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1. Introduction

An iterated function system (IFS) is a finite collection of contracting maps on a
complete metric space. In this article, we consider IFSs {Au + vu}u∈U with U a
finite set that are given by a collection (Au)u∈U ∈ GL2(R)#U of matrices of the
form

Au =

[
bu 0

0 cu

]
, with 0 < |bu|, |cu| < 1, u ∈ U , (1.1)
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and a collection (vu)u∈U of vectors of the form

vu =

[
βu

γu

]
∈ R2, u ∈ U .

The unique non-empty compact subset Λ ⊆ [0, 1]2 that satisfies

Λ =
⋃
u∈U

(Au + vu)(Λ), (1.2)

which exists by Hutchinson’s theorem [33], is called the attractor or self-affine set
of the diagonally affine IFS {Au + vu}u∈U .

We are interested in multifractal properties of certain types of self-affine sets. Let
σ : UN → UN denote the left shift, so σ(ξn)n>1 = (ξn+1)n>1. For any continuous
potential Φ : UN → Rd, d > 1, and for a given vector α = (α1, . . . , αd) ∈ Rd, the
symbolic level set is given by

EΦ(α) :=

{
ξ ∈ UN : lim

n→∞

1

n

n−1∑
i=0

Φ(σi(ξ)) = α

}
. (1.3)

For ξ ∈ UN and n > 1, let Aξ|n−1
= Aξ1

· · ·Aξn−1
and define π : UN → Λ by

π(ξ) =
∑
n>1

Aξ|n−1
vξn . (1.4)

The α-level set for Φ on Λ is the set π(EΦ(α)). There are various known results on
the size of level sets, both in terms of Hausdorff dimension and topological entropy
(in the sense of [17]), see for instance [7, 10–12, 25, 27, 36, 43, 45, 52]. Multifractal
results for self-affine sets in terms of Lyapunov dimensions were obtained in [2] for
collections of matrices (Au)u∈U under certain strong-irreducibility and proximality
conditions. One can find more information about the multifractal formalism in [8,
21, 44]. Here, we consider the Hausdorff dimension of level sets for self-affine sets.

Let F = {fu : R → R}u∈U be an IFS of real-valued affine maps of the form
fu(y) = duy + δu, so |du| < 1 for each u ∈ U . For a sequence u = u1 · · ·un ∈ Un,
n > 1, we write

fu(y) := fu1 ◦ · · · ◦ fun(y) = duy + δu.

We say that F has exact overlaps if there are u,u′ ∈ Un for some n > 1 such that
fu = fu′ . For u,u′ ∈ Un, we define the distance

dist(fu, fu′) :=

{
|δu − δu′ |, if du = du′ ;

∞, otherwise.

In his breakthrough result, Hochman [29] introduced the exponential separation
condition (ESC) to calculate the dimension of self-similar measures. We say that F
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satisfies the ESC if there exists a constant c> 0 and infinitely many integers n > 1
such that for all u,u′ ∈ Un,

dist(fu, fu′) > cn.

We say that a diagonally affine IFS {Au + vu}u∈U satisfies the strong open set
condition (SOSC) if there is an open set V ⊆ R2 such that all the sets (Au+vu)(V )
are pairwise disjoint,

⋃
u∈U (Au+vu)(V ) ⊆ V and Λ∩V 6= ∅, where Λ is as in (1.2).

Our first result is for the following class of diagonally affine IFSs. Let D be the
collection of all IFSs {Au+vu}u∈U with matrices as in (1.1) that satisfy the SOSC
together with either (D) or (D

′
):

(D) |bu| > |cu| for all u ∈ U and
(a) the IFS obtained from projecting to the first coordinate G1 :=

{g1,u(y) = buy + βu}u∈U satisfies the ESC, or,
(b) bu is algebraic for all u ∈ U and the IFS obtained from projecting to the

first coordinate G1 := {g1,u(y) = buy + βu}u∈U has no exact overlaps;

(D
′
) |bu| < |cu| for all u ∈ U and

(a) the IFS obtained from projecting to the second coordinate G2 :=
{g2,u(y) = cuy + γu}u∈U satisfies the ESC, or,

(b) cu is algebraic for all u ∈ U and the IFS obtained from projecting to
the second coordinate G2 := {g2,u(y) = cuy + γu}u∈U has no exact
overlaps.

An IFS satisfying condition (D
′
)(a) is shown in figure 1(a).

Let M(UN, σ) denote the set of all σ-invariant Borel probability measures on UN

and let

LΦ :=

{
α ∈ Rd : ∃ ξ ∈ UNwith lim

n→∞

1

n

n−1∑
i=0

Φ(σiξ) = α

}

=

{
α ∈ Rd : ∃µ ∈ M(UN, σ)with

∫
UN

Φdµ = α

} (1.5)

be the collection of all vectors α for which the corresponding level set is non-
empty, known as the spectrum of Φ. We use L̊Φ to denote the interior of LΦ. For
any µ ∈ M(UN, σ), let dimL(µ) denote the Lyapunov dimension of µ. Let P denote
the topological pressure. Our first result is as follows.

Theorem 1.1 Let {Au + vu}u∈U ∈ D and let Φ : UN → Rd, d > 1, be a continuous

potential. Then for each α ∈ L̊Φ,

dimH (π(EΦ(α))) = sup

{
dimL(µ) : µ ∈ M(UN, σ)and

∫
UN

Φdµ = α

}
= sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}
.

The second family of IFS sets that we consider in this article is motivated by
a specific type of representations of real numbers called generalized Lüroth series
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(b) Example of a GLS IFS

Figure 1. Two examples of IFSs. The coloured rectangles indicate the images of the unit
square under the maps in the IFS.

(GLS) expansions as described in [13]. As the name suggests, GLS expansions are
generalizations of Lüroth expansions, which were introduced in 1883 by Lüroth [42]
and for x ∈ [0, 1] have the form

x =
∑
n>1

an∏n
i=1 ai(ai + 1)

, an ∈ N, n > 1.

Lüroth expansions can be obtained from the IFS {lk : [0, 1] → [0, 1]}k∈N where
lk(x) =

k+x
k(k+1) , see e.g. [31]. If for x ∈ [0, 1], there is a sequence (an)n>1 ∈ NN such

that

x = lim
n→∞

la1 ◦ · · · ◦ lan(0),

then x has a Lüroth expansion with digits given by (an)n>1 ∈ NN. While Lüroth
expansions take their digits from the infinite digit set N and all terms in the expan-
sion are positive, a GLS number system can have either finite or infinite digit sets
and the corresponding GLS expansions can have both positive and negative terms.
Given a finite or countably infinite digit set I, a partition {[`k, rk]}k∈I of [0, 1] into
closed intervals and a vector (εk)k∈I ∈ {0, 1}#I , one can consider the IFS

{gk : [0, 1] → [0, 1]}k∈I , (1.6)

where gk maps the interval [0, 1] affinely onto [`k, rk] in an orientation-preserving
manner if εk = 0 and in an orientation-reversing manner if εk = 1. In other words,

if we write Kk = (rk−`k)
−1, then gk(x) = `k+

εk+(−1)εkx

Kk
. Since gk([0, 1]) = [`k, rk]

for each k, it follows that for each x ∈ [0, 1], there is a sequence (an)n>1 such that

x = lim
n→∞

ga1 ◦ · · · ◦ gan(0).

Thus, x can be expressed as

x =
∑
n>1

(−1)
∑n−1

i=1
εai

`anKan + εan∏n
i=1 Kai

, (1.7)

https://doi.org/10.1017/prm.2024.113 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.113


Birkhoff spectrum for self-affine sets and digit frequencies for GLS systems 5

which is called a GLS expansion of x with digit set I. Here, we let
∑0

i=1 εai = 0

and
∏0

i=1 Kai
= 1. One recovers the Lüroth expansions by taking I = N, [`k, rk] =

[ 1
k+1 ,

1
k ] and εk = 0 for each k > 1 and one obtains integer base N -expansions

by setting I = {0, 1, . . . , N − 1} and taking [`k, rk] = [ kN , k+1
N ] and εk = 0. The

expansions from (1.7) can also be seen as signed versions of Cantor base expansions,
as introduced by Cantor in [18]. GLS expansions have been considered previously
in [1, 16, 30, 34, 40, 47] and recently also in relation to neural networks [6, 53].
Level sets for Lüroth expansions and more generally GLS expansions have been
considered in particular with respect to digit frequencies, see [9]. Such level sets
are known as Besicovitch–Eggleston sets due to the results from [14] by Besicovitch
and [24] by Eggleston on the Hausdorff dimension on digit frequency level sets for
integer base expansions.

In the above setting, for any given GLS number system, all but countably many
numbers in [0, 1] have a unique GLS expansion in that system and the numbers
that do not have a unique expansion have exactly two expansions. In this arti-
cle, we consider IFSs that correspond to GLS number systems with redundancy,
that is, in which all numbers have uncountably many different representations in
the system. Number systems with redundancy have proven interesting in several
settings, including signed binary expansions where they are used to find so-called
minimal weight expansions, i.e. expansions that maximize the number of digits 0,
see e.g. [22, 41, 46], and in non-integer base expansions in relation to applications
in analogue-to-digital converters and random number generation, see e.g. [23, 32].
Number systems with redundancy have also been considered in [37–39] for contin-
ued fraction expansions and Lüroth expansions. To obtain a GLS number system
with redundancy, we let J ∈ N>2 and start with J IFSs that correspond to J
different GLS number systems with finite digit sets. We combine these into one
diagonally affine IFS on R2, which we call a GLS IFS, by using a positive prob-
ability vector (pj)06j<J , so pj > 0 for all 0 6 j < J and

∑
06j<J pj = 1. This

vector (pj)06j<J can be thought of as the probabilities with which the j th GLS
number system is chosen to generate the nth digit in the expansions for any n > 1.
Therefore, a GLS IFS is given by the following data:

(i) an integer J ∈ N>2 and a positive probability vector (pj)06j<J ;
(ii) for each 0 6 j < J , a number Bj ∈ N>2, a partition 0 = r(j,0) < r(j,1) <

· · · < r(j,Bj)
= 1 and a vector (ε(j,k))06k<Bj

∈ {0, 1}Bj .

If we set E = {(j, k) : 0 6 j < J, 0 6 k < Bj} and for each (j, k) ∈ E let
q(j,k) = r(j,k+1) − r(j,k) and

A(j,k) =

[
(−1)

ε(j,k)q(j,k) 0

0 pj

]
, v(j,k) =

[
r(j,k) + ε(j,k)q(j,k)∑j−1

i=0 pi

]
, (1.8)

then we call the IFS {Ae + ve}e∈E a GLS IFS. See figure 1(b) for an example.
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We mention a few particular properties of GLS IFSs. Each GLS IFS satisfies
the SOSC and has Λ = [0, 1]2. For the projection onto the first coordinate, we use
G1 = {he : [0, 1] → [0, 1]}e∈E , where for each e ∈ E , we set

he(x) = re + qe(εe + (−1)εex).

Without additional assumptions, the GLS IFS need not fall into one of the cate-
gories (D)(a) or (D)(b). The projection on the second coordinate G2 = {g2,(j,k)(y) =
pjy +

∑j−1
i=0 pi}(j,k)∈E of a GLS IFS contains several duplicates of each map.

Therefore, GLS IFSs do not fall into the class of diagonally affine IFSs that satisfy
(D

′
), but by removing these duplicates they can potentially contain a subcollection

of contractions that satisfies (D
′
) as shown in figure 1.

We can obtain number expansions from a GLS IFS in the following way. For each
x ∈ [0, 1], there are sequences (em)m∈N ∈ EN such that x can be written as

x = lim
m→∞

he1
◦ · · · ◦ hem(0). (1.9)

If for each m ∈ N , we write

sm = εem , Km = q−1
em , tm = rem + εemK−1

m , (1.10)

then it follows from (1.9) that

x =
∑
m>1

(−1)
∑m−1

i=1
si

tm∏m
i=1 Ki

(1.11)

and we can see the resemblance with Lüroth expansions. It is shown in proposition
4.1 that, under the additional assumption on the GLS IFS that he 6= he′ whenever
e 6= e′, indeed all numbers x ∈ [0, 1] have uncountably many different representa-
tions of the form (1.9). We give several examples of GLS IFSs and the associated
number expansions at the end of the article.

For GLS IFSs, we consider the potential that captures digit frequencies. For
e ∈ E , let [e] ⊆ EN denote the cylinder set of those sequences that have e ∈ E
as their first term and 1[e] : EN → {0, 1} the indicator function on [e]. Define the

continuous potential 1 : EN → {0, 1}#E by 1(ω) = (1[e](ω))e∈E . For each e ∈ E and

ω ∈ EN, write

τe(ω) = lim
n→∞

#{1 6 i 6 n : ωi = e}
n

for the frequency of the digit e in ω. Consider a frequency vector α = (αe)e∈E ∈
[0, 1]#E , i.e. that satisfies

∑
e∈E αe = 1, and let F (α) = π(E1(α)). Then

F (α) = {(x, y) ∈ [0, 1]2 : ∃ω ∈ π−1{(x, y)} s.t. τe(ω) = αe for all e ∈ E} (1.12)

is the GLS digit frequency level set or Besicovitch–Eggleston set for α. Results
on dimH(F (α)) have been obtained in [49, theorem 1] in the specific case of
Bedford–McMullen carpets, that is with pj =

1
J for each 0 6 j < J and (−1)εe = 1
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and qe =
1
N for some fixed N ∈ N>2 and all e ∈ E . This result was extended in [52,

corollary 1] for Lalley–Gatzouras carpets, which are similar to our setting but have
the additional requirements that ε(j,k) = 0 and q(j,k) 6 pj for all (j, k) ∈ E . In the
current setting, a lower bound for dimH(F (α)) in terms of the Ledrappier–Young
formula for the Bernoulli measure µα can be deduced from [3, theorem 2.3 and
corollary 2.8] in case the two Lyapunov exponents of the Bernoulli measure of
the system differ and the frequency vector α is strictly positive. In case the two
Lyapunov exponents of the Bernoulli measure µα are equal, one can apply [28] to
obtain a similar lower bound in terms of the Ledrappier–Young formula for µα.

Here, we will instead, for fixed y ∈ [0, 1], focus on the fibre level sets

Fy(α) :=
{
x ∈ [0, 1] : ∃ω ∈ π−1{(x, y)} s.t. τe(ω) = αe for all e ∈ E

}
. (1.13)

We only consider frequency vectors α with αj :=
∑Bj−1

k=0 α(j,k) > 0 for all 0 6 j < J
(otherwise we could just as well have considered a smaller GLS IFS). Let

W (α) := {y ∈ [0, 1] : Fy(α) 6= ∅}. (1.14)

Let µα be the α-Bernoulli measure on EN. For each 0 6 j < J , let fj : [0, 1] → [0, 1]
be the map given by

fj(y) = pjy +

j−1∑
i=0

pi (1.15)

and define the map

π2 : EN → [0, 1]; (jm, km)m>1 7→ lim
m→∞

fj1 ◦ · · · ◦ fjm(0). (1.16)

Set να = µα ◦ π−1
2 . As we will see later, να(W (α)) = 1. We have the following

results on the Hausdorff dimension of the fibre Besicovitch–Eggleston sets.

Theorem 1.2 Let {Ae + ve}e∈E be a GLS IFS and α = (αe)e∈E ∈ [0, 1]#E a
frequency vector. Then

dimH(Fy(α)) ≤
∑

e∈E αe logαe −
∑

06j<J αj logαj∑
e∈E αe log qe

for all y ∈ W (α). Furthermore, if α satisfies that for each 0 6 j < J there are
k, ` ∈ Bj with k 6= `, α(j,k) > 0 and α(j,`) > 0, then

dimH(Fy(α)) ≥
∑

e∈E αe logαe −
∑

06j<J αj logαj∑
e∈E αe log qe

for να-a.e. y ∈ W (α).

Fibrewise results similar in spirit to theorem 1.2 were obtained in [48], where the
authors study real numbers with a semi-regular continued fraction expansion that
satisfies a certain growth condition on its digits.
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The article is outlined as follows. In §2, we provide the necessary preliminaries.
We prove theorem 1.1 in §3. Section 4 is devoted to GLS IFSs. Here, we show that
given a GLS IFS that has he 6= he′ whenever e 6= e′, all x ∈ [0, 1] have uncountably
many expansions of the form (1.9). We then continue with some results on the
spectrum of the Besicovitch–Eggleston sets F (α) and on the sets W (α), which will
be used in the proof of theorem 1.2. This section also contains the proof of theorem
1.2. Finally, §5 contains some examples.

2. Preliminaries

In this section, we introduce notation and collect several bits of information that
are used for the results in the later sections.

2.1. Strings and sequences

Let U be a finite set of symbols and denote by UN the set of one-sided infinite
sequences of elements in U . For each n > 0, the set Un is the set of words of length
n, where we let U0 = {∅} be the set containing only the empty word, which we
denote by ∅. Let U∗ =

⋃
n>0 Un be the set of all words. For a word u ∈ U , we use

the notation |u| for its length, so |u| = n if u ∈ Un. If u = u1 · · ·un ∈ U∗, then for
each k 6 n, we use the notation u|k = u1 · · ·uk. Similarly for a sequence ξ ∈ UN

and any n > 1, we set ξ|n = ξ1 · · · ξn. The cylinder set corresponding to a word
u ∈ Un, n > 0, is denoted by

[u] = {ξ ∈ UN : ξ|n = u}.

For any sequence ξ ∈ UN, any symbol u ∈ U and any n ∈ N, we use the notation

τu(ξ, n) = #{1 6 m 6 n : ξm = u}

for the number of times the symbol u occurs in the first n elements of ξ and

τu(ξ) = lim
n→∞

τu(ξ, n)

n

for the frequency of the digit u in ξ if it exists. We use this notation in §4.
We can equip UN with a metric η to obtain a compact metric space by setting

η : UN → [0, 1]; (ξ, υ) 7→

2−min{n>1 : ξn 6=υn}, if ξ 6= υ,

0, if ξ = υ.

The left shift is denoted by σ : UN → UN, i.e. σ(ξ)n = ξn+1 for each n > 1. With
a slight abuse of notation, we will use σ to denote the left shift on any sequence
space without specifying the alphabet as a subscript whenever no confusion can
arise. Cylinder sets are both open and closed and generate the Borel σ-algebra on
UN. Let M(UN, σ) denote the set of all shift-invariant Borel probability measures

https://doi.org/10.1017/prm.2024.113 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.113


Birkhoff spectrum for self-affine sets and digit frequencies for GLS systems 9

on UN. For µ ∈ M(UN, σ), we use hµ(σ) to denote the measure-theoretic entropy
of µ with respect to σ, which is defined by

hµ(σ) := − lim
n→∞

1

n

∑
u∈Un

µ([u]) log µ([u]),

where 0 log 0 = 0. Given a probability vector p = (pu)u∈U , the p-Bernoulli measure
µp is the probability measure on (UN, σ) that is defined on the cylinder [u] =
[u1 · · ·un] by

µp([u]) = pu1 · · · pun .

Moreover, the measure-theoretic entropy of µp with respect to σ is given by

hµp(σ) = −
∑
u∈U

µp([u]) log(µp([u])). (2.1)

2.2. Matrix products

Let (Au)u∈U ∈ GL2(R)#U be a collection of matrices as in (1.1). Recall that for
a sequence ξ = (ξn)n>1 ∈ UN and n ∈ N, we set Aξ|n = Aξ1

· · ·Aξn . For the
entries on the diagonal of Aξ|n , write bξ|n = bξ1 · · · bξn and cξ|n = cξ1 · · · cξn . For
u = u1 · · ·un ∈ Un, we similarly write Au = Au1

· · ·Aun with bu = bu1 · · · bun and
cu = cu1 · · · cun for the diagonal entries.

Let P1 be the real projective line, which is the set of all lines through the origin in
R2. We say that a proper subset C ⊂ P1 is a cone if it is a closed projective interval
and a multicone if it is a finite union of cones. The collection (Au)u∈U of diagonal
matrices as in (1.1) is called dominated if there exists a multicone C ⊂ P1 such that⋃

u∈U AuC ⊂ C̊. It was shown in [15, theorem B] that (Au)u∈U is dominated if and
only if there exist constants C > 0 and 0 < τ < 1 such that

bu · cu
max{bu, cu}2

6 Cτn (2.2)

for all n ∈ N and u ∈ Un.
For each diagonal matrix Au as in (1.1), the singular value function is given by

ϕs(Au) :=

max{bu, cu}s, if 0 6 s < 1,

max{bu, cu}min{bu, cu}s−1, if 1 6 s < 2.

The Lyapunov exponents of the collection (Au)u∈U with respect to a measure µ ∈
M(UN, σ) are defined as

χ1(µ) := − lim
n→∞

1

n

∫
UN

logmax
{
bξ|n , cξ|n

}
dµ(ξ),

χ2(µ) := − lim
n→∞

1

n

∫
UN

logmin
{
bξ|n , cξ|n

}
dµ(ξ).
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The Lyapunov dimension of µ ∈ M(UN, σ) is defined to be

dimL(µ) := min

{
hµ(σ)

χ1(µ)
, 1 +

hµ(σ)− χ1(µ)

χ2(µ)

}
.

For a continuous potential Φ : UN → Rd, d > 1, write SnΦ =
∑n−1

k=0 Φ ◦ σk for its
Birkhoff sum. The topological pressure of Φ and (Au)u∈U is given by

P (logϕs +Φ) = lim
n→∞

1

n
log

∑
u∈Un

ϕs(Au) sup
ξ∈[u]

exp (SnΦ(ξ)) ,

where the existence of the limit is guaranteed by the sub-additivity of the potential.

2.3. Hausdorff dimension

For a subset F ⊆ Rn, n > 1, and δ > 0, a δ-cover of F is a collection {Ui} of subsets
of Rn that each have diameter diam(Ui) at most δ and satisfy F ⊆

⋃
i Ui. For s > 0,

the s-dimensional Hausdorff outer measure is defined as

Hs(F ) = lim
d↓0

inf

{∑
i

diam(Ui)
s : {Ui}is a δ-cover of F

}
.

The Hausdorff dimension of the set F is

dimH(F ) = inf{s > 0 : Hs(F ) = 0}.

Let µ be a finite Borel measure on F. The Hausdorff dimension of µ is

dimH(µ) = inf{dimH(Z) : µ(Z) = 1}.

The lower pointwise dimension of µ at a point x ∈ F is defined by

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
,

where B(x, r) denotes the open ball in Rn with radius r centred at x. The following
result can be found in, e.g., [50, theorem 7.1 and theorem 7.2].

Lemma 2.1. Let F ⊆ Rn be a Borel set and µ a finite Borel measure on Rn. The
following statements hold.

(i) If dµ(x) 6 c for some c> 0 and every x ∈ F , then dimH(F ) 6 c.
(ii) If dµ(x) > c for some c> 0 and µ-a.e. x ∈ F , then dimH(µ) > c.

3. Dominated diagonally affine IFSs

In this section, we prove theorem 1.1. Recall the definition of the natural projec-
tion π : UN → Λ from (1.4). Also recall the definitions of the sets EΦ(α) and
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LΦ from (1.3) and (1.5), respectively. We have the following upper bound for the
Hausdorff dimension of π(EΦ(α)). In the proof, we make use of [2, proposition 3.2],
which holds for general affine IFSs (including the diagonally affine case) on R2.

Lemma 3.1. Let {Au + vu}u∈U be a diagonally IFS on R2 such that the collection

(Au)u∈U is dominated. Let Φ : UN → Rd, d > 1, be a continuous potential. Then

for each α ∈ L̊Φ,

dimH (π(EΦ(α))) 6 sup

{
dimL(µ) : µ ∈ M(UN, σ)and

∫
UN

Φdµ = α

}
= sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}
.

Proof. It follows directly from [2, lemma 3.1 and proposition 3.2] that for any
diagonally affine IFS {Au + vu}u∈U on R2 and continuous potential Φ : UN → Rd,

d > 1, and any α ∈ L̊Φ,

dimH(π(EΦ(α))) 6 sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}
. (3.1)

A measure ν ∈ M(UN, σn) is called an n-step Bernoulli measure if it is a Bernoulli
measure on

(
UN, σn

)
. For n-step Bernoulli measures ν ∈ M(UN, σn), write

ν̃ =
1

n

n−1∑
k=0

ν ◦ σ−k. (3.2)

Then ν̃ ∈ M(UN, σ) and ν̃ is ergodic. Since (Au)u∈U is dominated, it follows by [2,

proposition 4.3] and (3.1) that for any α ∈ L̊Φ,

sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}

6 sup

{
dimL(ν̃) : ν fully supported n-step Bernoulli and

∫
UN

Φdν̃ = α

}
6 sup

{
dimL(µ) : µ ∈ M(UN, σ)and

∫
UN

Φdµ = α

}
.

On the other hand, if we let µ ∈ M(UN, σ) be such that
∫
UN Φdµ = α, then for

any 0 6 t < dimL(µ), it holds by the sub-additive variational principle (see [19])
that for all q ∈ Rd,

P
(
logϕt + 〈q,Φ−α〉

)
> hµ(σ) + lim

n→∞

1

n

∫
UN

logϕt
(
A ξ|n

)
dµ(ξ) > 0.
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Hence, t 6 sup
{
s > 0 : infq∈Rd P (logϕs + 〈q,Φ−α〉) ≥ 0} and thus,

sup

{
dimL(µ) : µ ∈ M(UN, σ)and

∫
UN

Φdµ = α

}
6 sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}
.

This gives the result. �

Remark 3.1. Note that the proof of lemma 3.1 shows that in fact

sup

{
s > 0 : inf

q∈Rd
P (logϕs + 〈q,Φ−α〉) > 0

}

= sup

{
dimL(ν̃) : ν fully supported n-step Bernoulli and

∫
UN

Φdν̃ = α

}
= sup

{
dimL(µ) : µ ∈ M(UN, σ)and

∫
UN

Φdµ = α

}
.

Under the additional conditions mentioned in the statement of theorem 1.1, we
can prove that this upper bound in fact equals the Hausdorff dimension of the
level set. Note that it would be possible to combine Hochman [29] and Jordan and
Simon [35] to obtain a similar result for almost all vectors vu but our theorem
1.1 is proved for all vectors vu . Bárány et al. [2] proved a similar result for affine
IFSs satisfying the SOSC under the assumption that the set of matrices (Au)u∈U is
strongly irreducible such that the generated subgroup of the normalized matrices
is not relatively compact. Theorem 1.1 is inspired by their result.

Proof. Proof of theorem 1.1. Let {Au +vu}u∈U ∈ D. For each u ∈ U , it holds that

bu · cu
max{bu, cu}2

=
min{bu, cu}
max{bu, cu}

< 1,

since either |bu| > |cu| for all u ∈ U or |bu| < |cu| for all u ∈ U . Take τ =

maxu∈U

{
min{bu,cu}
max{bu,cu}

}
. Then τ < 1 and, since each Au is a diagonal matrix, we get

(2.2) with C =1. Hence, {Au}u∈U is dominated and therefore the desired upper
bound for the Hausdorff dimension of π(EΦ(α)) is given by lemma 3.1.

For the lower bound, suppose that ν ∈ M(UN, σn) is a fully supported n-step
Bernoulli measure with

∫
UN Φdν̃ = α with ν̃ as defined in (3.2). The existence of

the measure ν is guaranteed by [2, proposition 4.3]. Then ν̃ ∈ M(UN, σ) and ν̃ is
ergodic and therefore from

∫
UN Φdν̃ = α, we get that

ν̃

({
ξ ∈ UN : lim

n→∞

1

n
SnΦ(ξ) = α

})
= 1. (3.3)

Let ν̂ = ν̃ ◦ π−1. Assume that |bu| > |cu| for all u ∈ U so that we are in the
situation of condition (D) (the proof for the case (D

′
) goes similarly). Then the
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strong stable direction of the collection (Au)u∈U is equal to the subspace parallel
to the y-axis (see [15]). Let Pxν̂ be the measure on [0, 1] given by the canonical
projection onto the x -coordinate of ν̂. Since the matrices Au are diagonal, Pxν̂ is
a self-similar measure for the IFS G1, i.e. there is a probability vector p̂ = (p̂u)u∈U
such that

Pxν̂(B) =
∑
u∈U

p̂uPxν̂(g
−1
1,u(B))

for each Borel set B ⊆ [0, 1]. Then condition (D)(a) together with [29, theorem 1.1]
or condition (D)(b) together with [51, theorem 1.2] yields

dimH(Pxν̂) = min

{
1,

hν̃(σ)

χ1(ν̃)

}
. (3.4)

It then follows from [3, corollaries 2.7 and 2.8] and (3.4) that

dimH(ν̂) = dimL(ν̃).

This and (3.3) yield dimH (π(EΦ(α))) > dimL(ν̃). Since this holds for arbitrary
fully supported n-step Bernoulli measures ν with

∫
UN Φdν̃ = α, the result follows

from remark 3.1. �

Remark 3.2. We make a small remark on the conditions (D) and (D
′
). It was

shown by Hochman in [29, proof of theorem 1.5] that an IFS satisfies the ESC if it
does not have exact overlaps and all parameters bu, cu, βu, γu are algebraic numbers
over Q. In [4, 5, 20], it was shown that there exist IFSs that do not contain exact
overlaps while there are cylinders which are super-exponentially close at all small
scales, i.e. the ESC does not hold. What is needed in the proof of theorem 1.1 is
(3.4), which is also guaranteed by [51] under the assumption of having algebraic
bu, cu and no exact overlaps.

4. Digit frequencies for finite GLS expansions

We now move to the second type of IFS we consider. Fix a GLS IFS {Ae+ve}e∈E .
We start by proving some properties of the expansions from (1.11).

4.1. Multiple representations

First, consider the representations of the points y ∈ [0, 1]. Recall the definition of
the maps fj from (1.15). The IFS {fj}06j<J satisfies the SOSC and has the interval
[0, 1] as its attractor. Let πJ : {0, 1, . . . , J − 1}N → [0, 1] be the map given by

πJ((jm)m>1) = lim
m→∞

fj1 ◦ fj2 ◦ · · · ◦ fjm(0).

One easily sees that to all but countably many y ∈ [0, 1], there corresponds a unique
sequence ζ ∈ {0, 1, . . . , J − 1}N such that y = πJ(ζ) and otherwise #π−1

J {y} = 2
and there is one sequence ending in an infinite string of 0’s and one ending in an
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infinite string of (J − 1)’s. We make the following observation, which we will use
later on. Recall the definition of the set W (α) from (1.14).

Lemma 4.1. Let α = (αe)e∈E ∈ [0, 1]#E be a frequency vector with αj > 0 for each
0 6 j < J . Then #π−1

J {y} = 1 for any y ∈ W (α).

Proof. Let y ∈ [0, 1] be such that #π−1
J {y} = 2 and let x ∈ [0, 1]. Then any

ω = (jm, km)m>1 ∈ π−1{(x, y)} either has jm = 0 for all m large enough or

jm = J − 1 for all m large enough. In the first case,
∑Bj−1

k=0 τ(j,k)(ω) = 0 6= αj for

all j 6=0 and in the second case,
∑Bj−1

k=0 τ(j,k)(ω) = 0 6= αj for all j 6= J − 1. Hence,
(x, y) 6∈ F (α) and thus W (α) = ∅. �

For a fixed y ∈ [0, 1], we can consider the expansions one obtains from the GLS
IFS for x ∈ [0, 1]. We define the fibre fundamental intervals corresponding to y by
setting for each m > 1 and k1, . . . , km satisfying 0 6 ki < Bji

for all 1 6 i 6 m,

∆y(k1, . . . , km) := h(j1,k1)
◦ · · · ◦ h(jm,km)([0, 1]), (4.1)

where we let (jm)m>1 be the lexicographically smallest sequence in π−1
J {y}. For

y ∈ W (α), this means that (jm)m>1 ∈ π−1
J {y} is the unique sequence that satisfies

τj((jm)m>1) = αj for each 0 6 j < J and for y ∈ [0, 1] \ W (α) the sequence
(jm)m>1 is the one ending in an infinite string of (J − 1)’s.

If we fix y ∈ W (α) and take x ∈ [0, 1] such that #π−1{(x, y)} > 1, then we know
by lemma 4.1 that #π−1

J {y} = 1, say y = πJ((jm)m≥1). Consequently, x must have
multiple expansions along the fibre y and so must lie on the boundary of a fibre
fundamental interval ∆y(k1, . . . , km) for some 0 6 ki < Bji

(1 6 i 6 m) and some
m ∈ N. Since each fibre fundamental interval has two boundary points and there
are only countably many fibre fundamental intervals, the set of such points x must
be countable.

Now, fix an x ∈ [0, 1]. Since the GLS IFS {Ae+ve}e∈E has [0, 1]2 as its attractor,
to any y ∈ [0, 1], there corresponds a sequence ω ∈ EN such that π(ω) = (x, y).
Therefore, to any sequence (jm)m>1 ∈ {0, 1, . . . , J − 1}N, there corresponds a
sequence (km)m>1 with 0 6 km < Bjm − 1 for each m ∈ N such that

x = lim
m→∞

h(j1,k1)
◦ · · · ◦ h(jm,km)(0).

We show that if he 6= h′
e whenever e 6= e′, then each of the sequences (jm)m>1 ∈

{0, 1, . . . , J − 1}N yields a different GLS expansion for x as in (1.11).
The GLS expansions from (1.11) are given by the triples of digits (sm,Km, tm),

m ∈ N, from (1.10). Therefore, if we set

A =
{(

εe, q
−1
e , re + εeqe

)
: e ∈ E

}
,

then we can think of A as the GLS digit set corresponding to {Ae + ve}e∈E and
we can map sequences ((jm, km))m>1 ∈ EN to sequences (sm,Km, tm)m>1 ∈ AN

through the identification given in (1.10). Let (jm)m>1, (j
′
m)m>1 ∈ {0, 1, . . . , J −

1}N be two different sequences, so there is an m ∈ N such that jm 6= j′m. Let
(jm, km)m>1, (j

′
m, k′m)m>1 ∈ EN be two sequences that both project to x in the
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second coordinate under π. Since jm 6= j′m, it holds that (jm, km) 6= (j′m, k′m). If we
assume that he 6= h′

e whenever e 6= e′, then it would follow that ε(jm,km) 6= ε(j′m,k′m)

or q(jm,km) 6= q(j′m,k′m) and thus that the digits from A corresponding to (jm, km)

and (j′m, k′m) differ. Therefore, we immediately find the following result.

Proposition 4.1. Let {Ae+ve}e∈E be a GLS IFS with the additional assumption
that he 6= he′ whenever e 6= e′. Then for each x ∈ [0, 1], there are uncountably many
different digit sequences (sm,Km, tm)m>1 ∈ AN with

x =
∑
m>1

(−1)
∑m−1

i=1
si

tm∏m
i=1 Ki

.

The above also shows that there is a one-to-one correspondence between the
sequences in EN and in AN, which justifies considering the elements of E as digits
in the GLS expansions.

4.2. Non-empty level sets

In this section, we determine for which frequency vectors α the level set F (α) from
(1.12) and the set W (α) from (1.14) are non-empty. We first consider the level sets
F (α).

Proposition 4.2. The set F (α) is non-empty for any frequency vector α =
(αe)e∈E ∈ [0, 1]#E .

Proof. Fix a frequency vector α = (αe)e∈E ∈ [0, 1]#E . It is sufficient to construct
a sequence ω = (ωn)n>1 ∈ EN such that τe(ω) = αe for each e ∈ E since then
π(ω) ∈ F (α). Denote by b·e the nearest-integer function. Order the elements in E
by setting (j, k) ≺ (j′, k′) if either j < j′ or if j = j′ and k < k′. For each n > 1,
set

En = {e ∈ E : bnαee = b(n− 1)αee+ 1} = {en,1 ≺ · · · ≺ en,mn} ,

where En can be empty and thus mn = 0 for some n. Define ω ∈ EN by setting for
each n > 1 and 1 6 m 6 mn,

ω
m+

∑n−1
i=1

mi
= en,m,

where we let
∑0

i=1 mi = 0. Clearly, there are infinitely many n for which En 6= ∅
so ω is well-defined.

Now observe that for each n the number of terms of ω we have defined using⋃n
i=1 Ei is

n∑
i=1

mi =
∑
e∈E

bnαee.
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Since
∑

e∈E nαe = n and m := #E < ∞, we must have

n−m 6
n∑

i=1

mi 6 n+m.

Thus for each e ∈ E ,

#{0 6 m < n : ωm = e}
n

6
#{0 6 m < m+

∑n
i=1 mi : ωm = e}

n

6
#{0 6 m <

∑n
i=1 mi : ωm = e}+m

n

6
nαe + 1 +m

n
.

Similarly, it holds that

#{0 6 m < n : ωm = e}
n

>
nαe − 1−m

n
.

Taking the limit as n → ∞ yields τe(ω) = αe for all e ∈ E . �

For a fixed frequency vector α, we would like to determine the set W (α) of
points y ∈ [0, 1] for which there exists an x ∈ [0, 1] such that the point (x, y) has
digit frequencies given by α, see (1.14). Recall the definition of the Borel measure
να = µα ◦ π−1

2 from §1. We have the following result.

Proposition 4.3. Let α = (αe)e∈E ∈ [0, 1]#E . Then

W (α) =

y ∈ [0, 1] : ∃ω ∈ π−1
2 {y} s.t.

∑
06k<Bj

τ(j,k)(ω) = αj for all 0 6 j < J

 .

In particular, να(W (α)) = 1.

Proof. (⊂) Set

W =

y ∈ [0, 1] : ∃ω ∈ π−1
2 {y} s.t.

∑
06k<Bj

τ(j,k)(ω) = αj for all 0 6 j < J

 .

First, let y ∈ W (α). This means that Fy(α) 6= ∅ so there exists an ω ∈ EN such
that π(ω) = (x, y) for some x ∈ [0, 1] and τe(ω) = αe for all e ∈ E . Consequently,
we find that ∑

06k<Bj

τ(j,k)(ω) =
∑

06k<Bj

α(j,k) = αj

for all 0 6 j < J and so y ∈ W .
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(⊃) Conversely, let y ∈ W . Then there exists an ω′ = (j′`, k
′
`)`>1 ∈ π−1

1 {y} for
which it holds that

∑
06k<Bj

τ(j,k)(ω
′) = αj for all 0 6 j < J . Write ζ = (j′`)`>1 ∈

{0, . . . , J − 1}N. For each 0 6 j < J and n > 1, set

E(j)
n :=

{
(j, k) ∈ E :

⌊
nα(j,k)

αj

⌉
=

⌊
(n− 1)α(j,k)

αj

⌉
+ 1

}
=

{
e
(j)
n,1 ≺ · · · ≺ e

(j)

n,m
(j)
n

}
and let ω(j) ∈ EN be the sequence obtained from concatenating all elements from

the sets E
(j)
n as in proposition 4.2, so

ω(j) = e
(j)
1,1 · · · e

(j)

1,m
(j)
1

e
(j)
2,1 · · · e

(j)

2,m
(j)
2

e
(j)
3,1 · · · .

Then as in proposition 4.2, we obtain that for each 0 6 k < Bj ,

lim
n→∞

#{1 6 m 6 n : ω
(j)
m = (j, k)}

n
=

α(j,k)

αj
.

We now weave the sequences ω(j) together to construct a sequence ω = (j′`, k`)`>1 ∈
EN that satisfies τe(ω) = αe for all e ∈ E . Then π(ω) = (x, y) for some x ∈ Fy(α),
which shows that Fy(α) 6= ∅. For each ` > 1, let ω` be the τj′

`
(ζ, `)th element of

the sequence ω(j′`). So, ω1 = ω
(j′1)
1 = e

(j′1)
1,1 , ω2 either equals ω

(j′1)
2 if j′1 = j′2 or ω

(j′2)
1

if j′1 6= j′2, etc. As the sequences in the first coordinates of ω = (j′`, k`)`>1 and
ω′ = (j′`, k

′
`)`>1 coincide, we have for each 0 6 j < J ,∑

06k<Bj

τ(j,k)(ω) =
∑

06k<Bj

τ(j,k)(ω
′) = αj .

Moreover, for each e = (j, k) ∈ E and n > 1,

#{1 6 m 6 n : ωm = e} = #{1 6 m 6 τj(ζ, n) : ω(j)
m = e}. (4.2)

If αj > 0, then τj(ζ, n) > 0 for all n large enough and for any e = (j, k) ∈ E , we
obtain

τe(ω) = lim
n→∞

#{1 6 m 6 τj(ζ, n) : ω
(j)
m = e}

τj(ζ, n)
· τj(ζ, n)

n

=
α(j,k)

αj

∑
06k<Bj

τ(j,k)(ω) = α(j,k).

If αj = 0, then α(j,k) = 0 for each 0 6 k < Bj and by (4.2),

0 6 τ(j,k)(ω) 6 lim
n→∞

τj(ζ, n)

n
= αj = 0.

This gives the first part of the statement.
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As
{
ω ∈ EN : τe(ω) = αe for all e ∈ E

}
⊆ π−1

1 (W (α)), it follows from the
definition of µα that να(W (α)) = 1. �

4.3. The Hausdorff dimension of the Besicovitch–Eggleston sets

In this section, we prove theorem 1.2. The proof is similar to [9, theorem 3.1] and
[26, theorem 1.1], which both treat digit frequencies for expansions with infinite
digit sets that can be generated by an IFS on R as in (1.6). Their results do not
apply to our setting because the IFS {he : [0, 1] → [0, 1]}e∈E on R is not of this
type. Nevertheless, since we have a finite digit set, we can adapt the method of
proof from [9, theorem 3.1].

Fix a y ∈ [0, 1]. Recall the definition of the fibre fundamental intervals
∆y(k1, . . . , km) from (4.1). Note that we obtain a semi-algebra of sets generating
the Borel σ-algebra B([0, 1]) on [0, 1] by taking the collection of all intervals (open,
closed, and half-open) that can be formed by the endpoints of the fibre fundamen-
tal intervals. Suppose that the frequency vector α satisfies the following additional
property: for each 0 6 j < J , there are k, ` ∈ Bj with k 6= ` and α(j,k) > 0 and
α(j,`) > 0. Let my,α be the measure on ([0, 1],B([0, 1])) determined by

my,α(∆y(k1, . . . , km)) =
m∏
i=1

α(ji,ki)

αji

, 0 6 ki < Bji
, 1 6 i 6 m, m > 1,

and by the same quantity for any interval determined by the same endpoints.
This immediately implies that any endpoint x of a fibre fundamental interval has
my,α({x}) = 0. If x ∈ [0, 1] is not an endpoint of a fibre fundamental interval, then
there is a sequence (km)m>1 such that

⋂
m∈N

∆y(k1, . . . , km) = {x}.

This implies that

my,α({x}) = lim
m→∞

m∏
i=1

α(ji,ki)

αji

.

By the additional assumption on α, there is a constant 0 < c < 1 such that
αj,k
αj

< c < 1 for all (j, k) ∈ E . Therefore, µy,α({x}) = 0. We will need the following

property of my,α.

Lemma 4.2. For να-a.e. y ∈ W (α), it holds that my,α(Fy(α)) = 1.
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Proof. Observe that for each (j, k) ∈ E by proposition 4.3,∫
[0,1]

∫
[0,1]

1π([(j,k)])(x, y) dmy,α(x) dνα(y)

=

∫
[
∑j−1

i=0
pi,

∑j
i=0

pi]

∫
[0,1]

1∆y(k)(x) dmy,α(x) dνα(y)

=
α(j,k)

αj
να

([
j−1∑
i=0

pi,

j∑
i=0

pi

])

= α(j,k) =

∫
[0,1]2

1π([(j,k)]) dµα ◦ π−1.

(4.3)

Since the collection {π([e1, . . . , en]) : ei ∈ E , 1 6 i 6 n} generates the Borel
σ-algebra B([0, 1]2), we can conclude from (4.3) that∫

[0,1]

∫
[0,1]

f dmy,α dνα =

∫
[0,1]2

f dµα ◦ π−1 (4.4)

for all f ∈ L1([0, 1]2,B([0, 1]2), µα ◦ π−1).
Let E := {y ∈ W (α) : my,α(Fy(α)) < 1} and suppose that να(E) > 0. From

(4.4) with f = 1F (α) together with proposition 4.3, we then find that

µα ◦ π−1(F (α)) =

∫
W (α)

∫
[0,1]

1Fy(α)(x) dmy,α(x) dνα(y)

=

∫
W (α)\E

1 dνα +

∫
E

∫
[0,1]

1Fy(α)(x) dmy,α(x) dνα(y)

<

∫
W (α)

1 dνα

= 1.

On the other hand, recall that E1(α) is the symbolic Besicovitch–Eggleston set
containing all sequences ω ∈ EN with τe(ω) = αe for each e ∈ E . Therefore, by the
definition of µα,

1 = µα(E1(α)) 6 µα ◦ π−1(F (α)) < 1.

This gives a contradiction. It follows that my,α(Fy(α)) = 1 for να-a.e. y ∈ W (α).
�

Before we move to the proof of theorem 1.2, to simplify notation, we put p(j,k) =

pj for all (j, k) ∈ E . Also, let Pα be the (αj)-Bernoulli measure on {0, . . . , J − 1}N.

Proof. Proof of theorem 1.2. Fix a y ∈ W (α). Recall that the lower pointwise
dimension of my,α at the point x ∈ [0, 1] is defined by

dmy,α
(x) = lim inf

r→0

logmy,α(B(x, r))

log r
,
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where B(x, r) is the open interval of length 2r centred at x. One can verify that the
collection {∆y(k1 · · · kn) : n ∈ N} satisfies conditions (CB1)–(CB3) of the Moran-
type construction from [50, Section 15]. Moreover, for any intervals ∆y(k1 · · · kn),
∆y(k1 · · · kn, kn+1), it holds that

diam(∆y(k1 · · · kn)) 6 (max
e∈E

qe)
n, (min

e∈E
qe) · diam(∆y(k1 · · · kn))

6 diam(∆y(k1 · · · knkn+1)).

Therefore, by, e.g., [50, theorem 15.3(1)], we can replace the balls B(x, r) in the
definition of dmy,α

with the fibre fundamental intervals ∆y(k1, . . . , kn) to obtain

an upper bound for dmy,α
(x) for all x ∈ Fy(α) and a lower bound for my,α-a.e.

x ∈ [0, 1] in the case that my,α(Fy(α)) = 1. To be more precise, for x ∈ Fy(α) with
ω = ((j`, k`))`>1 ∈ π−1{(x, y)} that have τe(ω) = αe for each e ∈ E , we find that

dmy,α
(x) ≤ lim

n→∞

logmy,α(∆y(k1 · · · kn))
log diam(∆y(k1 · · · kn))

= lim
n→∞

log
∏

1≤`6n

α(j`,k`)

αj`

log
∏

1≤`6n q(j`,k`)

= lim
n→∞

1
n

∑
1≤`6n logα(j`,k`)

− 1
n

∑
1≤`6n logαj`

1
n

∑
1≤`6n log q(j`,k`)

.

By collecting like terms, we find that∑
1≤`6n

logα(j`,k`)
=
∑
e∈E

#{1 6 i 6 n : ωi = e} logαe,∑
1≤`6n

logαj`
=

∑
06j<J

#{1 6 i 6 n : ji = j} logαj ,∑
1≤`6n

log q(j`,k`) =
∑
e∈E

#{1 6 i 6 n : ωi = e} log qe.

Since x ∈ Fy(α), we have for each e ∈ E and 0 6 j < J that

lim
n→∞

#{1 6 i 6 n : ωi = e}
n

= τe(ω) = αe,

lim
n→∞

#{1 6 i 6 n : ji = j}
n

= lim
n→∞

∑
06k<Bj

#{1 6 i 6 n : ω(ji,k)
= (j, k)}

n
= αj .

Thus, recalling the definition of measure-theoretic entropy from (2.1), we find that

dmy,α
(x) ≤

∑
e∈E αe logαe −

∑
06j<J αj logαj∑

e∈E αe log qe
=

hµα(σ)− hPα(σJ)

−
∑

e∈E αe log qe
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for all x ∈ Fy(α). Therefore, it follows from lemma 2.1(i) that

dimH(Fy(α)) ≤ hµα(σ)− hPα(σJ)

−
∑

e∈E αe log qe
.

To prove the second statement, fix y ∈ W (α) such that my,α(Fy(α)) = 1, which
holds for να-a.e. y ∈ W (α) by lemma 4.2. Let (jm)m>1 ∈ π−1

J {y} be the unique
sequence with τj((jm)m>1) = αj for each 0 6 j < J , see lemma 4.1. By the above
computations for the upper bound of dimH(Fy(α)) together with [50, theorem
15.3(2)], we have for my,α-a.e. x ∈ [0, 1] that

dmy,α
(x) > inf lim

n→∞

logmy,α(∆y(k1 · · · kn))
log diam(∆y(k1 · · · kn))

, (4.5)

where the infimum is taken over all sequences (km)m>1 such that (jm, km)k>1 ∈
π−1{(x, y)}. We have seen that the set of x for which #π−1{(x, y)} > 1 is countable
so is therefore a my,α-null set. Consequently, the infimum on the right-hand side
of (4.5) is over a single sequence for my,α-a.e. x ∈ [0, 1]. Fix x ∈ Fy(α) such that
(4.5) and #π−1{(x, y)} = 1 both hold. Then

dmy,α
(x) > lim

n→∞

logmy,α(∆y(k1 · · · kn))
log diam(∆y(k1 · · · kn))

= lim
n→∞

∑
e∈E

#{16i6n :ωi=e}
n logαe −

∑
06j<J

#{16i6n : ji=j}
n logαj∑

e∈E
#{16i6n :ωi=e}

n log qe
.

Since x ∈ Fy(α) for each e ∈ E and 0 6 j < J , we find

τe(ω) = lim
n→∞

#{1 6 i 6 n : ωi = e}
n

= αe and

τj((jm)m>1) = lim
n→∞

#{1 6 i 6 n : ji = j}
n

= αj .

Therefore,

dmy,α
(x) ≥

∑
e∈E αe logαe −

∑
06j<J αj logαj∑

e∈E αe log qe
=

hµα(σ)− hPα(σJ)

−
∑

e∈E αe log qe
.

Since this holds for my,α-a.e. x ∈ Fy(α) and my,α(Fy(α)) = 1, it follows from
lemma 4.2 and lemma 2.1(ii) that

dimH(Fy(α)) ≥ dimH(my,α) ≥
hµα(σ)− hPα(σJ)

−
∑

e∈E αe log qe
.

�

Remark 4.1. The additional condition on the frequency vector α that for each
0 6 j < J there are k, ` ∈ Bj with α(j,k) > 0 and α(j,`) > 0 is used only to
remove the infimum in (4.5). Another assumption that would allow us to remove
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the infimum is to assume that #π−1{(x, y)} = 1 for all (x, y) ∈ F (α). This holds
for example in the following cases.

(i) If Bj > 3 for some 0 6 j < J and there is a 1 6 k 6 Bj − 2 with α(j,k) > 0,
then for any (x, y) with #π−1{(x, y)} > 1 and any ω ∈ #π−1{(x, y)}, we
obtain τ(j,1)(ω) = 0 6= α(j,k) and thus (x, y) 6∈ F (α).

(ii) If αe > 0 for each e ∈ E and h(j,0)(0) = 0 and h(j,Bj−1)(1) = 1 for all

0 6 j < J , then for any (x, y) with #π−1{(x, y)} > 1 any ω ∈ #π−1{(x, y)}
will either end in an infinite string of digits from the set {(j, 0) : 0 6 j < J}
or in an infinite string of digits from the set {(j, Bj − 1) : 0 6 j < J} and
again there is at least one e ∈ E for which τe(ω) = 0 6= αe.

5. Examples

Example 5.1. For a concrete example, let J =2, B0 = 2, B1 = 3 so that

E = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)}.

Let

h(0,k)(x) =
x+ k

2
, k = 0, 1,

h(1,k)(x) =
x+ k

3
, k = 0, 1, 2,

so εe = 0 for all e ∈ E and r(0,1) = 1
2 , r(1,1) = 1

3 and r(1,2) = 2
3 . Take p ∈ (0, 1)

arbitrary and let p0 = p, so f0(y) = py and f1(y) = (1− p)y + p. This gives

A(0,k) =

[
1/2 0

0 p

]
, A(1,k) =

[
1/3 0

0 1− p

]

and

v(0,0) = v(1,0) =

[
0

0

]
, v(0,1) =

[
1/2

0

]
, v(1,1) =

[
1/3

p

]
, v(1,2) =

[
2/3

p

]
.

See figure 1(b) for an illustration of how this GLS IFS {Ae+ve}e∈E acts on [0, 1]2.
For the number expansions, if (em)m>1 ∈ EN, then for each m > 1 we get sm = 0,
Km = 2 if jm = 0 and Km = 3 if jm = 1 and tm ∈ {0, 1

2 ,
1
3 ,

2
3} for all m > 1. So, in

fact, for each (em)m>1 ∈ EN if we set κ(n) = #{1 6 m 6 n : jm = 0}, then (1.9)
becomes

lim
m→∞

he1
◦ · · · ◦ hem(0) =

∑
m>1

tm
2κ(m)3m−κ(m)

.

Hence, this GLS IFS produces for each x ∈ [0, 1] number expansions in mixed base
2 and 3. Note that for this IFS, he 6= he′ if e 6= e′. So from proposition 4.1, it follows
that each x ∈ [0, 1] has uncountably many different expansions with mixed bases
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2 and 3. If α satisfies the assumption of theorem 1.2, then we can apply theorem
1.2. We have α0 = α(0,0) + α(0,1) and α1 = α(1,0) + α(1,1) + α(1,2) and obtain for
να-a.e. y ∈ W (α) that

dimH(Fy(α)) =

∑
e∈E αe logαe − α0 logα0 − α1 logα1

−α0 log 2− α1 log 3
.

Note that if we consider the IFS {A(0,0) + v(0,0), A(1,2) + v(1,2)} with A(j,k) and

v(j,k) as in the example and we take 1
2 < p < 2

3 , then we obtain a diagonally

affine IFS that satisfies condition (D
′
)(a). Hence, we can apply theorem 1.1 to this

IFS to obtain for each α ∈ (0, 1) an expression for the Hausdorff dimension of the
set of points (x, y) ∈ [0, 1]2 that have a GLS expansion containing only the digits
(0, 0) and (1, 2) and in which (0, 0) occurs with frequency α (and thus (1, 2) with
frequency 1−α). Of course, here we can take any other combination of a digit from
{(0, 0), (0, 1)} and a digit from {(1, 0), (1, 1), (1, 2)} to obtain a similar result.

We can extend this example in the following sense. Fix some J ∈ N>2 and dif-
ferent integers M0,M1, . . . ,MJ−1 > J . Also fix some probability vector (pj)06j<J .
So,

E = {(j, k) : 0 6 j < J, 0 6 k < Mj}.

For (j, k) ∈ E , set

A(j,k) =

[
1/Mj 0

0 pj

]
, v(j,k) =

[
k/Mj∑j−1
i=0 pi

]
.

For each x ∈ [0, 1] and sequence (jm)m>1 ∈ {0, 1, . . . , J − 1}N, the GLS expansion
produced by this system has the form

x =
∑
m>1

dm

M
c0,m
0 M

c1,m
1 · · ·M

cJ−1,m
J−1

, (5.1)

with dm ∈ {0, . . . ,Mjm − 1} and cj,m = #{1 6 i 6 m : ji = j}. In other words,
the system produces for each x ∈ [0, 1] uncountably many different mixed base
expansions with bases M0, . . . ,MJ−1. Here, we need to remark that we consider
two GLS expansions produced by the system different if the two corresponding
sequences in

A =
⋃

(j,k)∈E

{(
0,Mj ,

k

Mj

)}
are different. For the point 0, for example, this means that the GLS expansions
generated by the system are all of the expansions of the form

0 =
∑
m>1

0

M
c0,m
0 · · ·M

cJ−1,m
J−1

,

with (c0,m, . . . , cJ−1,m) ∈ NJ satisfying
∑J−1

`=0 c`,m = m.
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Example 5.2. Fix an N ∈ N>3 and a 0 < p < 1 and let E = {(j, k) : j = 0, 1, 0 6
k < N}. For 0 6 k < N , set

A(0,k) =

[
1/N 0

0 p

]
, A(1,k) =

[
−1/N 0

0 1− p

]

and

v(0,k) =

[
k/N

0

]
, v(1,k) =

[
(k + 1)/N

p

]
.

Then for any x ∈ [0, 1] and any (jm)m>1 ∈ {0, 1}N, the number expansion of x
produced by this system has the form

x =
∑
m>1

(−1)jm
dm
Nm

,

for some dm ∈ {0, . . . , N − 1}, m > 1. So, the system produces for each x a signed
base N -expansion in which the signs of the terms correspond to a preset sequence
of signs (jm)m>1.

Also this system satisfies he 6= he′ whenever e 6= e′ and together with any
frequency vector α ∈ (0, 1)2N for which the conditions of theorem 1.2 are satisfied,
the Hausdorff dimension of the Besicovitch–Eggleston set Fy(α) for να-a.e. y ∈
W (α) is given by theorem 1.2. For 1

N < p < N−1
N and any 0 6 k, ` < N , the

system {A(0,k) + v(0,k), A(1,`) + v(1,`)} satisfies (D
′
)(a), so then also theorem 1.1

applies.
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129 (2009), 1479–1490.

[10] L. Barreira and B. Saussol. Variational principles and mixed multifractal spectra. Trans.
Am. Math. Soc. 353 (2001), 3919–3944.

[11] L. Barreira, B. Saussol and J. Schmeling. Distribution of frequencies of digits via
multifractal analysis. J. Number Theory. 97 (2002), 410–438.

[12] L. Barreira, B. Saussol and J. Schmeling. Higher-dimensional multifractal analysis. J.
Math. Pures Appl. 81 (2002), 67–91.

[13] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp. Ergodic properties of
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