Math. Proc. Camb. Phil. Soc. (2023), 175, 319-325 3 19
doi:10.1017/S0305004123000154
First published online 11 April 2023

Stable finiteness does not imply linear soficity
By BE’ERI GREENFELD
Department of Mathematics, University of California, San Diego,

La Jolla, CA, 92093, U.S.A.
e-mail: bgreenfelde@ucsd.edu

(Received 04 January 2023; revised 08 March 2023; accepted 02 March 2023)

Abstract

We prove that there exist finitely generated, stably finite algebras which are not linear
sofic. This was left open by Arzhantseva and Pdunescu in 2017.
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1. Introduction

The question of whether a non-sofic group exists is one of the most tantalising open
problems in the field of metric approximation properties with applications to various fields,
including algebra, functional analysis, dynamics and more. Recall that a group is sofic if
it can be approximated by almost homomorphisms to symmetric groups, equivalently, if it
embeds into a metric ultraproduct of finite symmetric groups endowed with the normalised
Hamming distance. Other important variants of soficity include hyperlinearity, in which the
symmetric groups are replaced by unitary groups, endowed with the normalised Hilbert—
Schmidt norm (this is closely related to Connes’ Embedding Conjecture), and linear soficity,
in which one considers metric ultraproducts of general linear groups endowed with the nor-
malised rank function. Every sofic group is both hyperlinear [4] and linear sofic [1]. See
also [11].

Arzhantseva and Paunescu [1] studied linear soficity of groups and algebras and discov-
ered an interesting connection between them — namely, they proved that a group G is linear
sofic if and only if its group algebra C[G] is linear sofic. Let us recall the required definition
from [1].

Fix an arbitrary field F. Let {/ be a non-principal ultrafilter on the natural numbers and
(nr)x a sequence of natural numbers tending to infinity. We define the asymptotic rank
function:

1
pu: [ [ M (F)—> 10,11 by pu () = Jim, n—krk(Ak)-
k

Then one can form the metric ultraproduct [ [,_,;, M, (F)/Ker(poy).

Definition 1-1 ([1]). A countably generated algebra A over a field F is linear sofic if there
exists an injective homomorphism ® : A — [[,_,;, My, (F)/Ker(py).
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While no examples of non linear sofic groups are known, it is not hard to find examples
of non linear sofic algebras, based on the following observation. We say that a unital ring
A is directly ﬁnitel if xy =1 implies yx =1 for every x,y € A, and stably finite if M, (A) is
directly finite for every n € N. There exist examples of directly finite, not stably finite rings
[13]. It is straightforward to check that any metric ultraproduct [[,_,,, My, (F)/Ker(poy) is
stably finite, hence every linear sofic algebra is. The algebra F'(x, y)/(xy — 1) is non-directly
finite, hence non linear sofic. An open conjecture of Kaplansky asserts that the group algebra
of an arbitrary group is directly finite (Kaplansky proved it for fields of characteristic zero
[8]; see also [10]); Elek and Szab6 proved Kaplansky’s conjecture for sofic groups [S] (a
different proof is given in [1]).

In [1], the authors mention that “Such [stably finite non linear sofic] algebras seem diffi-
cult to find as counterexamples to soficity in general proved to be elusive.” The aim of this
paper is to prove that stably finite, non linear sofic algebras exist.

Our proof is based on an asymptotic linear algebraic analysis of certain non-commutative
equations, which we then show that can be solved in various stably finite algebras. The first
instance is obtained using an example of Irving [6], from the theory of polynomial identity
(PI) algebras:

THEOREM 1-2. Over an arbitrary field, there exists a finitely generated non linear sofic
algebra which satisfies a polynomial identity and is thus stably finite.

Another example, of a completely different flavor, arises from the Cohn—Sasiada con-
struction of a simple Jacobson radical ring [3].

THEOREM 1-3. Over an arbitrary field, there exists a finitely generated non linear sofic
algebra which is Jacobson radical and whose unital hull® is thus a non linear sofic stably
finite algebra.

Conventions. Throughout, rings and algebras are associative but not necessarily commu-
tative or unital; for a matrix P € M,,(F) we let Im(P) denote the image/column space of P,
and let rk(P) = dimg Im(P) denote its rank.

2. Ring theoretic preliminaries

Recall that a ring is primitive if it admits a faithful simple module, and an ideal P < R is
primitive if the quotient ring R/P is primitive. The intersection of all primitive ideals of a
ring R is called the Jacobson radical of R, denoted J(R). Equivalently, a ring R is Jacobson
radical (of itself) if it is quasi-invertible: for any x € R there exists y € R such that x + y = xy.
This is equivalent to saying that in the unital hull R', the element 1 — x has 1 —y as an
inverse. For more on primitive rings, radicals, and structure theory of rings, see [7].

An F-algebra A satisfies a polynomial identity (PI) if there exists some non-trivial poly-
nomial f(xi,...,x,) in the free associative algebra F(xi, xp,...) which vanishes under
any substitution from A. For instance, any commutative algebra satisfies the (additive)
commutator identity [x, y]. For more on PI-algebras, see [12].

' Aka ‘Dedekind-finite’ or ‘Von Neumann finite’.

2 The unital hull of an F-algebra R is the vector space R' := F @ R with multiplication:
(a+r)-(@+7r)=ad +ar +aoa'r+rr.
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We now give two well-known observations regarding stable finiteness which are brought
here for the reader’s convenience:

LEMMA 2-1. Let R be a ring and J < R its Jacobson radical. If R/J is stably finite then
so is R.

Proof. Suppose that X, Y € M, (R) satisfy XY =I. Since R/J is stably finite then / — YX €
M, (J). Since J is a quasi-invertible ideal, so is M, (J) <M, (R) and hence YX =1 — (I — YX)
is invertible, so both X, Y are invertible and since XY = I it follows that X = Y~ and YX = I.

LEMMA 2-2. Any Pl-ring is stably finite.

Proof. Suppose that R is a PI-ring and J < R is its Jacobson radical. Each primitive homo-
morphic image of R is a simple algebra which is finite-dimensional over its center [9,
theorem 1], hence stably finite by linear algebra. Thus, R/J embeds into a direct product
of stably finite rings, so it is stably finite itself. By Lemma 2-1, R itself is stably finite.

3. Non linear soficity

In this section we prove the following non-soficity machinery:

LEMMA 3-1. Let A be an F-algebra containing elements x,y, z € A such that:
(1) xeyxA;

(i) ze€exA and yz=0;

(iii) z#0.

Then A is non linear sofic.

Proof. On the contrary, if A is linear sofic then we have an embedding:

D:A—> ]_[ M, (F)/Ker(oy).
k—U

Fix a linear lift of ® to [ [, My, (F), say, ¢ : A — [[; My, (F) so:
®(a) =0 < ¢(a) € Ker(py).

Write ¢ =[], ¢x with each ¢ : A — M, (F). For every 0 a € A there exists ¢ > 0 such
that:

{k:1k(pr(a)) > eni} €U,
and for every a, b € A and ¢ > 0, we have:

{k : tk(@r(a@)pr(b) — pr(ab)) < eni} € U.

Since z # 0, it follows that also x # 0. In particular, since I/ is a non-principal ultrafilter, we
can fix a positive real « > 0 and a linear map ¢ = ¢ : A — M,,(F) for some k such that:

rk(p(x)), rk(p(2)) > an.
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By the assumptions of the lemma, x = yxa and z=xb for some a,b € A, and yz=0. Let
T:= ¢px) — p(y)p(x)p(a) and S := ¢(z) — p(x)¢(b). We may additionally assume that:

rk(p(Me(2), tk(T), 1k(S) < %n.
Claim. We have:
K(p()p() < Tk(p(x) = 31
Proof of claim. First, since ¢(z) = p(x)g(b) + S:
Im(¢(2)) € Im(p(x)) + Im(S).

It follows that:
Im(¢(2)) ~ Im(p(2)) + Im(e(x))
Im(¢(2)) NIm(p(x)) Im(p(x))
c Im(¢(x)) + Im(S)
Im(p(x))
~ Im(S)
~ Im(p(x) N Im(S)’

So:
3
dimp (Im(¢(z)) N Im(p(x))) = rk(p(z)) — rk(S) > Tan-

Denote V := Im(¢(y)¢(z)) and recall that dimg V < an/4. Fix a direct sum complement of
Im(¢(z)) N Im(p(x)) inside Im(¢p(x)), say, WV, and notice that:

dimp W = rk(p(x)) — dimp (Im(p(2)) N Im(g(x)))

< rk(p(x)) — %Tan.

Now:

tk(p(n)e(x)) = dimp Im(p(y)@(x))
= dimg ¢(y)Im(p(x))
< dimp ¢(y) (Im(¢(2)) N Im(p(x))) + dimp p(y)WV
< dimg V 4+ dimg W

o " R
<gn+t <r (p(x)) — T”)

= rk(p(x)) — %n.

Return to the proof of the lemma. Since ¢(x) = p(y)p(x)¢(a) + T for some T € M,(F)
with tk(T) < an/4, we have:
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Im ¢(x) = Im(e(V)e(x)¢(a) +T)
< Im(p(y)¢(x)) 4+ Im(T)

whose dimension is at most rk(¢(y)¢(x)) + rk(T) which is, by the above claim, at most:
o o
k(p(x)) — 7" +1k(T) < 1k(p(x)) — ik

a contradiction. Hence A is non linear sofic.

4. Stably finite non linear sofic algebras

Proof of Theorem 1-2. Let A= F(x,y)/(x*, yxy —x). This algebra was introduced by
Irving [6] as an example of a finitely presented PI algebra which is not embeddable into
any matrix algebra over a field.

The set of monomials in x, y which avoid occurrences of x?> and yxy forms a linear basis
for A; this fact was established in [6]. Indeed, this is a direct consequence of Bergman’s
Diamond Lemma [2], since the only overlap between the reductions yxy — x, x> 0 is:

0 =2xxy = (yxy)xy = yx(yxy) = yxx = 0.

By [6, theorem 2], A satisfies a polynomial identity (and has linear growth). Explicitly, since
(x) < A satisfies A/ (x) = F[y] and (x)> =0, the identity:

[X1, Y11[Xo, Y2][X3, Y3] =0

holds in A. In particular, by Lemma 2-2, A is stably finite.

Finally, A fulfills the requirements of Lemma 3-1 with z = xyx. Indeed, xyx contains no
occurrences of x” or yxy, and is thus non-zero; obviously, xyx € xA and x = yxy € yxA; and
finally,

VZ = yXyx = X =0.
Hence A is non linear sofic.

Proof of Theorem 1-3. Let A= F({x,y)) be the ring of noncommutative formal power
series and let AT be the ideal of A consisting of all power series with zero constant term.
Let I = (yx>y —x) <A*. Since AT is Jacobson radical, the quotient ring R := A1 /I is also
Jacobson radical. By [3, section 2, “basic lemma”], the image of x in R (for simplicity,
we identify elements in A* with their images modulo I, by abuse of notation) is non-zero.

Consider the ring:
RR
S=
00

()
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‘We claim that:

Indeed, a straightforward calculation shows that KS = 0, so if (*) was not true then:

0 x2 0 yx2 " fa; b;\ [0 yx*
o[ Py (e y
00 00/ Z\oo/\oo

0 ayx? + 31 ajyx?
0 0 '

(where « € F is some — possibly zero — scalar.) Considering the upper right corner of the
above equation, we obtain x% = fx* where f = ay + Y, aiy € R. Let g be the quasi-inverse
of f, namely, gf =f + g. Then gx? = gfi® = fi? + gx?, so x*> = fx> =0, hence x = yx?y = 0.
This contradicts that x # 0. It follows that () holds.

Consider T := §/K and consider the following elements, identified with their images

modulo K:
x0 yO0 0 x2
X:= , Y= , 2=
00 00 00

Notice that in 7, it holds that X = YX?Y € YX - T and:

zz(gg) (gg)eX.T
“=(00) 0)=(0%)

which belongs to K, hence equal to 0 in 7. Moreover, by (x) it follows that Z is non-zero
inT.

By Lemma 3-1 applied to T with respect to X, Y, Z, the algebra T is non linear sofic; since
S is Jacobson radical, so is 7 = §/K. The unital hull 7' is non linear sofic and stably finite
by Lemma 2-1.

and in addition:
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