| > |y2| > - > |ynl

Here we used the-binomial theorem

Z (G;Q)lzl _

(az;q)oo
(2, q)oo

to derive the last equality above.

Re%=(q’1,---,q

im1(1/zi)k

dzq...
.. (Ynzn) + lower order term$27

((L‘i))‘ﬂr(n*i)k dzq..

}

.dz,,

o0

=1

—1 4 lower order terms

(I2 < 1),

(l/a:i;q)k xq..

. Ty

Comparing the coefficients gf* of (3.3) in the region (3.4) leads to

(it =ikt

Q)kfl

n
APy, Py =]
i=1

(¢ @)k-1

which is equivalent to

/\if)\j+l+(j7i)k.

(Py, Py) =

,Q)kfl

1<i<j<n

Here we used the equality

/\if/\j +1+(j,i,1)k_

by =

H (q
(q/\if)\j+l+(jfifl)k q)

1qQ)k—1

Q)kfl n (in+1+k(TL7i)

;Q)kfl

1<i<jg<n

H (¢
(q)\i—)\j-l—l-l—(j—i)k; q)

k=1 ;-1

(@ @)k-1

This completes the proof of our Theorem.
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RemarkWhen we would like to consider the= 1 case directly, we need only
modify the proof of Lemma and the calculation of the residue at the final step.
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