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Abstract

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one
divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain
local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight,
trivial character, and good ordinary reduction at all primes dividing p, if the central critical L-value
is zero then the p-adic Selmer group of it has rank at least one. We also prove that one of the local
assumptions in the main result of Skinner and Urban can be removed by a base-change trick.

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Introduction

1.1. The conjecture. Let p be an odd prime and F a totally real number field
where p is unramified. Suppose that [F : Q] = d. Let KC be a totally imaginary
quadratic field extension of F such that each prime v of F above p is split.
Suppose that

(A) K is not contained in the narrow Hilbert class field of F and all primes v
ramified in F/Q are split in /C.

We let F,, be the cyclotomic Z, extension of F. The Galois group, which we
denote as Iy, is isomorphic to Z,. Let K be the maximal abelian anticyclotomic
(the complex conjugation acting by —1 on the Galois group) Z,-extension of X
unramified outside p with Galois group denoted as I . This is isomorphic to
Z‘[l). Write KT for F.o/C with I} the Galois group over K (identified with I'f).
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Let Ko := K K7 and I'c := Gal(K,/K). This is a Galois extension with Galois
group Z‘;*l. Conjecturally (Leopoldt) this is the maximal unramified outside
p abelian Z,-extension of K. We define Ax := Z,[[Ic]]. For any A a finite
extension of Z,, define Ax 4 := A[[Ik]]. We define more Iwasawa algebras A,
A, Af, Ag 4, Af 4, in an analogous way. We let & be the canonical character
Gr — Ir — Ay of Gf and ex be the composition Gx — I'x — Ag. Let
Uy or Yx be er or e composed with the reciprocity map of class field theory
(normalized by the geometric Frobenius).
We fix topological generators for each group above:

y i=T1eCr (H(l + p)v) . yti=reck (1—[(1 +p 1+ P)iﬁ)

vlp vlp

for I'r ad I and

{yuji}v,i
for I, with {y,}; being a set of [F, : Q,] elements with y,; € Im(recx (K,)).
Here rec means the reciprocity map of class field theory normalized by the
geometric Frobenius. Let I, be the Z,-span of {y,;}.

Let X be a finite number of primes of F. We can use unitary groups to study
Iwasawa theory for Hilbert modular forms. Let f (f) be a nearly ordinary Hilbert
modular form (or Hida family with the normal domain I as coefficient ring). Let
L/Q, be a finite extension containing all Fourier coefficients of f and x a O,-
valued character of ICX\A,XC. Then, by results of Wiles [51], the restriction to
G, of the Galois representation associated to f for each v|p is isomorphic to
an upper triangular representation V where the one-dimensional subspace V'
has some prescribed Galois action. One can define its Selmer group Seli i, and
its Pontryagin dual X f k., (see Section 2 for details). For X' containing all the
bad primes, we construct in Section 7.3 a p-adic L-function Ej:?,c’x € O]
(L’f,c’ € I[[Ik]]). We can formulate the following main conjecture as follows.

CONJECTURE 1. As ideals of O [[Tc1]1 A[[Tk1D,

z b = b
(Eﬁm) = charf’,C’X, (Ef,iC,x) = charf!m.

Here char means the characteristic ideal for the Ax-module X ;);.K,x (or
I[[I']]-module Xfic,x)- We can construct a nonintegral p-adic L-function

Ef)?/c,x in great generality. (This is an element in Fy[[[]] instead of I[I]
which is also interpolating special values of the L-functions with a slightly
different interpolation formula; see Section 7.) This is enough for proving the
characteristic-zero results (Theorem 7). However, we need certain Gorenstein
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properties of some Hecke algebras to construct the integral p-adic L-function
,Cf k., that appears in the conjecture above. Let us briefly discuss this issue. Let
f be an [-valued Hida family of nearly ordinary Hilbert modular eigenforms with
tame level M for I some finite extension of some weight space (to be defined in
the text). Let ms be the maximal ideal of the full Hecke algebra T(M, I) with I
coefficients corresponding to f. Let Ty, := T(M, [),,, be the localization. Then
we say that it is Gorenstein if Homy(Ty,, I) is free of rank one over T,,, as a
T\,,-module.

1.2. Main results.

DEFINITION 2. We give the following definitions.

o (irred) The residual Galois representation p, of f is irreducible.

e (dist) For V = p, and each prime v|p, the O; -valued characters giving the
actions of G, on V' and V/ V. are distinct modulo the maximal ideal of O, .

We always assume that (irred) and (dist) hold for our residual representation
0. We write (irredx) to mean that the restriction to G of the residual Galois
representation is absolutely irreducible.

These conditions are used in various places in the proof. First of all (irred) is
used in constructing Galois representations for Hida families of Hilbert modular
forms. Second, they are part of the conditions to ensure that a certain local
Hecke algebra is Gorenstein. Third, (irredx) and (dist) are used in the ‘lattice
construction’ to construct elements in the dual Selmer groups. Finally, in the
proof of Theorem 100, we used a modularity-lifting result to prove that a
certain automorphic form is a CAP form (meaning that its associated Galois
representation is the same as that of a Klingen Eisenstein series) under these
assumptions.

Our first theorem (Theorem 101) is one divisibility of the multivariable main
conjecture similar to the one proved in [44].

THEOREM 3. Suppose that p > 5. Let L be a finite extension of Q, and I a local
normal domain and a finite integral extension of the ‘parallel weight space’ (to
be defined in Section 2.3.2) A%%L. Let £ be an 1-adic ordinary Hilbert modular
eigenform over F of tame level M (a finite idele) with trivial character, such that
some specialization of it is an ordinary cusp form of even parallel weight ky > 2,
and trivial nebentypus. Suppose that () is true and that M = MM~ with M™*
divisible only by primes split in IC and M~ divisible only by primes of F inert in
K. Suppose also that the following hold.
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e (irredx) and (dist) hold for the residual Galois representation pg associated
tof.

e The assumptions of Theorem 8 hold.
e M~ is square free and its number of prime factors is congruent to d modulo 2.

o The residual representation pg is ramified at all v|M ™.

Let X be any finite set of primes containing p. Then we have the containment of
fractional ideals.

charf;oc ) C (,Cf,C .

In the text we construct the X'-imprimitive p-adic L-function for X containing
all bad primes. This is integral (that is, in I[[I]]). By putting back the Euler
factors at X' we may construct the three-variable p-adic L-functions for general
X'. But we do not know if they are integral. So we use a fractional ideal in the
statement of the above theorem. Here we only consider ‘parallel” Hida family f
which is the Zariski closure of the set of points with parallel weights and trivial
characters. This is due to our knowledge about the anticyclotomic p-invariant.
In fact there is a small mistake in [44, 12.3.2], where they claimed that the
p-invariant for the X -imprimitive p-adic L-function is O from the same property
for the original L-function. However at nonsplit primes the local Euler factors do
contribute nontrivially to the p-invariant (split primes are OK). So it is necessary
to compare to Hida’s construction in [15] for the argument, and in our paper we
are only able to make such comparison along the ‘parallel weight’ Hida family.
It is still possible, however, to prove the result for a general Hida family by
constructing the full (not X'-imprimitive) p-adic L-function (for example in the
forthcoming work [7]). Therefore we still do the computation for a general Hida
family.

In fact, using the results for the other side divisibility of the anticyclotomic main
conjecture using Heegner points, we can prove the equality in the main conjecture
as in [44] under more technical conditions. See [32] for example. We leave this
for interested readers. However, we are unable to prove the main conjecture over
F due to the lack of analogs of results of Kato.

Our next result (Theorem 103) states that the main theorem of [44, Theorem
3.29] is true without the third assumption in [44].

THEOREM 4. Suppose that p > 5. Let f € S, (M, L), 2|k > 2 be a p-ordinary

cuspidal eigenform with trivial character, p { M, and L C Q, a finite extension
of Q,. Suppose that
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e (irred) and (dist) hold for py.
Then, for any set of primes X,

chary , (f) = (L7)
in Ag.o, ®z, Q. If, furthermore,

e there is an O, -basis of T; with respect to which the image of p; contains
SL,(Z,), and

e there exists a real quadratic extension F/Q such that

— p is unramified in F,

— any prime £ dividing M such that £ = —1(mod p) is inert in F, and any
other prime divisors of M is split in F, and

— the canonical period of f over F is a p-adic unit times the square of its
canonical period over Q,

then the equality holds in Ag,o, .

REMARK 5. We will use the trick of passing to the base change to a real quadratic
extension to prove the theorem. Unfortunately, for this trick to work we will face
the issue of comparing the periods, at least when we are concerned with the main
conjecture without inverting p. This problem is in general difficult.

Our last result is a characteristic-zero one which does not need the Gorenstein
properties mentioned above (Theorem 102). We first state the following
conjecture.

CONJECTURE 6. Let F be a totally real field, p be an odd prime unramified
in F, k > 2 an even integer, and g a Hilbert modular cuspidal eigenform over
F of parallel weight k and trivial character. Suppose that g has good ordinary
reduction at all primes above p. Assume moreover that if [F : Q] is even then
there is at least one prime v of F such that m,, is not a principal series. If
L(g,«k/2) # 0 then H}(F, p;((2—1x)/2)) =0.

This conjecture is proved when « = 2 in [38, Theorem B]. Note that the
assumptions in [38] are satisfied by the description of G, action on p,. For general
k this conjecture is not known but we expect the method of [3] to work in the
totally real case as well.

THEOREM 7. Let F be a totally real number field. Let p be an odd rational
prime unramified in F. Let f be a Hilbert modular form over F of even parallel
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weight ko and trivial character. Let py be the p-adic Galois representation
associated to f such that L(ps, s) = L(f,s). Suppose that

(1) f is good ordinary at all primes dividing p,
(1) assumption (irred) holds for f, and

(i) if [F : Q] is even and the global sign of f is —1, then the automorphic
representation of f is not a principal series in at least one finite place.
Suppose moreover that Conjecture 6 is true for F, p, k = k¢ in our theorem,
and any g satisfying the assumption of Conjecture 6. If the central critical value
L(f, ko/2) =0, then the Selmer group Hfl(F, pjﬁ((Z — ko) /2)) is infinite. Here P}

means the Pontryagin dual Homgz, (o, Q,/Z,).

Note that (dist) is ensured by other assumptions because the two characters
giving the diagonal actions of the inertial group at p are the trivial character and
the cyclotomic character. In the special case that F' = (Q, Theorem 7 is essentially
proved in [44], though our result is slightly more general (in particular, we do not
need to assume that f is special or even square integrable at any finite place).

In the case when the root number is —1, Theorem 7 is a result of Zhang and
Nekovar (in fact conditions (iii) is made to apply their results). We prove it when
the root number is +1. In fact, our theorem, combined with the parity result of
Nekovar, implies that, when the order of vanishing is even and at least two, then
the rank of the Selmer group is also at least two. Also note that the method of [43]
does not seem to generalize to the totally real field case.

In order to prove Theorem 7, we need to choose a CM extension (that is a
totally imaginary quadratic extension) }C of F' and make use of the unitary group
U(1, 1),r which is closely related to GL,. We embed f into a Hida family f
and use some CM character ¥ to construct a family of forms on U(1, 1). Then
our proof consists of four steps. (1) From this family on U(1, 1) we construct
a p-adic family of Klingen Eisenstein series on U(2, 2), such that the constant
term is divisible by the p-adic L-function of f over K. (2) We prove that (the
Fourier expansion of) the Klingen Eisenstein family is coprime to the p-adic L-
function by a computation using doubling methods. (3) We use the results about
the constant terms in step 1 to construct a cuspidal family which is congruent
to the Klingen Eisenstein family modulo the p-adic L-function. (4) We pass to
the Galois side, using the congruence between the Galois representations for the
Klingen Eisenstein family and the cuspidal family to prove the theorem.

We record here a theorem of Fujiwara which gives sufficient conditions for T,
to be Gorenstein.

THEOREM 8 (Fujiwara). Let p be the residual Galois representation associated
to £. Suppose that the following hold.
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p = 3 and p|r, is absolutely irreducible. When p =5 the following case

is excluded: the projective image G of p is isomorphic to PGLy(F,) and the
mod p cyclotomic character Xy, factors through Gr — G ~7.)2.

(dist) is true.

e There is a minimal modular lifting of p.

e Inthe case whend := [F : Q) is odd, Thara’s lemma is true for Shimura curves.
e For each finite place v, q, # —1(mod p) if pyl,, is absolutely irreducible.

Then the ring Ty, , is Gorenstein.

This is [9, Theorems 11.1 and 11.2].

Many of our arguments are straightforward generalizations of [44]. However
we do all the computations in the adelic language instead of the mixture of
classical and adelic language of [44]. This simplifies the computations somewhat
since we no longer need to compare the classical and adelic pictures. The required
nonvanishing modulo-p results of some special L-values are known thanks to
the recent work of Hsieh [24] and Hung [26]. Also we use Hida’s work on the
anticyclotomic main conjecture to compare the CM periods and canonical periods
for some auxiliary CM forms. To construct the cuspidal family in step (3) we
generalize the geometric argument in [44] 6.3. (In the case when F # Q we
need to restrict to a certain subfamily of the whole weight space to have freeness
of the nearly ordinary forms over the (sub) weight space and surjectivity of the
restricting to the boundary map.) To adapt the argument to the totally real case our
choices for Fourier coefficients and Eisenstein series also differ from [44] slightly.

The paper is organized as follows (for convenience we keep the argument
parallel to that in [44]). In Section 2 we recall the notion of Hilbert modular forms
and record some results on Iwasawa theory for their Selmer groups. In Section 3
we recall some results about p-adic automorphic forms and Hida theory for the
group U(2, 2). Sections 4-8 (corresponding to steps (1) and (2)) are parallel to
[44, Ch. 9-13] and we do the local and global calculations to deduce the required
p-adic properties needed in Section 9. We prove our main theorems in Section 9
(corresponding to step (4)).

2. Backgrounds

2.1. More notation. We fix aCM type X, for K which means that the disjoint
union ¥, U X< is the set of all Archimedean places of K. We sometimes write
X, for the set of Archimedean places of F as well. Fix ¢, : C >~ C,,. For each v|p
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there is a unique place w above v whose corresponding Archimedean place is in
Y. The set of such places is a p-adic CM type of K. We define 1~ as the set
of roots of unity with order powers of p. Let 8xc, 0 = 0 be the differents of X
and F. Let D = Dx = Nmg,r(8x) (not the discriminant of KC!). We write D, for
the v component of it. Let S;C be the different from /C to F and l3;c = Nmg,r (S,C).
We denote N to be the level of f and M the prime to p part of it. Here N, M,
3x, 0, Dic, D are all elements in the ideles of F, IC, or QQ supported at the finite
primes (also the Mp defined later). This is much more convenient when working
in the adelic language. For each prime v of F we write @, for a uniformizer
and g, for the cardinality of the residual field. For each v|p we suppose that
"IN, (we save the notation r, for other use). Let e, be the inertial degree of
F,/Q,. We usually adopt the convention that &,(p"?) = [],, & (p™). Also we
write £°(x) 1= &(x) and &(x) = % We use the following convention: if v
is nonsplit in U/ F then for an integer r we write A" = (@) where w,, is the
uniformizer of a prime w of K above v. If v is split then for a pair of integers
r = (r1, ) we write A" := (@', w,?). For a character say & we often write f;
for the conductor of it. We assume that /C/F is split at all primes dividing 0r.
This assumption makes the computation of Fourier—Jacobi coefficients easier. Let
h = hp be the narrow ideal class number of F. We divide the ideal classes CI(K)
into I; U --- U I, corresponding to the image of the norm map to CI,(F) and
suppose that 7, are those mapping to the trivial class. (Here n stands for narrow.)
We assume that /C is disjoint from the narrow Hilbert class field of F and thus it
is easy to see that the norm map above is surjective. Also we write ( f, g) to be the
integration of f - g along U(1, 1)(F)\U(1, 1)(Ar). We denote ef : Ap/F — C*
the standard additive character such that ey (x,,) = exp(2wio,x,) for o running
over all Archimedean places of F. For any Or-algebra R we define S,(R) :=
{A € M\(R®0, Ox), S ="S}.

For f and g Hilbert modular forms such that the product of the central
characters of f and g is trivial then we denote (, )g, to be the inner product
on GL,; (integration over GL,(F)Ax\GL,(Ar); note that we need to mod out the
center here). We also write, for example, (, )u,. {, )L, vy the inner product with
respect to the indicated level group; that is, [U(1, 1)(Oy) : Up] - (, ), and so on.
We sometimes write Z C GL, for the central subgroup.

The unitary similitude group defined in this subsection is not the one used to
construct Shimura varieties. The ones usually used to define Shimura varieties
consist of elements whose similitude factors are rational. Our groups here are
slightly larger. The reason for this definition is that they are more convenient for
constructing various Eisenstein series, since the representation theory is easier and
the Hasse principle holds. We restrict the various automorphic forms constructed
to the smaller similitude group to get what we want. Let G = G, = GU(n, n) be
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the unitary similitude group associated to the pairing

—_— —_— ln
w = wn - _ln

on K?". We define algebraic groups G := GU(n, n) and U,, = U(n, n) as follows:
for any F-algebra R, the R points are

G(R) = GU(n,n)(R) := {g € GL,, (K ®F R)|gwg” = u(g)w, u(g) € R*}
(un : GU(n, n) — G, is called the similitude character) and
U(n, n)(R) :={g € GU(n, n)(R)|n(g) = 1}.

We define QO = @, to be the Siegel parabolic subgroup of G consisting of
block matrices of the form (¢ 5) such that C = 0. Let P be the Klingen

parabolic subgroup of GU(2, 2) which consists of matrices of the form (I - I)

*

and Mp its Levi subgroup. For g € GU(1, 1), x € Resg,rG,,, we write m(g,

a B lh
x) = ( woit ) € Mp.
x

For v a finite prime of F, as in [44, Section 8], we define the level group K, , C
GU(2, 2)(F,) for r,t > 0 as follows: for Q and P being the Siegel and Klingen
parabolic respectively,

K. = Ko, () N wyKp (1 yw),
where K, () means the matrices which are in Q(Op,) modulo @, and

1
Kp ,(w!) means matrices which are in P(Of ,) modulo @/, and w), = | ! 1).
1

We usually denote § as the Poincare upper half plane. Write n for the matrix

(1)
—1 .
For any domain A we usually write F, for the fraction field of A.
We sometimes write € for the cyclotomic character and w for the Teichmuller

character.

2.2. Hermitian half space and automorphic forms. For any finite place v of
Flet K, = GU(OF,). Let

H, ={ZeM,(C):—i(Z-"2) > 0).

(Note that H; is the usual upper half plane.)
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Let Z € HX>. Write = (% %) € G(Fx) with A, B,C, D (n x n) block
matrices. Let i1 (Z) := CZ + D, k,(Z) := C'Z + D. We define the automorphy
factor:

J(@, Z) := (na(Z), ko (Z)).
Let G(Fx)™ = {g € G(R), u(g) > 0}, where > 0 means positive at all
Archimedean places. Then G(F,,)* acts on Hf‘” by

A, B
g(Z) = (AgZ + Bg)(cgz + Dg)ila 8§ = (Cg Dg> .
8 8

Let KX = {g € UR) : g(i) = i} (we write i for the matrix i1, € H>*) and
Z be the center of G(R). Let K., be the group generated by K and (1" _1”).
We define Cy, := ZK1. Then ko > J (koo i) defines a homomorphism from
C. to GL,(C) x GL,(C).

DEFINITION 9. A weight k is a set of integers (K,+1.6, -+ Konos knos -+ ki.5)
suchthatk,, > kyo = -+ 2 koo and k, » 2 kyi1 .5 + 2n0.

A weight k defines an algebraic representation of GL, (C)** x GL,(C)*= by

k(84 8-) = Pthy,..k)(8+) @ Pi—ky1,.o—kon) (8=

where p(,.....4,) 15 the dual of the usual irreducible algebraic representation of GL,
with highest weight (ay, ..., a,). Let V;(C) be the representation of Co, given by

koo = pr o J(koo, 0).
Fix K an open compact subgroup of G(A ). We let
Shg(G) = G(F)"\H>> x G(Ar ;)/KCw.
The automorphic sheaf wy is the sheaf of holomorphic sections of
G(F)"\H>> x G(Ar ;) x Vi(C)/KCoo = G(Q)"\H> x G(Af ;)/K Cw.
One can also define these Shimura varieties and automorphic sheaves in terms of
moduli of abelian varieties. We omit these here.

The global sections of w; are called the space of modular forms. These are
functions

fiH™ x G(Ar. ;) — Vi(C)
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that are holomorphic in the first variable, fixed by some open compact subgroup
K of the second variable, and such that

py) bt o2 (J(y, Z) 7 fF(v(2), 8) = f(Z, 8)

forall y € gKg~' N GT(Q). Also, when n = 1 we require a moderate growth
condition.

REMARK 10. We will be mainly interested in the scalar-valued forms. In this
case V;(C) is one dimensional of weightk, = (0, ...,0; «, ..., «) for any o and
some integer x > 2.

2.3. Hilbert modular forms.

2.3.1. Hilbert modular forms. We set up the basic notions of Hilbert modular
forms, following [15] with minor modifications. Let / be the set of all field
embeddings of F into Q. We may regard I as the set of infinite places of F via
loo 1 Q <> C. The weight of a Hilbert modular form over F is a pair of elements
(¢, w) in the free module Z[I] generated by I such that « — 2w is parallel. We
identify Fy, = F ®g R with R’ and embed F into R’ via the diagonal map
a + (a%),e;. Then the identity component G of GL,(F) naturally acts on
Z = b’ with b the Poincare half plane. We write C{ for the stabilizer in G, of
the center point zo = (v/—1, /=1, ..., v/—1) € .Z. Then, for each open compact
subgroup U of GL,(AF,), we denote by M, ,,(U; C) the space of holomorphic
modular forms of weight (x, w) with respect to S (see [15] for more detail),
namely M, ,,(U; C) is the space of smooth functions f : GL,(Ar) — C satisfying
the automorphic condition

flaxu) = f(xX)jew(Uo, 20)”" fora € GLy(F) andu € UCY,

where j.., ((¢5),2) = (ad — be)™(cz + d)* for (¢4) € GLy(Fy) and z € .Z
and such that for any g, € GL,(A,) the associated classical form defined by
Jea(z,85) == f(8)  Jew(8oos 20) fOr g = (8o, 8o0) such that g - 20 = z is
holomorphic on the symmetric domain and at all cusps. We write S, ,,(U; C)
for the subspace of M, ,,(U; C) consisting of cusp forms. Here we have used the
convention that ¢* =[], _, ¢ for ¢ = (¢,)oe; € C' and s = ) 5,0 € C[[].
Setting t = ) _ o, we sometimes use another pair (n, v) to denote the weight, for
n = k — 2t and v = t — w. Each automorphic representation 7 spanned by forms
in S, ,,(U; C) has central character | - |, up to a finite-order character. The twist

Tt =n®]|- X/z is called the unitarization of 7.
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Let i be the narrow class number of F, and decompose

h
Ay =| |F*a(On*FL, witha; € A},

i=1

where F, is the set of totally positive elements. Then by strong approximation

" —1
G(Ar) = JOLy(F)tUp(N)G oy fort; = (ab (1)>
i=1

where for any ideal N of O let Uy(N) (U;(N)) be the open compact subgroup
of GLz((’)F) whose image modulo N is inside B((’)F) (N((’)F)) Let T be the
diagonal torus of GL, and ¢ be a neben character of T((’) ) whose conductor
contains (N). Let M, ,,(Uy(N), ¢; C) be the space of Hilbert modular forms of
weight («, w) with level group Uy(N) and nebentypus €. Any automorphic form
in the space M, ,,(Uy(N), ¢; C) is determined by its restriction to the connected
components of the #; in GL, (F)\ GLy(Ar)/Uy(N)G ».. So we identify the above
space with the space of h-tuples: {f;}, where the f; are forms in M, ,,(I;\h*>,
C) for I := t,-UO(N)),‘f1 N GLy(F) with fi(gs) = f(gsti). Each f; has a ¢g-
expansion:
fi@=a0, f)+ Y a, ferEz).

0kEeF™

More generally we have the g-expansions for Hilbert modular forms at
y € GL,(AF /). More precisely, each f € M, ,,(U; C) has a Fourier expansion at
y of the following type:

f ((y” x1°°> y) =y (a0t N+ Y a0E Het| @D

0kéeFX>

with ¢° = e; ik (X +iys0)) = e(2mi Zoloo & (x; +1iy,)). Forany t € A%
we define a(¢, &, f) to be a(diag(z, 1), &, f).

2.3.2. Hida families. First of all let us define the weight space for Hilbert
modular Hida families. We fix an even number «, > 2 throughout the paper. For A
the integer ring of some finite extension of Q,, let A}, , = A/, be the A-algebra
parameterizing continuous characters of 7' (14 pOp ,) (T is the diagonal torus of
GL,). This is a power series ring of 2d variables. A point ¢ € Spec(Ay,) is called
arithmetic if, for any a,b € 1 4+ O ,, ¢ ((“ 1)) is a p-power root of unity and
¢ ((*})) = Nmp, g, (b))~ times a p-power root of unity, where i, > 2 is some
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integer. (This means we only consider Hilbert modular forms of parallel weight,
which is already enough for constructing the whole Hida family by moving the
nebentypus only.)

Let Z C GL, be the center. Define Ay = Ay 4 such that SpecAy is the
closed subspace of Spec A, defined as the Zariski closure of the arithmetic points
such that ¢|za+0,, factors through Nme, 7, . It is naturally a power series
ring with d + 1 variables. We only consider this weight space for simplicity.
In fact, if the Leopoldt conjecture is true, then this is the whole weight space
for Hida families of Hilbert modular forms. We define the parallel weight space
A} whose spectrum is the Zariski closure in SpecAy of points such that the
composition of 1 + pOp, — T(1 + OF ), x = (* ) with ¢ factors through
Nmo, ,/z,- This parameterizes forms with parallel weight and trivial character.

Now we define the nebentypus associated to ¢: the ¢ determines a character of
T (1 + pOp ,). We extend these to be characters on O by requiring them to be
trivial on the torsion part of OF . Define

.0 <(“ b)) = ¢ (diag(a, b))w* ™ (b)

fora,b € Of , (recall that w is the Teichmuller character). It is well known
that in the Hilbert modular form case there is a nearly ordinary idempotent
e = lim,,_m(]_[ulp U,)"™ defined by Hida, where U, is the usually ‘U, operator

associated to (7 |) at v.

DEFINITION 11. A Hilbert modular form f is called nearly ordinary if ef = f.
We define M (U; C) and S (U; C) to be the space of nearly ordinary modular
forms and the space of cusp forms with level group U'.

REMARK 12. We say that f is of nebentypus ¢ if

f(gt) = f(g)es(t)

fort € T(Op,,). Suppose that f is a nearly ordinary unitary eigenform of weight
(4, ky/2) and nebentypus &4. Then we can assume that for each v|p the v-
component of the automorphic representation 7y of f is mw (w14, U2,), Where

valy i (p) = —(kp — /2, val, 12, (p) = (ky — 1)/2 and ju1., o, have the
same restriction to O, as &/ , , and &} , @*~?, respectively.

Let I be a finite integral extension of either Ay or A} which is a local normal
domain.
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DEFINITION 13. Let M be an ideal of F prime to p. An [-adic nearly ordinary
cusp form f of level Uy(M) or U;(M) and nebentypus ¢ is a set of elements of I:

{c:(&,]) elforé € F*,¢;(0,) e lfori =1,...,h}

with the property that for a Zariski dense set of primes ¢ € Specl which
map to arithmetic points in Spec(Ay ), the specializations ¢ (c; (€, )) are the g-
expansions ao(t;, f,) or a(t;§, f,) (see (2.1)) of nearly ordinary cusp forms f, of
weight (ky, ky/2), prime to p level M and nebentypus ¢, at primes dividing p.

We discuss the analog of the ‘normalized’ cuspidal eigenform on GL,(Ag). In
the QQ case we take the form with a; = 1 to be normalized. In the totally real case
we require the normalized cuspidal eigenform f to have a(d~!, f) = 1.

2.3.3.  Galois representations of Hilbert modular forms. Let A be a finite
extension of Q,. One can also define the space of Hilbert modular forms
M, ,(Up(N), €, A) and the corresponding cuspidal spaces S, ., (Uy(N), €, A). Let

f € SKw(UO(N)s g, A)

with coefficient ring A, k¥ > 2, nebentypus ¢. Recall that we fix L C @ » tobe a
finite extension of Q, containing all the Fourier coefficients of f. For O, be the
integer ring of L and [ its residue field. Then we have a continuous semisimple
two-dimensional Galois representation [46] (o, Vi): pf : Gg — GL,(Vy),
characterized by being unramified at primes v 1 p where 7, is unramified and
satisfying

trps(Frob,) = a(v, f),

where a(v, f) is the Hecke eigenvalue of f under the Hecke operator 7, (recall
that this is associated to (w” 1), where @, is a uniformizer at v). Furthermore, if f
is nearly ordinary at all primes dividing p, then we have the following description
of p; restricted to the decomposition groups for all primes v dividing p:

g, *
~ 1w
e, = (7 7).

M2

Here o is the local reciprocity map via local class field theory (we use the
geometric Frobenius normalization) and m, >~ w (W, 42.), Where puy ,(p) has
smaller p-valuation than w, ,(p).

Therefore for each v|p we have a one-dimensional subspace V;rv C V; such
that the action of G, on V/ is given by the character o, , and G, acts on the
quotient V- :=V;,/ V] byo,,, .
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Assume that p; is residually irreducible. We choose a Galois stable O, lattice
Ty of V; which is unique after scaling. Let 7" = V/ N Ty and T, =T,/ T, .

Similarly, let f be a Hida family of eigenforms with coefficient ring I. Suppose
that the residual Galois representation p, for some member f; of this family is
irreducible ((irred) is defined in the introduction). Then it is well known that we
have a Galois representation

pr: Gp — GLy(ID),

and we denote the representation space (a free rank-two module over I) by 7; and
we have similarly 7;* and 7; . This Galois representation is characterized by

Trpe(or) = Ti(F)

for every geometric Frobenius o at [ 1 pN (T((f) is the Hecke eigenvalue of T}
acting on f). In fact one can construct a pseudorepresentation by patching the
Galois representation for each arithmetic specializations of f and then produce an
actual Galois representation for f under assumption (irred).

2.4. Selmer groups. We recall the notion of X-imprimitive Selmer groups,
emphasizing the case of Hilbert modular case, following [44, 3.1] with some
modifications. Let F be a totally real number field as before. Let T be a free
module of finite rank over a profinite Z,-algebra A, and assume that T is equipped
with a continuous action of G . Denote by A* the Pontryagin dual of A. Assume
furthermore that for each place v|p of F we are given a G,-stable rank-one
free A-direct summand 7, C T. For any finite set of primes X we denote by
Self (T, (T,)yp) the kernel of the restriction map:

H'(F,.T®,A) — [] H'I,.T®sA) x [[H'U,. T/T, ®,4 A").

vg X vip v|p
We now assume that X' contains all primes at which 7 is ramified. We put
X7 (T, (T,)yp) := Homy(Sely (T, (T,)y), A*).

If E/F is a finite extension, we put Self(T) = Sele(T, (T)w)p) and X2 (T) :=
X?E(T, (Ty)w|p), where X is the set of places of E over those in X, and if w|v|p
then 7,, = g, T, for g,, € G such that g;'GE_wgw C Gp,. If E/F is infinite we

set SelZ(T) = lim__ _ SelZ(T) and XE(T) = lim ___ XZ(T), where F’

cFC <—FCF'C

runs over the finite extensions of F' contained in E.
There is an action of complex conjugation ¢ on the Selmer groups of . We
have the following lemma as in [44, Lemma 3.1]. (Recall that we have assumed

that p # 2.)
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LEMMA 14. There is a decomposition
SelZ(T) = SelZ(T)* @ Sel(T)",

according to the 1 eigenspaces of the action by c. Also, restriction induces
isomorphisms

SelZ(T) — Selg(T)*t  SelZ(T ® xx) — Selg~(T)".

2.5. Iwasawa theory of Selmer groups.

2.5.1. Control of Selmer groups. Before formulating the main conjecture we
first define the characteristic ideals and the Fitting ideals. We let A be a Noetherian
ring. We write Fitt, (X) for the Fitting ideal in A of a finitely generated A-module
X. This is the ideal generated by the determinant of the » x r minors of the matrix
giving the first arrow in a given presentation of X:

A A" —= X —> 0.

If X is not a torsion A-module then Fitt(X) = 0.
Fitting ideals behave well with respect to base change. For I C A an ideal, then

Now suppose that A is a Krull domain (a domain which is Noetherian and
normal). Then the characteristic ideal is defined by

chary (X) := {x € A :ordg(x) > length, (X) for any Q a height-one prime of A}.

Again if X is not torsion then we define char, (X) = 0.

We recall some results in [44, 3.2] with minor modifications to the totally real
situation. These will be used in proving the main theorem in the last section. In
this (and only in this) subsubsection we let A be any profinite Z, algebra and a be
an ideal of A. Let T be a free A-module equipped with a continuous G g-action
andlet T* :=T ®4 A*. Let a C A be an ideal. It is noted in [44, 3.2.5] that there
is a canonical map

Sel(T/aT) — Sely (T)[a].

Here [a] on the right-hand side means the a-torsion part.
PROPOSITION 15. Suppose that there is no nontrivial A-subquotient of T* on

which G+ acts trivially. Suppose also that for any prime p|p of F the action of
I, on T /T, factors through the image of I, in I'r and that X U {p} contains all
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primes at which T is ramified. Let F = Fy, ICL.. Then the above map induces

isomorphisms
Sel% (T /aT) =~ SelZ (T)[a]
and
z ~ vE z
Xz(T) = Xz(T)/aXz(T).
Proof. The proof is the same as that of [44, Proposition 3.7]. O

Descent from Ko, to KZ. We have the following immediate corollaries of the
above proposition (see [44, Corollary 3.8, Proposition 3.9]).

COROLLARY 16. We assume that the hypotheses of the above proposition hold.
If Fis Fy, or K then

Fitt; . (T/aT) = Fitt; ,(T) mod a.

COROLLARY 17. Let I~ be the kernel of the natural map Ax — Az. Then,
under the hypotheses of the above proposition, we have an isomorphism

Xg (T)/I"Xg (T) > X (T)
of Ay 4-modules.

From K, and Fy to K and F. Let (T, T,(v|p)) be as above. Let ¢ be a algebra
homomorphism Az — C, and I be its kernel.

PROPOSITION 18. Let (T, T}|,,) be (T, T,lv)p) twisted by ¢ o & . Suppose that
there is no nontrivial A-subquotient of T™ on which G acts trivially. Assume
that the following hold.

(i) X U {primes above p} contains all primes at which T is ramified.
(i) Forany v|p, (H'(I,, T/T, @1 Ap (€5") ®a, Ar/15)% = 0.
Then restriction yields isomorphisms

Sely (T') — Sely_(T)Uy] and Selg(T') — Selyiy (T)[y].

Here we have identified A} with Ap.

This is only a slight generalization of [44, Proposition 3.10], and the proofs are
identical.
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2.5.2.  Main conjecture. Let T := (Ty @[ Tc]l((e) ® €)) and T," := (T;" @1
I[[Ic]1((e") ®€)) for each v|p. Let

chari , C I[[Ic]]

be the characteristic ideal of the dual Selmer group X (7, 7, |u,). Let Lgc
be the X-imprimitive p-adic L-function we construct in Theorem 82 with the
character £ = 1 there.

CONIJECTURE 19. The Iwasawa main conjecture states that
b b
charge = (Liy).

(We have only focused on the special case when the character is trivial in the
main conjecture in the introduction.)

3. Hida theory for unitary Hilbert modular forms

3.1. Iwasawa algebras. Recall that A is the integer ring of a finite extension
of Q, and I a finite extension of Ay which is a normal domain. We let [ :=
I[[Ik]] and Ap := I[[I¢ x I'x]l = Ik[[Ic]]. Here we used the notation D,
which stands for the Eisenstein datum to be defined in the beginning of Section 7.
Let W be the element in Ay 4 defined as follows. For any arithmetic point ¢, the
corresponding character of 7' (14 Op ) restricting to Z(1+ O ,) factors through
Nm: 1+ Of, — 1 + pZ,; that is, ¢’ o Nm = ¢ for some ¢'. We require that
¢(1 + W) = ¢'(1 4 p) for all such points ¢. (It is easily seen that there is such a
W in AW,A-) Let

a: AllIx]l = Ig, a(yH=0+W'"U+p), v, =y,
B:ZIxll = Z,[Tk1l, By =v", B =v
for each v. We also let A := Aw[[I¢ x I'k]]. Thus Ap is finite over A.
DEFINITION 20. A @p point ¢ € SpecAp is called arithmetic if ¢|; is arithmetic
with some weight k, and ¢ (y*) = ¢F for ¢ € ppe, ¢ (y,;) = ¢, for & € pp,
d(yy) = (xpD2e0T with (x)7, 1/x)7) = rec (v, 1) and £; € wp. We use

the convention that y,’; are elements in the first I';c and y,; are elements in the
Tk.

We write A for the set of arithmetic points. Next let W, := (1 4+ O, ,,)4 and
A, be the completed group algebra of W, with coefficient ring A. We give a
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A,-algebra structure for Ap by

-1
1._ _ 1t
(t1, 1, 13, 13) = (@ ® B)(reck, (t314, 1) 51 x recic, (1, K ( 3 1) .

In the last term we regard the matrix as an element of Ay 4. Here rec means the
reciprocity map in class field theory. From this A C Ap is also a A,-algebra and
is in fact a quotient of A,.

REMARK 21. When F = Q, then A, = A. In general, A is of lower dimension.
In other words we are only considering a subfamily of the whole weight space.
This is the weight space on which our Klingen Eisenstein family sits. Only on this
weight space we can prove required control results and freeness of the family of
nearly ordinary forms (not necessarily cuspidal).

3.2. Igusa tower and p-adic automorphic forms. For any v|p, U(2,2) ~
GL4(Z,) under the projection to the first factor of KC, = F, x F,. (Recall that our
convention is that the first factor corresponds to the Archimedean place inside the

X X X X

CM type under ¢ : C >~ C,,.) Define B to be the standard Borel | * X * ] and N

X X

to be the unipotent radical of B. Let Iy, (/; ;) consist of elements in U(n, n)(Z,)
which are in B(Z,/p’Z,) (N(Z,/p*)) modulo p* (see [44, 5.3.6]).

We refer to the definition of Shimura varieties S(K) (over O, the localization
at p of the integer ring of the reflex field) for the unitary similitude group and
open compact K C G(Ap ;) such that the components of K are GL4(Z,) at all
primes above p and the automorphic sheaves w; and the universal differential
sheaf w to [29], [16] and [23], respectively. Let S(K)* and S(K) be the minimal
and a fixed toroidal compactification of S(K), again over O,,. For 0 < ¢ < n
as in [44, Section 5], one defines the genus ¢ cusps, and we let Iq*(K) be the
ideal sheaf of S*(K) of the boundary of genus less than n — ¢g. Let Ig( x) be
the corresponding pullback sheaf on S(K). Recall that a weight is k = {k, }sex
where k, = (ks41.6, -, krtsoi kios .-, k). We write My (K, R) for the space
of automorphic forms with weight k, level K, and coefficient R. We write
MQ(K, R) for the cuspidal part.

Let L be a finite extension of Q,. Let Zg be the ideal of the boundary of S.
There is a subsection Hass of det(w) ®?~) @ F »» called the Hasse invariant. Since
det(w) is ample on the minimal compactification S*, one finds E, a lifting of
Hass™ over O, for sufficiently large m. Then S$*[1/E] is affine. For any positive
integer m, set S,, ;== S[1/E] x O /p™. Let H = GL, x GL,. For any integers
s = m, we have the Igusa variety I, ,, (see [44, Section 6]) which is an etale Galois
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covering of S,, with Galois group canonically isomorphic to

[ [GL2(Or./p)* x GLa(Or./p*)” = H (1"[ OF,v/p*) :

vlp olp
We put V7 = I'(Ln, O, ®os I§). For j = 0,1, let I]1 = I;; N
H([1,, Ov/p*), and define
Wi, = H(, Vi)

1,s° "s,m

and

W = lim(lim W¢ ).
As in [23, Section 2], we define the p-adic cusps to be the set of ([g], #) with [g]
a cusp (of any genus) and & € H(Op,,). These can be thought of as cusps on the
Igusa varieties. For ¢ = 0 or 1 we also define the space of p-adic automorphic
forms on G of weight k and level K = KgK P with p divisible coefficients:

VI(K,L/Oy) = lim ['(S,. o ®0, Ts).

m

Similarly, if A is an Op-algebra the space of p-adic automorphic forms with
coefficients in A are defined as the inverse limits:

Vi(K, A) = lim I'(S,,. (), ®0, Ts) ®o, A).

m

Finally, for any a = {a,},, where each a, € (IF;)4 we define the modules

ng, «(K,L/OL), and so on, to be the corresponding component such that the
torsion part of p-nebentypus is given by a, in the same way as [44, 6.2].

3.3. Nearly ordinary automorphic forms. Hida defined an idempotent ey
on the space of p-adic automorphic forms (see [16, Section 8.1] for compact
unitary Shimura varieties). For more general unitary Shimura varieties, e,q can
be constructed following the same ideas of Hida (see [23, 3.8.3, 4.3] for details;
note that the construction of e = ey, in [23, 4.3] includes our case). Let tk and Yy
be similar to those in [44, Section 6.1]. We recall the following important theorem
of Hida.

LEMMA 22. For any weight k, we have canonical isomorphisms

Vioa (K, Qp/Zy) > WKl :={w e W :1-w = t*w Vt € Ty(Z,)}
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and

Vi ord (K71 W, Q) Zy) ~ V! @7 A) Y]
=fweW' @A t-w=yY(OwVt € Ty(Z,)}

for any Z,,(\)-algebra A.
Proof. The proof is the same as that of [44, Lemma 6.5]. O

PROPOSITION 23. We have, for any sufficiently regular weight k > 0 such that
ko — k3 is parallel, the canonical base-change morphism

€ord * F(S*[I/E], n*(a)& ®Os 7T*Iq) ®Z/me)
—> €ord * F(S*[I/EL 7[*(&)& ®O$ n*Iq ®Z/me))

is an isomorphism.

Proof. The proof is a generalization of that of [44, Proposition 6.6]. As in [44]
we define I, := GLc(W,)NgKg™", and I, (h) C I the stabilizer of  (recall
that the action of y is given by y - h = 'yhy). Also write B; for the Borel
subgroup of H that stabilizes the kernel of & (regarded as a Hermitian form)

and N, for its unipotent radical. Let Iég,k/A =[], HO(F[g](h), px(A)). Define

RM/A =11, pévh (A). We have p{“"](m - ,o,f”. We want to prove an analog of [44,

Lemma 6.8]. If p is nilpotent in A, then we can take representatives of 2 modulo
the action of I7,; such that either (a) N, = Ny or (b) N, = Ny, and in case

@) a(h, fleas) = 0 (see [44]) and in case (b) a(h, flewa) S pp " (A) = p" (A).
Since K is neat, I(g(h)/I7q(h) N N,(K) is embedded into the unit group Of.

Since ky — ks is parallel, I (h)/ T (h) N N, (K) acts trivially on p, "
have (see [44, Lemma 6.8])

. So we

CordRig1k/a = €oraRg ic/a-

The proposition follows from this in the same way as [44, Proposition 6.6] (using
again the fact that k, — k3 is parallel). 0

The following corollary is immediate from the above proposition (see [44,
Corollary 6.7]).

COROLLARY 24. For any sufficiently regular weight k such that k, — k5 is parallel
the module V. (K, Q,/Z,) is divisible.
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3.4. A-adic ordinary automorphic forms. Recall that we have defined the
Iwasawa algebra A,. There is an action of it on the space of p-adic automorphic
forms (see [44, Section 6]). As in [44] we have the following theorem by the
above corollary.

THEOREM 25. For g = 1 or 0, write V! ; = Hom,, (eaWV, Q,/Z,) ® 4, A.
Then V., is free of finite rank over A.

Proof. The proof is similar to that of [44, Theorem 6.11], using Corollary 24 and
the following theorem, Theorem 26. O

We define the space of A-adic forms to be
M (KP, A) =Hom, (VI ®4, A, A).
For any finite A algebra A we also define the space of A-adic forms to be
ML (KP, A= M (KP, A) ®, A.
Classicality of ordinary forms.

THEOREM 26. Lett = (t,), be such thatt, = (0, 0; 1, 1) for any o. Assume that
q = 0or 1. Let k be a sufficiently regular such that k, — k3 is parallel. There is a
constant C (k) > 0 such that

eorde—t-Z(p—l)L(K: Qp/Zp) — ngLg(prLo,d(K, Qp/Zp)
is an isomorphism for all £ > C (k).

Proof. The proof is similar to that of [44, Theorem 6.10] and uses Corollary 24.
See also [23, Theorem 4.19]. The ‘parallel’ weight condition is important. O

From this theorem we know that there are enough classical forms in our family
and thus we can construct families of (pseudo)Galois representations from the
classical ones.

Fundamental exact sequence. Consider the embedding 7) < 7, given by (¢,
t) = (11, 1, 1, 1). This gives A, a Ay = O,[[T(1+Z,)]]-algebra structure. The
following theorem is a generalization of [44, Theorem 6.15] and follows from the
above corollary by noting that SpecA is the Zariski closure of the weights such
that k, — k3 is parallel.
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THEOREM 27. For any A-algebra A there is a short exact sequence
0— Moy(K?, A) = M (K”, A) > ®Bpgiec, ) MoKy o A1) @4, A — 0

where the next to last arrow is the Siegel operator (that is, the projection to
boundary operator).

To see that the image of ordinary forms on U(2, 2) under Siegel operator are
ordinary forms on U(1, 1), we may use the argument of [23, Lemma 4.14]. We
consider forms whose level groups at p are Ky(p) and allow the weights to vary.
By the contraction property of the e,q operator ([23, Proposition 4.4]) we can
thus get a Zariski dense set of arithmetic points. For each cusp [g], by Bruhat
decomposition we just need to consider the p-adic cusps ([g], w) for w a Weyl
element of H(Op, ,) >~ ]_[v‘p GL,(Z,) x GL,(Z,). The argument in [23] applying
[47, Lemma 4.2] implies that for any nearly ordinary form F its boundary at ([g],
w) can be nonzero only when w = id, and that the e,y on U(2, 2) induce the
eora On U(1, 1) at this p-adic cusp. See also [47] for a similar fact for the group
Gsp(4).

3.5. g-expansions. The g-expansion principle will be crucial for our later
argument. Similar to [44], for x running through a (finite) set of representatives
of G(F)\G(Ar,;)/K with x, € Q(Op,,), we have that the A,-adic g-expansion
map
MG (K?, A) — &, Allg* 1]

is injective. Here ST is the set of Hermitian matrices & in M,(K) such that
TrroTrhh' € Z for all Hermitian matrices /' such that (' /) € No(F) N xKx™'
and K is the open compact of G(@ r) maximal at primes dividing p. This follows
from the irreducibility of the Igusa tower for the group SU(n,n) C U(n,n)
(defined as the kernel of det) proved by Hida in [20]. For more details see [44,
Theorem 6.3] and the discussion at the end of Section 6.2 there. Let A be a torsion-

free A algebra finite over A, and let X’ be a Zariski dense subset of primes Q of
A such that Q N A = Py, for some pair (k, V) (for the definitions, refer to [44,

Section 6]). Let N, ,(A) be the set of elements (F,), € @, A[[g5 1] such that
for each O € X above Py, the reduction of (F,), is the g-expansion of some
element f € V!, (K”I,, ¥, A/Q). Then we have the following.

LEMMA 28. The inclusion
Mzrd(Kp’ A) — Ng{',ord(A)

is an equality.
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Proof. See [44, Lemma 6.13]. I

We will use this lemma to see that the family constructed later by formal g-
expansions comes from some A-adic form defined here (after Theorem 25).

4. Klingen Eisenstein series

Now we recall the notion of Klingen Eisenstein series in the totally real case.
The p-adic constructions are just special cases of [S0] (this is slightly more
general than in [44] since we allow nearly ordinary forms instead of only ordinary
forms). For the ¢-adic construction we just follow [44].

4.1. Induced representations.

4.1.1. Archimedean picture. Let (;r, H) be a unitary Hilbert representation of
GL,(R) and H,, be the smooth vectors. Let x be the central character of 7, and
let ¢ and t be unitary characters of C* such that ¥/ |gx = x. As in [44], we can
use 7w and V¥ to define a representation of GU(1, 1) which we denote as 7. Now
we define a representation p of P(R) in H: for p = mn,n € Np(R), m = m(bx,
a) € Mp(R) witha, b € C*, x € GL,(R), we define

p(pv:=t@y®)r(x)v, veH.

We define a representation by smooth induction /(Hy) = Indggﬁg’Z)(R) o, and

denote 7 (p) as the space of K -finite vectors in I (H,,). We also define for each
z € C a function

fo(g) == 8m)**p(m) f(k), g =mk € P(R)Kx,

where § is such that 8> = §p for 8 the modulus character of P, and an action of
GU(2, 2)(R) on it by

(0(p,2)(8) k) == [f.(kg).

Denote n = (_1 1). Let (xY, V) be H but with the action given by 7 (x) =
w(n~'xn) for x in GL,(R). Denote pV, I(p"), IV(Hy), and o (0", 2), I(p"))
the representations and spaces defined as above but with m, ¥, T replaced by
TV ® (todet), Yre, T¢ Also, recall that, forany z € C, f € I (H),and k € K,
we have defined the intertwining operator

A(p, z, f)(k) 5=/ f:(wnk) dn.

Np(R)

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

The Iwasawa main conjecture for Hilbert modular forms 25

Then A(p, z, —) € Hom¢(I(Hy), 1Y (Hy)) intertwines the actions of o (p, z)
and o (p", —2).

We let K, = O(2) C GL, and K/, = SO,. Suppose that 7, is the
holomorphic discrete series representation associated to the weight x > 6. Then
it is well known that there is a unique (up to scalar) vector v € m such that
k -v = detu(k,i)™ (here u means the second component of the automorphic
factor J instead of the similitude character) for any k € K/ . Then, as in
[44, 9.2.1], by the Frobenius reciprocity law there is a unique (up to scalar) vector
U € I(p) such that k - 0 = det u(k, i)™ 0 for any k € K. We fix v and scale 0
such that v(1) = v. In 7Y, w(w)v (w is defined in Section 3.1) has the action of
K} given by multiplying by det i (k, i)~*. There is a unique vector 0¥ € I(p")
such that the action of K[, is given by det u(k, i)™ and 9" (w) = m(w)v. Then
by uniqueness there is a constant ¢(p, z) such that A(p, z, V) = c(p, z)v".

DEFINITION 29. We define F, € I(p) to be the v as above.

4.1.2. Non-Archimedean picture. Let v be a prime of F and (w,V) an
irreducible admissible representation of GL,(F,,) which is unitary and tempered,
with central character x. Let ¥ and 7 be unitary characters of K such that
¥lpx = x. We extend 7 to a representation p of P(F,) on V as follows. For
p=mn,n € Np(F,),m =m(bx,a) € Mp(F,),a,b e K}, x € GL,(F,), put

p@v:=t@y®)r(s)v velV.

Let I(p) be the representation defined by admissible induction: I(p) =
Ind(,i%ffw")p. As in the Archimedean case, for each f € I(p) and each

z € C we define a function f, on GU(F,) by
f:(8) == 8m)*Fp(m) f(k), g =mk e P(F)K,
and a representation o (p, z) of GU(2, 2)(F,) on I (p) by
(o(p,2)(8) f)k) :== f.(kg).

Let (7V,V) be V but the action given by mV(g) = m(n 'gn). This
representation is also tempered and unitary. We denote by o, I(pY), and
(o(pY, 2), I(p")) the representations and spaces defined by replacing , ¥ and
T by ¥ ® (7 odet), Y7, and 7¢, respectively.

Also we define for f € I1(p), k € K,, and z € C the intertwining operator

A(p, z,v)(k) = f f.(wnk) dn.

Np(Fy)
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As a consequence of our hypotheses on 7 this integral converges absolutely and
uniformly for z and k in compact subsets of {z : Re(z) > %} x K,. As in [44,
9.1.3], this has a meromorphic continuation (in the sense defined there) to C, and
the poles can only occur when Re(z) = 0, ﬂ:%. In the case when everything is
unramified we define a spherical vector F*" for the unique vector invariant under
GU(OF) and F, ,,(id) = ¢"" for ¢"" € m,, the unramified vector.

4.1.3. p-adic picture. Now assume that v|p. We need to study the relations
between the GL, picture and the computations in [50] for U(1, 1). Suppose that
7Ty = (W1, o) Where val,(u1(p)) = —(k — 1)/2 and val, (12(p)) = (k — 1)/2.
Later we may write i, , and p, , to indicate the dependence on v. Let i, 7, I (p),
I(pY),and A(p, z, v) be as before. From now on we write § = ¥/t and & = (&,
&) with respect to IC, = F, x F,, and similarly for t;, T2, ¥, ¥,. Note that our
& here is different from that in [50]. In fact the &, &, x1, x» there are /,L]ég, ,ulé_],

vy ot ' Note that ¥y = s

Generic case. The generic case mentioned in [50] corresponds to cond(y;) >
cond(t,) > cond(x») > cond(t;) (note that the 7 in p" is 7¢). We assume that

cond(u,) = cond(y,) > cond(t,) > cond(y;) > cond(r;) > cond(u;) > O.

Then the datum is generic in the sense of [50]. We write p"iv, p"2v, p"v  p"+» for
the first four terms above.

4.1.4. Global picture. Let (7, V) be a cuspidal automorphic representation of
GL,(Ap),andlet 7, ¥ : A — C* be Hecke characters such that | A = Xn- We
lett = ®1, and ¥y = ® ¥, be their local decompositions, for w running over
places of F. We define I (p) to be the restricted product ®1 (p,,) with respect to
the F, ,, at those w at which t,,, ¥,, 7, are unramified.

For each z € C and f € I(p) we define a function f, on G(Af) as

fz(g) =Q fw,z(gw)

where f,, . are defined as before. Also we define an action o (p, z) of (gu, K,)
®G(Ay)on I(p)byo(p,z) = ®0c(py, 2). Similarly we define p¥, I (p"), and
o(pY, z) but with p replaced by p".

4.1.5. Klingen-type Eisenstein series on G. Let m, ¥, and t be as above. For
fel(p),zeC, and g € GU(2,2)(AF), the series

E(f.z8):= Y, fyg)

yEP(P\G(F)
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is known to converge absolutely and uniformly for (z, g) in compact subsets of
{ze C:Re(z) > %} x GU(2, 2)(Ap).
We call this series the Klingen Eisenstein series (see [35, II 1.5]).

4.2. Explicit local sections.

4.2.1. Archimedean sections. The Klingen subsection at each place dividing co
is the F, defined before.

4.2.2.  Prime to p sections. Letv € X be aprime of F not dividing p. Let (")
and (z;)) be the conductors of v, and &,. The sections chosen here are the same
as in [44, Section 9], which we briefly recall. For K € K, ; with » > max(ry, s)
we define a character v of K, ; by

ab
vlleca™ )| :=v@d=-boE@).
* %k

Let ¢ € V be any vector having a conductor with respect to ¥, and let (\'*) :=
cond,v(¢). Forany K, , with r > max(ry,r,, s) andt > s we define F,,,, € I (p)
by

vk)p(p)e g = pmk € P(Op,)wK,,

Fi(g) =
0.t (8) 0 otherwise.

ki ki kis kg
. . : : kay koo ka3 kog ) :
4.2.3. p-adic sections. Let K, o consist of matrices (k3| koa o Ko 4) in GL4(OF,)

ka1 kap ka3 kag
such that the under diagonal entries of the first column are divisible by p"'v,

the under diagonal entries of the second column are divisible by p">®, and k3,4 is
divisible by p"». Let K,,; C K, be the set of matrices such that k;; = Imodp”'v,
ky, = lmodp™v, k33 = Imodp™», kyy = Imodp™». We define our p-adic
subsection F? to be the one supported in P(Q,)K, ; which takes value p~"1»""3
on the identity and is invariant under K, ;. This is nearly ordinary as proved in
[50] (see also [44, Proposition 9.15]).

4.3. Good Eisenstein series.

4.3.1. Eisenstein datum. Let (,V) be an irreducible cuspidal unitary
automorphic representation of GL,(Ar) with central character x, and let
V=YV, and m = ®um,. Suppose that the Galois character corresponding
to x factors through I'i. By an Eisenstein datum for 7 we will mean a 4-tuple
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D ={X, ¢, ¥, 1} consisting of a finite set of primes X', a cusp form ¢ € V that
is completely reducible ¢ = ® ¢,, and unitary Hecke characters v = ® v, and
T = ®7, of AZ/K* satisfying the following.

e X contains all primes dividing p, primes ramified in X/Q, and all primes v
such that =, ¥, or 7, is ramified.

o Forallk € K., oo (K)o = j(k, 1) ™ Pc.

e If v & X, then g, is the newvector.

e If v € X, v 1t p, then ¢, has a conductor with respect to .
e If v|p, then ¢, is the nearly ordinary vector.

® Ylax =x.

e 7,(x) = (x/|x|)7* = ¥,(x) for any x € F, and v|oo.

We remark that all the above are similar to [44, 9.3.1] except that for v|p we are
allowing nearly ordinary (not just ordinary) vectors. Also we assume that the
in [44] is trivial for simplicity.

Leté = ®&, = ¥/7,and define F := ® 00 Fic [ [ ,45 Fy v ®ues.vtp Fori®upFL.
We define Ep(z, g) = E(F, z, g) to be the Klingen Eisenstein series associated
to the subsection F. For any parabolic subgroup R of G and an automorphic form
¢ on G we define the constant term of ¢ along R to be

Qg = / @r(ng)dn.
Nr(F)\Nr(Ar)

Then we have the following straightforward generalization of [44, Lemma 9.7].
The proofs are completely the same.

LEMMA 30. Suppose that k > 6, and let z, := (k —3)/2. Let F = F, ® F; €
1(p) = I(psc) ® 1(py).

() A(p, z, F) = 0.
(2) E(F,z¢,8)p = Fo. ().

Let« > 6. Thenforany F' = F, ® Fy € I(p) we define a function of (Z, x) €
Hy™ ®G(Ar )

E(Z,x; F):=J(g )W E(F,z,8%), g€GUQ2,2)"(Fx), g(i)=Z.

Here J(g,i) = det(Cqi + D,) for g = (éi 2). The following proposition is
essentially [44, Proposition 9.8].
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PROPOSITION 31. Suppose that k > 6 and F = F, ® Fy. Then E(Z, x; F) is a
holomorphic modular form of weight k.

DEFINITION 32. We write E(F, z,, g) = ZﬂeSQ(F) up(B, F, g) for the Fourier
expansion of E(F, z,, g) at g.

4.4. Hecke operators. We will recall the definitions for the Hecke operators at
the unramified primes at the beginning of Section 9, and some Hecke polynomials
Q,, for places w of I, which are essentially those given in [44, 9.5]. We let
h = h* be the abstract Hecke algebra generated by Hecke operators introduced
there at primes outside X. Define Ap : h¥ — Cby h- Ep = Ap(h) Ep. We record
the following generalization of proposition [44, Proposition 9.14].

PROPOSITION 33. Suppose that k > 6 and w & X. Then Ap(Q.,)(q, ") is given
by the Euler factor at w:
L(f.69 s =2L" (', s = B)L¥ (xE'¥*.s — k)

where L,%(_f, EYC, s — 2) is the corresponding L-function for f twisted by the
character £y over IC, with the Euler factors at primes dividing X removed.

The proof is completely the same as that in [44] (there is no difference between
the local situations for F' = Q and general F).

5. Hermitian theta functions

We generalize results in [44, Section 10] in this section.

5.1. 'Weil Representations.

The local set-up. Let v be a place of F. Let h € S,(F,), deth # 0. Let U, be the
unitary group of this matrix, and denote V, as the corresponding Hermitian space.
Let Vi := K, ® K, := X, @Y, be the Hermitian space associated to U(1, 1). Let
W =V, ®, Vi.,- Then

(= =) = Tre,r, (= = ®k, (= =)

is an F, linear pairing on W that makes W into an eight-dimensional symplectic
space over F,. The canonical embedding of U, x U, into Sp(W) realizes the pair
(Uy, Uy) as a dual pair in Sp(W). Let A, be a character of K¢ such that A, |zx =
XI2C/F,U‘ It is well known (see [28]) that there is a splitting U, (F,) x U(F,) —
Mp(W, F,) of the metaplectic cover Mp(W, F,) — Sp(W, F,) determined by the

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

X. Wan 30

character A,. This gives the Weil representation wy, ,(u, g) of U, (F,) x U;(F,)
where u € U,(F,) and g € U (F,), via the Weil representation of Mp(W, F,)
on the space of Schwartz functions S(V, ®x, X,). Moreover we write wj, ,(g)
to mean wy, (1, g). For X € M,,(K,), we define (X, X), := ’)_(,BX . We record
here some useful formulas for w; , which are generalizations of the formulas in
[44, Section 10].

o W, )P (X) = wy,(1, )P ' X).

o w,(diag(A,'A=1)P(X) = A(det A)| det Al P (X A).

o W, (r(8)P(x) = P (x)e, (tr(X, X),S).

o W, (NP (x) = |deth|, [ ®(Y)e,(Trg,r, (tr(Y, X)) dY.

Global set-up. Leth € S,(F), h > 0. We can define global versions of U, GU,,
W, and (—, —), analogous to the local case. Fixing an idele class character A =
® A, of A /K> such that A|p< = x,, the associated local splitting described
above then determines a global splitting

Uy(Ar) x Uj(Ap) = Mp(W, Ap)
and hence an action w;, := Q wj,, of U,(Ar) x U;(Af) on the Schwartz space
S(Vy @ X).
Theta functions. Given @ € S(Vy,.), we let
Onlu, g @) =Y wy(u, )P (x).
xeV

This is an automorphic form on U, (Ar) x Ui (Af).

5.2. Some useful Schwartz functions. We now record some Schwartz
functions that will show up later on and their properties. These are straightforward
generalizations of [44, Section 10] with some modifications. We have been
keeping the presentation parallel to that in [44] for convenience.

5.2.1. Archimedean Schwartz functions. Suppose that v|co. Let @, , € S(V @ R)
be
By (x) = e,

Let
L(2) = (z/lz) 77

Recall that § is the Poincare half plane.
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LEMMA 34. Given z € b, let @), .(x) := e({x, x),2) (50 P); = Pj. ). For any
g € Ui(R),
(8 Ph.: = J1(8,2) P g(o)-

In particular, ifk € K, | then w, (k)@ = J1(k, 1) Pp .
Proof. The proof is just [44, Lemma 10.1]. O

5.2.2.  Schwartz functions at finite places. For a finite place v of F dividing a
rational prime ¢, let @4 € S(V,) be the characteristic function of the set of column
vectors with entries in Ok ,,. For y € GL,(K,) we let @ ,(x) := ®p(y'x).

LEMMA 35. Let h € S)(F,), deth # 0. Let y € GL,(KC,). Suppose that 'yhy €
S$2(Or)*. (In this paper we use Sy(Or,)* to mean to dual of S,(OF.,) under the
paring on S,(F,) defined by (x, y) — tr(xy).)

(1) If A is unramified, v is unramified in K, and h, y € GL,(OF,), then

wp (U (OF )P0,y = Doy

(ii) If D, det’yhy|w], r > 0, then

w (k) Doy = Ma)Poy, k € Ui(Op,), @, |ck.

Proof. See [44, Lemma 10.2]. L]
Let 0 be a character of K, and let 0 # x € cond(6). Let

o)=Y 0@P(wr +a/x,u2), w="(ur,u).

ae(Oxcv/x)*

For y € GL,(KC,) we let @y, (1) := Py (y~'u). We let @, 4, := @, (") Py«
and (ph,g.x,y = (Uh(n_l)(pf),x,y"

LEMMA 36. Let h € S,(F,),deth # 0. Let y € GL,(K,). Suppose that y'hy €
S2(Or.)*. Let 0 be a character of KX, and let 0 # x € cond () be such that w,|x.
Let (¢) := cond(0) N(@,) where @, = @, if v splits in K (that is, &, = (w,, @)
for w, the uniformizer of F,), and @, is a uniformizer of IC, at v is non-split in K.

() If cD,det'yhy || x and y~—'hy € GL,(OF,), and D, = 1 or y"'h~!y~! =
(5 withd € Oy, then

wh(k)éé,x,y = )\e(ak)é@,x,ya k S Ul (OF,v)a D_1D1)|C1<7 D_Ixjﬂbk-
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(ii) If h = diag(a, B), then @, ¢ ., is supported on the lattice h‘”y‘lLZ;YX where
if v is nonsplit in IC then

Ca)c

Ok, cond(8) = O ,,
LZX = (ula u2)t LUy € 8,6710’6.1” ”_tl = i f» con ( ) K,
| Of .. cond(®) # Ox...

and if v splits in IC, then

X; {(/)F,U, cond(f) = (’)F,U,}

L: =3y, un) us €8Oy, ity ; € —
0.x {(l 2) iz € 0 O i, cid | OF.,,cond(0) # OF,,

with ity = (1,1, U12), x = (X1, X2), c = (c1, ¢2) € Ky = F,x F,, and 6 = (0,
6,). Furthermore, for v =h="y"'u withu € L ,,

Bpo.cy(v) = |det hyF|,DJ'A(=1) D O(s)ey(Try qaiis /x).
ae(Oxcv/x)*

Proof. See [44, Lemma 10.3]. O
LEMMA 37. Suppose that v|p splits in IC. Let (c¢) := cond(0) and suppose that

c=(p", p)withr,s > 0. Lety = (n, 1) € SLo(Ox,) = SLy(OF,) x SLa(OF ).
Suppose that h = diag(a, B) with a, B € F ). Then the following hold.

(1) Po,c,, is supported on
L:={u=(ab):ac0;, xOpybe O, xOf.}
and foru € L’
Py ) = 07 (0ar)g(01)6; ' (Bb1)3(6,)
where a = (a1, a;), b = (b1, by) € O, X O, and 0 = (61, 6,).

(i) wp(u, k)Ppo.c = 0; ' (a,)0:(d)A0(d) P, for u = (g,8") € Uy(Z,) with
"9\ c and for k € Uy(Z,) such that p™**"|c,. Here we write k = (" Zﬁ)
ag by
and g = (Cg d:g).
Proof. See [44, Lemma 10.4]. O
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6. Siegel Eisenstein series and their pullbacks

For the reader’s convenience we try to present the work in a parallel way to that
in [44, Section 11]. We remark that the differences in the formulas from those
in [44] are mostly due to the discriminant and the unit group of F and that we
are allowing nearly ordinary forms (not only ordinary forms). Also in [44] they
used symbols y and t for the same object. We make the corresponding notation
consistent here.

From now on we always write £ = ¥/t once ¥ and t are defined.

6.1. Some isomorphisms and embeddings. We recall the notation of [44,
11.1]. Let V, := K*'. Then w, defines a skew-Hermitian pairing (—, —), on
Vo @ {x, y)u := xw,’y. The group G,/F is the unitary similitude group GU(V,)
of the Hermitian space (V,,, (—, —),). Let W, :=V,.,, & V,and W, : V, @ V,.
The matrices w,; & —w, and w, & —w, define Hermitian pairings on W, and
W, respectively.

One can define isomorphisms «, : GU(W,) =~ Gapt1, ), : GU(W)) = Gy,
Vo : GU(W,) = Goyqy, and y, : GU(W)) = G,,. We omit the details and refer to
[44, 11.2.1]. Also as in [44] we use S and S’ to denote the matrices

and

6.2. Siegel Eisenstein series on G,. Let Q = O, be the Siegel parabolic
subgroup of GU, consisting of matrices (%“ f;;). For a place v of F and a

character v of K we let I,(7) be the space of smooth K, ,-finite functions f :
K,, — Csuchthat f(qk) = t(det D,) f (k) forall ¢ € Q,(F,) N K, , (we write

q as block matrix g = (AO" [B,fl)). Given z € C and f € I(r) we define a function
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f@ =) © Gu(F) — C by f(z,qk) = t(detD,))|det A,D; [ f(k),
q € Q,(F,)andk € K, ,.

For an idele class character T = ®1t, of A we similarly define a space
I,(7) of smooth functions on [[, K, ,. We also similarly define f(z, —) given
f € I,(7) and z € C. There is an identification ®,,(t,) = I,(t), the former being
the restricted tensor product defined using the spherical vectors f#" € I,(t,),
flf”h (K,.,) = 1, at the finite places v where x, is unramified: ® f, is identified with
k +— T1, fu(k,). Let i/ < C be an open set. By a meromorphic section of 1,(7)
on U we mean a function ¢ : U — I,(t) taking values in a finite-dimensional
subspace V C I,(t) and such that ¢ : i/ — V is meromorphic.

Let T = ®7, be a unitary idele class character of Ag. For f € I,(tr) we
consider the Eisenstein series

E(fiz )= Y, [@&ve.

y€Qn(F)\Gn(F)

This series converges absolutely and uniformly for (z, g) in compact subsets
of {Re(z) > n/2} x G,(Af) and defines an automorphic form on G, and a
holomorphic function on {Re(z) > n/2}. The Eisenstein series E(f; z, g) has
a meromorphic continuation in z to all of C. If ¢ : / — I,(7) is a meromorphic
section, then we put E(¢; z, g8) = E(¢(2); 2, g). This is clearly a meromorphic
function of z € U and an automorphic form on G, for those z where it is
holomorphic.

6.3. Pullbacks of Siegel Eisenstein series. Now we follow [44, 11.2] closely
to recall the pullback formulas. However we repeat it here since the conventions
are slightly different.

6.3.1. The pullback formulas. Let T be a unitary idele class character of Ag.
Given a cusp form ¢ on G, we consider

Fo(fi2,8) :=/ f(z, 7 (g, g1h))T(detg18)¢(gih) dg,
Un(AF)
J € Lnwn(7), 8 € Gu(Ap), h € G, (AF), i (8) = ta(h),m =n+1orn,
with y = y, or y, depending on whether m = n+-1 or m = n. This is independent
of h. The pullback formulas are the identities in the following proposition.

PROPOSITION 38. Let T be a unitary idele class character of Ag..

W) If f € bLy(v), then F,(f;z,8) converges absolutely and uniformly for
(z, g) in compact sets of {Re(z) > n} x G,(Ar), and for any h € G,(Ar)
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such that p,(h) = u(g)

/ E(f;z,v,(8, &1h)T(detgih)p(gih) dg, = F,(f; 2z, 8).
Un (F)\U, (AF)

(ii) If f € Lnyi (1), then F,(f;z,8) converges absolutely and uniformly for
(z,g) in compact sets of {Re(z) > n + 1/2} x G, 1(Ar) such that
/’Ln(h) = Mn+1(g)

/ E(f;z, ya(g. g'h))T(det gih)p(g1h) dg,
Un(F)\Ulz(AF)

= Y FR(izre),

Y €Pny1 (F\Gpt1 (F)

with the series converging absolutely and uniformly for (z, g) in compact
subsets of
{Re() > n+ 1/2} x Goi1(Ap).

Proof. See [44, Proposition 11.1]. O

6.4. Fourier-Jacobi expansions: Generalities. Let 0 < r < n be an integer.
We define the Fourier—Jacobi expansion

E(fiz)= Y, Ep(fiz.g)

BES—r (F)
where
| SO0
E(fizig) = [ El e |0 0]¢|er—Tr(psyas.
Sn—r(F)\Sn—r(AF) 17‘!

LEMMA 39. Let f = ®, f, € I,(t) be such that for some prime v the support of
foisin Q,(F)w,Q,(F,). Let B € S,(F)and g € Q,(Ar). If Re(z) > n/2 then

Eﬂ(f; <, g) = H[g - fv(Z7 wnr(Sv)QU)ev(_TrﬂSv) ds,.

In particular, the integrals on the right-hand side converge absolutely for Re(z) >
n/2.

Proof. See [44, Lemma 11.2]. O
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LEMMA 40. Suppose that f € I5(t) and B € S,(F), B > 0. Let V be the two-
dimensional KC-vector space of column vectors. If Re(z) > 3/2 then

S x
15
GEOE D SEED 3) BIFY I B ) PAINer
YEQI(F)\G1(F),yeU; (F) xeV ¥ S2(AF) 1;
X €A(—TI'IC/Q,BS) das.
Recall that e (x) = eay (Trp gx) forx € Ap.
Proof. See [44, Lemma 11.3]. I

We also recall a few identities which are straightforward generalizations of [44,
(11.15)—(11.18)]. Letting

FJg(f;2.x,8,9)
S x

:=/ flz ws L (’i 0) oy (diag(y,y™"), g) | e, (=TrpS)dS,
$:(Fy) 1,

then
aa'b e \=1),51243/2, (i=
Flg\ fizx 0 o0 )&y ) =@ |aal™ e, (XBxb)F Jy(f; 2, xa, g, y).

For u € Ug(Ar), Ug being the unitary group associated to 3,

FJs(fiz,x, g uy) = t(detu)|detui|,""*FIs(f1z,u™"x, g, y).

If, as a function of x, F Jz(f;z,x,8,y) € S(V®F,), then

aa'b
FJg <f;z,x, ( e )g,y)

aa'b

= Ou/T)(@adl 0y (( i )) FIp(f: 2%, 7).

6.5. Some good Siegel sections.
6.5.1. Archimedean Siegel sections. Let v be an Archimedean place of F. We

summarize the results of [44, 11.4.1]. Let « > 2 be an integer. Then t(x) =
(x/|x])7* is a character of C*.
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The sections. We let f,, € I,(t) be f,,(k) := J,(k,i)™. Then
fen (@ qk) = J,(k, i) t(det Dy)|det A, D' [*'2, g € Q,(R), k € K, oo
If g € U,(R) then f,(z, g) = Ju(g, i)™ |J,(g, )",

Fourier—Jacobi coefficients. Given a matrix € S,(R) we consider the local
Fourier coefficient:

Jenp(z,8) = / S <Z, wy, (1" 1S) g) ex(—TrpS)ds.
Su(®) n

This converges absolutely and uniformly for z in compact subsets of {Re(z) >

n/2}.

LEMMA 41. Suppose that B € S,(R). The function z — f.p(z,8) has a
meromorphic continuation to all of C. Furthermore, if k > n, then f, , (2, g) is
holomorphic at z,. := (k —n) /2, and for y € GL,(C), fin 5z, diag(y, 1) =0
ifdet8 <0, and ifdet 8 > O then
(=2)" @iy 2/m) "V

[Tk —j—D!
x e(iTr(By'y))(det B)“" det y*.

Sien.p(2e, diag(y, ly_l)) =

Proof. See [44, Lemma 11.4]. O
Suppose now that n = 3. For 8 € S,(R) let FJg,(z, x, 8, y) := FJg(fe; 2, x,
g ¥
LEMMA 42. Let z, := (k — 3)/2. Let § € S,(R), det > 0.
D) Flpi(ze,x, 0, 1) = fepp@e +1/2, Deli(x, x)p).
(i) For g € U;(R)
Flp(ze,x, g, y) = e(iTrByy) det y*c(B, k) fi-2,1(zc, 8 wp(8) Pp o0 (x),
where g’ = (' ) g (, ') and

Qri)*(2/n)
(k — DIk —2)!

and the Weil representation wg is defined using the character Ao(z) =

(z/lz)~2.

c(B,k) = 1 det g2,

This is just [44, Lemma 11.5].
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Pullback integrals. We let ¢ and F,, be as defined in Section 4.1. The
Archimedean situation is completely the same as the situation in [44]. Let
fi € I3(7) be as before, and let

F(z,g) = fe(z, S (g, g1h))T(det gih)mi(g1h)p dgi,
Uy (R)

g € G2(R), h € Gi(R), ui1(h) = pa(g).
Similarly, for f, € I,(7) and g € G;(R) we let

Fl(z,8) = fe(z, 8" (g, g1h))T(detgih)m (gih)g dg,
Ui (R)

g he G, u(h)=pu(g).

LEMMA 43 [44, Lemma 11.6]. The integrals converge if Re(z) > (k —m —1)/2
andRe(z) > (m—1—«)/2, m =2 and 1, respectively (according to the convention
of Section 6.3.1) and for such z we have the following.

() Fe(z, ) =m27% ' (I'(z + (1 +x)/2)/(I' (@ + B + k) /2)) Fe ().
(i) F/(z,8) =727 %Iz +«/2)/(I'(z + 1 + k/2)7, ().

6.5.2. Prime to p Siegel sections: the unramified case.

Fourier—Jacobi coefficients.

LEMMA 44. Let B € S, (F,), and let r := rank(B). Then, for y € GL,(IC,),

£ (z, diag(y, y™") = t(det y)| det 3|, = "/>Vol(S, (OF,,))
IS LQzti—n+ 17 x0)

T2 LRz +n —i, T'x})

where h, 5, is a monic polynomial depending on v and "y By but not on t.

hv,‘yﬁ)'(f/(wv)qv_2z_n)

Proof. This is proven in [39]. See [44, Lemma 11.7]. I

LEMMA 45. Suppose that v is unramified in KC. Let B € S,(F,) be such that
detB # 0. Let y € GL,(KC,) such that y' By € S,(Or.,). Let A be an unramified
character of KC)f such that \|px = 1.

(i) If B,y € GLy(Ok,,) then for u € Ug(F,),

i BT @)wsu, 8) Py (x)

FJs(f3""; 2, x, g, uy) = t(detu)| detuil;* e
o Mo, Lz +3— i 70
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(ii) If y'By € GLo(Ox.), then for u € Ug(F,),

i 7 (2, @) wp(u, )P, (s)

FJﬂ(fSph;Z,x,g,uy)=T(detuy)|detuy|7 —
’ [T LQz+3—i,7'xL)

Proof. (i) is the same as [44, Lemma 11.8]. Note that in (ii) we have removed the
assumption in [44] that g is of the form (,i 1). In fact since
FIo(f;"; z.x, g uy) = x(detuy)| detuyl ™ F Jsp, (£ 2,y u""x, g, 1)
by (i) we have only to prove that
wispy (1, ) Po(y™'u"x) = wp(u, )Py (x) = (wp(1, &)Po,) (U x),

that is,

(wr5y(1, 8)Po) y (x) = (wp(1, §)Po,y) (X).
Here for any Schwartz function @ we write @, to be the function defined by
D, (x) = @ (y~'x). By definition one checks that, for any @,

wp(@)P y = (wipy(1, 8)P) y(x)

for g of the forms (“ 571) , (‘ ‘{) , 1, thus for all g € U;(F,). In particular, it is true

for ® = @,. L]

Pullback integrals. Recall that we have (i, ¥, T) as in Section 4. Let ¢ € V. Let
m = 1 or 2 according to the convention of Section 6.3.1. Given f € I, ,(t) we
consider the integral

Fo(f;z,8) = / [z, v(g, g1h))T(det g h)my (g1h)pdg,
Ui (Fy)

where y = y; or y/ depending on whether m = 2 or m = 1. (Similar to [44,
11.41)

LEMMA 46. Suppose that w, ¥, and t are unramified and that ¢ is a newvector.
If Re(z) > (m + 1)/2 then the above integral converges and

L(m,&,24+1/2)

1 . =,

o LQ2z+2—1,Txi)
F sph. — 1_[1—0 = K
oz 8) L(m,&,z+1)

[T LQz+3—i,%xL)

Here F, is the spherical section.

Ty (e m=1,

Fﬂ,z(g) m=2.

Proof. This is proved in [30, Proposition 3.3]. See [44, Lemma 11.9]. O]
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6.5.3. Siegel sections at ramified primes.

The sections. Let v be a finite prime of F. We are going to define two important
Siegel sections.

(1) Let f € I,(z) be the function supported on Q,(OF,)w, Ny, (OF,) such
that
f;(wnr) =1,re NQn(OF,U)'

(2) Given (A*) € Oy, contained in the conductor of t, we let f,, € I,(t) be
the function such that f, ,(k) = t(det Dy) if k € Ko, (A*) and f, ,(k) =0
otherwise.

LEMMA 47. Suppose that v is not ramified in }C and suppose that t is such that
Oxc.v # cond(t) 2 cond(tt°). Let (\") := cond(t). Then

Mz, f;1) = fun - VOIS, (Or,)) € L,(T9)
forall z € C.

Proof. See [44, Lemma 11.10]. I

LEMMA 48. Let A € GL,(IC,). If det 8 # O, then

£l 4z, diag(A,'A7")

_ r(detA)ldetAl;””/zVol(Sn(C’)p,v)) tAﬂAGSn(OF,U)*v
~]o otherwise.

Proof. See [44, Lemma 11.11]. O

LEMMA 49. Suppose that B € S,(F,), detB # 0, char(v) = ¢, and £ splits
completely in IC.

(i) If B & Sy(Or.,), then M(z, f,)p(—z,1) = 0.
(ii) Suppose that B € S,(Ok.,). Let ¢ := ord,(cond(z")). If ¢ > 0, then

M(z, f;)p(=z, 1) = 7'(det B)| et B|, > g(T)"c, (7', 2),

where
X/(wl:zc)qgnczfcn(nJrl)ﬂ c > 0’

/ —
(', 2) = qgnzﬂz(nﬂ)/Z c=0.
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Proof. See [44, Lemma 11.12]. I
Now we use the convention for m = 1 or 2 in Section 6.3.1.

PROPOSITION 50. Let m = 1 or 2. There exists a meromorphic function
™ (p, z) on C such that the following hold.

1) If m =1, then
Foo(M(z, )i =2, 8) = vV (0, DT (9) Fy (f 5 2. 1g).
Moreover, if T >~ 7 (x1, x2) and v splits in IC, then

y<l)(p’ Z) = W(_l)g(f/, ZD':)Z . ‘C/(w—vzc)|w-vlv—4cz+3c
Lt ®E,1/2—72)
LA®E&E,z+1/2)

X e(MQRE, z+1/2)

(i) If m = 2 and 7, r, T are the v constituents of a global triple, ¢¥ = 7w (n)g,
then

Fpr(M(z, ); =2, 8) = v? (0, D AP, 2, Fp (f5 2, =) (8)-
Each of these equalities is an identity of meromorphic functions of z.

(iii) Suppose moreover that O, # cond(z) D cond(z1). Then
y@ .2 =y" (p.z2—3).
Proof. See [44, Lemma 11.12]. I

6.5.4. Sections at ramified primes again.

The sections. Again let v be a finite prime of F. As in [44, 11.4.14], we define a
modified version of the sections f7. Let m = 1 or 2. For x € Ok, N KX let

. ; 1 1/%
e g =fio g /
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Fourier—Jacobi coefficients.

LEMMA 51. Let B = (b;;) € Sus1(F,). Then, forall z € C, f{"(z, 1) = 0 if
:3 ¢ S;11+I(OF,U)*- If:B € Sm+l(OF,v)*; then

FE @ 1) = Vol(S,41(Or.)ey(Tric, r, (bii.1/%)).

Proof. See [44, Lemma 11.14]. L]

LEMMA 52. Let B € S,(F,), detB # 0. Let y € GL,(K,), and suppose that
YBy € $,(OF,)*. Let A, 6 be characters of K, and suppose that A|px = 1. Let
(¢) := cond(A) () cond(®) () (). Let x € K be such that D,|x, cond(x°)|x,
and ¢D, det y' By|x, where D, := Nmy,r (8x/q). Suppose that y~' =1y~ = (%}

with d € F,. For D, := Nmyr(8x,r) then, for h € Ug(F,),

-1
> 9f°‘<a)FJﬂ(fj’<2>;z,u,g(a C-,),hy)

ae(Oy/x)*
= t(dethy)| det hy| Vol ($,(Or.,))

X Z f-p(z, g'Mws (h, g (_lb 1)) Dy (1)

be(Oy/Dy20,)

where g' = (' _|) g (' _,) and

Im ~
A7 ld,), g = ,p € B(Of,),m—be D0,
fh(g)z (p) g pn( 1) p 1( F,) F,
otherwise.
Proof. The proof is the same as that of [44, Lemma 11.15]. O

Pullback integrals. Let T denote a triple (¢, ¥, ) with ¢ € V having a conductor
with respect to 7. Let

¢, 1= 1y (ndiag(x ™', )Y,

and let

F¥"(z,8) = / fI(z, S (g, g'h)T(detg'h)my (g'h)e, dg,
Uy (Fy)

where & = «; or «) depending on whether m = 2 or 1. If f(z,g) = f™
(z. 887" then F"\(2. 8) = Fy, (f:2. 8)-
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PROPOSITION 53. Suppose that x = A',t > 0 is contained in the conductors of
T and ¥ and xx € (A'*) = cond; (¢). Then F;i"i (z, g) converges for all 7 and g
and

Fr(z.m) = [Ui(Op,) : K] @)k ]

and
FP =[U(OF,) : K110 |xx],57F,,,

for any r > max{r,, t}. Here K, is the subgroup defined as

K, :={(i2) eUl(OF,U):a—le(i),be(xi),ce@v,d—le(x)}.

Proof. See [44, Proposition 11.16]. O

PROPOSITION 54. Form = 1o0r2, let y™ (p, z) be as in Proposition 50. Assume
that char(v) = £, which is unramified in KC. If O, # cond(t) 2 cond(r1°) then

vy . 2) =yV(p,z—1/2).
Proof. See [44, Proposition 11.17]. O

6.5.5. p-adic sections. Now let v|p be a prime of F. We record the formulas
for Fourier—Jacobi coefficients and pullback sections below (see [50] for the
discussion). These are only slightly different from [44, 11.4] (the £¢ that appeared
there are replaced by fc,um in our cases). Let x € O, be such that (x) =

cond(&¢). We define
(k) = Y (det )Y (e ()M (z, [ (k).

LEMMA 55. Suppose that our data (Section 4.1.3) is in the generic case, and let
(p™) :=cond(z’). Let B € S,(F,), det B # 0, and suppose that B € GL,(O,). Let
y € GL,(O,). Let A be an unramified character of K¢ such that A|zx = 1. Then,
for h € Ug(Fy),

Y WET@F (% 2, u, g diaga™!, @), hy)
ac(Oy/x)*

= §(=Dc(B. 1, )t (dethy)| dethh| 12 £, 1(z, gmws(h, )Pt pe ., (W),
where w is defined using A, and
(B, T, 2) = T'(—det )| det B[} g ()T (p*") p~ o,
where e, is [F, : Q,].
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Proof. See [44, Lemma 11.20]. The argument in [44] still works as long as F, is
unramified. ]

Now we use the convention for m = 1 or 2 as in Section 6.5.2.

PROPOSITION 56. Let ¢ € V be an eigenvector for w such that v|cond, (¢). Let
(x) := cond() = (o)) = (@), w?).
Suppose again that we are in the generic case. Let
o) =Y (=Dr(diag(x, X ))e.
Then
Fyy (f%": 2, 8)

FO (9), m=2,

=y (0", —DIUN(Or.) : K7 E (o)l 2
7T¢(g)(/), m = 19

where O (z, ) = f*"(z, gS7H).

Proof. The proof is the same as that of [44, Proposition 11.21]. O

6.6. Good Siegel Eisenstein series. From now on we assume that the
characters i and t are unramified outside p. Let (7, V) = (® 7,, ®V,) be as
before, and let D = (X, ¢, ¥, T) be an Eisenstein datum as defined in Section 4.3.
We augment the datum with a choice of an Mp € A% satisfying the following.

e My is divisible only by primes in X' \ {v|p}.

e Forv € X'\ {v|p}, Mp is contained in §x, cond(§,), cond(y,), cond(t,), and
condy (¢,).

We remark that we have freedom to choose such Mp. This is crucial for proving
the p-adic properties of the Eisenstein series.

The Siegel Eisenstein series. For m = 1 or 2 we define a meromorphic section
fg") : C — I,4:(7) as follows:

5 (@) = ® [ (),
where

° fo(g” (z) :== f¢ € I,41(1s) for any infinite place;

o vf X then £ (2) i= [ € L (1,);
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e ifve X, vt p, then fg’_’i(z) flf;g » € Luyi(1,); and

e forv|p, f(m)( )= f(m) € I,,11(7,), where x, is used to define fO ),

DEFINITION 57. H<’")(z g) = E(f('"),z g).

Now we define a level group for U(1, 1):

Up:=[]Kuo [] Kuow]]U1(OF),

vlp vEX\{v|p} vgX

with K, , defined in Proposition 53.

REMARK 58. Later on we will use Up to denote the corresponding level groups
in GL, as well.

We also let
Kp' = {k € Gt (Op) 11—k e My, [ [ %) - Mz<m+1>(OF>}
vlp

Then it easily follows from the definition of the f5,’ gy -(z) that
HY(z, gk) = HY (2, 8), ke KW,

and that
H{"(z, ga(1,k)) = t(ar,)Hp (2. ). k € Up.

For u € GL,,+1 (Ak, f) let
L™ :={B € Spui(F): =0, Tty € Or,y € uS,1(Op)i}.

We record the following formulas, which are slight generalizations of the
results in [44, 11.5]. These will be used to construct the p-adic families of L-
values and Eisenstein series.

LEMMA 59. (i) Ifk > m+1, then H(m) is holomorphic at 7, := (kK —m —1) /2.

) Ifck >2m+1landifg € O, 1(Af), then

HpGzeg)= > Hp)(ze o)

BESm+1(F),p>0
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Furthermore, if S2(F) > B > 0, go; = r(X;)diag(y;, ’Yiil) for the ith
Archimedean place and g; = r(a)diag(u, u™") € G,41(Ar, f), then Hg?;j (Z¢» &)
=0if B & L™, and otherwise
(_2)—(m+1)d(27.”')(m+1)dk (2/7T)1n(m+1)d/2 Hj (det IB}C—("H-]) . det ij)

(Tt — j = DY T LSk — j. T'xi0)
< [TemBix; + iV, YO [ ] fope0 (e D

= e(trfa)

jel vgS
x t(detu)| detui|} "™ “”]‘[hv,ﬂ(f;(w,,)q;”—"),
vegS

where B, = upu, B; = 1;(B), t; is the jth embedding F — R, and S O X isa
finite set of primes such that g, € K11, ifv &€ S.

Proof. The proof is the same as that of [44, Lemma 11.22]. O
If « > m + 1, define a function H5(Z, x) on Hm+l X G i1 (Af ) by

d d
HY(Z,x) = [ tms1oo )V T It (80,2 DT Hy (e —m —1)/2, goo0).
j=1 j=1
where g, € Gm 41 (R), goo(i) = Z, and define A('") (x) as the Bth Fourier
coefficient of H;J’”)(Z ,X).

LEMMA 60. Suppose that k > m + 1. Then Hg")(Z, x) € M,((Kg')) (notation as
in Section 2.3, where k stands for the scalar weight k := (0,...,0;k,...,&)).

Proof. The proof is the same as that of [44, Lemma 11.23]. O

LEMMA 61. Suppose that k > m + 1 and that x = diag(u,u "), u €
GLos1(Ar ) with u, = diag(L,,,a,), a, € O%, if v € 5. Then, if f ¢ L

orifdetp =0, then Ap g(x) = 0, and for B = (B;;) € L™ with det g > 0,

m(m+1)/4 (m+1)/2

A0 = 1l s
(=2)~ (m-‘rl)d(2].”)(m-‘rl)Kd(z/jT)m(m-i-l)d/Z Hvlp(detﬂlﬁlv)K—m—l
X -
Mgt = j = DM T o L¥ (e = j. T/ xi)

x [ 7o(av det(B)a(x))" tle(@). —(k —m — 1)/2)ey (Trc, g, (@obmi1,1/x0))
v|p
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< [ rS@es(Tri, g, @bmi11/Mp))
veX, vip

- 1—«/2 - _
x T wodetun)unioly ™™ hy ot g, Fo@0)a;™).

vgX
Proof. See [44, Lemma 11.24], taking into account the VolS, (Or,). ]
6.7. Ep via pull-back. For a normalized Hilbert modular eigenform f €

we write ¢ := 7w (n™) f, where n = nif v|M and is 1 otherwise. As in [44, 11.6]
we let ¢y be defined by ¢y(g) = ¢y (gy) for

1, v=o00,V ¢ X,
y, = { n~'diag(Mp', Mp) ve X vfp,
diag(x,, x; 1), v|p.

Here ¢ € V and ¢, is the form on GU(1, 1)(Af) given by ¢ and .

PROPOSITION 62. Let m = 1 or 2. Suppose that, for any v|p, (x,) = (p") with
t, > 0, and that x, € cond(y) and x,x, € cond, (¢,), where @, is defined by
0 = Q,. Let g € G,,(Ar) and h € G(Afr) be such that p,(h) = w,(g). If
k>m+1 then

/ HE (z, (g, g'h)T(det g'h)po(g'h) d’
U (F)/Ui(AF)

¢ (D)9(g) m=1

— ) : !
=[U, (OF) : Upl {cg)(z)ED(Zv g) m=2,

where

cp () 1= w2 M D T T 2, 0225 () [ ] v (M)
vlp vip
L@+ m—1+K)/2)'L* (7, & 2 +m/2)
FE+m+146)/207 T L (Teje, 22 +m+1—1)
X l_[ y(m)(pl,w _Z)'

vlp

This is just a summary of the previous computations, similar to [44, Proposition
11.25]. We also have the following result for Fourier coefficients which is an
immediate consequence of the above proposition.
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PROPOSITION 63. Let m = 1 or 2. Suppose that, for each v|p, (x,) = (p'?) with
t, > 0, and that x, € cond({) and x,x, € cond, (¢,). Let g € G,,(AF) and
h € G1(Ayr) be such that wi(h) = w,,(g). Let B € S,,(F). If xk = m + 1 then

/ Hyy'y (2, a(g, 'M)E(det g Mgo(¢'h) dg’
U (F)/Ui(AF)

D(@)pp(2) m=1,

= [U,(Op) : Up]™
(Er) Ol {eé?(z)m(ﬁ,z,g) m=2,

where C%ﬂ )(z) is as defined above.

Recall thatay, ..., a;,. € @zc are representatives for the class group of 1. We
assume that each a; = (w,, 1) € Ok, for some prime v ¢ X' that splits in K. Let
a! a;

I';p :U(F)NUp, TIp;:=U(F)N ( ' 6_1') UD( l 6-1'1)-

Also, we write I'py 2 I'p by removing the congruence conditions required for

diagonal entries (similar to I5(N) D I(N) in the classical case). We often

write I'p o for the GL,(Af ;) open compact group with the same congruence

requirement as for U; (that is putting the same congruence conditions on ¢ for
(¢ %)). For any v|p let

(P*) = (x)) N OF, (P")y = (X X0).

It follows easily from the strong approximation that if we let ) C O be any set
of representatives for (Ox/[],,, x.Mp)*/(Or/p*» Mp)*, then

vlp
" ata!
Uiap = [ JuduiFs) ( S é> Up.
i=1 ac)y
with each element appearing 2°<h times, where vi is a number depending only
on K. Define
HY'(z, 8) == > (1"[ M;L) £°T(a) Hpyy (2, gae(1, diag(a™, @))).
ag(Or /([T x)Mp)* \VIP

6.8. Nebentypus. In this subsection we discuss the relations between U(1, 1)
automorphic forms and GL, automorphic forms. In the [44] case the situation is
easier since they assumed that the forms are newforms, that is, invariant under the
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action of matrices: (*}) forx € Of,, y € Op,,. Since we are going to work with
the full-dimensional Hida family we do not assume this anymore. A principle for
this issue is that we assume the neben characters at places not dividing p and the
torsion part at p-adic places to be invariant under the action of matrices: (x ‘1)
for x € (’);,U, y € O, and let the ‘free part’ of the p-adic neben characters
vary arbitrarily. Let & = ®,¢/ be a character of TU(I,l)(@F)- First look at a p-
adic place v. Note that Op , = A x I" for A ~F ., (e, = [F, : Q,]) and I" =
1+ pOpy. Tua.1(OF,) = {(ﬁ_] a)\a € Oixc,v}’ To,(OF,) = Of, x Of . For
v|p, a character ¢, of Ty 1)(OF,) can be written as ¢, ,,, - &, ,, (torsion and free
part) with respect to A x I". Let ¢ be a Hecke character. We can define , ;,, and
Vo, s- to be characters of O in the same way. Since ¢, ,, and ¥, ;, have order
powers of p, there are unique square roots 8%2, and 1//5 /fr of them. Now suppose
that for each v|p we have

8:),10r ((é_l (l)) = wv,t()r(a)

foralla € O,XC,U and that, for all v { p,

¢, ((‘Tl a)) = (@

foralla € (’),XC!U. Then we define a neben character of Ty, (@ r) by the following:

forv{ p,
A )-vo

for v|p

a — b

Ev tor b = wu,mr( )
and
Eu.fr ((d b>) =, <(Z Q)) ¥/7,(ab)

and

E = ®v8v'
Thus 8|T5L2<6F) = g’|T5L2<ép) .

Now let ¥ and &’ be as above, and let I be an ideal of @F contained in the
conductors of ¢’ and ¢. Let ¢ be a unitary automorphic form on U(1, 1)(Af) such
that the action of k € Uy(I) (recall that Uy(I) consists of matrices (“k Zﬁ) such

Ck
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that ¢, € I)is given by &’ ((“k ,,k)). Suppose moreover that it satisfies the condition
that, for any totally positive global unit b € OF, we have

S (R INCON) () S o

for ho, € U(1, 1)(F). (This condition is necessary for a SL, modular form to
extend to a unitary Hilbert modular form on GL, with nebentypus ¢.)

We define a map ay, from ¢’s on U(1, 1)(AF) as above to automorphic forms
on GL,(Ar). Recall that by our assumption (A) at the beginning of this paper the
Norm map from the ideal class group of /C to that of F is surjective.

DEFINITION 64. We say that a;a; ~ g if (detg/a;a;) is in the trivial narrow
class group of F. Define

W) = @@= Y ¢ (hoo (‘_‘f a_1)> e ()Y (20ea)
J

Jajaj~g

for g = yzoohoo (% ) k € GLy(Ap) where y € GLy(F), hoo € SLa(Fi), 200 €
Z(Fy), ke Iv(DgL, € GLZ(@F). The (6.1) condition makes sure that this is well

defined. Note also that by our assumptions on C/ F any element g can be written
as the above form. This definition does not depend on the choice of 1.

We have the following lemma.

LEMMA 65. The assumptions are as above. Suppose that ¢, @5 are automorphic
forms on GU(1, 1)(Ar), and that ¢, is an automorphic form on U(1, 1). Let Y,
Vs, W3 be Hecke characters for IC. Suppose that Y\ y» W3 = 1 and that the central
characters of @i, @3 are Y1, Y3. Suppose also that €}, &), €, are nebentypus of
ailua s 02, aslua,n). Assume that g\e58y = 1 and that the €] and ; satisfy the
assumptions above. Then

2 [OK : Op @192, 93)u.1) = {910y, (92), ©3)6L, 5

where ux is some number depending only on IC. (This factor comes out when
considering GL,/ F modulo the center and considering vi.)

Here we implicitly identified GL, with a subgroup of GU(1, 1) in the obvious
way. The proof is straightforward.
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6.9. Formulas.

DEFINITION 66. If f is a Hilbert modular form on GL,/ F with central character

B (G

f= fC®¢¥(det—).

DEFINITION 67.
gp (=, x) = (AP (a(x, —)) ® £(det —))

and

1
m) . ~(m)
8p.p5 = Wron )T << M%)) (&p.p)-

M

We have the following generalization of [44, Proposition 11.28]. Note that
the formulas are slightly different from those in [44] since we used the adelic
language. Write ap (B, x) and c¢p(B, x) for the S-Fourier coefficients for ¢(z, x)
and E(Z, x).

PROPOSITION 68. The notation is as above. Let B € S,,(F).

(1) There exists a constant C%" ) depending only on D and m such that

— 2 - y
<§gn,;s(—,x), p<(1 1) (MD [, %% 1) ) (_1 1) f">
4 ! f I';o

—cm {aD(ﬂax) m=1

- P cp(B,x) m=2.

(i) If no.1(p) # O for any v|p and if p|f, and p|f,-1; then

Cp = (a2 i) ] vir.Mp)Molsy @ (o, —20)

vip,veXr
c L= DLg(fix "6 =1 4,
X Hgv(xv). — '; — _ pr@),
olp @) [l L¥ (X' xico € — 1)
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where
YO0, =20 = V(D[] e, 1 —k/2E (gl ) - pme?
vlp
< [ i) a(uihES x0) - X0 ()80 Kubl s Vo)

v|p

and (y,) := cond(x,&;) and (p") := (¥, Ju)-

(iii) Suppose that we are in the generic case for any v|p. Then Cg)

Q) Cvl'y
CD l—[vlp pL "

Proof. One argues similarly to [44, Proposition 11.28] and the end of [44, 11.6].
]

Now we define a normalization constant

2
By = Mol -

[Joe =i =DY]]L" & = j. X&' %0
=0 j=0

X l_[ Xvés(yvaﬁ)g()_(v L%&cﬂ%&d%{f / 1_[ WETU(MD)V_/,;(—])

veX,vip vip,veX

x [T ems (E —k —m — 1)/2)g(z) )" g (&, m}
vlp
X (_l)mdzm(m+l)d(27_[l-)—(m+l)dfc (n/z)m(m+2)d/2

[] xE @ “atué, o)™ m=2
X § veX,vip
1 m=1

and let
f55.(=) = BR g (=, x), 6.2)

where (w ") is the conductor of Suéé.
Now for m = 1 or 2 we define
273d (Zi)d(K+l)

(m) ~(m)
1_[ eyry(1—k/2) BD CD
vip P

(m) _
LY =
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and

SC) =T rinp) ™ pe 0w (),

v|p

where W'(f) is the prime to p part of the root number of f with [W'(f)], = 1
(see [44, page 221]). Recall that in the subsection on notation we defined ¥ such
that p” || N, for v|p.

PROPOSITION 69. The assumptions are as before. Suppose that k > 2 ifm = 1

and k > 6 ifm = 2. Suppose that x = diag(u, 7" withu € GL,, (Ax, r). Suppose
that plfze and p"|Nm(f¢). Suppose also that cond(xﬁp)|fg(’);<,p.

(1)
e ens(onel, )
f I'p o

<f, i (M [L, <p’” _1)> fc>GL2.F’D.0

)
L'D

2734 (24)dk+D §( f) <f, 0 (<N _1)> fc>
GLa, IH(N)

ap(B,x) m=1
cp(B,x) m=2.

x W'(H)™ {
Here, ‘ ® £’ means multiplying by & odet considered as a function on 1 x U(1,
1)(Ar) and the subscript * f’ means the finite part.

(i)
2d
 _ —ordy(Nm(Gen K = 2)!
L’D - ll;)[a(l}? f) 5 <(—27Ti)K_l
X §(XEYNm(fze8x) L (f, X&, 1 — 1),

where Ly.(f, x&, k — 1) is the X-primitive L-function for f twisted by x§
over K.

(iii) Under the hypotheses of Proposition 50(iii),

LY =T]p" x LB -« xE) [0 - x&' @) )LY.

veX
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Proof. See [44, Proposition 11.31]. O

COROLLARY 70. Under the hypotheses above for some choices of x and B

<(f78‘,2.x ®E), p ((p N —1> ) fc>
f Ipo
-1 =
fip M , f
GL2,I'p o

M
L'D

273 Qi)HNAS(f) <f, P <<N _1) ) f”>
f GL2, U (N)

Proof. See [44, Corollary 11.32]. Note that in the Hilbert modular form case the
B and x are not necessarily the same as in [44]. (We need to use the assumption
that Nm : CI(K) — CI(F) is surjective.) [

For any x € G(Af ;) let

Gp(Z,x) =W ()L |u)|Ep(Z, x),

and let Cp(B, x) be its Bth Fourier coefficient.

COROLLARY 71. Under the hypotheses as above,

<<f§’,3,x ®E).p ((p ” —1) ) fc>
4 I'po
-1 ~
el ™),)7)
’ GL2,I'p o

C'D(ﬂ7 x)

S— S (RONN
f GLo, [H(N)

Proof. See [44, Corollary 11.33]. O

6.10. A formula for Fourier coefficients. Now we express certain Fourier
coefficients of Gp(Z, x) as essentially Rankin—Selberg convolutions of f and
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sums of theta functions. This is used later to prove various p-adic properties
of these coefficients. Let D = (f, ¥, &, X') be an Eisenstein datum. We assume
that

for any v|p, m,, ¢,, ¥, T, are in the generic case.
Let A be an idele class character of A such that
o AMax=1
o A, (x) = (x,/|x,])2 for all v]oo;
e ), is unramified if v ¥ X'\ {v|p}.

Letay, ..., ay. € Ag be representatives of the class group of K as in the previous

sections such that a; = (@, 1) for some place v; of F splitting in K. Also, for

i € I (defined in Section 2.1), g;a; is trivial in the narrow class group of F. Let

g; € F* be a generator. For such i we assume that @,, = ¢;. Let Q = {v;};¢y,.
Let B € S:(F), B > 0, and u € GL,(Ax, ) be such that

o u, € GLy(Ox )forv ¢ Q,;
e 'ii,Bu, € S,(OF,)*for all primes v;
e ufu is v-primitive for all v & X'\ {v|p};
o ifu"'p V" = (*§)thend, € Op, forallv e X\ {v|p}.
Let Mp be as before and also satisfying
cond(A)|Mp and Dy det'isfu|Mp.

All Weil representations that show up in the following are defined using the
splitting determined by the character A. By our choice of /X, there is an idele 0,
of A so that 0,0, = . Later we are going to choose u and 8 such that they do
not belong to GL,(O,) only when v = v; for some v; above. Let g” = n~'gn and
g = ("_1) g (" _))- Recall that we have proved the following.

Forv=v, € Q

FJﬂ,v(f; Tis Xy vy uvyv)
_t(detu,y,)|detu,y, [T
Mo L@z+3—j. Txt)"

(gv)wﬁ(uua gv)@O,yv (x)
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Forv € X'\ {v|p} (note that we have restricted ourselves to the case when the
local characters v, T, are unramified),

a—l
§ : F‘Iﬁ,v X, 8 a y Fylly
ae(Ox v/Mp)*

= t(detr,y,)| detr,| —etl/2

X Z f—h(Za g;n)a)ﬁ (rv’ g; (—117 1)) ¢1,M‘D,u,,(x)-

bEOF‘U/ﬁUB

For these v, we have

Foa ((_1” 1) g’n) = (@)D f ((_ln 1) gm)

= (1,0 ) Gxc0) 180 [ £

o« 1 16\ [8xcd _
_n1)8&"\ 5,5151_1 :
For v|p,

6171
Z /Ll us t(a)FJﬂv<_Z;xsgv< a)?h}uv)

aG(OIC,l'/Xu)X
= ¥, (= )T (det h)g(t))* 7. (p*) p~ = ¢ (det r,y,)| detr, | 7| det h |+
X fup1 (2 @M1y, 80)Preyi 1y, u, (X)-

(Here x, is a generator of the conductor of £¢ Mfi Here we use the bad notation u,,,
the last one means the v-component of # while the other u, means the conductor
defined at the end of Section 6.7.)

For h € Ug(Ar), u € GL,(Ak), we define

=éDﬂl¢ ®®ﬁvn@ﬂévulbxluv®®ﬁlMDuu®¢0uu

v]oo vlp vip vgx

—1 ~
and @ := ®p 4, = A:10) 0165 [ w ((““SK s ) n—l) Bp.p.0. and define

RS

@D,ﬂ(h’ g, M) = @ﬂ(hv g, (pD,ﬂ,u)~
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The following formula will be useful in Equation (6.4):

AR
() e o
— 2@ [kws (( )n(l )

() (7 5s) e
=A<alé,z'>|ala,zl|,<wﬂ,v(< e (" )( ))qD(v)

To see this, observe that

) B » 07!
@ = 108018k ks (1 550 ?
! 0
a),gtrl(g)zwﬁ (( 1)g< 1))

DEFINITION 72. Let

®h=1o=@1r@h @ Qs en(})

v]oo vlp veX vip vgX

and

and define &p to be the corresponding Eisenstein series on U(1, 1)(Ay).
We define
Cp(B,r.u)
_ @ri)*@/m) Bl 185 | xE (detru)| detrul T, o (det B )
[Tjo((c = 1= UL (k — j, X&'X))
X ¥, (=) X&) (det B)| det B[ ng(xvé,ﬁ, P XpEp(pPr)ptr =29,

vlp

If x = ('”‘ ,@)_1) for u € GL,(Ak), h € Ug(Ap) satisfies the assumptions at the
beginning of this subsection, then, using the useful formula before Definition 72,
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we get that if g is such that g_// € B(AFyf)UO(M%D[CDprP) we have

Hp p(zi, a(x, g)) diag@7',07', 1,9, 0y, 1)
= Y w)ET@Hpy

ae(O/x,Mp)*

—1 _ _
x (oz (x,g/ (a &)) diag(011,011,1,01,01,1)>

=Cp(B. 1 u)

< LT ST (L) o)

neF yekK?2 b v

1Y 1 .
X Wep-1y (h, (l’l 1) 8v (—b 1)) ¢D.ﬁ,u(val)

= 1801\ T (5kcd) T Cp (B, 1 0)

ST (D) (%5 (o)
() )

= 18015 T (5kcd) T Cp (B, 7 u) (6.3)

A e
Xp(n( )( )( ))&(gy (6.4)

The last step is because ®y is an automorphic form. Here we use p for the right
action of U(1, 1). By strong approximation this is true for all g.

huoy!
( ! /E—l/g—l/ﬁ])'Then

<§g’>ﬂ(_,m’p <(_1 1>f (1 M%’ nv\p(prv)”> <1 _1)f> fz>r 0

D

= B3l lf(5K51)1<Zp(n &) (‘S’C g,])) (O, ®E)(h, =, )
K

b

o (’7 (1 If) (S;cﬁl 5,}‘0.*1)) Ep,p ((—1 1)/ (1 " 1_[1,“,(17“‘)“) <1 _1),-> fﬂ>r

D.o

Now let x =
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N S 15\ (3
= 831l 7 Bicd) ‘<Zp(( ) ( .
b
1 b\ 3k 1 )\ s
(D0 oo w67
( l) S)Clal 1 MD Hv\p(P )v (1 )f F0<M2DHU\,)(I"")v)
- I -1 ,
= Bicdilc™ 1 Bicdn) ‘<p ((Dl 51)) Ajy(h, —u) - Ep.
St 1 -1 .
(7 50) Catam ) 6 79),)7
SO D I, (P, <1 >’ oM Dic @ 1y, p)
o = el w = —1 ,
=501} ‘s<s;cal)<p <<°1 51))Aﬁ(h,—;u>-so,

1 1 -1 Ze
(o) Corornon ) 60 7)

where A}J, = (OppRE&)(h, —; u)). Now, for v; with i € I;, by definition we have
that v;v; is an ideal of F generated by a totally positive global element. Let us
take such a generator ¢;. Also we take representatives {b;}; of the coset:

,1>) (Opp®E&)(h, —; u)
K

o

{b: totally positive units in Oy }/{cc for ¢ a unitin O }.

Then we define
A'(g) =) Opp,(h, g u)&(detg) (6.5)

i,j.k
h = ("
where B = st )

REMARK 73. The reason for introducing such b; is to make sure that the A’
satisfy () in the subsection for nebentypus (by checking the g-expansion) and
can be extended later to some theta functions on GL,.

DEFINITION 74. Let a¢; be the operator o defined in Definition 64 using the
character £A. We define

A=A (6.6)
(Recall that A’ is a form in U(1, 1) and A is a form on GL,(Ar).)

These A and A" will be used in Proposition 92 in Section 8. We are in a position
to state our formula for the Fourier coefficients for Klingen Eisenstein series.
Before this let us do some normalizations:

_ (k =3)L¥(k =2, &)
(=24 Qri) =D, (@) p) Xk (p r) p@ e’

Bp, 6.7)
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Bp,

2 . —1/2 — = - _
M2 216 T T o) XS OG0B0 8(RES, 30810 yudK &
o 9(€p. xp)

)

(6.8)

W (detru)| detruls/ > 7,80 (det )| det BI 2 [T, o0 (det B 2)

ey(2—k)

Bp(B,r,u) := -
[Loiz/tip Xkl (@) gy 9(xv&})

(6.9)

Then
Bg)CD(,B, r,u) = Bp(B,r,u)Bp,Bp,.

The following proposition follows immediately from Proposition 68 and the
previous calculation.

PROPOSITION 75. With the assumptions at the beginning of this subsection, let

B €S (F), B>0,
and u, h, x be as before. Then
Cp(B, x)

2*3d(2i)("*1)dS(f) <f, P ((N _1)> fc>
GLo, IH(N)

~ - 2 _l ~ -
= 155011 e (G031 Bp (B, h, ) Bp 1 Ep(—)Bp 2

F (0 ) w0 ™) e )7
(R )

Now let us make some choices for the # and 8 and record some formulas for the
theta kernel functions. We remark that our convention for @ is slightly different
from [44] in the F = Q case (ours is given by applying w ((a,sg 67%)) to the
one chosen by [44]). 1

Let ¥y € GLy(Ak, ;) be such that vy, = (1, 1) for v|p and y,, = 1 otherwise.

[Ty P M3 Dicd)

We let u; = (l aa). Then the i, u; satisfy the assumptions at the beginning
of this subsection.
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The following formulas follow from our computations in Section 5. For v| p,

qjﬁ;,k,s,fu;{,,xu,yo,p(x) =

Evotty (bkgixy) g (€, 2)E, 1y (X(b)g (&) X1 = (x],x)) € OF , x O,
Xy = (x5, x37) € Op , X Opy,
0 otherwise.

For j € I, then
0,1 (Zoo, ) Ppc, (6) = e(NMOx)bw)e(NM (2 by w) f (8, )2

Also,ifv{p,ve X,

1
1__/a X1 EMDOUaXQEOU’

v

Dpapa () = DM GEDIMB Y LMD g
q; @, '
0 otherwise,

for v nonsplit, and

Ppi i1 (X) = [Dy| 7' Ay (=D Mp ]!

( 1>2 MpO, O,
1—-—), X € X, € —

Gy o 0

1 1 O, Mp .. O
— 1=, e xel—0; x =
qu Gy 0 oy 0 Y 0

(@) M
or [ = x D Or ).
01 ZD'v/al v

’

1 O, M M

-, X € —, X € DO;X DO;,

q2 0 @, 0 w,0

0 otherwise,

for v split.
Ifv= Vi,
1 x € Ok, X2 €07 Ok,
¢O,ui,v(x) = .

0 otherwise.
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6.11. Identify with Rankin—Selberg convolutions. From now on we assume
that all characters (x, &, ) are unramified outside p. We recall the notion of
Rankin-Selberg convolution for Hilbert modular forms, following [15]. Let f
and g be two Hilbert automorphic forms (as functions on GL,(Af)) with level
dividing some m. For simplicity, we assume that both f and g have unitary central
characters x and & and have parallel weight k and « such thatk > k. Lett = x /&
and Iy, = N(Op) define Eisenstein series

E@is) = Y TN ¥, eo(z20) T (7, Kooz

Y€l \IH(m)

as in [15, page 341 (4.5)], where n is defined at the bottom of [15, page 341].
Suppose that the nebentypus of g and f differ by the nebentypus of & (this
satisfies [15, 4.5]). Consider the following integral:

z6.s80=[ [ euo((37]))romnaxay.
i JFs I /F

where @ (€, g)(x) = f*(x)g"(X)]] (Xoo» 20) * 7], f“(x) = D" f(x) j (Xoo» 20)"
and g“(x) = D7 'g(x)j (Xs, 20)<, with D the discriminant of F/Q. Note that
there are minor differences between the notation here and in [15], and that the
m and p there are 0 in our case. Now for any ideal a C Of we define a value
a(a, f9a(a, g)r(a) as follows. Take any ¢ € Ay which represents the ideal a,
and define

a(a, fa(a, g)t(a) =a(t, fa(t, )T (1)

if a is prime to the conductor or t and is O otherwise. This definition does not
depend on the choice of ¢ by our assumption on nebentypus. Then

Z(s, f, g, 1) = DY 2r@) (4m) CTEOR P (s 4 k)2 + 1 /2)'D(s, £, g),

where

D(s. f.9)= Y a(a, fa(a, g)T(@)Nmpg(a)™.

OrDa#0

By (4.7) in [15], up to a nonzero constant

Z(s, fg.7) = D™ f Fe(o)
Xo
X E 55 + 1) (Koo 2001 (Foon 20 |dx,

where X := GL,(F)\GL,(Ar)/Uy(m)AxCZ . Note that our formula is a special
case of (4.7) in [15], and is easier due to our assumptions on the nebentypus.
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Letay = (a,), € GLo(Ar, ) be defined by a, = (5., ') of v € T\ (p) and

a, = 1 otherwise. For m > 0, let b,, € GL,(AF /) be defined by b,,, = (pm _1)
for v|p and b, , = 1 for v { p. Then

p(@)Ep = E(fp, 2 Voo)

where f1,(z, g) = fp(z, goz;l) € I (z/A). It follows that f1,(z, g) is supported
on
Bi(Ap)nK;  Ng, (Op)a = Bi(Ap) K Ki(p"* M}, Dicd)

and that for g = bk.k in the support we have

/ K N\2—k *
oz, 8) = IMp Dl Thdydy, ay dy " Ty (koo 1) b=<"” db).

Suppose that i € Sz(p’!’M%E;c) is a normalized eigenform such that the
nebentypus of Ep - & is the same as f. Then

1 N 2
. <5Dp ((_1 IGED ) ho
vfp,00 f
DdMp ] pyy .
(L))
1 f I'po
5 —1 N
—BD1< < DKOM 1) (_1 ) >5p-h,/0
f vfp,00
DMQ Hp B 1 =1
) ()
1/ vtp.c0
1 D}CDM% [Tpy -
S vlp fe
1 f I'po
D M2 1 -1 -
:BD1<,0< K0 1) <_1 ) )ED'h»P (np;“ ) f>
f vtp,00 vlp p

2 ~
=BD1< < D’C°M 1) (_1 1) )SD-h,(x,,(p)ap(f,;))’f“vp
! vip,00

(e ) )7)
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= DR @) M Dl (R (palf,)) " By (4m) T e — 1)

o o(( ) ) e
p

= DV @) 7 My, Dl (Rp(p)ay (f,)) 7
X Bpic(f)(Ep(p)ay(hp)' s (4m) 0 (c — 1)
x L*(k — 2, XENV'L(ff x h,ic = 1).
Here the superscript # means the unitarization. We get the following.

LEMMA 76. The assumptions are as above. Suppose that h € Sz(p’f’M%f),C) is
a normalized eigenform on GL,(Ar). Then

N 2 N 2 v "
<BD’15D_p<(l 1) <D;CDMD 1) )’“’((1 1) (DKDMDHmva 1) )f>
vtp,00 f f f
= Bp 3L(f° x h,k = 1),
where
Kk/2—1

Bps = IMADiclY ™ (Hp(p)ap(f)) P~
x Bp 1c(f)(Ep(p)aphp) e~ (4m) ™9 e — D9 x L¥ (1 — 2, ) 7"

7. p-adic interpolations

7.1. p-adic Eisenstein datum. As in [44, Section 12], we define the p-adic
Eisenstein datum to be D = (A, I, f, v, X') which consists of:

e The integer ring A of a finite extension of Q,.

I, a local finite integral domain over Ay 4.

A nearly ordinary I-adic normalized eigenform f which is new at all v { p such
that some specialization f,, is of parallel weight «, and trivial character.

A finite-order Hecke character y of Ag/K* and (cond ¢)|p and |, = 1.

e A finite-order Hecke character & of KC such that (cond&)|p, and the p-adic
avatar of £ - | - [“0/2~1 factors through Ik.

e A finite set X' of primes containing all primes dividing N§x and conductors of

Y and €.

REMARK 77. For simplicity we have assumed that 1 is unramified outside p and
that the x; in [44, 12.1] is trivial. The assumption on the p-adic avatar is used to
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require that the central critical value L( f,,, ko/2) is an interpolation point of our
family so that we can apply Theorem 86.

Recall also that we have defined in Section 3.1 the maps « and 8. Let ¢ :=
dowyW' and & := (Bo W) £.

DEFINITION 78. Recall that we define Ajj to be the set of arithmetic weights ¢
such that k;, > 6. Let 5" C Ajj be the subset such that the local Eisenstein
datum is generic as defined in Section 4.1.3.

For ¢ € X we define

Vo) = (ﬂ x;“‘”X.f;") (¢ 0 ¥ o)Ixlie.

oeX

Here v, is the p-adic place corresponding to o under ¢ : C >~ C,. We also define

§p :=¢pok.

7.2. Interpolation.

7.2.1.  Congruence module and the canonical period. Suppose that R is a finite
extension of Z,. We let T™(Mp", &; R) (T%"*(Mp", &; R)) be the R-subalgebra
of Endg(M™(Mp", &; R)) (respectively, Endg (S (Mp’, ¢; R))) generated by
the Hecke operators 7, (these are Hecke operators defined using the double coset

Ui(N), (”’“ 1) Ui(N),

for the v). For any f € S™(N, ¢; R) a nearly ordinary eigenform we have
1, € T“(N,&; R) ®g Fr = T, x Fg

as the projection onto the second factor. Let m; be the maximal ideal of T(N,
€; R) corresponding to f.

Suppose that the localization of the Hecke algebra at m ; satisfies the Gorenstein
property. Then T°“%(M, &; R), is a Gorenstein R-algebra, so T°(M, &; R) N
(0 @ Fy) is a rank-one R-module. We let £ be a generator; so £y = ns1, for
some 1y € R.

Suppose that f € M°4(M, 1) is a nearly ordinary I-adic cuspidal eigenform.
Then, as above,

TM, D ® F ~ T x F,
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where F7 is the fraction field of I and projection onto the second factor gives the
eigenvalues for the actions on f. Again let 1y be the idempotent corresponding
to projection onto the second factor. Then for an g € S*(M, 1) ®; Fy, 1¢g = cf
for some ¢ € Fj. As above, under the Gorenstein property for f, we can define ¢
and 7.

DEFINITION 79. For a classical point f, of f under the Gorenstein assumption
the canonical period of f, is defined by

. -1 -
veorsfen((7)) )
f To(Ng)

Nfs

Qﬁp,can =

(The N, is the conductor of f;.)
REMARK 80. This ‘canonical’ period depends on the generator ¢;.

For X C A} a Zariski dense set of points we define M x(M, Ap) to be the
space of (finite set of) formal ¢ expansions which when specializing to ¢ € X
is a classical modular form with nebentypus 4. The [44, Lemma 12.2] is true as
well for the Hilbert modular forms (the character 6 there is assumed to be trivial
in our situation).

LEMMA 81. There exists an idempotent e € End 4, (M x(M; Ap)) such that, for
any g € Mx(M; Ap), (eg)y = egy € MU (Mp", e43 ¢(Ap)) for all ¢ € X7,
and such that e M x(M; Ap) = My (M; 1) Q1 Ap.

We also have an analog of [44, Lemma 12.2.4, 12.2.5] (the key interpolation
lemma) in the Hilbert modular case and the proofs are completely the same. We
omit the details. They are used in constructing the p-adic L-functions and p-adic
Eisenstein series in the next two subsections.

7.3. p-adic L-functions. Now we state the main theorem for the existence of
the nonintegral and integral p-adic L-functions following [44, 12.3].

THEOREM 82. Let A, I £, &, and ¥ be as before. Suppose that there exists a finite

A-valued idele class character  of Ag. such that | AL = Xt and  is unramified
outside X.
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(i) There exists E e € F1®1lx such that, for any ¢ € X5, E e € Fr®rlk
is finite at ¢ and

~ —ord, (Nm(fy, )
¢(Lics) = [ [rive® tpée

vlp

((K¢> - )')ng(Xf¢<§¢)Nm(fxf Ed,‘SIC)K“’ *Lg (f¢ de,fw ¢ 1)

(=2mi)2ko=D2=3d (24 ) ks +D S (£ <f"” P ((N _1) )E”>
! (V)

(ii) Suppose that the localization of the Hecke algebra at m; is Gorenstein. Then
there exists Ly . € Ixc such that, for any ¢ € X5, Liy . is finite at ¢ and

X

(L) = l_[M1,v,¢(P)fordv(Nm(h%%))

v|p
(kg = 2D g(Xe,68) Nm (T, 6,660 > Lic B, Xe, 65, K69 — 1)
( 2NZ)2d(K¢ 1)‘{2f can

X

Recall that in Remark 12 the w, , are defined as follows: the v component 7, of
7y, is such that 7, >~ 7 (w1, U2,) and py,,(p) has p-adic valuation — (x5 — 1)/2
and u, ,(p) has p-adic valuation (x4 — 1)/2. In terms of the g-expansion (2.1), if
Yy € A} is the element which is p at v and is 1 at other places, then

Hi(p) =a(y, diag(o_l, D), fs) - p_("¢‘”/2_

Proof. The proof is similar to that of [44, Proposition 12.6]. We first interpolate
the Fourier coefficients of the fpg(—,x) defined in (6.2) (get a Ap-adic
expansion) in the same way as in [44, Proposition 12.3]. Now there arises a
difference from the situation in [44]: these are only forms on U(1, 1) instead of
GL,/F. So we consider

A U e)e) e ((b 1)) "y

instead (as functions of g), where the b; are defined before Remark 73 and ¢
is the neben character for the fp g(—, x). By checking the g-expansions we see
equation (7.1) satisfies (6.1). So it makes sense to define

oy (Z o) (< - b;¥2> g) & (<bj 1>f>>
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(see Definition 64). We thus obtain an element fp 4(—, x) € Mx(M; Ap) in the
sense of Lemma 81. Let 8 and x be as in Corollary 70. Then the first Fourier
coefficient of 1 efp s(—, x) or € sefp s(—, x) at diag(d~', 1) gives the [:f)?,gg or
L. by Corollary 70. O

We will often write £3 and L for £LF, , and LT ,.

REMARK 83. In [15, Theorem I] Hida also constructed a full-dimensional p-
adic L-function Efﬁg‘fg for Hilbert modular Hida families (the g there is taken to
be the Hida family of CM forms corresponding to characters of [ times &).
Our interpolation points are not quite the same as his. In fact he used differential
operators to allow nonparallel weights to get the whole family while we instead
allowed more general nebentypus at p. (Recall that Hida used the Rankin—Selberg
method and required the difference of the p-parts of the nebentypus of f and g to
come from a global character.) Hida is able to interpolate more general critical
values. In particular, the point ¢, corresponding to the special value L(f5, 1)
where f; is the element in f with parallel weight 2 and trivial nebentypus is an
interpolation point. We look at the subfamily which is the Zariski closure W’
of the arithmetic points where the specializations of both f and g are of parallel
weights and trivial characters. (W' is the spectrum of a quotient of I[[Ik]] with
dimension 4.) The comparison between our construction and Hida’s will be useful
in proving Theorem 102 since our interpolation formula did not include the central
critical value L(f,,, ko/2). So we state the following proposition.

PROPOSITION 84. Up to a factor which is a unit in 1[[ T ]], we have

Hid, rY Hid.
Ef,;ctfﬂw’ = <‘CD' 1_[ Ef,ki)

veX\{vlp}

’

w’

where |y means restriction to W', and Ef,’g”m is the local Euler factor at v. They
are by definition p-adic analytic functions since v 1 p.

Proof. The proposition is proved by comparing the interpolation formula for our
Eg and the one in [15, Theorem I]. The factor mentioned in the proposition which
is aunitin I[[Ic]] is a product of local root numbers at primes outside p for f and
CM forms (it is well known that they are units). We simply point out a couple of
items for comparison.

e In Hida’s interpolation formula in his Theorem I there are three p-adic Gauss
sum terms, while only two show up in our formula. The one in the denominator

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

The Iwasawa main conjecture for Hilbert modular forms 69

of [15] is caused by the difference in the Petersson inner product. It is well
known that the ratio is indeed given by root numbers, for example, by using the
global functional equation.

¢ Hida only proved the interpolation formula of for critical values of the Rankin—
Selberg product of some f and g both having weight at least two, while in our
case the corresponding g is of weight one. However it is easily seen that Hida’s
interpolation extends to our situation as well. O

We also have the X primitive p-adic L-functions L , and L¥ . , for a single
f by specializing the one for f to f (see [44, Theorem 12.7]).

7.3.1.  Connections with anticyclotomic p-adic L-functions. Let B : Ax. s —
Aj 4 be the homomorphism which corresponds to specializing to anticyclotomic
twists of the central critical values L( f,,, ko/2). (The B means this only in this
subsection.) For A the integer ring of a finite extension of Q,, 8 extends to

Fi®a Axa = Fa®a Aic 4,

for F, the ring of fractions of A. Now we define the anticyclotomic p-adic L-

function:
LTce=BLT ) € Ag,
and
Ly, =B(LT o) € A, ®a Fa.
For v|p we can further specialize y,;, = 1 for all v # v to get ,Cf,g ¢, and
L% 0

DEFINITION 85. For some v|p, Ef’,gqglv € Al 11x2,Q,.and LT e, € Al 1]
when we have the Gorenstein property required to construct it. Then we say for
v, f satisfies the following (NV1) or (NV2)) if:

(NV1) L7, is not identically 0;

(NV2) ,C_?‘,g_g is not divisible by @, in A[[I","]] where @, is a uniformizer of A.

Recall that f,, is an ordinary form in the family f of parallel weight k, > 2 and
trivial nebentypus. Write ¢y € I[[Ik]] for a point corresponding to the special
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L-value L(f,,,«0/2). Now we state a theorem giving a sufficient condition for
(NV1) and (NV2). We assume the branch character £ = 1.
Now we state the following theorem of Hung [26].

THEOREM 86. Assume that p > 5. Suppose that the level of f, is M = M*M~,
where M and M~ are products of split and inert primes, respectively. Suppose
that

(1) M~ is square free with the number of prime factors being congruent to d
modulo 2;

(2) py is ramified at all vIM~.
Then for any v|p (NV1) is true. Suppose moreover that

(3) the assumptions in Theorem 8 are satisfied.

Then for any v|p (NV2) is true.

Proof. This is essentially that of [26, Theorem B] except that we need to compare
the periods. We need to prove that the period defined in (5.2) of [26] is Hida’s
canonical period under our assumptions. We first claim that in his definition for
(fx, fa) in Section 4.7 there, the cardinality of the stabilizer is a p-adic unit.
Otherwise there will be a global element y € B*(F) of order p which means
F(y) is a field quadratic over F containing the pth roots of unity. However
since p is unramified in F the only possibility is p = 3, which contradicts
our assumption. This proves the claim, and thus this inner product is a perfect
pairing. Then assumptions (1) and (2) above ensure that the local Hecke algebras
corresponding to f on B and on GL, are the same. Assumption (3) implies that the
self-inner product { f/, f,/) on B generates the congruence module. To see this we
need to know that the space of integral modular forms on B of level M is free of
rank one over Ty, . This can be proved using the argument of [9, Theorem 11.2].
There is a small difference between our situation and Fujiwara’s that, under the
assumptions, the quaternion algebra Fujiwara considers is split at primes dividing
M~ while our B is ramified at those primes. But by our assumption (2) above this
does not make any difference for the argument. These altogether tell us that the
period in [9] is nothing but Hida’s canonical period. 0

Now we consider our ,Cf,c_l for f a parallel Hida family of eigenforms. The
local Euler factors at X'\ {v|p} for split primes v do not affect the anticyclotomic
p-invariant (see [44, 12.3.2]). However the Euler factors at nonsplit primes are
nonzero elements of I[[I""]]. We still have the following.
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LEMMA 87. Let P be a height-one prime of,l',f,c1 which is a pullback of a height-
one prime of I[[I""]]. Then

ordp Ly | < ordp ]_[ Ericio

nonsplit ve X\ {v|p}

(Recall that Ex x 1, means the local Euler factor at v.)

Proof. The proof follows from our Remark 83 and Theorem 86. O

7.4. p-adic Eisenstein series. We state some theorems which are straight
generalizations of [44, Section 12.4].

THEOREM 88. We use the assumptions as in Theorem 82(ii). Let D = (A, 1,
f,y, &, %) be a p-adic Eisenstein datum. Suppose that (irred) and (dist) hold
and that the local Hecke algebra Ty, is Gorenstein. Then for each x = diag(u,
e G(Af’ 1) there exists a formal q-expansion

Ep(x):= Y (B g’ e, 2) € Ap,

BeS(F).p20

with the property that, for each ¢ € X5",

Ep,(x):= Y ¢(co(B,x)e(TrpZ)

BeS(F).p20

is the q expansion at x for Gp, /2y, can. Moreover, if det B = 0 then cp(B, x) €
L L3 Ap.

REMARK 89. There is also a ED version of the above theorem under the
hypothesis of Theorem 82(i) using 1¢ instead of £;. We omit it here. Also, from the
definition of 1¢ and the fact that the congruence number of f,, is finite, we can find
an element b € I such that bl is a Hecke operator with integral (I-coefficients)
and such that b(¢y) # 0. Now we explain how to see this using [14, Theorem II].
The Hida families are just components of the Hecke algebra h acting on the space
of cuspidal Ay-adic nearly ordinary forms (recall that the Ay is defined to be a
complete power series ring whose coefficient ring may be assumed to contain all
Fourier coefficients of f ). We need to know that f is the only component passing
through ¢,. We invert p and look at the map of local rings

(Aw ®Zp @p)PK% —> (h ®Zp @17)((150)7
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where the subscripts P, » and (¢,) mean localizations at these primes (P, 4, Means
the prime corresponding to the weight of ¢y). We denote this as A — B. Using
the fact that the congruence number at ¢, is finite and Hida’s theorem mentioned
above we know that A/m4 >~ B/mp (both isomorphic to (AW/P,%) ®z, Q) since
the coefficient ring of Ay contains all Fourier coefficients of f4 ) and mp = m,B.
So A >~ B by Nakayama’s lemma. So there are no more components passing
through ¢, since otherwise the local ring (h ®z, Q,) 4, cannot be isomorphic to
(Aw ®z, Qp)e, -

8. p-adic properties of Fourier coefficients of Ep

In this section, following [44, Section 13], using the theta correspondence
between different unitary groups, we prove that certain Fourier coefficient of Ep
is not divisible by certain height-one prime P.

8.1. Automorphic forms on some definite unitary groups.

8.1.1. Generalities. Let B € S,(F), B > 0. Let Hy be the unitary group of the
pairing determined by 8. We write H for Hg sometimes for simplicity.
For an open compact subgroup U € H (A ;) and any Z-algebra R we let

AU, R)
={f:HAr) > R: f(yhku) = f(h),y € H(F),k € H(Fy),u € U}

and for any subgroup K C (A /) let

Ay(K; R) := h_n)l Ay (U; R).

UDK

8.1.2.  Hecke operators. For a prime v let U, U’ C H(F,) be open compact
subgroups, and let 7 € H(F,). We can define Hecke operators [UAU'] : AU,
R) — Ay (U’; R) in the usual way.

We will be mainly interested in two cases.

Split case. Suppose that v splits in . The identification GL,(KC,) = GL,(F,) x
GL,(F,) yields an identification of H (F,) with GL,(F,) via projection on the
first factor: H(F,) = {(A, B~"A"'B) € GL,(K,)}. We let H, C H(F,) be the
subgroup identified with GLQ(@M). For U = H, we define TUH as the Hecke
operator [Uh,U1, h, := (*" ) € GL,(F,) = H(F,), where @, is a uniformizer
at v.
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Primes dividing p. If v|p then v splits in K. For a positive integer n we let
I,, C H, be the subgroup identified with the set of g € GL,(Z,) such that
g mod p" belongs to Ny(Z/p"Z,). For U = 1I,,, we write U for the Hecke
operator [Uh,U] where h, := (” 1). This operator respects variation in n and
commutes with the 7, for v { p. Let U, := [],,, U..

Now we define the nearly ordinary projector. First recall that we have fixed an
t: C, >~ C. Let R be either a p-adic ring or of the form R = Ry ®z, Q, with R,
a p-adic ring. Then we define

ey 1= limU,"™" € Endg(Ay (U; R)).
It is well known that this exists and is an idempotent. We can define the Hecke

operators for automorphic forms on U(1, 1) in the split and p-adic case in the
same way as above (using the projection onto the first factor).

8.2. Applications to Fourier coefficients.

8.2.1. Forms on H x U;. If v splits in IC we always fix once for all a prime
w above v such that v = ww. Then we view representations of H (F,) via the
respective identifications of these groups with GL,(F},) (projection onto the first
factor of GL,(K,) = GL,(F,) x GL,(F,)). Let A be a character of Ag/K* such
that Ao (z) = (z/]z)~? and Max = 1. Let (7, V),V C Ay, be an irreducible
representation of H(Afr ), and let (o, W), W < A(U,), be an irreducible
representation of U;(Ar r). Let x, and x, be their respective central characters.
We assume the following.

& Xo =AX, L
e If v splits in K then o, >~ 77, ® A, 1 as representations of GL,(F,).
e We fix a finite set S of primes outside of which A is unramified.
Letp € V® W. We assume that
e if v & Sthen ¢(hu, g) = ¢(h, g) foru € H,;
e there is a character ¢ of TU(U)((’A)F) and there is an ideal N divisible only

by primes in S such that ¢(h, gk) = ¢ ((“k dk)) @(h,g) for all k € Ul(@F)
satisfying N |c;. (k = ("k b*)).

¢ dy
Now for the group U; we can similarly define Hecke operators 7'V for unramified
split v using the double coset action for (w" l) and U, operators for v|p and the
nearly ordinary projector ey . The following lemma follows immediately from our
assumptions for 7 and o.
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LEMMA 90. Suppose that the above assumptions are valid. Then, for any v € S
that splits in IC,

s (@, @y N (@) T ) (h,u) = T (9) (h, ),

where L, = (Ay1, Ay2) With respect to IC, = F, x F, and TvH and TUU means
Hecke operators on the groups H and U,.

Now we consider the p-adic ordinary idempotents ey and e. For any v|p
suppose that €,(k) = &1 ,(ar)€2.,(dy). Suppose additionally that, for such v, the
following hold.

e ), is unramified at v.

e cond(ey,) = (p"), cond(e;,) = (p°), r > s for any v|p.

« P IIN.

o @(hk, g) = &5, (a)er s (d)e(h, g) fork = (ki, ky) € Hy, p'lcy,.

LEMMA 91. The assumptions are as above. Then
(enp)(h, =) = ey(p)(h, —).

Proof. The proof is completely the same as that of [44, Lemma 13.2]. The point is
that the vector with the prescribed level group action has to be the nearly ordinary
one. O

8.2.2. Consequences for Fourier coefficients. We return to the notation and set-
up of Section 6. In particular, D = (¢, ¥, t, X) is an Eisenstein datum. Let
Oiji(h, g) = Op,, (h, 8 Pp g .u;)- Now we decompose each O (h, g) with
respect to irreducible automorphic representations 7wy of H;jx(Ag r):

O(h, &) =Y _¢lP(h, g).
TH

Then, as in [44, 13.2.2], using general consequences of theta correspondences in
the split case we may decompose:

@ijk(hﬂ g) = Z gD((:'rj:)rr)(h’ g)a (P((;TJ:?U) €Ty ®67
(TH,0)

0, 2 Ty, ® Ay as representations of GL,(F,) for all v split in /C,

and such <p8¥§?a)

subsubsection.

(h, g) satisfies the assumptions about the nebentypus in the last
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Fori € I, let
Cp ijk(h) := t(deth)Cp(Biji, diag(u;, W, h) € -AHijk-
Recall that we have defined A" := 3, A} .

PROPOSITION 92. Let L = {vy, va, ..., Uy} be a set of primes that split in K and
do not belong to X U Q. Let P € C[X|, ..., X,,]. Let

PHijk = P(gvl.l(wvl)TI;]”ka ceey %_v,”,l(wvm)THijk)

v Um

and Py, := P&, 20, (@, )T, ... &, 20, | (@,,). Then

vy ?

Zijk eHijk PHijk CD,ijk(h)BD(/sijks h, Mj)71

2—3d(2i)d(k+1)5(f) <f’ P <(N _1>) fc>

= #(deth)|8xcd1 />~ E@xcdy)

e (VN ) S (Y NS LU P L}
o ()00, )

Proof. The proof follows from Lemmas 90 and 91 in the same way as for [44,
Proposition 13.3] and [44, 13.2.5]. The assumptions for these lemmas follow from

-1
our explicit calculations in Section 5. Observe that p <<°1 5 )) commutes with
1
€P1.

Recall that we defined A’ and A in Equations (6.5) and (6.6). The following
corollary follows easily from the above proposition by comparing the GL, and
U(1, 1) Hecke eigenvalues for unramified split primes on automorphic forms with
central character A&, and applying Lemma 65.

COROLLARY 93. Let P, = P(T,,,...,T,,) be a GL, Hecke operator for the

polynomial P in the above proposition, and let e be the GL, nearly ordinary
projector. Then the last expression of the above proposition equals

T(det h)|8xc0, /> 'E(8x01)2 7" [OF : OF17'Bp.1Bp,
NI —1
e () (o)
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S LI,

vlp GLa. Ty (M3 Dicd [T, 1)

e (GG ) ) 7)

vlp GLa. Ty(M [T, p™)

Proof. 1t follows from the definition of oy¢ that for any A" on U(1, 1)(Ap)
satisfying (*) and split v outside X' we have

O\S)vl(w;l)TvakéA/ = a(TvA/)~

The corollary follows readily. 0

8.3. p-adic properties of Fourier coefficients. In this subsection we put the
operations above in p-adic families. Let D = (A, L f, ¢, &, ¥) be a p-adic
Eisenstein datum as in the last section, and Ep € M, ,,.(K},, Ap) or ED be as
there. For x € G(Ap ;) with x € Q(Op,) for all primes v|p we let ¢p(B, x)
€ Ap or ¢p(B, x) € Ap be the S-Fourier coefficient of Ep or bED at x (here b is
defined in Remark 89). So, for ¢ € A, cp, (B, x) := ¢ (cp(B, x)) is the B-Fourier
expansion at x of a holomorphic Hermitian modular form Ep,(Z, x). We define
the ¢p, (B, x) correspondingly. Define

Pp.prp(h) == xe¥r, 'Es(deth)cp, (ﬂ, (h ’l_zl) x)

and

P.p.cs(h) = xe¥, '§4(deth)ép, <,3, (h ’}_z‘l> x) )

As in [44, 133.1], recall that By = () and u; = 3 (' ,1). For h €
GL,(Ak, ) with i, € GL,(Ox ,) for all v|p, let

I huib_l _
@ik = x;¥ & (deth)ep (ﬂijk, ( ! ,}—1_1%‘51)) Bp(Biji, b, u)™' € Ap,
where Bp(Biji, h, u;) is the element interpolating the Bp, (B;jk, h, u;) defined in

equation (6.9). Note that by our choices Bp(B;j«, h, u;)~" is a unit in Ap.
For ¢ € A§ and h € GL,(Ak /), let

Pv,ijkg(h) = ‘PD,,sijk,diag(uia;',nifla',),qb(h)-
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We define the ¢ versions of the above objects correspondingly when the local
Hecke algebra for f is not known to be Gorenstein. Now we have the following
lemma interpolating the Hecke operators, completely as in [44, Lemma 13.4].

LEMMA 94. Let L := {vy, ..., v,} be a finite set of primes that split in K and do
not belong to XU Q. Let P € Ap[X,, ..., X,,). Forh € H;(Af ;) withh, € H; p,
there exists gp ; (L, P; h) € Ap such that the following hold.

(a) Forall ¢ € X2,

¢ (pp,ijx (L, P; h))
= Py(&p.0,. l(wul)TH”A - E(j),v,,“l(wvm)TL{:{M)eH,jk(pD,ijk,¢(h)’

where P, is the polynomial obtained by applying ¢ to the coefficients of P.

(b) If M < Ap is a closed Ap-submodule and ¢p ;jx(h) € M for all h with
hp € Hi,p: then (pD,,-jk(E, P; h) e M.

Observe that the nebentypus of o, (A) at v|p are given by

8/ ((av d )) g Ml,v(av)MZ,v(dv)Tl_l} TZ_J (dv)

for any a,,d, € Oy . From the definition of the theta functions (g-expansion)
we know that o, (A) is a Ap-adic form. Also for each arithmetic weight ¢ the
specialization at ¢ is a form of parallel weight two and the nebentypus at all v|p
only depend on the restriction of ¢ to

=10 8.1

Now let g € MY (MZDx, 1; Ay ,) be a Hida family of forms which are
new at primes not dividing p and such that g ® xx = g. Suppose also that the
localization of the Hecke algebra at the maximal ideal corresponding the g is
Gorenstein so that £, makes sense. Now following the remark of [44] before
Proposition 13.5, one can change the weight homomorphism and view g as an
element of M (M} D;c, 1; R™) (the space of R*-adic families of nearly ordinary
forms with tame level Mjb;g and trivial character) such that, at any ¢, g, is a
normalized nearly ordinary eigenform of parallel weight two and nebentypus at
v|p the same as o, (A). Also as in [44] one can find a polynomial of the Hecke
actions P, := P(T,,,...,T,,) € T"MZDx, 1; R*) such that P, = a,€, with
0 # a, € R*.

With these preparations we can prove the following proposition in the same
way as [44, Proposition 13.5].
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PROPOSITION 95. Under the above hypotheses we have the following.

(1) If the local Hecke algebra for £ is Gorenstein, then we have

Z‘pD,ijk(»ca Pg; 1) = Ap ¢Bp g

ik
with Ap ¢ € I[[I (1] and Bp ¢ € I[[Iic]] such that for all ¢ € X5":

B (Ap ) = 27"R[O% : OX1718xc01 [} 6B )b (ag)ms,

<BDv'5D¢” () ((M%D,ca _1> Moy (e _1)> / 3>>GL2
(e (ot =) Ty (e ™)) 5), |

and for ¢ € X°,

¢ (Bp.g) = g, X

—1 -1 .
<BD,2O‘$A (Zijk O, g @ Sd)) » P <<M%ﬁ)c ) Hv\p (p’v»aﬂ )) g¢>GL
2

[ (S TR

Furthermore, Ap g # 0 (recall that Mp, is independent of ¢ and thus we
write My for it).

(2) In general, we have

Z@D,ij(ﬁ, Pg; 1) = le,gBD,g,

i,j.k

where ./Z(D,g € FH[[F,é]] and cp(le,g) is the expression in (1) with ng, replaced
by b, and By 4 the same as in (1).

Now we prove the following key proposition.

PROPOSITION 96. Let A be the integer ring of a finite extension of Q,, I a local
domain and a finite torsion-free Ay 4 or Aﬁ,a, "!-algebra, and £ € M°4(M, 1;1)
an I-adic newform such that (irred) and (dist) hold.

(1) Suppose that T, is Gorenstein. Then, by possibly enlarging the X in our
Eisenstein datum, there exists an integer My as before and divisible by all

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

The Iwasawa main conjecture for Hilbert modular forms 79

primes dividing X such that the following holds for the associated Ap-adic
Eisenstein series Ep and the set

Cp = {epBij x); x € G(Ap 7)) N Q(F,))

of Fourier coefficients of Ep. If R C Ap is any height-one prime containing
Cp, then R = P Ayp for some height-one prime P C ]I[[I",ér]].

(i) In general (not assuming Gorensteinness), the conclusion in (i) is still true
with the Cp and cp(Bijk, x) replaced by Cp and ¢p(Biji, X).

Proof. We follow the proof of [44, Proposition 13.6] closely. As in [44], we only
need to find an My, so that there is a g with Bp , a p-adic unit.
First we find an idele class character 6 of Ay such that

¢ () = [loer 20

i 9|A; = |- |rxx/rs

e Nm(fy) = (M2) for some M, € F* prime to p and such that Dy M |M,

e and v|M, forallv € X \ {p};

e for some v| Dy, the anticyclotomic part of 9|Z)M has order divisible by g,;
o 2_**L(1,0) is a p-adic unit, where §2, is the CM period defined in [16];
e 0,,(p) — lisa p-adic unit for any v|p;

e 0/ has order prime to p;

e the local character 6¢

tor

is nontrivial over lC;3 for all g € ¥'; and

e the restriction of 6

tor

to Gal(F /K[/p*]) is nontrivial.

Here 6 is the ‘torsion part’ (as defined in [18]) of the anticyclotomic part of
0 :=6°/0, p*is (—1)P~V/2p,

The existence is proven in a similar way as in [44, Proposition 13.6], using the
main theorem of [24] instead of results of Finis. (The result in [24, Theorem A] is
not stated in the generality we need since he puts a condition (C) there requiring
that the nonsplit part of the conductor of the CM character is square free. But this
condition is removed in a later paper of his paper; see [25, Section 6].) Write g, for
the CM-eigenform corresponding to 6. Now using the main result of [18] and [19]

(we thank Hida for informing us his results in [19]), under the last three conditions
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above (which are put to apply Hida’s result), we have that the Gorensteinness for
gp 1s true and
(80> 80)

02z -

Mg

Thus
L(1,0)%/822
L(1,0)*/2can
is p-adically integral where £2.,, is the canonical period associated to g.

The g, has parallel weight two, level M} Dy, and trivial neben character.
Similar to [44, Proposition 13.6], we see that it satisfies (irred) and (dist). Let g €
M"‘d(MjE,C, 1; R™) (see the discussion before Proposition 95) be the ordinary
CM newform associated with 6. (This is constructed in [22, page 133-134].
One needs to first construct the automorphic representation generated by some
theta series and then pick up the nearly ordinary vector inside that representation
space.) Recall that we have defined A := o, (Zi’j’k Op,; ® ) in Equation (6.6).
Now we evaluate Bp , at the ¢ which restricts trivially to the W; , and I'c. In this
case, by checking the g-expansion (at the end of Section 6.10), the argument in
[44, 11.9.2] gives that up to a constant which is a p-adic unit (in fact the number
of roots of unity in Ox) we have

Ay = (Bpa)oE' (xx)p ((M%) _1>> E'(xx),

where (Bp4)y = |M2|7" 18k 12328k |,* which is a p-adic unit, and A, is the
A defined using the Eisenstein datum at ¢». Here

=11 )

vlp

for E(xx) being the weight-one Eisenstein series whose L-function is L(F, s) -
L(F, xx,s). We write

=000 (7)) E000,

Then the argument in [44, Proposition 13.6] tells us that

<h’ ° (H (™) (oot _1)> gc>

v|p
_ HDlr [T, 002(p) 2
T i(=2mi)Mg(xx)

L1, 0[] = 6,2(p))°.

vlp

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

The Iwasawa main conjecture for Hilbert modular forms 81

(In [44] they used [34] to construct the weight-one Eisenstein series with the
required g-expansion when F' = Q, using the theory of analytic continuation of
Eisenstein series. In the totally real field case we use, for example, [S, Section 6]
for this generalization.)

Thus

£[Dilr [T, 002(p) 2
id(_zni)ng(XlC)Qcan

¢ (Bp,) = L(1,0) T = 6u2(p))’.

vlp

By definition, ¢ (Bp ) is p-integral. But, as noted before, (L(1, 0)?)/ Q2 divides
(L(1,0)%) /22>, a p-adic unit. Thus itself must also be a p-adic unit. Therefore,
Bp.g is a unit. This proves (i). Part (ii) follows similarly (note b € F;* for b defined
in Remark 89). I

9. Proof of the main results

9.1. The Eisenstein ideal.

9.1.1.  Hecke operators. Let K' = KyK* C G(A%) be an open compact

subgroup with K* = G(OZ) and such that K := K'K) is neat. The Hecke
operators we are going to consider are at the unramified places and at primes
dividing p. We closely follow [44, 9.5, 9.6].

Unramified inert case. Let v be a prime of F inert in /. Recall as in [44, 9.5.2]
that Z, ¢ is the Hecke operator associated to the matrix zy := diag(w,, @,, @,,
w,) by the double coset KzoK where K is the maximal compact subgroup
of G(Or,). Let 1y := diag(w,, w,, 1, 1), t; := diag(l, @,, 1, @, ") and 1, :=
diag(w,, 1, @, ', 1). As in [44, 9.5.2], we define

7zv = Z[Xva ql/zs qil/z]

for X, being T(F,)/T(Of,), and write [¢] for the image of ¢ in X,. Let Hg
be the abstract Hecke ring with respect to the level group K. There is a map
Sk : Hg — R, givenby Sk (KgK) =Y, 8, (t)lt;1if KgK = ;., t;n;K
fort; € T(F,),n; € Ng(F,) and extend this map linearly. We define the Hecke
operators T; fori = 1, 2, 3, 4 by requiring that

4 2
L+ Se(x' =[]0 = ¢ 11X — 1617 %)
i=1

i=1
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is an equality of polynomials of the variable X. We also define

4
Q.(X) =1+ ) Ti(ZoX)'.

i=1

Unramified split case. Suppose that v is a prime of F split in /C. In this case
we define z\" and z{ to be (diag(w,, @,, @,, @,), 1) and (1, diag(w,, @,, @,
w,)) and define the Hecke operators Z, (' and Z, ) as above but replacing zo by
z{" and z7. Let zf” = dlag(l (w,, 1), 1, (1, w-l)) iV = diag((w,, 1), 1, (1,
*1) 1). Define 1% := 7" and 1; = 1”1/ for i = 1,2. We define R, and S
in the same way as in the inert case. Then we define Hecke operators 7, for
i=1,2,3,4and j = 1, 2 by requiring

4 2
1 + ZSK('Z';(J))XI — l—[(l 3/2[t(1)]X)(1 3/2[t(1 )] lX)

i=1

to be equalities of polynomials of the variable X. Here j = 3 — j and the [t(’ b

are defined similarly to the inert case. Now let v = ww for w a place of K. Define
i, = 1 and i; = 2. Then we define

4
Qw(X) =14+ Z Ti(lw)(z(()3fzu‘)X)i.

i=l1
4 . .
Qa(X) =1+ T (z5 ™ X)".
i=l

p-adic case. Let t = diag(p*, p™, p™, p®), and let u, be Hida’s normalized
operator defined in [44, 6.2.2].

Let hp = hp(K’) be the reduced quotient of the universal ordinary cuspidal
Hecke algebra which is defined by the ring of elements in End 4, (S*4(K’, Ap))
generated by the Hecke operators Z, o, Zf)’}), T ., Tl({,), u; , defined above. This is
a finite reduced Ap-algebra. Now we define for each prime w of C a polynomial
Qup(X) = det(1 — pp(Frob,,)X) associated to Eisenstein series where oy, is the
Galois representation defined in Section 9.2.2.

We define the Eisenstein ideal Ip (which is actually the kernel of
homomorphism from the abstract Hecke algebra to Ap determined by the
Eisenstein family) generated by the following.

e The coefficients of Q,,(X) — Qu p(X), Qa(X) — Qu,p(X), Qu(X) — Qup(X)
for all finite places v of K and not dividing a prime in X.
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o Z,o— 0,,,(7;1 (Frob,) for v inert places outside X.

o Z{{—0a 0 (Frob,,) forall v outside X such that v = w, w; is the factorization
of K, = F, x F,.

e For all v|p, u;, — Ag, (4, ,) with t = diag(p*, p*, p™, p®), a1 < --- < ay.

Here, o is the reciprocity map of class field theory normalized by the geometric
Frobenius, and Mg, is the Hecke eigenvalue for u,, acting on Ep. These
are elements in I[[Ic]] (the A;,(p) can be expressed in terms of the Hecke
eigenvalues of U, on f and the &,,(p) and &,, in our situation). We omit the
precise formulas. We remark that the elements in Ip all annihilate Ep. Note also
that the factor I'c in Ay corresponds to twisting everything by characters so our
families are essentially parameterized by I[[I'c]].

The structure map Ap — hp/Ip is surjective, and we denote &y C Ap to be
kernel of this map so that

Ap/Ep = hyp/Ip.

Recall that we have defined ¢, to be the point on the weight space in Section 7.3.1
such that the special L-value interpolated is L( f>, 1) where f; is an ordinary form
in our Hida family of parallel weight two and trivial nebentypus at primes dividing
p. (In fact this notion is a little bit ambiguous since we might have several f,
inside the Hida family and what we are going to prove is true for any such point
$0.)

Recall that we have chosen a b € I such that b(¢y) # 0 and b1; is an integral
element of Hecke action. Then b[ﬁg and bEy are all integral. We have the
following theorem which is the analog of [44, Theorem 6.17] in our situation.

THEOREM 97. If P C Apy is a height-one prime of Ap contained in ¢, such that
bEy is nonzero modulo P (that is, if the ideal generated by the Fourier coefficient
of bEyp is not contained in P), and if P is not a pullback of a height-one prime
from I[[IE1], then

ordp (Ep) > ordp (Zg).

If we do not assume P to be contained in ¢, but assume Tmf is Gorenstein, then
ordp (Ep) > ordp (Cg).

Proof. The proof is completely the same as that of [44, Theorem 6.17]. By
Theorem 27 we can find an F € Mgrd(K , Ap) such that F = bEp(modLyp) in

terms of g-expansion. Then for some 8 € S,(F) and x € U(2, 2)(Ar) unramified
at primes dividing p we have that the Fourier coefficient c(8, x; F) is not in P.
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Suppose that P" || ENI); Then the map u : hp — Ap defined by u(h) = c(B,
x; hF)/c(B, x; F) is Ap-linear and, for any /& € hy, we have

c(B, x; hF) = c(B, x; hEp) = Ap(h)c(B, x; Ep) = Ap(h)c(B, x; F)(mod P").

Here Ap(h) is the Hecke eigenvalue of & for Ep, and we note that b ¢ P. Thus
gives
hy/Ip — AD.P/gDAD,P - AD,P/PrAD,P-

This gives the first claim of the theorem. The second is proved similarly. O

9.2. Galois representations.

9.2.1.  Galois theoretic argument. In this subsection, for ease of reference we
axiomatize the results from [44, Section 4], which are used to construct elements
in the Selmer group.

Let G be a group and C aring, and let r :— Autc (V) be a representation of G
with V >~ C”. This can be extended to r : C[G] — End¢ (V). For any x € C[G],
define

Ch(r,x, T) :=det(id — r(x)T) € C[T].

Let (Vi, 01) and (V,, 0;) be two C representations of G. Assume that both are
defined over a local henselian subring B € C. We say that o; and o, are residually
disjoint modulo the maximal ideal my if there exists x € B[G] such that Ch(oy,
x, T) mod mp and Ch(o,, x, T) mod mp are relatively prime in x3[7], where
Kp ‘= B/mg .

Let H be a group with a decomposition H = G % {1, ¢} with ¢ € H an element
of order two normalizing G. For any C representations (V, r) of G we write r¢
for the representation defined by r“(g) = r(cgc) for all g € G.

Polarizations: Let 6 : G — GL(V) be a representation of G on a vector space
V over a field L, and let ¢y : H — L* be a character. We assume that 6 satisfies
the v -polarization condition:

0~y ®0Y.

By a y-polarization of & we mean an L-bilinear pairing @, : V x V — L such
that

@y(0(8)v, V) = Y () Py (v, 0°(g) "),

Let @) (v, V") := ®y(v', v), which is another ¥ -polarization. We say that v is
compatible with the polarization @, if

D = — (c)Dy.
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Suppose that the following hold.

(1) Ay is a profinite Z, algebra and a Krull domain.

(2) P C Ay is a height-one prime and A = Aoﬁ p 1s the completion of the
localization of A at P. This is a discrete valuation ring.

(3) Ry is local reduced finite A,-algebra.

(4) O C Ry is a prime such that Q N Ay = P and R = Ry o.

(5) There exist ideals Jy C Ag and Iy C Ry such that Iy N Ag = Jo, Ag/Jo =
Ro/l(), J = J()A, 1= I()R, JO =J N AO and I() =1nN Ro.

(6) G and H are profinite groups; we have subgroups D; C G fori =1, ...,d.
The set-up. Suppose the we have the following data:

(1) acontinuous character v : H — A_;

(2) acontinuous character £ : G — Aj suchthat y # vy ¢ andlet x' :==vx ™

(3) arepresentation p : G — Auty(V), V >~ A", which is a base change from a
representation over Ay, such that

(@) p° = p" @,
p is absolutely irreducible,
p is residually disjoint from x and x’;

(4) arepresentation o : G — Autgg,r(M),M =~ (R®, F)" withm =n + 2,
which is defined over the image of Ry in R, such that

(@)oo ~oV®v,
(b)tro(g) € Rforall g € G,
(c) forany v € M, o (R[G])v is a finitely generated R-module;

(5) aproperideal I C R suchthat J := ANI # 0, the natural map A/J — R/I
is an isomorphism, and

tro(g) = x'(g) +trp(g) + x(g) mod I
for all g € G;

(6) p isirreducible and v is compatible with p;
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(7) (local conditions for p) for each v|p there is a G ,-stable; sub-Ay-module; Ay-
modules Vi, C Vj such that Vi, and Vi, := V;,,/ V), are free Ay modules;

(8) (local conditions for o) for each v| p there is a G, -stable; sub-R® 4 F-module
M € M such that M;" and M, := M /M are free R ® , F modules;

(9) (compatibility with the congruence condition) Assume that for all x € R[G,],
we have congruence relation:

Ch(M,x,T) =Ch(V,}!,x, T)(1 — T x(x)) mod /
(then we automatically have

Ch(M;,x,T) = Ch(V,, x, T)(1 — Tx'(x)) mod I);

(10) for each F-algebra homomorphism A : R ®4 FF — K, K a finite field
extension of F, the representation o; : G — GL, (M ®Qgrgr K) obtained
from o via A is either absolutely irreducible or contains an absolutely
irreducible two-dimensional sub K -representation o; such that tro;(g) =

x(g)+ x'(g) mod I.

One defines the Selmer groups Xy (x'/x) = ker{H'(G, A}(x'/x)) — H'(D,
As(x )Y and Xg (oo ® x 1) :=ker{ H' (G, Vo®a, Aj(x ")) = H'(D, Vy Qa,
A (x~")}*. Let Chy (x'x) and Chg (0o ® x ') be their characteristic ideals as Ay
modules.

PROPOSITION 98. Under the above assumptions, if ordp (Chy (x'/x)) = O then
ordp(Chg (po ® x ")) = ordp(J).

This can be proved as in the proof of [44, Corollary 4.16].
We record here an easy lemma about Fitting ideals and characteristic ideals
which will be useful in proving the main conjectures.

LEMMA 99. Let A be a Krull domain and T a finitely generated A-module.
Suppose that f € A is such that, for any height-one primes P of A, if
ordp (Fitt,T) > ordp (f), then chary(T) C (f).

Proof. For any g € char,(T), the assumption and the definition for characteristic

ideals ensure that, for any height-one prime P, ordp(g/f) > 0. Since A is normal
this implies that g/f € A. Thus g € (f). O

https://doi.org/10.1017/fms.2015.16 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2015.16

The Iwasawa main conjecture for Hilbert modular forms 87

9.2.2.  Galois representations. Now we are going to apply the results in the last
subsubsection to our situation. First we define a semisimple representation

op = afﬁe_3 &) (pf®a§7aa,,,fe‘2) @e! detpfag,la;.

Recall that here ¢ means the reciprocity map. This is the Galois representation
associated to the Eisenstein family by Proposition 33.

On the other hand, recall that we have fixed some prime to p level K7, and let
K = ]_[U| » K 9K . By an argument completely the same as that in [44, Proposition
7.3], using results of [41], [36], and [42], there exists a pseudorepresentation 7, :
G — hp such that for each irreducible cuspidal automorphic representation 7,
on GU(2, 2),r of weight lgd) which is a classical specialization at some ¢ € Spechp
then

tr(R, (7)) = ¢ o Ty,

Asin [44, 7.3] we let Tp be the pseudocharacter TKE,,. We have defined hy , and
we let Bp := hp ®,4, Fa,. Let hp , be the localization of hp at the maximal ideal
containing the Eisenstein ideal.

For any prime v|p of F we let T, € Tt be the rank-one I-summand of 7 that
is G,-stable. Given a height-one prime P of Ap containing &, with the notations
in the last subsubsection we let

e H:=Gyrx,G:= Gk x,c= the usual complex conjugation;

o Ay = Ap, A = /iD,P;

o Jo:=E&p, J i =EpA;

e Ry:=hp, Iy := Ip;

e O C Ry is the inverse image of P mod £p under hp , — hp /Ip = Ap/Ep;
e R:=hpy.I:=IhR;

o Vo:=Ti® Ap, p:= @0 ‘i€

e forany v|p, V!, := T, ®1 Ao, Vg, := (Ty/ Tg,) @, A;
o V=V,®u A, p=p®s A, VE =V, ®a4 A;

o x =¢! det,ofa;,]oj/'/, V= awfag,]e“‘;

3

c

o x =0y e’ sox =vx
e M := (R ®, F4)* F, is the field of fractions of A; and

e we let o be the representation on M obtained from Tp in the same way
as [44, 7.3].
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Recall that T := (T @[T 1)) (e) ® € and 7" := (T, @1 I[[Tc]))(e) ® €
for each v|p. Let char,)é (f) C I[[Ic]1] be the characteristic ideal of the dual Selmer
group X% (T, 7;+|v|p)-

THEOREM 100. Suppose that 1 is an integrally closed domain. Let Py C I[[Ik]]
be a height-one prime that is not a pullback of one of]I[[FE]], and let P = PyAp
be the height-one prime of Ap it generates. Suppose also that

VY@ A(x) and V- @ A(x') modulo P do not have common irreducible pieces.

Then
ordp, (Char,i (£)) > ordp(&Ep).

Proof. One just applies Proposition 98. The condition (10) there is guaranteed by
an argument similar to that in [44, Theorem 7.6]: we use the modularity-lifting
results in [45] for ordinary Galois representations satisfying (irred) and (dist) and
Harris’ result that there are no (CAP) forms when the weight k is sufficiently
regular. We also use the main conjecture for totally real field ' proven in [52] to
conclude that ordp(Chy(x’/x)) = 0. (Since the p-adic L-function for a Hecke
character involves only the cyclotomic direction and is nonzero, it is not in P. By
[52] we know that the characteristic ideal is bounded by this p-adic L-function
and thus is not contained in P.) O

9.3. Proof of the main results.

THEOREM 101. Suppose that p > 5. Let L be a finite extension of Q, and I a
local normal domain and a finite integral extension of A}, Let f be an I-adic
nearly ordinary eigenform of tame level M (a finite idele) with trivial character,
such that some specialization of it is an ordinary cusp form of even parallel weight
ko = 2. Suppose that M = M*M~ with M divisible only by primes split in KC
and M~ divisible only by primes inert in IC, and that K satisfies assumption (A)
defined in the introduction. Suppose also that the following hold.

e (irredx) and (dist) hold for f.
e The assumptions of Theorem 8 hold.
e M~ is square free and its number of prime factors is congruent to d modulo 2.

e The reduction py of pr modulo the maximal ideal of 1 is ramified at all v|M ™.
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Let X be any finite set of primes. Then
char,%x f) C (Ef,c).

Proof. We first consider a X' as before (containing all the bad primes) so that the
X -imprimitive p-adic L-function is integral. By Theorems 97 and 100 we have
the inequalities for the orders of any height-one prime which is not the pullback of
a height-one prime of I[[I¢]]. Now suppose that P is a height-one prime which
is the pullback of a height-one prime of ]I[[I“,gL 1]. If the module of dual Selmer
group is not torsion then the conclusion is trivially true. Suppose that it is torsion.
We use the idea of the argument in [13]. We first look at a long exact sequence
coming from the Poitou-Tate long exact sequence

0— Hp. (K, Ty @ Ac(efc - €7) — Hi(K, Ty ® Ax(efc - €71))
- ] H®EK.T'®AcEe ™)
veX\{v|p}

P
— Xix = Xex — 0.

Here we use the standard notation H } for the local Selmer conditions (finite
part). We write the subscript X* to mean take the H fl at primes outside X'\ {v|p}
but take {0} C Hfl(lC, —) at X\{v|p}. On the one hand, it is easy to see that
H } (K, T ® Ax) is a torsion-free I[[Ik]] module from assumption (irredg). On
the other hand, it is torsion by the assumption that X is torsion and an easy
control argument. So it has to be zero. By [12, Proposition 2.4] we see that the
characteristic ideal of H } (IC,, Ty ® Ax) is exactly the local Euler factor of our
p-adic L-function at v (note that K, contains the cyclotomic extension so the
conclusion in [12] is true in our situation as well). The inequality for the order of
P follows from Lemma 87. This finishes the proof for such choices of X'. The
result for general X follows from this and a similar argument using the Poitou—
Tate exact sequences. O

Now we prove the following.
THEOREM 102. Let p be a rational odd prime that splits completely in F. Let f

be a Hilbert modular form over F of even parallel weight ko and trivial character.
Suppose that

(1) f is ordinary at all primes of F dividing p;

(i1) assumption (irred) holds for f;
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(iii) if [F : Q] is even and the global sign of f if —1, then the automorphic
representation of f is special in at least one finite place.

Suppose that Conjecture 6 is true for F, p, k = ko and any g satisfying the
assumption of Conjecture 6. If the central critical value L(f, ky/2) = O, then the
Selmer group H}(F, p3((2 — ko) /2)) is infinite. (So if f has weight two then the
theorem is unconditional.)

Note that assumption (dist) is automatically true in this case.

Proof. We only need to prove the theorem in the case when the root number for f
is +1, since otherwise it is a well-known result of Nekovar [37, Theorem 12.2.3]
(which crucially uses the work of S. Zhang). Condition (iii) is put by Nekovar’s
work.

First suppose that d = [F : Q] is even. Then we choose an imaginary quadratic
extension /C of F so that I/ F is split at all primes at which f is ramified and such
that L(f, xx,r, ko/2) # 0 where xx,r is the quadratic character of A associated
to U/ F. This is possible by a well-known result of Waldspurger [48], [49]. Then
the S(1) defined in [4, page 123] consists of exactly all the infinite places, and
since d is even we are in the definite case there.

The (normalized ordinary) form f belongs to a Hida family. (This is well-
known to experts, see [14].) Recall we have defined the point ¢y in SpecAp
(Section 7.3.1). We remark that later we will use ¢, to denote the point (or prime)
not only of SpecAp but also subspaces of it.

We do not know the Gorenstein properties for the local Hecke algebra
associated with f in general, so we have to use 1¢ instead of ¢; everywhere (recall
they are defined in Section 7.2) and the nonintegral p-adic L-functions Ef,m (in
F1 ®1 [[[Tk]] actually) and nonintegral Klingen Eisenstein series ED. Suppose
that ,C}’“f,c’l = h/g. It follows from Remark 89 that we may choose g € I so that
g(o) # 0. Start with the one-dimensional family of cyclotomic twists of f, that
is, the subspace SpecO.[[I¢]] defined by the natural map Ap; — OL[[I¢]]
where the map I — O, is the specialization map at f. Since L(f, xo/2) = 0,
h(¢o) = 0 by our Remark 83. Then there is a height-one prime P, of A[[F,g“ 11
contained in ¢ and containing the image of 4 in (’)L[[F,ér 1]

Now we consider the specialization from I[[Ik]] to O.[[T; ,ér ]]. Note that any
minimal prime of I[[Ik]] containing 2 will be height one. So we can find P, a
height-one prime of O [[T] /c+ ]] contained in ¢y and containing the image of 4 in
OLI[IE 1] such that Supp Py C Supp Py Note also that Py does not contain g since
g(¢o) # 0. In Theorem 86 we have seen that (NV1) is satisfied in our situation
and thus # is not contained in any height-one prime of ]I[[I“,gr ]] contained in ¢,.
So P, is not the pullback of a height-one prime of ]I[[I“,;r 1]. Then Proposition 96(i)
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and Theorem 97 gives

1 <ordpLy < ordp(Epy).

By Theorem 100,
ordp, Fittg). | > 1.

Then we need to specialize back to O [[[] ,é ]]. Using the control theorem for
Selmer groups (results in Section 2.5.1, Proposition 15, Corollary 16, 17), we
have ordpoFittj:jK;o’l > 1. By results of [12], we know that at primes v € X'\{p}
the module of the finite part of the dual local Galois cohomology group has
characteristic ideal generated by the local Euler factor of the corresponding p-
adic L-functions, which is not contained in ¢. So we get ordp,Fitt, v | > 1. We
apply the control results in [11] and get that H } K, p;i((Z — Ko)/2)) is infinity.
However by Lemma 14 this Selmer group is the product of Selmer groups for
f and f ® xx. By Conjecture 6 and our choice of K, we know that H }(F ,
pjr@)m ((2 — k9)/2)) is finite. So our theorem is true.

Finally we assume d is odd. Then again by Waldspurger’s result we can find
a real quadratic character xp,r such that F’ is split at all primes at which f is
ramified and L(f, xr/r, ko/2) 7 0. We consider fp the base change of f to F'.
Then [F' : Q] is even, and we deduce that at least one of H}(F, p3((2 = k0)/2))
and Hf](F, P; ® xr/r((2 = ko) /2)) is infinite. But by Conjecture 6 we know
that H}(F, 05 ® xryr((2 — K0)/2)) is finite. So H}(F, £5((2 = ko)/2)) must be
infinite. O

Finally we prove that the main theorem of [44] is true without one of the
technical local assumptions (namely the existence of an £ | M with PlGq,
ramified), using the base-change trick as in the above theorem.

THEO_REM 103. Suppose that p > 5. Let f € S,(M, L),k > 2, 2|k, pt M and
L C Q, a finite extension of Q,, be a p-ordinary cuspidal eigenform with trivial
central character. Suppose that

o (irred) and (dist) hold for py;
then, for any set of primes X,
charg_, (f) = (LF)
in Ag.o, ®z, Q,. If, furthermore,
e there is an O, -basis of T; with respect to which the image of p; contains

SL,(Z,), and
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e there exists a real quadratic extension F/Q such that

— p is unramified in F,

— any prime £ dividing M such that £ = —1(mod p) is inert in F, and any
other prime divisors of M is split in F, and

— the canonical period of f over F is a p-adic unit times the square of its
canonical period over Q,

then the equality holds in Ag,o, .

Proof. We choose a quadratic real extension F of Q with p unramified and
consider the base change fr of f to F. Assume that any prime ¢ dividing M
such that £ = —1(mod p) is inert in F, and that any other prime divisor of M is
split in F. We need to know the Gorensteinness for the base change to F. Since
p = 5, this follows from [6]. In order to apply Theorem 86 we have to check the
assumptions in Theorem 8. The first and second assumptions are trivially true.
The third condition in Fujiwara’s theorem is true since the base change to F of
a minimal modular lifting of o gives a minimal modular lifting for o, (by our
choice of F). The fourth assumption is empty since d = 2. The last one is also
guaranteed by our choice of F. We choose a quadratic imaginary field IC over
F such that all primes dividing the conductors of f or F are split. So (NV2) is
satisfied for any v|p. Thus we have that the one divisibility for the three-variable
main conjecture is true. The theorem can be proved in the same way as in [44],
using the control theorem for Selmer groups, results in [12] and results of Kato
(note that the one-variable (cyclotomic) Selmer group for f over X splits into
the products of four Selmer groups for modular forms over Q and thus Kato’s
results apply). Note also that the assumption of image containing SL,(Z,) is
unchanged by taking quadratic twists. The assumption on the canonical periods
for base change is used to ensure that the p-adic L-function of the base change
splits into p-adic L-functions over Q. O
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