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Abstract

Soft sets were introduced as a means to study objects that are not defined in an absolute way and have
found applications in numerous areas of mathematics, decision theory, and in statistical applications.
Soft topological spaces were first considered in Shabir and Naz ((2011). Computers & Mathematics with
Applications 61 (7) 1786-1799) and soft separation axioms for soft topological spaces were studied in El-
Shafei et al. ((2018). Filomat 32 (13) 4755-4771), El-Shafei and Al-Shami ((2020). Computational and
Applied Mathematics 39 (3) 1-17), Al-shami ((2021). Mathematical Problems in Engineering 2021). In this
paper, we introduce the effective versions of soft separation axioms. Specifically, we focus our attention
on computable u-soft and computable p-soft separation axioms and investigate various relations between
them. We also compare the effective and classical versions of these soft separation axioms.
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1. Preliminaries
1.1 Soft sets

The usual set is merely a collection of objects. But, in some situations, we need that collection to be
parameterized. The need for such a parameterized collection motivated Molodtsov to introduce
soft set theory in Molodtsov (1999). Soft set theory is considered a mathematical tool that deals
with objects that are not defined in a definite way. Such objects can be found in complicated
mathematical problems in economics and engineering applications when classical mathematical
tools cannot be used due to the uncertainties associated with such problems. There are already
existing mathematical tools for dealing with uncertainty in mathematical problems, such as the
use of probability theory (Jaynes 2003), fuzzy set theory (Zadeh 1965) and interval mathematics
(Gorzalczany 1987). However, those three mathematical tools have their own shortcomings that
the use of soft set theory overcomes as argued in Molodtsov (1999).

Due to the unique properties of soft set theory that allow it to be more suitable in certain
situations compared to the other mathematical tools mentioned above, it is often a major mathe-
matical tool used in decision-making problems as in Maji et al. (2002) and Feng et al. (2010). Soft
set theory, when combined with fuzzy set theory (Zadeh 1965) can be used in decision-making
as in Yang et al. (2013) and Peng et al. (2015), and also used in forecasting problems as in Xiao
et al. (2009). There are also some applications of soft set theory in algebraic structures as in Acar
et al. (2010), Aktas and Cagman (2007), and Jun and Park (2008). When soft set theory is com-
bined with rough set theory Pawlak (1982), we get new approximation spaces with interesting
properties (Shabir et al. 2013).
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Topological spaces are introduced for soft sets (Shabir and Naz 2011), and some of the prop-
erties associated with soft topological spaces are explored in Nazmul and Samanta (2013). Several
soft separation axioms were defined and studied in El-Shafei et al. (2018) and the further applica-
tions of those soft separation axioms are explored in El-Shafei and Al-Shami (2020) and Al-shami
(2021). Soft separation axioms are of importance in soft topological spaces as shown in the exist-
ing literature, much like how classical separation axioms have played a key role in the classification
and the understanding of classical topological spaces. In this paper, we will define and explore fur-
ther soft separation axioms for soft topological spaces. We also define the computable versions of
these soft separation axioms and investigate their properties in an effective setting. This paper is
intended to investigate how computability interacts with soft topological spaces and soft separa-
tion axioms. Hence, we will compare the various principles that arise by considering computable
separation axioms in the soft setting.

The paper is organized as follows. In Section 1.2, we recall some basic notions of soft sets and
soft topological spaces as defined in the literature. In Section 1.3, we briefly recall some notation
and definitions that we will require from computable analysis, including computable topologi-
cal spaces and computable separation axioms that were studied in the literature. In Section 2, we
define a new separation axiom for soft topological spaces, called u-soft separation, and give some
of its basic properties. In Section 3, we define and study computable u-soft separation axioms for
computable soft spaces, and in Section 4, we define and study various computable p-soft sepa-
ration axioms. Finally in Section 5, we compare the various principles introduced in Sections 3
and 4.

1.2 Soft topological spaces

In this section, we recall some definitions and results of soft set theory and soft topological spaces.
This section is meant to provide a self-contained introduction to the basics and background of
soft set theory. The initiated reader may skip ahead to Section 1.3.

Note: We would like to mention that soft topological spaces (X', 7, E) can be viewed as general
topological spaces on E x X as Matejdes pointed out in Matejdes (2021). Matejdes mentioned that
not all counterparts of soft concepts are studied in general topology. In this article, we prefer to
stick to the setting in which soft topological spaces are defined as this setting is widely used in the
literature regarding soft topological spaces and even the applications—look at those applications
mentioned in the introduction—of soft topological spaces used the same setting.

1.2.1 Basics of soft sets

Definition 1.1. (Molodtsov 1999) A pair (G, E) (usually denoted as Gg) is called a soft set over a
universe X if G is a map from the nonempty parameter set E into 2X. We usually identify Gg =
{(e, G(e)) : e € E and G(e) C X}. S(Xg) denotes the set of all soft sets over X with respect to the
parameter set E. The relative complement of Gg is denoted by G&, where G : E — 2% is defined
by G°(e) = X \ G(e). Where the context is clear we do not refer to the universe X. A soft set Gg is
finite if, for every parameter e, the corresponding set is finite.

Definition 1.2. (Maji et al. 2002; Pei and Miao 2005) Soft union and soft intersection are taken
parameter-wise. For two soft sets Gg,, Hg, over X, their soft union, Gg, | Hg,, is the soft set
Fg,uE, where F : Ey U E; — 2% is defined as follows

G(e), ifee E1 — Ez,

F(e) = { H(e), ife€ E, — Ey,
G(e) UH(e), ifee E;NE,.
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The soft intersection Gg, (| Hg, is the soft set Ig,ng, where I(a) = G(a) N H(a) for every
a€E; NE,;.

Given x € X and a soft set Gg, there are four ways one can define membership or non-
membership:

Definition 1.3. (El-Shafei et al. 2018; Molodtsov 1999) For a soft set Gg € S(Xg) and x € X, we say
that

e x€ Ggif x € G(e) for each e € E.
x ¢ Gg if x ¢ G(e) for some e € E.
e x € Gg if x € G(e) for some e € E.
x & Gg if x ¢ G(e) for each e € E.

Hence, € and & are “strong” membership and non-membership, respectively. Depending on
the version of membership that one uses, the usual set-theoretic operations might or might not be
compatible:

Proposition 1.4. (EIl-Shafei et al. 2018) For two soft sets Gg and HE in S(Xg) and x € X, we have
the following,

(1) If x € Gg, then x € Gg.

(2) x & Gg if and only if x € G§,.

(3) x € Gg|J Hg if and only if x € Gg or x € H.
(4) Ifx @ Gg (| Hg, then x € Gg and x € Hg.

(5) If x € Gg or x € Hg, then x € Gg | J Hg.

(6) x € Gg () Hg if and only if x € Gg and x € HE.

Definition 1.5. (El-Shafei et al. 2018; Maji et al. 2002) A soft set Gg over X is said to be:

o A null soft set if G(e) = ) for each e € E. It is denoted by ?. ~

« An absolute soft set if G(e) = X for each e € E. It is denoted by X.

« A stable soft set if for some M C X we have G(e) = M for each e € E.

There are two different ways one can define a point, either as a soft singleton or as a soft point:
Definition 1.6. (Ali et al. 2009; Shabir and Naz 2011) The soft set xg (called a soft singleton) is
defined by x(e) = {x} for each e € E. A soft point, denoted by p7, is the soft set Pg where P(e) = {x}
and P(k) =¥ for each k € E \ {e}.

Definition 1.7. (Pei and Miao 2005) A soft set G, is a soft subset of a soft set Hg,, denoted by
Gg, C Hg,, if

e« E; CEy,and
« Ve € Eq, G(e) C H(e).

Two soft sets are soft equal if each one of them is a soft subset of the other.
Definition 1.8. (Peyghan 2013) The Cartesian product of two soft sets F4 and I, denoted by

(F x I)axp over universes X and Y, respectively, is defined as (F x I)(a, b) = F(a) x I(b), for each
(a,b) e A x B.
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1.2.2 Soft topological spaces
The study of soft topological spaces was initiated in Shabir and Naz (2011). We quickly recall some
of the definitions and results of soft topological spaces.

Definition 1.9. (Nazmul and Samanta 2013; Shabir and Naz 2011) A collection T of soft sets over
a universe X w.r.t. a parameter set E is said to be a soft topology on X if the following conditions
are satisfied,

(1) X, e
(2) 7 is closed under finite intersections.
(3) t is closed under arbitrary unions.

The triple (X, 7, E) is called a soft topological space, or STS. Members of t are called soft open
sets. A soft set is soft closed if its complement is soft open. The closure of Hg, denoted by Hg,
is the intersection of all soft closed sets containing Hg. py is called a soft limit point of Gg if
[Fe\ pi1 () GE # @, for each soft open set Fg containing py.

Let Y be a nonempty soft subset of an STS (X, t, E) parameterized by E. 7y = {Y () Gg : G € 7}
is said to a soft relative topology on Y, and the triple (Y, ty, E) is a soft subspace of (X, 7, E).

Fact 1.10. (Shabir and Naz 2011) Given an STS (X, v, E) and e € E, . = {G(e) : Gg € t} forms a
topology on X (classically).

Theorem 1.11. (Peyghan 2013) Let (X, 7, A) and (Y, 0, B) be two STSs. Let Q ={Ga x Fp: G4 €
T and Fp € 0}. Then, the family of all arbitrary unions of elements of Q2 is a soft topology on X x Y.

Note: In the previous theorem, if 7 is seen as a topology on A x X and 0 asa topologyon B x Y,
then the result is just the product topologyon A x B x X x Y.

We now recall the partial soft separation axioms based on the partial membership (€) and
strong non-membership (&) relations:

Definition 1.12. (El-Shafei et al. 2018) An STS (X, 7, E) is said to be:

o p-soft T if for every two distinct x, y € X, there exists a soft open set Gg such that x €
Ggand y & Gg, or y € Gg and x & Gg.

o p-soft T if for every two distinct x, y € X, there exist soft open sets Gg and Fg such that
x € Gg, y & Gg, y € Fg and x & Fp.

« p-soft T; if for every two distinct x, y € X, there exist disjoint soft open sets Gg and Fg such
that x € Gg and y € Ff.

o p-soft regular if for every soft closed set Hg and x € X such that x & Hp, there exist disjoint
soft open sets Gg and Fg such that Hg € Gg and x € Fg.

Note that two soft sets are disjoint if their soft intersection is ?.

The following well-known fact about T spaces holds in the p-soft setting:
Theorem 1.13. An STS (X, t, E) is a p-soft Ty space if and only if xg is soft closed, for all x € X.

1.3 Basics of computable analysis

1.3.1 Type-2 theory of computability
Turing provided (Turing et al. 1936) in his pioneering work in 1936 an abstract model of a Turing
machine. This is a central notion in the study of computability theory. In classical computability
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theory, we deal with natural numbers and the domain and co-domain of computable functions
are subsets of the natural numbers N. However, in the study of effective analysis, we are often
concerned with potentially uncountable objects such as subsets of real numbers, sets of functions,
etc. In order to apply the tools of classical computability, we will need to “encode” these objects by
means of names. Through systems of notations and representations in which the objects of study
are represented as finite or infinite sequences of natural numbers, we can make sense of the notion
of a computation in which these names can be used as an input or the output of a computation.

Computable analysis has provided us with a formal framework in which we can conduct inves-
tigations of computability in the realm of analysis and topology. We introduce the notations that
will be used throughout the paper. The reader is referred to Weihrauch (2000, 2012) for more
details and background. Let ¥ be a finite set of symbols that contains 0 and 1. The set of all finite
words over X is denoted by X*, and the set of all infinite sequences over ¥ is denoted by X
where g € £“ means that g : N — X and we write g = q(0)q(1) - - -, and |w| denotes the length of
w e T*. g~ € T* represents the initial segment of length i of ¢ € £¢ and w C q means that w is a
prefix of g.

We use the wrapping function ¢ : ¥* — ¥*, where for example, for g, b, ¢, d, e € X, ((abcde) =
110a0b0c040e011 to encode the concatenation of finite strings of any length in a way which can
be effectively decoded. For instance, we cannot recover o and t from ot but we can do so from
t(o)i(t). We fix the pairing function on the set of natural numbers as (i, j) = er(;ﬂ +j. We
also consider the standard tupling function on £* and X where (v1,--- ,v,) =t(v1) - - - t(vn),
(v.q) = (), (p. q) = p(0)g(O)p(Dg(1) - - -, and {go. g1, - - -) (/) = qi(j) for vi. -+ , vy v € B
and p,q € £“. For r € £* let r! be the longest subword s € 11X*11 of r and u < r iff (u) is a
subword of r. Then, for u, 11, € 25, (UK vu<kKn) o uLrn.

For X;, X, € {¥*, £“}, a (partial) function f :C X; — X, is computable if there is a type-2
machine M that computes f (see Weihrauch 2000, 2012 for more details if the reader is unfa-
miliar with the basics of effective type-2 theory). In TTE, we use representations or names to
denote objects and type-2 machines can work with them via names. This is formalized through
the notion of a represented space: a representation § of a set S is simply a surjective (partial)
function 6 :C £ — §, while a notation v of a countable set S is a surjective (partial) function
v:C ¥* — S. Examples include the canonical notations of the natural numbers and the rational
numbers vy : ¥ — N, vg : 2% — Q, respectively.

For representations or notations y :C X? U £* - Mand y' :C £® U £* — M/, a partial func-
tionh:C T?UX* — XU X*realizesf :C M — M iff o y(p) =y’ o h(p) for every p € dom(y).
The function f is called (y, y’)-computable if it has a computable realization h. These definitions
extend readily to multi-representations and multi-functions.

We say that y is reducible to y’ (denoted by y < y’) if M € M’ and the identity function id :
M — M’ is (y, y’)-computable, i.e. there is a computable function that translates y-names to
y'-names. Two representations y and y’ are equivalent iff y <y’ and y' <.

Given a notation & :C £* — M, we can extend it naturally to a notation o for the set of finite
subsets of M and a representation o for the set of countable subsets of M in the natural way:

afs(w) =We& Vukwuecdom(a), W= {a(u): uwl

a®(p) =W & (Vu L p)u € dom(a), W = {a(u) : u < p}.

If £:©X®— M is a representation of M’, we can also define representations W and puc
for the set of finite and countable subsets of M’ accordingly: ,ufs(p) =W<& (3n)3q1, v qn €
dom(p)), p= (1", q1, e qn), W = {1(q1), ..., 1(gn)}, and n=({aoqo, a1q1, ...)) = W < (¥i)(a; =0
= g; €dom(p)) and W ={u(q;):a;=0}. Here, we X*, p,q0,q1,...€ ¢ and ag, ay, ..are
symbols of X.

https://doi.org/10.1017/5S0960129523000336 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129523000336

786 S. M. Elsayed and K. M. Ng

1.3.2 Computable topological spaces

In this section, we define computable topological spaces as introduced in Weihrauch (2010),
Weihrauch and Grubba (2009) and mention some of the useful results in the literature that are
relevant to us.

Definition 1.14. (Weihrauch and Grubba 2009). An effective topological space is defined to be a
4-tuple X = (X, 7, , ) such that (X, 7) is a topological Ty space and p :C X* — « is a notation
of a countable base o of . X is a computable topological space if dom(u) is recursive and there is
some c.e. set S such that for all u, v € dom(u) we have

w) N u) = Jiwmw) : (mv,w) e s).
In other words, the intersection of any two basic open sets is effectively open, uniformly in the

notation for the basic open sets.

Definition 1.15. (Weihrauch 2010). Let X = (X, 7, &, i#) be a computable topological space. We
define the following representations.

(1) §:C€ X® — X is a representation of the set X, where

sp)=x& (Ywe Z)(wLp & xeuw)).
(2) ¥ :C X“ — t is a representation of the set of open sets where
Pp)=W e Vwe T (w<p=wedom(u)), and W= U{,u(w) tw L pl.
(3) ¥ :€ X“ — Aisarepresentation of the set of closed sets where
v(p)=ASVwe T (w<Lp s AN u(w) #0).
(4) §:C X — X is a representation of the set X, where
Sp)=x&0(p) =X\ {x}.
(5) ¥ :C X® — 1 is a representation of the set of open sets, where
(p) =X\ ¥ (p)-
(6) ¥ :CX?—> Aisa representation of the set of closed sets, where

¥ (p) =X\ (p).

We introduce some existing results that we will be using implicitly throughout the paper.
Lemma 1.16. (Weihrauch 2010). We have the following:
(1) p=Upf <o,

(2) (wE?)= /,LfS(W)fOT’ all w € dom(i). B
(3) The space is SCT; (see Definition 1.19) iff § <.

The following theorem illustrates how we can compute unions and intersections of open and
closed sets computably.

Theorem 1.17. (Weihrauch 2010). We have the following:

(1) Finite intersection on open sets is (W, V)-computable and (5, U)-computable.
(2) Union on open sets is (9, V' )-computable.
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(3) Finite union on closed sets is (Wfs, r)-computable, and intersection on closed sets is (JCS, v)-
computable.
(4) Finite union of compact sets is (3¢, »c)-computable.

Lemma 1.18. (Weihrauch and Grubba 2009). Given a point x, an open set W, a closed set A and a
compact set K, we have the following:

(1) xe W” is (8,19)-ce.

(2) ‘K W” is (3¢, 10)-ce.

(3) ANW £07 is (Y, 9)-ce.
(4) “KNA=0"is (5, ¥)-ce.

In the above lemma, the relation is (y, )/,)-c.e. if there is a Turing machine that, on input (p, q)

where p, gare y -, y -names, respectively, halts precisely if the two names satisty the corresponding
relation.

1.3.3 Computable separation axioms

Weihrauch (2010) introduced effective versions of separation axioms in computable topologi-
cal spaces and discovered several interesting properties that hold for the computable separation
axioms but not for their classical counterparts. For instance, he proved that the computable ver-
sions of T, and T) are equivalent (Weihrauch 2010) although they are clearly not classically
equivalent.

In this section, we recall some of the computable separation axioms defined in Weihrauch
(2010) and the relationships between them. The main goal of this paper is to further this line of
investigation for soft topological spaces. In the subsequent sections, we define different types of
computable separation axioms for soft topological spaces and establish the relationships between
them. We also show that certain implications are proper.

Definition 1.19. (Weihrauch 2010). We define the following properties for a computable
topological space (X, 7, a, i):

o CTy: The multi-function ty is (8, 8, i)-computable, where ;) maps every pair of points (x, y) €
X? such that x # y to some U € @ such thatx € Uand y ¢ U, or x ¢ U and y € U.
o CTj: The multi-function t; is (8, §, )-computable, where t; maps every pair of points (x, y) €
X? such that x # y to some U € « such that x € U and y ¢ U.
o CTy: The multi-function ¢, is (8, 8, [i4, n])-computable, where t, maps every pair of points
(%, %) € X2 such that x # y to some (U, V) € o?suchthat UNV=0¢,xe UandyeV.
e SCT,: There isa c.e. set H C ¥* x X* such that
(1) Vx #y3(u,v) e H (x € u(u) Ay € u(v)).
(2) ¥Y(u,v) € H (u(u) N pu(v) =9).

. CT‘;’C: The multi-function #° is (3, », [u, w”])-computable, where ¢ maps every x € X
and every compact set K such that x ¢ K to some pair (U, W) of disjoint open sets such that
xeUand KC W.

o CT5": The multi-function # is (¢, », [ | w5, | 1])-computable, where t maps every pair
(K, L) of nonempty disjoint compact sets to some pair (V, W) of disjoint open sets such that
KCVandLC W.

. SCT‘gC: Thereisac.e. set HC ©* x X* such that

(1) Vx € X V compact K such that x ¢ K 3(u, w) e H (x e u(u) AKC | /Lﬁ(w)).
(2) Y(u, w) € H (u(u) N p (w) = ).
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+ SCT5: Thereisac.e. set H C ¥* x X* such that
(1) V compact sets K, L such that KN L =@ I(u,v) e H(K < wW(u)and L C U W)
(2) V(u,v) e H (U WPwyn | whe) = @).

We list some of the implications between the above computable separation axioms.

Theorem 1.20. (Weihrauch 2010). The following implications are proper or the notions are
equivalent as indicated by the arrows:

(1) SCT, = CT, = CT.
(2) CT, & CT;.
(3) SCTE & SCTE & SCT, = CTS = CTE = CTh.

Weihrauch in Weihrauch (2010) wondered whether the implications in the third line of the
above theorem are proper and in Elsayed (2022) The authors proved that those notions in the
third line of the above theorem are all equivalent.

Convention. We would regard X as a set whose points are of the form ps and thus, p} € X
means p; € X.

2. U-Soft Separation Axioms

In Section 1.2.2, we mentioned soft separation axioms for STS based on strong membership and
strong non-membership.

In this section, we define u-soft separation axioms. This type of separation axioms is based
on soft points which is the natural way to define separation axioms analogously to the classical
separation axioms. We investigate the relations between the u-soft separation axioms and p-soft
separation axioms defined in El-Shafei et al. (2018). We will note that some implications between
the two different notions of soft separation axioms hold when the set of parameters is finite; how-
ever, when the parameter set is infinite those implications do not hold as what will be seen then
from the counterexamples. We also answer a question proposed in Al-shami (2020) about whether
u-soft T, spaces imply p-soft T, spaces where we find out that the answer is yes and we give a
counterexample to show that the reverse implication is not true in general.

Definition 2.1. An STS (X, 1, E) is called

« u-soft To iff ¥ p¥, p} € X where P # ph, there exists a soft open set G such that p* € Gg and

Pa ¢ G, or p} ¢ Gg and pj € G.
o u-soft Ty iff V p¥, p} € X where p¥ # p},, there exist two soft open sets Gg and Fg such that

P eGEandpygéGE,andpe ¢ Fg and p), € Fg.
« u-soft Ty iff ¥ p¥, p € X where A ;ép{l, there exist two soft open sets Gg and Fg such that
oA eGEandpyeFEandGEﬂFE_

Immediate implications between u-soft separation axioms are given in the next proposition.
Proposition 2.2. Every u-soft T; space is u-soft Ti_1 space fori=2, 1.
Proof. Straightforward. O

Now, we give counterexamples of the above implications.
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Example 2.3. Let X ={x},E={ej,es} and v = {5(, (75, {(e1, {x}), (e2, 5)}}.
It can be easily seen that this space is u-soft Ty but not u-soft T.
Example 2.4. Let E=N, X be an infinite set, T = {X, 0, Gg: G§ is finite }.
Clearly, this space is u-soft T; but not u-soft T5.
Proposition 2.5. An STS is a u-soft Ty space iff ¥ p¥ € X, p* =p~.
Proof. Straightforward. O

The following propositions illustrate the relation between u-soft T; and p-soft T; spaces for
i=2, 1. Those implications are based on the finiteness of the parameter set and counterexamples
are given to show that the implications are proper.

Proposition 2.6. Every u-soft T, space is p-soft T, space if E is finite.
Proof. Let x # y and E has m parameters. V p; V pé e X\ p;,» there exist two disjoint soft open

m
sets GE,,',]' and FE,i,j such that pi;, € GE,,’,]' and p)elj S FE,i,j.Then, pgi € m GE,,’,]' and y & GE,,‘,]' Vi<m,
=1

m m
also,y € U Fg,jand p’e‘l_ ¢ U Fgj. Thus,
j=1 j=1

m m

x € U [ ﬂ Ggijlandy e m [ U Fgjl,

i=1 j=1 i=1 j=1

and
U mGEIJ] m [m[UFE,i,j]]=6.

Therefore, the space is p-soft T5. O

Proposition 2.7. Every u-soft T} space is p-soft T} space if E is finite.

Proof. Let x # y and E has m parameters.V p; V pé e X\ pe,» there exists an open set Gg,;j such
m

thatp’cfi € Ggij andpf;j ¢ Gg,ij. Then, PZ € ﬂ GE,ij, Vi < m. Therefore,

j=1

m

xe U [ m Ggijlandy & U [ ﬂ GE,ijl.

i=1 j=1 i=1 j=1

Similarly, if we switch y and x we will get soft open sets Gg;j such that

yel I Feilandx & |1 ) Frisl.

i=1 j=1 i=1 j=1
Therefore, the space is p-soft T1. O
The converse of the above propositions is not true in general as shown in the following example.

Example 2.8. Let X = {x, y}, E={e1, ez} and
T ={X, ¥, {(e1, {x}), (e2, {xD)}, {(er, {y}), (e2, {y})} {(e1, D), (e2, {x})},
{(61, {x}) (62a )} {(ela {)’})> (62> @)}, {(el’X)> (62’ {x})}’ {(ela X)’ (62’ {)’})},
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{(e1, (Y1), (2, X)}, {(e1, X)), (e2, D}, {(ex, {¥)), (e2, {x}}}. This space is p-soft T> but not u-soft Ty. If
we view this space as a topology on E x X, it may look simpler.

When the parameter set is infinite, the above inclusions do not hold in general as shown in the
following examples.

Example 2.9. Let X={x,y}, E={e1, ez, ---}. We define a STS t on X with respect to E as
oAl i Gy dj

follows, t={X,8,G""* *:G" 7 ¥ ={(er,f(ai), (e2, fai), - - - , (e f(@i)s (g1, X) - -+ };

i, 51k €40, 1,2,34f(ap) =0, f(a1) = {x}, f(a2) = {y}, f(a3) = X}. Clearly, this space is u-soft T,

but it is not p-soft Ty or even p-soft To. You could view it as a topology on E x X as well.

Example 2.10. Let X = {a, b}, E={e1, ez, - - }. We partition N into infinitely many infinite par-
titions N=F; | JF, |- -+ . we define a STS on X with respect to E where its basic open sets are
defined as follows, for each finite set G C N we have {pg, : i € G} and for each finite set GC N, n e N
we have {PE,,} UIpg, : i € En — GY). Clearly, this space is u-soft T, but it is not p-soft T.

The following two examples show that u-soft Ty and p-soft Ty spaces are incomparable.

Example 2.11. Let X = {x, y}, E= {e1, e2} and
T= {;ZQ @) {(el) {y})’ (eZgV{x})}J {(el) @)) (62) {)’})}) {(el) {)’}), (82>X)})
{(61, Q))’ (62, {X})}, {(61, Q))’ (62> X)}}

This space is u-soft Ty but not p-soft Tp.

Example 2.12. Let X = {x, y}, E={e, €2}
and T ={X, 0, {(e1, {x}), (e2, {x}}}.

This space is p-soft Ty but not u-soft Tj.

3. Computable u-Soft Separation Axioms

In this section, we define the new notions of computable soft topological spaces and computable
u-soft separation axioms that are based on soft points. We investigate some properties and impli-
cations of those newly defined computable u-soft separation axioms. We also introduce some
counterexamples to prove that some implications are not true in general.

Definition 3.1. A computable STS is a tuple (X, 7, A, 8, v) such that

(1) (X,7,A)isau-soft Ty space,

(2) v:X* — Bisanotation of a base of T with respect to soft points (i.e. for a soft open set W,
V soft points p} € W, there is some U € 8 such that p} € U € W) with recursive domain,

(3) There is a computable function i : £* x £* — X such that for all u, v € dom(v),

v(u) ﬂ v(v) =U{v(w) : w € dom(v) and «(w) < h(u, v)}.

(4) In computable soft topological spaces when we encode soft points, we need to consider the
parameter of the soft point so that it is encoded as well in the name. That is, §%(p) = p}
where p is a list of all basic soft open sets containing p} and the first bit of p encodes the
parameter of the soft point, which is e in this case. When the parameter set E is infinite, we
require it to be computable and countable and to be given of the form E = {ej, e3,- - - }.

The following are the computable u-soft separation axioms which are based on separating soft
points by basic soft open sets.
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Definition 3.2. A computable STS (X, 7, A, B, v) is computable u-soft Ty (CuTy, for short) if
(X, 7, A) is a u-soft Ty and the multi-function uty is (8%, 8%, v)-computable where uty maps every
(b, ) € X x X such that p¥ # pi, to some Uy € f such that

(p; € Uy and p%./[ ¢ Ua) or (p; ¢ Uy and pé e Uy).
Definition 3.3. A computable STS (X, 7, A, B, v) is computable u-soft T; (CuT), for short) if

(X, 7, A) is a u-soft T and the multi-function ut; is (8%, 8%, v)-computable where ut; maps every
(b, pi) € X x X such that p¥ # pi, to some Uy € f such that

(p¥ € Uy and py ¢ Uy).

Definition 3.4. A computable STS (X, 7, A, B, v) is computable u-soft T, (CuT,, for short) if
(X, 7, A) is a u-soft Ty and the multi-function ut; is (8%, 8%, v)-computable where ut, maps every
(p%, pa) € X x X such that p* # pl, to some Uy, V4 € B such that

(pfe Ua andpz, € V4 and UAmVA 25)

The next lemma gives the obvious implications between the computable u-soft separation
axioms that are defined so far. The proof is Straightforward by definition.

Lemma 3.5. CuT; = u-softT; forie {0, 1,2}.

Proof. Straightforward. O
Lemma 3.6. CuT; = CuT;_; forie{l,2}.
Proof. Straightforward. O

We give a counterexample that is CuTy but not CuTj.

Example 3.7. Let X = {x} be the universe set, E={ej1, e2} be a set of parameters and t is a STS
generated by the following base,

(01) = {(e1, {x}), (e2, #)}, v(001) = X , where B =range(v).

We define now some more computable u-soft separation axioms to help us establish the rela-
tion between CuT; and CuT,. At the end of this section, we will see that some of the following
notions are equivalent.

Definition 3.8. A computable STS is:
WCuTy: If there is a c.e. set H € dom(v) x dom(v) such that

(1) (Vp¥ # pl) (3w, v) € H)(pF € v(u) and p, € v(v)),
2) (V(u,v) € H):

@) [ v =0),
V(@5 v(u) = {pf) Sv(v),
V(@pa)v(v) = {pu} S v(w)).

SCuTy: If he multi-function uty is (8, 8%, [N, v])-computable where uty maps every (p’e‘,p’g() €
X x X such that (p* ;ép(yx) to some (k, Ug) € N x 8 such that

(k=1,p} € Ug and ply ¢ Ug) Vv (k=2,p* ¢ Ug and pl € Ug).
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CuTy': If there is a c.e. set H C dom(vyn) x dom(v) x dom(v) such that
(1) (vp #pﬁ)(El(w, u,v) € H)(p% € v(u) andpé cv(v),
2) (V(w,u,v) € H):
W) [ v») =),

V(un(w) = 13 v(u) = (p¥} S v(v),
V(un(w) = 2@ph)v(v) = {ph} C v(w)).

CuT,': If there is a c.e. set H C dom(v) x dom(v) such that
(1) (Vp* # p)3(w, v) € H)(pX € v(u) and pyy € v(v)),
(2) (Y(u,v) € H):
() (v =0),
V(@p)v(u) = {pg} S v(»)).
CuTy': If there is a c.e. set H C dom(v) x dom(v) such that
(1) (Yp* # p)3(w, v) € H)(p¥ € v(u) and py € v(v)),
(2) (Y(u,v) € H):
@) [ v() =),

V(@pv(w) = {p;} =v(¥)).
SCuT,: If there is a c.e. set H C dom(v) x dom(v) such that

(1) (Vp¥ # po) 3w, v) € H)(p¥ € v(u) and ppy € v(v)),
(2) (Y(u,v) € H):

(w(w) [ v(») =1).

Now we investigate the relations between those separation axioms.
Proposition 3.9. CuTy < SCuTy < CuTy .

Proof. SCuTy = CuTy: Straightforward.

CuTy = SCuTy: There is a machine M on input (p, q) € dom(6*) x dom(8*), it first runs uty on
(p, q) that outputs u. Then, M outputs (1, u) if u < p, and outputs (2, u) if u K g.

CuTy' = SCuTy: There is a machine M on input (p, q) € ¢ x X, it first searches for (w, u, v) €
H such that u <« p and v <« g and then it outputs (w, u) if vNy(w) = 1 and (w3, v) for some w; such
that vy (w;) = 2, otherwise.

SCuTy = CuTy': Let M be a machine that realizes ut,®. There is another machine M’ that on input
(w, u, v) € (£*)3 halts iff we can find words v’ € dom(v),f,he dom(1) and t < min (1> |h]) such
that M on (f1%, h1®) halts in t steps outputting (w, u’) and

u<Kg(fu(u))andv < g(h)if vn(w) =1,

u K g(h)and v < g(fu()) if vn(w) =2,

where g computes the union of a finite set of basic open sets. Now, let H = dom(fyr ).
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We need now to show the two conditions of H. For the first condition: Let §%(p) = p¥ # o=
8“. Then, M on (p, q) halts and outputs (w, #/) in ¢ steps where vN(w) =1, p¥ € v(1/) andp{( ¢
v(u')(when vy(w) = 2, same argument follows). Then, M also halts on (f1¢,h1®) outputting
(w, u') where f = p=<t and h = q=*. Thus, p* € () V*(fu(«')) and p}, € () (k) and hence there are
u, v such that u < vfs(ft(u’)), uLpandv K Wi (h), v < q. Therefore, there exists some (w, u, v) €
H such that p¥ € v(u) andpﬁ ev(v).

For the second condition of H: Let (w, u,v) € H, vy(w) = 1, p} € v(u), p{.’l €v(u)(v(v) and
pr ;ép{l. Then, there are f, h, 4/ and t such that ¢t < min (|f|, |h|) and M halts on (f1®, h1®) in t
steps outputting (w, #') and u < g(ft(u')) and v <« g(h). Therefore, p¥ € v(u) C §*[fE“] () v()
andpﬁ € v(v) C8“[hX?]. We know that p¥ € v(u') andpé ¢v(). But,p£ € v(u) € v(v), which
a contradiction. Therefore, it must be the case that p¥ = p,, hence,

((w, u,v) € H, vyy(w) =1 and v(u) m v(v) 755) = @p))v(u) ={p;} S v(v).

Same argument follows when vy (w) = 2. I

Proposition 3.10. SCuT, = CuT, = CuTy = WCuTy.

Proof. Similar to the previous proof. O

Proposition 3.11. CuT, < CuT,’' & CuTy < CuTy'.

Proof. CuT; < CuT;': Straightforward as it is a special case of SCuTy < CuTy'.
CuT,’ = CuTy': Straightforward.
CuT, = CuTy': Let H be the c.e. set from CuT,;’. Now, let

H ={(r,s):r < g(u,"),s < g1, v) for some (u,v), (', V') € H}.

We prove now the two conditions of H’ as the c.e. set of CuT'.

Suppose pj # P By the first condition of H, there are (u,v),(«/,v') € H such that pie
v(u),pé 1S v(v),p%.’l ev(u),and p} € v(v). Then, p} e v(u)(v(V) and pz, ev()(v(v), and
hence there is (r, s) € H such that p} € v(r) and p’;’l € v(s). Thus the first condition of H" holds.

Now, we prove the second condition of H'. Suppose (r,s) € H and v(r) [ v(s) # #. Thus, by
definition of H' there are (u, v), (/,v') € H such that v(r) € v(u) () v(+) and v(s) S v(') () v(v).
Hence, v(u) [ v(v) # @ and v(v) () v(V') # @. Now, by the second condition of H, v(u) = {p3} C
v(v) and v(v/) = {pg,} C v(v)). Therefore, v(r) = {p}} = v(s) which shows that the second condi-
tion of H' holds.

CuT,’ = CuT),: There is a machine M that on input (p, q) searches for (4, v) € H such that u < p
and v < q and prints (u, v) if the search is successful and diverges, otherwise.
CuT, = CuT,': By transitivity, which completes the proof. O

Now, we give a counterexample of the above implications.
Proposition 3.12. There is a STS that is WCuTy but not CuT).
Proof. Follows immediately from the next example. O
Example 3.13. Let X = {x;, y;:i € N}, E={e} be a set of parameters, and t be the soft discrete

topology defined on X w.r.t E. We will define A, B, C, and D as a partition of N where A is a non-c.e.
set. We define a notation v of a basis of T as follows:
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We define now the intersection of soft basic open sets computably, v(0'm) () v(0'n) = v(0'mn) for
m # n and we define the other intersections to be empty. Thus, (X, T, E, B, v) is a computable STS.
Let H={(0'm,0n) :i,j € Nym, n € {1,2};(i # j or m # n)}. Then H satisfies the two conditions of
WuCTy. We show now that this space is not SCuTy. Let r, s € X* such that vy(r) = 1 and vn(s) = 2.
W.L.O.G. assume that vy is injective. For i € N let

Si = {(r,0'1), (s, 0'3), (r, 0'12), (s, 0'23)},

T; ={(s,0'2), (r, 0'3), (s, 0'12), (r, 0°13)}.
Suppose that ut, is realized by f : £° x £ — £*. If§"(p) = p;' and §"(q) = p.., then
S; ifi €B

T,' lfiE C. (1)

flp,q) €

Vi € N we define p; = 1(0°1)(0°1)..., and q; = 1(0'2)1(0°2)..., where p;, q; € . Let F={f : f : £ x
X® — ¥*such that f is computable and f (pi, q;) exists for alli € A}. Consider f € F. Then, f' :i—
f(pi» qi) is computable such that A C dom(f’) and dom(f’) \ A is infinite as A is a non-c.e. set. Since
F is countable, there is a bijective function g : E— F for some E C N such that s € dom(g}) \ A for
all s € Ewhere g(s) = gs and g, : i — g(pi, qi) fori € Nand s € E. Then, A () E = (. We can see that
&5(ps, qs) is defined for all s € E. Let

B={seE: gs(Ps> q.s) ¢S}, C={seE: gs(Ps’ QS) € S}, (2)

and D=N\ (AUBUQC). Since A(YE=W, E=BUC and B(C=W, {A, B,C, D} is a partition
of N.

Suppose some computable function f realizes ut}. Since 8“(p;) = pe' and §“(q;) =p) forallie A,
f(pi> qi) exists for all i € A, hence f = g for some s € E. Since g realizes uty, g(ps,qs) € Ss <> s€ B
by (3.1). On the other hand, g;(ps, qs) € Ss <> s ¢ B by 3.2. Thus, the space is not CuTy.

Example 3.14. Let X = {x}, E = {ey, e2} be a set of parameters, and T be a STS defined on X w.r.t.
E where T = {X, 9, {(e1, {x}), (e2, ¥)}} which is generated by the following basis:

V(Ol) = {(els {X}), (623 Q)})

v(001) =X,
where B = range(v). Thus, (X, 7, E, v, B) is a computable STS and it is CuTy nut not CuT).

Example 3.15. Let A C N be a c.e. set with non-c.e. complement. Define a notation v by

v(0'1) = {p¥}, v(0'2) = {p¥} fori € A,

v(0'1) = (p¥}, v(0'2) = {p'} fori ¢ A,
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for all i € N. Then, v is a notation of a base B of a STS on a subset X C N w.r.t. a parameter set
E = {e} such that (X, 7, E, B, v) is a computable STS.

This space is CuT,, and not SCuT, as we have a c.e. set H= {(0'm, 0'n) :i,j e N, m, n € {1,2}}
that satisfies CuT,, and let H be the c.e. set for SCuT,. Thus, by the two conditions of SCuT,

i¢ A= (0'1,02) e H,

ic A= (0'1,02) ¢ H,
since H is c.e., the complement of A must be c.e., which is a contradiction.
In the figure below, we summarize the implications of the computable u-soft separation axioms.
Those implications are based on what we investigated above and the non-implications are based
on the counterexamples introduced in this section above. These implications are actually the same

as those of the classical computable separations axioms corresponding to the ones defined in the
computable soft setting.

scuT, =—— cul, —— cul, —— WCuT,

CuT,’ CuT,’
CuT, SCuT,
Figure 1. Relations between computable H ,
u-soft separation axioms. CuT,

From the equivalences in Fig. 1, we can see that we have exactly four different notions of
computable u-soft separation axioms.

In the next section, we will define computable p-soft separation axioms as the computable
versions of those defined in El-Shafei et al. (2018). Then, we define more variations of computable
p-soft separations axioms and investigate the relations between them.

4. Computable p-Soft Separation Axioms

In this section, we define the computable versions of partial soft separation axioms defined in EI-
Shafei et al. (2018) and then introduce some of the notions corresponding to those defined for
computable u-soft separation axioms.

We define first ¥ names for xg C Xina computable STS (X, , E, B, v), where a §” name of
xp C X contains all soft basic open sets intersecting xr where E is the parameter set associated
with the given STS.

We will define also p-soft separation axioms based on xz € X and then compare those
separation axioms to the u-soft separation axioms defined in the previous section.

Definition 4.1. Let E be a finite set of parameters. Now, &P(p)=xp where p=
Sit(WpSit W)kt (Wn).one.os andpffi € v(wl),p’efj eviwy) andpfe‘k € v(wy). In other words, p is a list of
all soft basic open sets intersecting xg, and s; € £* precedes the basic open sets containing py, .

Now, we define the p-soft separation axioms.

Definition 4.2. A computable STS (X, 7, E, B,v) is
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» computable p-soft Ty (CpTo, for short) if (X, 7, E) is a u-soft Ty and the multi-function pty
is (87, 87, 0)-computable where pty maps every xg, yg C X such that xg # y to some Ug € T
such that

(xe Ug and y & Ug) or (x  Ug and y € Ug).

« computable p-soft Ty (CpT, for short) if (X, 7, E) is a u-soft Tp and the multi-function pt,
is (87, 87, 0)-computable where pt; maps every xg, yr C X such that xg # yg to some Ug € T
such that

(x € Ug and y & Ug).

« computable p-soft T, (CpT3, for short) if (X, 7, E) is a u-soft To and the multi-function pt, is
(8P, 87, 0)-computable where pt, maps every xg, yg C X such that xg # yg to some Ug, Vg € T
such that

(xe Ug and y € Vg,, and UEngzﬁ).

We can see that CpT; = CpT;_; forie {1,2}.
Based on the above definitions, we can see that the following implications hold,

CpTr = CpTy1 = CpTy

The converses of the above implications are not true in general as shown from the following
examples.

Example 4.3. Let X = {x, y}, E={e}, 2} be a set of parameters and t is a STS defined on X w.r.t.
E generated by the following basis,

~

U(Ol) = {(61: {X}), (62’ Q)}’ V(OOI) = {(61’ ®)> (62’ {X})}, U(OOOl) =X,
and B = range(v). Thus, (X, 7, E, B, v) is a computable STS and it is CpTy since there is a machine

M that realizes CpTo where M on input (p, q) € £ x X, prints 1(01)t(001). The space is not CpT;
as it is not even pT1.

Example 4.4. Let X ={a;:ie N}, E={ey, e2} be a parameter set, and t be a STS defined on X
w.r.t. E generated by the following basis notation,

v(0'V) = {(e1, Gi), (e2, Fy)}
where i and j are the canonical indices of G; and F;, respectively. We define the intersection of finitely
many basic open sets by v(011) N v(0%1') = v(0™1"), where m is the canonical index of G; | Gk
and n is the canonical index of F; () Fj. Thus, the space is computable STS. The space is CpT; as
there is a machine M that on input (p, q) € £ x X, searches for s,1(0'V) and s31(0™1") in p and
g, respectively, and j and n are canonical indices of singletons of X, and i, m € N. If the search is

successful, it prints (0"1J,0/1"). Hence, machine M realizes CpTy. However, the space is not CpT, as
it is not pT5.

Now, we give some more p-soft separation axioms and investigate the relations between them.

Definition 4.5. A computable STS (X, 7, E, B, v) is:
WCpTy: if thereisac.e. set HC dom(v*) x dom(1F) such that

(1) (Vxg # ye)(3(u, v) € H)(x € UuF(u) and y € UuF()),
(2) (Y(u,v) € H):
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(W) (YU ) = 1),

V((3xg) U VP (1) = xp € UV (),
V((3yg) UvP () = yg C U (w)).

SCpTy: if the multi-function pt;) is (67, 87, [vn, 6])-computable where pt; maps every xg, yg C X
such that (xg # yg) to some (k, Ug) € N x 7 such that

(k=1,xeUgandy & Ug) V (k=2,y € Ugand x & Ug).
CpT{): if there is a c.e. set H C dom(vy) x dom(®) x dom(ufs) such that

(1) (Vxg #ye)3w,u,v) e H)(x € Unf(u) andy e UnfS(v)),
2) (Y(w,u,v) € H):

(W) (YU ) =0),
V(un(w) = 1(3xg) U v () = xp S UP(v)),
V(un(w) = 2(3ye) U v (v) = yg € UvF(w)).
CpT;: if there is a c.e. set H C dom(1*) x dom(1F) such that

(1) (Vxg # ye)(3(u, v) € H)(x € UvP(u) and y € U (v)),
(2) (Y(u,v) € H):

(U () (v (v) =),
V((3xg) UvF (1) = xp S UV ().

CpT,:if thereisac.e. set HC dom(1F) x dom(1F) such that

(1) (Vxg # yg)(3(u, v) € H)(x € UuF (1) and y € UuF(v)),
2) (Y(u,v) € H):

(U ) (U ) =),
V((@xg) U (u) = xg = W ().
SCpT,: if thereisac.e. set HC dom(1F) x dom(1F) such that

(1) (Vxg # ye)(3(u, v) € H)(x € UvP(u) and y € U (v)),
(2) (Y(u,v) € H):

(U () ﬂ U (v) = 0).

Proposition 4.6. Let CpT; and SCpTy be the conditions obtained from CpT; and SCpTy, respec-
tively, by replacing 6 by UvF. Then, CpT; < CpT; for i € {0, 1,2}, and SCpTy < SCpTo, when the
parameter set is finite.
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Proof. Let E have n parameters. CpT; = CpT;: since U <6,
CpT; = CpT;: There is a machine M that on input (p, q) € dom(8) x dom(0) where §°(p) € 6(q)
searches for uy, ..., u, where u; < p; and u; < g for all i where p; is a % name obtained from

p- Then, machine M prints u if the search is successful where u = t(u1)i(u2)....... and diverges,
otherwise. Following the same argument, we can prove SCpTy < SCpTy, which completes the
proof. O

Lemma 4.7. In a computable STS, the predicate x € U is (37, 0) — c.e..

Proof. Let n be the number of parameters of that space. There is a machine M that on input (p, r)
where p € dom(8P), r € dom(6) halts iff there are uy, - - - u, € dom(v) such that u; < r and u; K p;
forie{l,--- ,n} where p; is a §“-name obtained from p. O

We now introduce some implications between the p-soft spaces defined above.
Proposition 4.8. CpTy < SCpTy <= CpT, = WCpTy.

Proof. SCpTy = CpTy: Obvious.
CpTo = SCpTy: By Lemma 4.7 there is a machine M that on input (p, q) € dom(8P) x dom(8P),
it tests in parallel whether 87(p) € 6(r) and 8P(g) € 6(r) and outputs (1, r) or (2, r), accordingly,
where pty(p, q) = r. We can see easily the M realizes pt;, which completes the proof.
CpTy= SCpTo: There is a machine M that on input (p, q) € dom(8?) x dom(8P) searches for
(w,1,s) € H-The c.e. set of CpTy—such that §7(p) € 6(r) and 67(g) € 6(s), which can be tested
using Lemma 4.7. Then, machine M prints Zw, r) if vxy(w) =1 and (w, s), otherwise. Thus, M
realizes pty, which completes the proof.
CpTy = WCpTy: Obvious.

O

We now show that the second and third implications are not reversed in general as shown from
the next two examples.

Example 4.9. Let X ={a;, b; : i € N}, E={ey, e2} be a parameter set, and t be a STS defined on X
w.r.t. E generated by the following basis where A is a non-c.e. set,

011 | 0112 | 0'51 052 0i5211

N

. Xi Xi i i
i€A | pe Pe; P{i p)e/;

i¢A | po | P | P | PaYPa | Pa
The finite intersections are all empty except for v(0'11) [ v(0°52) = v(0°5211). Thus, the space
(X, 1, E, B, v) is computable STS. Let H be the c.e. set of WCpTy, then
i€ A= (u,v) € Hwhere0'11,0'12 < u and 0'51, 0’52 < v,

i¢ A= (u,v) ¢ Hwhere0'11,0'12 <« u and 0'51,0'52 < .

Thus, A must be a c.e, set which is a contradiction. Hence, the space is not WCp Ty and then not CpT,,
however, it is CpTy as there is a machine M that realizes pty where M on (p, q) prints 1((0'11)t(0712).

Proposition 4.10. There is a computable STS that is WCpT, but not CpT).

Proof. Follows immediately from the following example. O
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Example 4.11. Let A C N be some non-c.e. set. Let X = {x;, yi}, E = {e1, e2} be a parameter set and
7 be a STS defined on X w.r.t. E generated by the following basis given in the table below.

011 012 021 022 031 | 0732
ieAUD | pj o A i g |0
icB pel pa | paUpn | PaUps | pa | Ph
i€eC | paUps | PaUpPs | P po | pe | Pe

We define {A, B, C, D} to be a partition of N. We define the intersection of soft basic open
sets as follows, v(0'kD) N v(0imn) = v(0'klmn) for k#mv1#n. Therefore, (X,7,E,pB,v)
is a computable STS. We can see that the space is WCpTy as we can have a c.e. set
H = {(1(0'r1)¢(0'r2, «(0/s1)¢(0/s2) i,jeNsr,s e {1,2};(i£j Vv r#s)} that satisfies the two con-
ditions of WCpTy. Now, we define B and C in a way that makes the space not SCpTy. Let
wi, wa € X8 such that vy(wy) = 1 and vy(w) = 2, and W.L.O.G. we assume that vy is injective.
ForieN let
Si={{wy, u1), (wa, up) 1 uy, up € dom(ufs) and u, is any combination of
{0711, 0712, 011222, 0'1121} and u, is any combination of {0731, 0'32, 02131,

012232}},

T; = {{(w1, v1), (w2, v2) : v1, v2 € dom(v®) and vy is any combination of
{0731,032,0'1131, 0'1232} and v, is any combination of {0'21, 022, 0’1121,
01222}},

Suppose the function f :C £“ x £“ — X* realizes pt;. If 87 (p) = xg,; and 8P (q) = yg,;, then

S,’ ifiEB

T; lfl eC. (3)

fp.g) e
Vi € N we define p; = 1(0°11)¢(0°12)¢(0°11)¢(0°12) - - -,
and q;i= 1(0721)0(0%22)(0'21)¢(0722) - - -, where piqi€ X®. Let F={f:f:Zx X’ —
S*such that f is computable and f(p;, q;) exists for alli € A}. Consider f € F. Then, f' i — f(pi, qi)
is computable such that A C dom(f") which means that dom(f') \ A is infinite. Since F is countable,
there is a bijective function g:E— F for some E CN where g(s) =g, and g, :i— g(pi, qi) for
ieN,se€E such that s € dom(g]) \ A for all s € E. Then, A () E={. Note that gi(ps, qs) is defined
forallse€E. Let

B={seE: gs(Ps, QS) ¢S}, C={seE: gs(Ps’ CIs) €S}, (4)

and D=N\ (AUBUQC). Since A(YE=0, E=BUC and B[\ C=0, {A, B, C, D} is a partition
of N.

Suppose some computable function f realizes pty. Since 8F(p;) = xg; and 8P (q;) = yg,i for alli € A,
f(pi» qi) exists for all i € A, hence f = g; for some s € E. Since g; realizes pt}, gs(ps, gs) € Ss <> s€ B
by (3.3). On the other hand, gi(ps, qs) € Ss <> s & B by 3.4. Thus, the space is not CpTy.

Proposition 4.12. CpT), < SCpT, = CpT; <= CpT} < CpT, = CpT).

Proof. SCpT, = CpT): Straightforward.
SCpT, = CpT,: There is a machine M that on input (p, q) € X x X searches for (r, s) € H such
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that by Lemma 4.7, 8 (p) € 6(r) and §P(q) € 6(s). Machine M prints (r, s) if the search is successful
and diverges, otherwise.

Thus, let 87(p) = xg # yg = 6°(q). When we apply M on (p, q), the machine searches for
(r,s) € H as described above and the search must be successful since by definition of H there
must exist (r,s) € H such that x € Uvf(r) and ye UWS(s) and Uvf(r) N UnfS(s) =5, and thus,
Vie{l,2,...,n} there exists u; < r, v; < s such that P, € v(u;) and p%i € v(v;). Therefore, the
space is CpT5.

CpT, = CpT5: There is a machine M on input (p, q) € £ x £ searches for (r,s) € H such that
by Lemma 4.7, §°(p) € 6(r) and 8°(g) € 6(s). The machine prints (r, s) if the search is successful
and diverges, otherwise. Thus, machine M realizes pt,.

CpT, = CpTj: Obvious.

CpT; = CpT}: We define the c.e. set of CpT} to be Hy = {(7,5) : u; K 7= u; K g(1,5), v; K5 =
vi L g(7', s) for some (1, s), (', s’) € H} where H is the c.e. set of CpT| and g is a computable
function that computes the intersection of two open sets.

We check now the two conditions of H,. Let xg # yg. There are (r,s), (', s') € H such that
x € UF(r) M ULA(S), ye UnF(s) M UWA(r). Then, xe€0(r")=UvS(r) N UWA(Y), yed(s") =
U (s) () UvS(r') and hence Vi € {1, 2, ....., n} there are u; < r’ and v; < s where Py, € v(u) and
p’v Thus, there is (7, 5) where 7 = ((t1).....(t4y), S = t(¥1).....(vy,) and x € U (F), ), ¥ € Uf().

Now, we prove the second condition of H,. Suppose (7,5) € Hy and UvS(F) (| U (s) #
?). Thus, there are (r,s),(r,s)eH such that Uuf(F) C UnfS(r) Y Unfi( s ), and UWS() C
Uf() )N UVS(s), and then UvS(7) )N UnfS(s) # @, and UvB(r) N UnS(s') . Hence, there are
xg and yg such that UL (r) = xg € UvS(s), and UnSS(r) =yp C UWS(s'). Therefore, U (7) C xg
and UvfS(s) € yE, which means that xE = yg. Now, we prove that xg C UuS(7). If not, then there is
some pe ¢ W) € UvB(r) N US(s') for some parameter e;. Hence, pe ¢ UWS(s’) which is a con-
tradiction as xg € Unf(s'). Thus, the second condition of H is satisfied.

CpT; = CpT;: This is a special case of CpT;) = SCp Ty, which completes the proof. O

Remark 4.13. CpT; = CpT(/)

Proof. Straightforward. O

We introduce now counterexamples to show that the implications of the previous proposition
are not reversed in general.
The next example shows a space that is CpT} but not SCpT.

Example 4.14. Let A C N be a c.e. set with non-c.e. complement. We define a notation of a basis of
a topology T on a subset X C N as follows,

011 | 012 | 021 | 022 0"31\0"32

. X pa pa Xi i i
i€A | Pe Pe; | Pe Pe; P/gi ‘ P/Z;

igA | pE | pE P | TP

We extend names to finite intersections of basic open sets as follows: v(0'mn) N v(0'rs) =
v(0'mnrs) and for i # j the intersections are empty. Thus, (X, 7, E, B, v) is a computable STS. The
space is CpT) as we have a c.e. set that satisfies the two conditions of it, namely,
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H = {(t(0'mn)u(0'IK)), ((0Vm/ 0 )W(OII'K)) i,j € NsL, m, I'ym’ € {1,2,3}m,k, 0/, K € {1,2}((I=
mandl =m') and (k £ nand k' #n'))}.

Now, we show that the space is not SCpT,. Let H' be the c.e. set of SCpT,. then by the first
condition of H,

i¢ A= (u,v) € H where 0'11,0'12 <« uand 021, 0122 < v,
and by the second condition of H,
ic A= (u,v) ¢ H where0'11,0'12 <« uand 0'21, 022 <« v.
Since H' is c.e., the complement of A must be c.e. which is a contradiction.
The next example shows that there is a space that is CpT> but not CpT].

Example 4.15. Let A C N be a non-c.e. set, E={e1, e2} be a parameter set and X = {x;, y; : i € N}
be a set on which a STS t is defined where T is generated by the following basis which is given by the
following notation,

0i11 0’12 013 | 014 | 011112 | 01113 | 01114
ieA XE,i VE,i pe. @ @ ey 9

(SN
N

i ¢ A XE,i Up)é; Xxg,; U e; pé/; XE,i ?

071213 | 011214 | 0’1314 | 0’61 | 0'6111 | O'6112 | 0%6113 | 06114

=
=N
SN
SN
=N

icA| @ 7 7

igA| B | pn | B | P | ph Z 7 5

Thus, (X, T, E, B, v) is a computable STS. The space is CpT; as there is a machine M that on input
(p, q9) € £“ x X searches for 0'13 and 0'14 where on of the following cases hold:

(1) 013 L p and:

a. 0'12 « g, the machine prints (0'11, 0'12),

b. 012 v 011 K q for some j # i, the machine prints (0/11, ((0/'11):(0/12))
(2) 0'13 K q and:

a. 0'12 < p, the machine prints (0'12,0'11),

b. 012 v 011 « p for some j # i, the machine prints (L(0'11)(0/12), 0/11))
(3) 0'14 < p and:

a. 0'1112 < g, the machine print(1(0'14):(0'61), 0'1112)

b. 012 v 011 < q for j # i, the machine prints (t(0'11)c(0'12), ((0/11)¢(0/12))
(4) 0'14 < q and:

a. 01112 « D the machineprint(OiHlZ, 1(0714)c(0%61))

b. 012 v 011 KL p for j # i, the machine prints (t((0/11)c(0/12), 1(0'11)¢(012))
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Hence, M realizes CpT>. Now, we prove that the space is not CpT}. Let H be the c.e. set of CpT}, then
i€ A= (u,v) € Hwhere 0'11 € u, 0'12 < v,

i¢ A= (u,v) ¢ Hwhere0'11 < 1,012 < v.
Since H is a c.e. set, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT].

In the following figure, we represent all implications between the computable p-soft separation
axioms we defined so far. The implications are based on the results that we got in this section and
the non-implications come from the counterexamples that we introduced above.

CpT,! &—— CpT, \
CpT, :|:> CpT, 1;‘:{) SCpT,

il fl

CpT, <—— SCpT, = cpTy, = WCpT, Figure 2. Relations between computable

: p-soft separation axioms.

We can see from Fig. 2 that we have exactly seven different notions of p-soft separation axioms
compared to four different notions of u-soft separation axioms.

In the next section, we study the relation between computable u-soft separation axioms and
computable p-soft separation axioms.

5. Relations Between u-Soft and p-Soft Separation Axioms
In this section, we investigate how computable u-soft separation axioms are related to their
counterparts computable p-soft separation axioms. We just consider the case when the set of
parameters is finite.

At the end of this section, we will be able to compare the four different notions of u-soft
separation axioms to the seven different notions of the p-soft separation axioms.

Proposition 5.1. Computable u-soft T; = computable p-soft T;, for i =1, 2.

Proof. Case 1: i=1. Assume computable u-soft T. Let 8?(p) = xg # yg = 8P(q). There are n
machines M; such that machine M; translates p into a §"-name p; for p; . Similarly, there are n
machines N; where N; translates g into a §“-name g; for p}.. Now, ViVj ut; on input (p;, gj) out-
puts w;; where v(w;;) = Ug,;j € B and p’e‘i € Ug,j and Pe; ¢ Uk,ij. Vi, let w; = t(wj))......(w;,) and
since v < 0 and the intersection of a finite set of open sets is 65, 0)-computable, there is a com-
putable function f such that Wi (w) ==6 o f(w;). Thus, ViVj, p,, € 6(r;) andpej ¢ 0(r;) where
ri = f (w;). Also, since the union of a finite set of open sets is open, there is a computable function
g such that UOS((17, 71,y e 1)) = 6 og({1", 71, ..., 74)) and hence x € (r) and y & 6(r) where
r={(1", 11, ....., ). Therefore, the space is p-soft T}.

Case 2: i =2. Assume u-soft T,. Let 6°(p) = xg # yg = 8P(g). There are n machines M; such
that machine M; translates p into a §“-name p; for p;, . Similarly, there are n machines N; where N;

translates g into a §“-name forpf;.. ViVj ut; on input (p;, q;) outputs (u;, vij) where v(u; ;) = Gg,;j €
B and v(vi,j) = HE,,',]' ep such that p’é [S GE,,',J' and sz S HE,i,j and GE,i,j ﬂ HE,i,j 25. Vi, let u; =
t(uj))....t(u;,) and v; = 1(v;))....L(v;,). By functions f and g from case 1, Vi we have f(u;) = r; and
g(vi) = s; where p,, € 0(r;) and y € 6(s;) and 6(r;) () 0(s;) = . Now, we use g and f again, where
g((1", 11, s tp)) =1 and f({(1%, 51, ooy $p)) = . Thus, x € 6(r) and y € 6(s) and 6(r) () 0(s) =0.
Therefore, the space is p — soft T> which completes the proof. O
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We give a counterexample that the converse of the above implications is not true in general.

Example 5.2. Let X ={x, y}, E={e1, e2} be a parameter set, and t be a STS defined on X w.r.t.
E and generated by the following base v(01) = {(e1, {x}), (e2.{x})}, v(001) = {(e1, {y}), (e2.{y}}.
v(0001) = {(ey, {x}), (e2.{y})}. The space is computable STS and it is CpT, as we have a machine
Mon (p,q) € T x T? outputs 1(01) if 01 K p and outputs 1(001) if 01 <« q. Thus, M realizes pt
but the space is not CuT) as it is not u-soft T1. We can see also that this space is CpT, but not CuT,.

In the next example, we show that the above result does not hold when the set of parameters is
infinite.

Example 5.3. Let X ={a, b}, E={ei1, e, - - }. We partition N into infinitely many infinite par-
titions N=F UF,U- ., and we assume that partition to be computable. We define a STS on
X with respect to E where its basic open sets are defined as follows, for each finite set GC N we
have {pg, :i € G} and for each finite set GC N, n€ N we have {pfﬂ} U{pg, :i€ Fy — G}. Clearly,
this space is u-soft T, but it is not p-soft T,. We effectivize this space by introducing a notation
v for the set of basic open sets B as follows, v(051) = G where k is the canonical index of G, and
v(0™10"1) = {pi’m} U{pg, : i € Fm — G} where m is the index of Fy, and n is the canonical index of
G. We define the finite intersection of basic open sets as follows,

« v(0%1) N v(0'1) = v(0"1) where r is the canonical index of the intersection of two sets, the
canonical index of the first set is k while the canonical index of the other one is L.

« v(0™10"1) ([ v(0"10°1) =@ for m £ 1.

« v(0™10"1) () v(0"10°1) = v(0™10'1) for m=r, where t is the canonical index of the set
resulting from the union of two sets whose canonical indices are s and n.

« v(0%1) () v(0™10"1) = v(0°1) where s is the canonical index of H where H= G (| Fy, — I and
k, n are the canonical indices of G, I, respectively, and m is the index of Fy,.

Finite intersections can be obtained directly from the cases above. Thus, the space (X, T, E, v, B) is a
computable STS.

Now, we show that the space is CuT,. There is a machine M that on input (p, q) € £ x X does
the following: in p, g, it looks for 071, 0°1, or 0°'10/1, 0™ 10"1 with i # m, or 0’1, 0" 10/1 where j is the
index of a singleton, and outputs the pair that is found.

Thus, machine M realizes ut;, and hence the space is CuT,. However, the space is not even
p-soft T1.

The following two examples show that CuT, and CpTj are incomparable.

Example 5.4. Let X = {x;,y;:i € N}, E={ey, e2} be a parameter set, and T be a STS defined on X

w.r.t. E and generated by the following base notation where A is a non-c.e. set,

011 | 012 | 021 | 0122 031 071131 | 02131 | 01112 | 01231

i€A | pi | pa | pa | P 7 7 7 7 v
. = X i X i Xi
i¢A | xg XE; JE; 7 Pey U P, Pe piz XE; De;

We extend names to the finite intersections as follows v(0imn) N v(0'kl) = v(0'mnkl) and the
intersection of more than two basic open sets is empty except for v(0'11) () v(0'12) (| v(031) =
v(0'111231). Thus, the space is computable STS. The space is CpT,, which implies CpT, —and
hence CpTy—as we have the following c.e. set,

H = {(t(0'm1)u(0'm2), 1(0'n1)e(0'n2)) : m, n € {1, 2}i,j € N}

https://doi.org/10.1017/5S0960129523000336 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129523000336

804 S. M. Elsayed and K. M. Ng

Assume now that the space is WCuT. Thus, there is a c.e. set H' that satisfies the two conditions of
WCuTy which means the following,

ie A= (0'11,0'12) e H',

i¢ A= (0'11,0'12) ¢ H'.

Hence, A must be a c.e. set which is a contradiction. Therefore the space is not WCuT, (Thus not
CuTy as well).

Example 5.5. Let X = {x, y}, E = {e}, e2} be a parameter set, and t be a STS defined on X w.r.t. E
and generated by the following base notation,

v(01) = {(e1, {x}), (e2, D)},
v(02) = {(e1, {y}) (e2, D)},
v(03) = {(e1, {x}) (e2, {yD}
\)(04) = {(61, {)/})> (62’ { })}

We give names to the finite intersections of basic open sets as follows, v(0m) (| v(0n) = v(0mn)
for m,n e {1, ...., 4}, and the intersection of any three basic open sets is empty.
Now, we show that this space is CuTy. There is a machine M that on input (p, q) € £ x X%, scans
p and q and prints ((u) whenever it scans first u <K p or u < q such that u € {01, 02} at any point of
the computation. If M scans first 0m < p or Om <K q for m € {3, 4}, then it prints the first word v of
the other name if v # Om, otherwise, it prints 1(01) if m = 3 and prints 1(02) if m = 4.

Therefore, machine M realizes uty, and hence, the space is CuTo. However, it is not CpTy as it is
not pTy.

Proposition 5.6. SCuT, = SCpT5.

Proof. Let H be the c.e. set of SCuT,, and # be the number of parameters. Let H' C £* x £* be
the set of all pairs (u, v) of words for which there are some #n such that u = «(u).....(u,) and v K
0 o f(t(v1).....(v4)), where f is the computable function that computes the finite intersection of soft
open set and uy, .., up € dom(v) and vy, ..., v, € dom(»F), and Vi(u; < N Wi (w;) where i (w;) =
Pri(N) and W*(v;) = Pry(N) for some finite set N C H, where Pry(N)={l;: (I, m;) € N} and
Pry(N) = {m; : (I;, m;) € N}.

Let xg # yg. Then, Vp’e‘i IS xEVpé. € yg there are pairs (7, si;), ..., (13, $i,) € H such that p’é_ €
v(r;)and p’Z] €v(s;), and v(r;) N v(si) — . Then, P € N Wi(w;) where w; = u(ri,)...e(ri,) and
hence there is some u; < vS(w;) where pe; €v(ui), and y € Uvf(v;) where v; = t(vi).t(vi,).
Thus, there are some u € * and v € v where u=(u;....(1u,)) and X€ UnS(u), and v < 6 o
f((v1)....(vy)) where y € UuS(v). Tt is obvious that Unf(x) N vas(v) ?. Therefore, H' is the
c.e. set for SCpT. O

Example 5.7. Let X ={x;,y;:i € N}, E={e}, e2} be a parameter set, and T be a STS defined on X
w.r.t. E and generated by the following base notation where A is a non-c.e. set,

0’11 | 0'12 | 0721 | 0722 | 02122

N

. Xi Xi i i
i€A | Pe Pe; sz/; P{;

i¢gA P)eci P’e‘é JE; JE; JE;
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We extend names to the finite intersections as follows v(0'mn) () v(0'kl) = v(0'mnkl) and the
intersection of two basic open sets is empty except for v(0'21) () v(0'22) = v(072122). Thus, the space
is computable STS. This space is SCpT, as we have a c.e. set H, where
Hy = {(t(0'm1)e(0'm2), 1(0/n1)(0/n2)) : ije Nsm,ne{l,2sm#n}. Let Hy be the ce. set for
SCuT, then for

ie A= (021,022) € Hy,

i¢ A= (0'21,022) ¢ H,.
Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not SCuT,.
We now give a counterexample for a space that is CuT; but not CpTy.

Example 5.8. Let X = {x;,y;:i € N}, E={ey, 2} be a parameter set, and T be a STS defined on X
w.r.t. E and generated by the following base notation where A is a non-c.e. set,

01 | 02 | 0'3 04 0’5 06

N

icA | po | po | po | Pl P

i¢A | po | Py | Po | XeiUpe | Pey | Per U P

We define names to the finite intersections as follows v(0'm) N U(Qin) = v(Qimn) and the
intersection of more than two basic open sets is empty except for v(0'3) () v(0'4) () v(0'6) =
v(0'346).

Thus, the space is computable STS. This space is CuT; as we have the following c.e. set that satisfies
the conditions of CuT},

H={(0'm, 0/n), (0'46, Um) :i,j € Nym € {1,2,3,5}n € {1,2,3,4}}.

However, it is not CpT}, as if it was, there would exist a c.e. set H' that satisfies the conditions of
CpT, and hence for,

ieA=(r,s)eH,

i¢A=(r,s)¢ H,
where
1(0'1),1(0°2) < 7 A 1(0'3), 1(0't) K s for t € {4, 6,46).

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT}.

Remark 5.9. SCuTj and SCpT) are incomparable.

Proof. This follows directly from Propositions 3.9, 4.8 and Examples 5.3 and 5.4. O
Remark 5.10. CuT; and CpT; are incomparable for i € {0, 1, 2}.

Proof. For i =0: Use Example 5.5 where in which the space is not WCuT, and Example 5.4, and

Propositions 3.9, 3.10.
For i =1, 2: Use Examples 5.5, 5.7, and Propositions 3.11, 4.12. O
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Remark 5.11. WCuTy and WCpT) are incomparable.

Proof. Use Examples 5.5, 4.9 where in the latter example the space is WCuT, as we have the
following c.e. set,

H={(0'mk,0'nl) :i,j € Nym, n € {1, 5}k, 1 € {1, 2}}.
However, it is not WCpT) as shown earlier. O

So far we have defined nine computable separation axioms based on soft points and another
nine separation axioms based on soft singletons. We also investigated how the ones based on soft
points are related and how the other ones based on soft singletons are related. Counterexamples
have been provided to show the non-implications between them. Some of them turned out to
be equivalent and others turned out to be incomparable. Equivalences between the ones that are
based on soft points exist for instances:

CuT, < CuT}, CuT, < CuT}, and SCuTy < CuT,. However, these equivalences do not exist for
their counterparts that are based on soft singletons.

In the following Fig. 3, all relations between computable u-soft and p-soft separation axioms
are represented. As seen from the figure, there are some implications between some separation
axioms and some other separation axioms turn out to be incomparable.

SCul; ——— SCpT;

H ﬂ

WCuT, WCpT, Figure 3. Relations between computable u-soft and computable p-soft separation
0 Plo axioms.
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6. Conclusion

In this paper, we defined the effective versions of soft separation axioms. We introduced two sets of
computable soft separation axioms, namely computable u-soft and computable p-soft separation
axioms, and investigated many relations between them. Finally, We showed how the effective and
classical versions of these soft separation axioms differ.

Statements and declarations
Data availability. No datasets are used in this paper.

Author contributions. All the work is done by the two authors where the first author proposed and initiated the idea of
effectivizing some of the soft separation axioms and the second author reviewed and introduced the suitable techniques in
computability theory that fit that effectivization. The paper is written by the first author and the final revision was done by
the second author.

Funding. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing interests. The authors declare none.

References

Acar, U, Koyuncu, F. and Tanay, B. (2010). Soft sets and soft rings. Computers ¢ Mathematics with Applications 59 (11)
3458-3463.

Aktas, H. and Cagman, N. (2007). Soft sets and soft groups. Information Sciences 177 (13) 2726-2735.

Al-shami, T. (2020). Comments on some results related to soft separation axioms. Afrika Matematika 31 (7)1105-1119.

Al-shami, T. (2021). On soft separation axioms and their applications on decision-making problem. Mathematical Problems
in Engineering 2021 1-12.

Ali, M. L, Feng, F,, Liu, X., Min, W. K. and Shabir, M. (2009). On some new operations in soft set theory. Computers &
Mathematics with Applications 57 (9) 1547-1553.

El-Shafei, M., Abo-Elhamayel, M. and Al-Shami, T. (2018). Partial soft separation axioms and soft compact spaces. Filomat
32 (13) 4755-4771.

El-Shafei, M. and Al-Shami, T. (2020). Applications of partial belong and total non-belong relations on soft separation axioms
and decision-making problem. Computational and Applied Mathematics 39 (3) 1-17.

Elsayed, S. M. M. (2022). Applications of effective methods in computable mathematics. PhD thesis. NTU University.

Feng, F., Li, Y. and Leoreanu-Fotea, V. (2010). Application of level soft sets in decision making based on interval-valued
fuzzy soft sets. Computers & Mathematics with Applications 60 (6) 1756-1767.

Gorzalczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets
and Systems 21 (1) 1-17.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science, Cambridge: Cambridge University Press.

Jun, Y. B. and Park, C. H. (2008). Applications of soft sets in ideal theory of bck/bci-algebras. Information Sciences 178 (11)
2466-2475.

Maji, P., Roy, A. R. and Biswas, R. (2002). An application of soft sets in a decision making problem. Computers & Mathematics
with Applications 44 (8-9) 1077-1083.

Matejdes, M. (2021). Methodological remarks on soft topology. Soft Computing 25 (5) 4149-4156.

Molodtsov, D. (1999). Soft set theory—first results. Computers & Mathematics with Applications 37 (4-5) 19-31.

Nazmul, S. and Samanta, S. (2013). Neighbourhood properties of soft topological spaces. Ann. Fuzzy Math. Inform 6 (1)
1-15.

Pawlak, Z. (1982). Rough sets. International journal of computer & information sciences, 11(5) 341-356.

Pei, D. and Miao, D. (2005). From soft sets to information systems. In: 2005 IEEE International Conference on Granular
Computing, vol. 2, IEEE, 617-621.

Peng, X,, Yang, Y., Song, J. and Jiang, Y. (2015). Pythagorean fuzzy soft set and its application. Computer Engineering 41(7)
224-229.

Peyghan, E. (2013). About soft topological spaces. Journal of New Results in Science 2(2) 60-75.

Shabir, M., Ali, M. I. and Shaheen, T. (2013). Another approach to soft rough sets. Knowledge-Based Systems 40 72-80.

Shabir, M. and Naz, M. (2011). On soft topological spaces. Computers & Mathematics with Applications 61 (7) 1786-1799.

Turing, A. M. et al. (1936). On computable numbers, with an application to the entscheidungsproblem. Journal of
Mathematics 58 (345-363) 5.

https://doi.org/10.1017/5S0960129523000336 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129523000336

808 S. M. Elsayed and K. M. Ng

Weihrauch, K. (2000). Computable Analysis: An Introduction, Germany: Springer Science & Business Media.

Weihrauch, K. (2010). Computable separation in topology, from t0 to t2. Journal of Universal Computer Science 16 (18)
2733-2753.

Weihrauch, K. (2012). Computability, vol. 9, Germany: Springer Science & Business Media.

Weihrauch, K. and Grubba, T. (2009). Elementary computable topology. Journal of Universal Computer Science 15 (6)

1381-1422.
Xiao, Z., Gong, K. and Zou, Y. (2009). A combined forecasting approach based on fuzzy soft sets. Journal of Computational

and Applied Mathematics 228 (1) 326-333.
Yang, Y., Tan, X. and Meng, C. (2013). The multi-fuzzy soft set and its application in decision making. Applied Mathematical

Modelling 37 (7) 4915-4923.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8 338-353.

Cite this article: Elsayed SM and Ng KM (2023). Computable soft separation axioms. Mathematical Structures in Computer
Science 33, 781-808. https://doi.org/10.1017/S0960129523000336

https://doi.org/10.1017/5S0960129523000336 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129523000336
https://doi.org/10.1017/S0960129523000336

	Computable soft separation axioms
	Preliminaries
	Soft sets
	Soft topological spaces
	Basics of soft sets
	Soft topological spaces 

	Basics of computable analysis
	Type-2 theory of computability
	Computable topological spaces
	Computable separation axioms


	U-Soft Separation Axioms
	Computable u-Soft Separation Axioms
	Computable p-Soft Separation Axioms
	Relations Between u-Soft and p-Soft Separation Axioms
	Conclusion


