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In microfluidic systems, analyte/reagent mixing is essential to achieve rapid
chemical/biochemical reactions. The low Reynolds number (Re) flow, however, makes
passive mixing difficult and necessitates the use of some external stimulus to cause
disturbance in the system. Here, we report how a periodic thermocapillary effect
may interact with strategically patterned wall wettability and boost the mixing
dynamics in a micro-confined ternary-liquid film system. Approximate, yet without
compromise on the physics involved, analytical solutions to the energy and Navier–Stokes
equations under creeping flow conditions are obtained to comprehend the thermal
and hydrodynamic characteristics of the thermo-capillarity. In the binary fluid limit,
our model is validated with the findings of Pendse & Esmaeeli (Intl J. Therm. Sci.,
vol. 49, 2010, pp. 1147–1155), and good agreement is found. The flow characteristics
in the ternary-liquid system due to discrete wall temperatures is also demonstrated
via finite-element-based numerical simulations, and agreement with the semi-analytical
solution is noted. The qualitative study of the flow pattern reveals that enhanced
mixing is obtained as a result of vortical motion created by the interplay of the
periodic thermo-capillarity-driven interfacial flow and wall slip. The observation is
further consolidated from the numerical simulation of the species transport equation.
The species distribution so obtained is compared with fully developed laminar flow for
the same inlet concentration. Our study further investigates the effects of the fluids’
relative thermal conductivity, wall slip length, relative film thickness and thermal (or
slip) phase differences on the mixing efficiency of the proposed arrangement. While
wall slip, relative film thickness and relative thermal conductivity regulate mixing in
the top and bottom layers, phase difference determines how well the middle fluid
layer mixes. Slip at the walls creates vortex distortions to get a strong churning effect.
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The lower thermal conductivity of the top and bottom fluids weakens the thermocapillary
flow; however, the dominance of the patterned slip improves mixing in such cases.

Key words: thermocapillarity, mixing enhancement, microfluidics

1. Introduction

The existence of an interface between two fluid molecules or a fluid element and
a solid substrate generates interfacial tension: a state function that depends on the
temperature, fluid electric charge density and fluid composition, for example (Scriven
1960). Therefore, a variation of temperature, concentration, electric charge density,
and so on, along an interface creates an interfacial tension gradient, which leads to
Marangoni flow. If temperature fluctuations create a gradient in the interfacial tension, the
phenomenon is called the thermocapillary effect or thermal Marangoni effect. Likewise,
electro-capillarity, the solutal Marangoni effect, and so on, also exist depending on the
genesis of the flow. Thermocapillary (TC) flow is noted to influence several practically
relevant processes, such as in weld pools (Ramanan & Korpela 1990), in liquid combustion
processes (Prokofiev & Smolyakov 2019), during crystal growth (Cuvelier & Driessen
1986), in droplet coalescence (Rother & Davis 1999) and during bubble migration (Chen
& Lee 1992).

The thermal Marangoni effect is important for understanding and manipulating
liquid–liquid systems. The constant formation of dimples on unevenly heated silicone-oil
films (mean thickness varying from 0.125 to 1.684 mm) was experimentally studied and
was reported to be due to the TC effect (Burelbach, Bankoff & Davis 1990). Liu and Roux
(1998) explored the TC flow in a molten B2O3-GaAs binary system, and Binghong et al.
(2002) studied TC flows in a two-layer binary system of paraffin and 2 FC-70 inclusive
of air entrainment. During the IML2 mission of Spacelab aboard the US Space Shuttle,
Georis et al. (1999) conducted microgravity experiments to examine the TC effect in a
sandwiched liquid film (ternary-liquid) system. Alexeev, Roisman & Stephan (2005) and
Fath et al. (2015) explored the TC effect in a microchannel due to wall topology, both
experimentally and numerically. Microscale particle image velocimetry is generally used
to visualize the flow pattern within such systems (Amador et al. 2019). These microfluidic
devices exploiting the TC effect can be used for precision clinical assays at the point of
care.

The Marangoni effect has also been studied mathematically owing to the rich physics
it offers. Birikh (1966) reported an exact solution for the TC convection of a planar
horizontal liquid layer, for a constant temperature gradient at the boundaries. Sen and
Davis (1982) theoretically explored the steady TC flow of liquid in a two-dimensional
rectangular slot with a free top surface using the asymptotic approach. Tan, Bankoff &
Davis (1990) employed the long-wave theory to study a thin liquid film’s TC flow over
a flat surface, subjected to the two-dimensional periodic (spatially varying) temperature
distribution. Pendse & Esmaeeli (2010) semi-analytically solved the Navier–Stokes and
energy equations to explain the thermal Marangoni flow in a binary-liquid system. They
considered a periodic thermal stimulus at the lower surface, while the upper surface was
maintained at a uniform temperature.

The standard methodologies employed to obtain a theoretical solution for the flow
dynamics at small scales are lubrication-theory-based models (Saprykin, Trevelyan,
Koopmans, & Kalliadasis 2007; Frumkin & Oron 2016; Pham, Cheng, & Kumar 2017) and
the asymptotic approach (Strani, Piva, & Graziani 1983; Chan, Chen & Mazumder 1988).
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Numerous types of convections caused by buoyancy or the TC force have been effectively
studied using asymptotic theory. Poulikakos & Bejan (1983) studied flows in an attic
heated from below, while Cormack, Leal & Imberger (1974) considered buoyancy-driven
flows in a rectangular container delimited by differently heated lateral walls.

Several past TC studies are mainly focused on instability analysis (Smith & Davis
1983; Goussis & Kelly 1990; Mercier & Normand 1996; Burguete 2001). Oron
and Nepomnyashchy (2004) investigated the beginning of Marangoni instability in a
binary-liquid system with a non-deformable interface under the influence of the Soret
effect. Patne, Agnon & Oron (2021) performed a stability analysis in a liquid layer with
an imposed oblique temperature gradient. Thermal instability due to Bénard convection is
also explored (Eckert, Bestehorn, & Thess 1998; Tomita & Abe 2000; Schatz & Neitzel
2001). However, we assume low capillary number flow in the current study, which leads
to a stable TC flow in the liquid layers with nearly flat interfaces.

Most of the theoretical analysis performed on TC assumes no-slip conditions at the walls
(Pimputkar & Ostrach 1980; Liu & Roux 1998; Pendse & Esmaeeli 2010; Agrawal, Das &
Dhar 2022). Although a few works are reported on the TC flow in microchannels with wall
slip boundary conditions, they are primarily focused on the stability analysis of the system
(Tiwari & Davis 2014; Kowal, Davis, & Voorhees 2018; Chattopadhyay, Mukhopadhyay,
Barua, & Gaonkar 2021). Ghosh and Chakraborty (2012) observed that the introduction
of patterned wettability at the microchannel walls prompts mixing in an electroosmotic
flow. Here, we explore the role of the interplay of the patterned wall wettability and the
TC effect by the periodic wall thermal stimuli on the mixing dynamics.

Owing to the importance and controllability of the TC effect, we aim to harness
its capabilities for fluidic actuation and solute transport in microscale fluid handling
systems. This study theoretically explores the TC effect in a ternary-liquid system due
to periodic wall thermal stimuli within a microchannel with patterned wall wettability.
Such a system appears in certain modern technologies working with intricate multilayer
systems. One such example is a crystal formation technique used in space laboratory
missions called the liquid encapsulation crystal growth technique (Ratke, Walter &
Feuerbacher 1996). This technique produces high quality crystals by sandwiching the melt
between fluid layers. The present work aims to understand the interplay of the periodic
thermal stimuli, wall wettability patterns and the fluids’ thermophysical properties in
the system’s mixing phenomenon. Given the importance of the mixing process and to
obtain quick sample processing at small scales, numerous experimental, numerical and
theoretical analyses have been performed to understand the TC-driven flow in multilayer
systems (Nepomnyashchy & Simanovskii 1999; Shevtsova et al. 2005; Simanovskii
2007). However, none of the earlier works address the role of surface wettability of
the microchannel walls. Also, the past works on the TC effect in multilayer systems
are restricted to directional temperature gradients, and do not consider periodic thermal
boundary conditions on the confining walls, which justifies the novelty of the present work.

We solve the decoupled energy and Navier–Stokes equation for a ternary-liquid system
by employing the perturbation method to obtain the temperature and the streamfunction
distribution within the microchannel. The mathematical analyses are performed under the
assumption of negligible Marangoni number and flat interfaces. Our study also confirms
the credibility of the above assumptions by evaluating the Marangoni and the capillary
numbers for the problem using the characteristic parameters. Further, we also obtain
an estimated profile of the interfaces, which reveals that the interfacial deformation is
negligible relative to the system length scales. Lastly, the transport of solute in the system
is numerically explored.
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Properties (at T = 25 ◦C)

Thermal
Location in the Dynamic conductivity, Specific heat,
ternary-liquid Density, ρ viscosity, μ λ Cp

Fluid (reference) system (kg m−3) (mPa s) (W m−1 K−1) (J kg−1 K−1)

Ethanol
(Engineering
ToolBox 2018)

Top layer 785 1.074 0.167 118

Sunflower oil
(Rojas 2013)

Middle layer 918 52 0.161 2138.5

Water (Dinçer &
Zamfirescu 2016)

Bottom layer 997.1 0.89 0.59 4183

Table 1. Details of immiscible ternary-liquid system.

2. Description of the physical system

Our study considers a ternary-liquid system which is sandwiched between the two
parallel plates of a microchannel in microgravity conditions. The participating fluids are
assumed to be immiscible with each other. A typical example of such a combination of
fluids is mentioned in table 1. The bottom and the top walls are exposed to periodic
thermal stimuli: Tl(1 + δl cos(α(x̄/lc))+ δ2

l cos(2α(x̄/lc))) and Tu(1 + δu cos(α(x̄/lc)+
θ)+ δ2

u cos(2α(x̄/lc)+ 2θ)), where Tl/Tu, lc, α and θ are the mean temperature,
characteristic length scale and oscillation constants, and δi(∼O(0.1)) is the perturbation
parameter (here, i = l and u represent the bottom and the top walls, respectively) (figure 1).
Usually, any periodic function can be written as the summation of n harmonic terms
using Fourier series, where n is an integer whose value tends to infinity. Inspired by the
Fourier expansion, we have considered a temperature function up to the second harmonics.
Although a few past works are reported to consider periodic wall temperature up to the first
harmonic (Pendse & Esmaeeli 2010; Agrawal et al. 2022), in this study we have deemed
the second-harmonic function to illustrate how to accommodate for the higher-order terms.
Further, the inclusion of the second harmonic in the thermal boundary condition is a
mathematical requirement of the problem to incorporate the periodic behaviour of wall slip
in the subsequent analysis. The symbols with an overhead bar represent the dimensional
quantities and those without a bar are dimensionless quantities (normalized by their
corresponding reference values) in the subsequent analysis.

We consider patterned wettability at the walls, which creates slip boundary conditions
as

ūa|ȳ=−(b̄/2+ā) = γ̄ (ε + δl cos(αx))
∂ ūa

∂ ȳ

∣∣∣∣
ȳ=−(b̄/2+ā)

, (2.1a)

and

ūc|ȳ=(b̄/2+c̄) = −γ̄ (ε + δu cos(αx + θ))
∂ ūc

∂ ȳ

∣∣∣∣
ȳ=(b̄/2+c̄)

, (2.1b)

where ūa and ūc are the velocity of the bottom and the top layers, respectively. γ̄ and
ε are slip parameters such that ε � δl (or δu). Hence, γ̄ δl/lc and γ̄ δu/lc represent the
normalized slip length (ls) at the bottom and the top walls, respectively. It is to be noted
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ūc|ȳ = b̄
2

+ c̄

∂ūc

∂ȳ b̄
2

+ c̄
= –γ̄

T̄ = Tu
ε + δu cos α x̄

lc
 + θ

1 + δucos α x̄
lc

 + θ  + δu
2 cos 2α x̄

lc
 + 2θ

ȳ = 

ūa|ȳ = – b̄
2

+ ā

∂ūa

∂ȳ b̄
2

+ ā
= γ̄ ε + δl cos α x̄

lc ȳ = –

T̄ = Tl

c̄

b̄

ā

x̄
ȳ

1 + δl cos α x̄
lc

 + δl
2 cos 2α x̄

lc

Fluid ‘c’

Fluid ‘b’

Fluid ‘a’

Figure 1. The ternary-liquid layers in a micro-conduit with periodic thermal stimuli applied at the channel
walls. Here, coordinate axes x̄ and ȳ represent the axial and the lateral directions of the microchannel,
respectively, and ā, b̄, c̄ denote the thicknesses of the fluid layers. The expressions for wall temperature and
slip velocities are shown in the figure.

that the wall wettability patterns can be created independently of the wall temperature
via chemical etching in practice. In the present analysis, we choose the wall slip to be in
phase with the corresponding wall temperature for mathematical ease. Further, we have
observed in our earlier work (Agrawal, Das & Dhar 2023) that the influence of a periodic
wavenumber and the phase of the wall slip is minimal compared with the slip length, the
effect of which is discussed in detail in this paper (see § 4.3).

The mathematical analysis performed in the present work is based on two
critical assumptions: (a) the governing non-dimensional numbers i.e. Reynolds number
(Re = ρVlc/μ̄), capillary number (Ca = μV/σ̄ ) and Marangoni number (Ma =
−σTlc
T/μDt ∼ Vlc/Dt), as V̄ ∼ −σT
T/μ̄ for TC flow (Pendse & Esmaeeli 2010),
are much smaller than 1. Here, ρ̄, μ̄, σ̄ , σT and Dt represent the fluid density, viscosity,
surface tension coefficient, temperature coefficient of the surface tension and thermal
diffusivity and V̄ , lc and 
T are the characteristic velocity, length and temperature
difference of the system. (b) The fluid–fluid interfaces remain undeformed and flat during
the dynamics. The characteristic values of the problem’s governing non-dimensional
numbers can be determined using the typical values of the parameters. The usual orders
of the length scale and the velocity in a microchannel are 10 μm and 10−4 m s−1,
respectively (Das & Chakraborty 2018). Taking the thermophysical properties of water
at 300 K (ρ̄ = 997 kg m−3, μ̄ = 0.00086 Ns m−2, σ̄ = 0.072 N m−1, Dt = 1.5 ×
10−7 m2 s−1) (Bergman et al. 2011), the non-dimensional numbers can be evaluated as:
Re ∼ 10−3, Ca ∼ 10−6 and Ma ∼ 10−3. The credibility of the second assumption (flat
and undeformed interfaces) is demonstrated by obtaining the estimated profiles of the
deformed interfaces in a later part of the paper.

Further, we have assumed stable parallel flows in the three liquid layers as it is
well established in the literature that an instability arises in a multilayer system only
above a critical value of the Marangoni number (Ma), which is usually of the order
of ∼O(103). For instance, the stability analysis performed by Simanovskii (2007)
demonstrates that the critical value of the Marangoni number (Ma) to incite instability
is Ma = 1250 for a 47v2 silicone-oil–water–7v2 silicone-oil system, and Ma = 450
for an air–ethylene glycol–fluorinert FC75 system. Since the order of the Marangoni
number in the present analysis is ∼O(103), stable parallel flows can be comfortably
considered.
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3. Mathematical description of the system

3.1. Thermal transport analysis
We obtain the approximate analytical solution for the system by appealing to the
asymptotic perturbation approach. We solve the energy equation in the limiting case of
small Marangoni number (or Péclet number), which reduces the governing differential
equation to the Laplacian of the temperature field, as

∇2T̄ i(x, y) = 0, where i = a, b, c and ∇2 = ∂2

∂x2 + ∂2

∂y2 . (3.1)

Here,

T̄ i(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T̄a(x, y); −a − b
2
< y < −b

2

T̄b(x, y); −b
2
< y <

b
2

T̄c(x, y); b
2
< y <

b
2

+ c

, (3.2)

where a, b and c represent the properties of the lower, the middle and the upper liquid
layers, respectively. Boundary conditions available to solve the above partial differential
equation (3.1) are:

(a) Bottom wall surface temperature

T̄a|y=−(b/2+a) = Tl(1 + δl cos(αx)+ δ2
l cos(2αx)). (3.3)

(b) Top wall surface temperature

T̄c|y=(b/2+c) = Tu(1 + δu cos(αx + θ)+ δ2
u cos(2αx + 2θ)). (3.4)

(c) Temperature at the separating interface between fluid ‘a’ and fluid ‘b’

T̄a|y=−b/2 = T̄b|y=−b/2. (3.5)

(d) Temperature at the separating interface between fluid ‘b’ and fluid ‘c’

T̄b|y=b/2 = T̄c|y=b/2. (3.6)

(e) Heat flux across the separating interface between fluid ‘a’ and fluid ‘b’

λ̄a ∂T̄a

∂y

∣∣∣∣
y=−b/2

= λ̄b ∂T̄b

∂y

∣∣∣∣
y=−b/2

. (3.7)

(f ) Heat flux across the separating interface between fluid ‘b’ and fluid ‘c’

λ̄b ∂T̄b

∂y

∣∣∣∣
y=b/2

= λ̄c ∂T̄c

∂y

∣∣∣∣
y=b/2

. (3.8)

Here, λ̄i represents the thermal conductivity of fluid ‘i’. We solve the required partial
differential equation (2.1) to obtain the temperature distribution within the microchannel
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by an asymptotic approach using the perturbation method, as

T̄ i = T̄ i
0 + δlT̄ i

1 + δuT̄i
2 + δlδuT̄i

3 + δl
2T̄ i

4 + δ2
uT̄i

5, where i = a, b, c. (3.9)

Now, the governing equation for each term can be written as

∇2T̄ i
j (x, y) = 0; where i = a, b, c; j = 0–5; and ∇2 = ∂2

∂x2 + ∂2

∂y2 . (3.10)

The modified boundary conditions are summarized in table 2.
A close observation of the boundary conditions mentioned in table 2 reveals that the

zeroth-order term of the temperature field is a function of ‘y’ (T̄ i
0(y)) and is obtained by

solving the second-order ordinary differential equation (d2T̄ i
0(y)/dy2 = 0), which gives

T̄ i
0(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T̄a
0 (y) = (T̄u − T̄ l)y

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

+
2T̄ lc

(
λa

λc

)
+ 2T̄ lb

(
λa

λb

)
− T̄ lb + 2T̄ua + T̄ub

2
(

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

) , −a − b
2
< y < −b

2

T̄b
0 (y) =

(T̄u − T̄ l)

(
λa

λb

)
y

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

+
2T̄ lc

(
λa

λc

)
+ T̄ lb

(
λa

λb

)
+ T̄ub

(
λa

λb

)
+ 2T̄ua

2
(

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

) , −b
2
< y <

b
2

T̄c
0(y) =

(T̄u − T̄ l)

(
λa

λc

)
y

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

+
T̄ lb

(
λa

λc

)
+ 2T̄ lc

(
λa

λc

)
− T̄ub

(
λa

λc

)
+ 2T̄ub

(
λa

λb

)
+ 2T̄ua

2
(

c
(
λa

λc

)
+ b

(
λa

λb

)
+ a

) ,
b
2
< y <

b
2

+ c.

(3.11)

Using the variable separation approach to replace T̄ i
j (x, y) = Xi

j(x)Y
i
j (y) in (3.10) for the

higher-order terms of the temperature field and noticing the periodicity of the temperature
boundary conditions along the axial direction, we obtain

d2Yi
j (y)

dy2 − ni2
j Yi

j (y) = 0 and
d2Xi

j(x)

dx2 + ni2
j Xi

j(x) = 0, (3.12a,b)

i.e. Yi
j (y) = Āi

j cosh(ni
jy)+ B̄i

j sinh(ni
jy) and Xi

j(x) = C̄i
j cos(ni

jx)+ D̄i
j sin(ni

jx),
(3.13a,b)

i.e. T̄ i
j (x, y) = (Āi

j cosh(ni
jy)+ B̄i

j sinh(ni
jy))(C̄

i
j cos(ni

jx)+ D̄i
j sin(ni

jx)). (3.14)
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T̄
a 0
| y=

−(
b/

2+
a)
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T̄ l

T̄
a 1
| y=

−(
b/

2+
a)

=
T̄ l

co
s(
α

x)
T̄

a 2
| y=

−(
b/

2+
a)

=
0

T̄
a 3
| y=

−(
b/

2+
a)

=
0

T̄
a 4
| y=

−(
b/

2+
a)

=
T̄ l

co
s(

2α
x)

T̄
a 5
| y=

−(
b/

2+
a)

=
0

To
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Wavy Marangoni effect and strategic slip pattern

T̄ i
j(x, y) Expression

T̄ i
1(x, y) (Ai

1 cosh(αy)+ Bi
1 sinh(αy)) cos(αx)

T̄ i
2(x, y) (Ai

2 cosh(αy)+ Bi
2 sinh(αy)) cos(αx + θ)

T̄ i
3(x, y) 0 (trivial solution)

T̄ i
4(x, y) (Ai

4 cosh(2αy)+ Bi
4 sinh(2αy)) cos(2αx)

T̄ i
5(x, y) (Ai

5 cosh(2αy)+ Bi
5 sinh(2αy)) cos(2αx + 2θ)

Table 3. Expressions for different terms of the temperature field.

Here, Āi
j,Bi

j,Ci
j, D̄i

j and ni
j are arbitrary constants. By comparing the wall temperatures,

evaluated by the general formula derived above (3.14) with the applied thermal stimuli, the
general expressions for the temperature terms can be simplified, as mentioned in table 3.

The values of the constants Ai
j and Bi

j, where i = a, b, c and j = 1–5, are determined
by applying the boundary conditions mentioned in table 2. The expressions of the
constants obtained are intricated functions of the characteristic parameters and, hence,
are not provided here to maintain the brevity of the paper. However, the behaviour of the
temperature field and its dependence on different parameters are presented in § 4.1.

3.2. Hydrodynamic analysis
The temperature field obtained in the previous section clearly indicates the existence of
interfacial temperature gradients along both the separating interfaces. We also know that
the interfacial surface tensions are strong and inverse functions of the temperature (Kou
et al. 2019). The variation in the surface tension thus produced acts as a driving force to
create periodic circulations (TC flow) of the participating fluids in the microchannel. We
solve the continuity and the Navier–Stokes equations under the creeping flow assumption
to obtain the flow characteristics of the TC flow, which are given as

∇̄ūi = 0 and − ∇̄p̄i + μ̄i∇̄2ūi = 0, where i = a, b, c. (3.15a,b)

Here, ūi, p̄i and μ̄i represent the velocity field, the pressure distribution and the fluid’s
dynamic viscosity. The above two equations (3.15) can be merged into a single governing
equation by introducing the streamfunction (ψ̄ i(x, y)), which is defined as

ūi = ∂ψ̄ i(x, y)

lc∂y
and v̄i = −∂ψ̄

i(x, y)

lc∂x
, where i = a, b, c. (3.16a,b)

Here, ūi and v̄i are the horizontal and the vertical component of the velocity of the fluid
‘i’. The existence of the streamfunction identically satisfies the continuity equation. Now,
by substituting the velocities as a function of the streamfunction in the Navier–Stokes
equation and taking the curl of the whole equation, we obtain

∇4ψ̄ i(x, y) = ∂4ψ̄ i(x, y)
∂x4 + 2

∂4ψ̄ i(x, y)
∂x2∂y2 + ∂4ψ̄ i(x, y)

∂y4 = 0, where i = a, b, c. (3.17)
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S. Agrawal, P.K. Das and P. Dhar

Here,

ψ̄ i(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ̄a(x, y), −a − b
2
< y < −b

2

ψ̄b(x, y), −b
2
< y <

b
2

ψ̄c(x, y),
b
2
< y <

b
2

+ c

. (3.18)

The governing equation for the streamfunction (3.17) is constrained to the boundary
conditions mentioned below:

(a) Wall slip velocities

∂ψ̄a(x, y)
∂y

∣∣∣∣
y=−(b/2+a)

= γ (ε + δl cos(αx))
∂2ψ̄a(x, y)

∂y2

∣∣∣∣
y=−(b/2+a)

, (3.19a)

∂ψ̄c(x, y)
∂y

∣∣∣∣
y=(b/2+c)

= −γ (ε + δu cos(αx + θ))
∂2ψ̄c(x, y)

∂y2

∣∣∣∣
y=(b/2+c)

. (3.19b)

(b) No-penetration boundary condition across the walls

∂ψ̄a(x, y)
∂x

∣∣∣∣
y=−(b/2+a)

= ∂ψ̄c(x, y)
∂x

∣∣∣∣
y=(b/2+a)

= 0. (3.20)

(c) No-slip boundary condition at the fluid-fluid interfaces

∂ψ̄a(x, y)
∂y

∣∣∣∣
y=−b/2

= ∂ψ̄b(x, y)
∂y

∣∣∣∣
y=−b/2

and
∂ψ̄b(x, y)

∂y

∣∣∣∣
y=b/2

= ∂ψ̄c(x, y)
∂y

∣∣∣∣
y=b/2

.

(3.21a,b)

(d) No-penetration boundary condition at the fluid-fluid interfaces

∂ψ̄a(x, y)
∂x

∣∣∣∣
y=−b/2

= ∂ψ̄b(x, y)
∂x

∣∣∣∣
y=−b/2

= 0 and
∂ψ̄b(x, y)

∂x

∣∣∣∣
y=b/2

= ∂ψ̄c(x, y)
∂x

∣∣∣∣
y=b/2

= 0.

(3.22a,b)

(e) Shear stress balance at the interfaces

μ̄a
(
∂2ψ̄a

∂y2 − ∂2ψ̄a

∂x2

)∣∣∣∣
y=−b/2

− μ̄b
(
∂2ψ̄b

∂y2 − ∂2ψ̄b

∂x2

)∣∣∣∣
y=−b/2

= σTlc
∂T̄
∂x

∣∣∣∣
y=−b/2

,

(3.23a)

μ̄b
(
∂2ψ̄b

∂y2 − ∂2ψ̄b

∂x2

)∣∣∣∣
y=b/2

− μ̄c
(
∂2ψ̄c

∂y2 − ∂2ψ̄c

∂x2

)∣∣∣∣
y=b/2

= σTlc
∂T̄
∂x

∣∣∣∣
y=b/2

.

(3.23b)

We obtain the solution for the streamfunction by the perturbation method, assuming

ψ̄ i = δlψ̄
i
1 + δuψ̄

i
2 + δlδuψ̄

i
3 + δl

2ψ̄ i
4 + δ2

uψ̄
i
5, where i = a, b, c. (3.24)

By observing the boundary conditions, we choose approximate forms for the different
terms of the streamfunction, as mentioned in table 4. The governing differential equations
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Wavy Marangoni effect and strategic slip pattern

ψ̄ i
j(x, y) Expression

ψ̄ i
1(x, y) gi

1(y) sin(αx)+ hi
1(y), where i = a, b, c

ψ̄ i
2(x, y) gi

2(y) sin(αx + θ)+ hi
2(y), where i = a, b, c

ψ̄ i
3(x, y) gi

3(y) sin(2αx + θ)+ hi
3(y), where i = a, b, c

ψ̄ i
4(x, y) gi

4(y) sin(2αx)+ hi
4(y), where i = a, b, c

ψ̄ i
5(x, y) gi

5(y) sin(2αx + 2θ)+ hi
5(y), where i = a, b, c

Table 4. General forms for the different terms of the streamfunction.

ψ̄ i
j(x, y) Expression

ψ̄ i
1(x, y) d4gi

1(y)
dy4 − 2α2 d2gi

1(y)
dy2 + α4gi

1(y) = 0, d4hi
1(y)

dy4 = 0, where i = a, b, c

ψ̄ i
2(x, y) d4gi

2(y)
dy4 − 2α2 d2gi

2(y)
dy2 + α4gi

2(y) = 0, d4hi
2(y)

dy4 = 0, where i = a, b, c

ψ̄ i
3(x, y) d4gi

3(y)
dy4 − 8α2 d2gi

3(y)
dy2 + 16α4gi

3(y) = 0, d4hi
3(y)

dy4 = 0, where i = a, b, c

ψ̄ i
4(x, y) d4gi

4(y)
dy4 − 8α2 d2gi

4(y)
dy2 + 16α4gi

4(y) = 0, d4hi
4(y)

dy4 = 0, where i = a, b, c

ψ̄ i
5(x, y) d4gi

5(y)
dy4 − 8α2 d2gi

5(y)
dy2 + 16α4gi

5(y) = 0, d4hi
5(y)

dy4 = 0, where i = a, b, c

Table 5. The term-wise governing differential equations of the streamfunction.

for each term of the series expansion of the streamfunction (3.24) are mentioned in table 5
and the corresponding boundary conditions are provided in the Appendix (see tables 7
and 8). The term-wise boundary conditions are obtained by substituting the general form
of each term in ((3.19)–(3.23)) and then comparing the coefficients of the perturbation
parameters.

The general solution for gi
j(y), where i = a, b, c and j = 1–5, is obtained by choosing

gi
j(y) = eqi

jy to convert the governing differential equation into its characteristic form, as

qi4
j − 2α2qi2

j + α4 = 0, where i = a, b, c and j = 1, 2, (3.25a)

qi4
j − 8α2qi2

j + 16α4 = 0, where i = a, b, c and j = 3–5, (3.25b)

which gives (qi2
j − α2)2 = 0 or qi

j = ±α for j = 1, 2 and (qi2
j − 4α2)2 = 0 or qi

j =
±2α for j = 3–5. Therefore, the general solution of the above biharmonic equation (3.24)
is given by

gi
j(y) = (Pi

j + Qi
jy) cosh(mαy)+ (Ri

j + Si
jy) sinh(mαy), where i = a, b, c. (3.26)

Here, m = 1 for j = 1, 2 and m = 2 for j = 3–5. We assume the general form of hi
j(y) to

be Ei
jy + Fi

jy
2, as adopted by Ghosh and Chakraborty (2012) in an allied problem. The

constants Pi
j,Qi

j,Ri
j, Si

j,Ei
j and Fi

j are determined by appealing to the boundary conditions
mentioned in the Appendix (tables 7 and 8). The expressions of the constants are involved
functions of the parameters and, hence, are not provided in the manuscript to maintain its
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brevity. However, the dependences of the streamfunction (or the flow velocity) on different
parameters are discussed in detail in § 4.2.

3.3. Interface deformation dynamics
The asymptotic solutions obtained in the previous sections are valid for small governing
non-dimensional numbers (Ma,Re and Ca) and flat (or undeformed) fluid–fluid interfaces.
The credibility of the first assumption (i.e. negligible Ma,Re and Ca) is discussed in
§ 2. Even though the small magnitude of Ca guarantees that the extent of deformations
occurring in the interfaces is negligible, we obtain the deformed profiles of the two
fluid–fluid interfaces using the results for the hydrodynamic characteristics to support
the assumption of flat and undeformed interfaces. Knowing the velocity field in the
microchannel, the deformation of the interfaces can be estimated by using the normal
stress balance across the interfaces, as

((τyy
a − τyy

b)− (p̄a − p̄b))|y=−b/2 = σlκl, (3.27a)

and
((τyy

b − τyy
c)− (p̄b − p̄c))|y=b/2 = σuκu, (3.27b)

where τyy = −2μ̄(∂2ψ̄(x, y)/∂ x̄∂ ȳ) is the normal stress, p̄ the pressure distribution, σl/σu
the surface tension coefficient at the lower/upper interfaces and κl/κu the local curvature
of the deformed interfaces; κ̄ is defined such that it is positive for the case where the centre
of curvatures of the interfaces falls below them and is given by

κ̄i =
d2ȳi

dx̄2(
1 +

(
dȳi

dx̄

)2
)3/2 ∼ d2ȳi

dx̄2 ∼ 1
l̄c

d2yi

dx2 , where i = l, u. (3.28)

Here, ȳi is the vertical displacement of the interfaces relative to their initial undeformed
position, and l/u denotes the lower/upper interface. It is also discussed in the literature
(Pendse & Esmaeeli 2010) that, for Ca � 1, the interfacial deformation is small enough
to assume (1 + (dȳi/dx̄)2) ∼ 1.

The extended expression of the normal stress (τyy) is given by

τyy
i = τyy

i
1δl + τyy

i
2δu + τyy

i
3δlδu + τyy

i
4δ

2
l + τyy

i
5δ

2
u, where i = a, b, c. (3.29)

Here, the different terms of the asymptotic series of the normal stress can be represented
as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τyy
i
1

cos(αx)
τyy

i
2

cos(αx + θ)

τyy
i
3

4 cos(2αx + θ)

τyy
i
4

4 cos(2αx)
τyy

i
5

4 cos(2αx + 2θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Wavy Marangoni effect and strategic slip pattern

= −2μ̄iα

lc
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Si
1y + Ri

1)α + Qi
1 (Qi

1y + Pi
1)α + Si

1 0 0

(Si
2y + Ri

2)α + Qi
2 (Qi

2y + Pi
2)α + Si

2 0 0

0 0 (Si
3y + Ri

3)α + Qi
3

2
(Qi

3y + Pi
3)α + Si

3
2

0 0 (Si
4y + Ri

4)α + Qi
4

2
(Qi

4y + Pi
4)α + Si

4
2

0 0 (Si
5y + Ri

5)α + Qi
5

2
(Qi

5y + Pi
5)α + Si

5
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

cosh(αy)
sinh(αy)

cosh(2αy)
sinh(2αy)

⎤
⎥⎥⎦ . (3.30)

The constants Pi
j,Qi

j,Ri
j and Si

j are as defined for the streamfunction, where i = a, b, c and
j = 1–5. Further, the pressure distribution is obtained by partially integrating the x and y
momentum equations (3.15) and combining the results. The final expression of the pressure
distribution in the microchannel is given by

p̄i = p̄i
1δl + p̄i

2δu + p̄i
3δlδu + p̄i

4δ
2
l + p̄i

5δ
2
u, where i = a, b, c. (3.31)

Here, the different terms of the asymptotic series of the pressure distribution can be
represented as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̄i
1

cos(αx)
p̄i

2
cos(αx + θ)

p̄i
3

2 cos(2αx + θ)

p̄i
4

2 cos(2αx)
p̄i

5
2 cos(2αx + 2θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −2μ̄iα

lc
2

⎡
⎢⎢⎢⎢⎢⎢⎣

Qi
1 Si

1 0 0

Qi
2 Si

2 0 0

0 0 Qi
3 Si

3

0 0 Qi
4 Si

4

0 0 Qi
5 Si

5

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

cosh(αy)
sinh(αy)

cosh(2αy)
sinh(2αy)

⎤
⎥⎥⎥⎦ , where i = a, b, c and j = 1–5.

(3.32)

By observing the form of the normal stress and the pressure distribution, we take
approximate forms of the normalized interfacial profiles, as

yi = ai1 cos(αx)+ ai2 cos(αx + θ)+ ai3cos(2αx + θ ) + ai4 cos(2αx)

+ ai5cos(2αx + 2θ ), where i = l, u. (3.33)
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Here, l and u represent the lower and the upper interfaces, respectively. Now, by
substituting the expressions of the normal stress, the pressure distribution and the
approximate form of the interfacial profile in (3.27), we obtain the approximate profiles
of the deformed interfaces (yi). The detailed expressions of the coefficients are intricate
functions of the parameters involved and, hence, are not provided here to maintain
the paper’s conciseness. However, the influence of crucial parameters on the interfacial
deformation is discussed in the results section (§ 4.3).

3.4. Solute transport analysis
The periodic nature of the flow field within the microchannel leads to the circular (or
vortical) motion of the fluid molecules in each liquid layer. These disturbances created
within the fluid layers can be exploited to attain the efficient mixing of chemical reagents
in the solvent fluid layer. In this section, we understand the solute transport and mixing
mechanism in each fluid layer by solving the species transport equation, which is given in
normalized form as

ui ∂Ci

∂x
+ vi ∂Ci

∂y
= 1

Pe

(
∂2Ci

∂x2 + ∂2Ci

∂y2

)
, where i = a, b, c. (3.34)

Here, Ci(x, y) is the normalized solute concentration in fluid ‘i’ and Pe = Vlc/Dc is the
Péclet number, where V̄, lc and Dc are the characteristic velocity, system length scale and
species diffusion coefficient, respectively. The governing equation for the species transport
is subjected to the following boundary conditions: we study the solute transport analysis
by performing numerical simulation using the commercial solver COMSOL Multiphysics.
The ‘transport of dilute species’ model under the ‘chemical species transport’ physics
coupled with steady-state nonlinear solver (stationary solution) is used to solve the
species transport equation in model wizard. Discretization of the geometry is done using
extremely fine mesh grids by the physics-controlled mesh selection tool. The velocity
distribution obtained in the previous analysis is used to define the flow pattern in the
domain. The Dirichlet boundary condition at the inlet and the no-flux boundary conditions
at the interfaces and the walls are applied to the flow domain (refer to table 6). The
outlet condition for the species transport problem remains unknown as it depends on the
flow pattern (Tang, Yang, Chai, & Gong 2004). However, the convective flux boundary
condition at the outlet is employed to perform the mixing simulation for liquid layers with
large length to width ratio (L/i ∼ 12.5), where i = a, b, c and L is the length of the channel
(Das, Tilekar, Wangikar, & Patowari 2017).

4. Results and discussions

4.1. Validation of the approximate analytical solution with the literature
We validate the thermal and hydrodynamic part of the present study with the work of
Pendse & Esmaeeli (2010). The normalized temperature across the interface at x = 0 is
plotted for the present study and is compared with the reference work (figure 2a). The
temperature is normalized as T = (T̄ − Tmin)/(Tmax − Tmin), where T̄ , Tmin and Tmax are
the local, the minimum and the maximum temperature in the Kelvin scale at the x = 0
location. A slight deviation in the two temperature profiles is observed as y → 0. This
ambiguity is attributed to the fact that the reference work is performed on a binary-liquid
system, while we worked on a ternary-liquid system, and the result is validated for a
limiting case of a nearly zero but finite thickness of the middle layer. However, the
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0.6

0.4
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0.75 1.00

Pendse & Esmaeeli (2010)

Present work Wu & Nguyen (2005)

0.5

U
1.0

–0.2

0.2

y

–0.2

Figure 2. Validation of the mathematical formulations made in the present study for (a) the thermal, (b) the
hydrodynamic and (c) the species transport analysis.

axial velocity profile (normalized) for the reduced model of the present study at x = 0.25
coincides with the same of the reference work, which proves the credibility of the current
model (refer to figure 2b). The normalized velocity is given by U = ū/Umax, where ū and
Umax are the local and the maximum velocity at the x = 0.25 line. The solute transport is
validated by comparing the normalized concentration variation across the microchannel
length at two axial locations (x∗ = 2.2 and x∗ = 47.8, where x∗ = x̄/b̄) with that of Wu
& Nguyen (2005). Here, the concentration is normalized with its maximum value at the
corresponding axial location (see figure 2c). To perform the comparison, we adopted the
same velocity profile of the base fluid in our model as taken in the reference work.

4.2. Thermal transport
To demonstrate the origin of the Marangoni convection, we first present the steady-state
temperature distribution in the microchannel for the system configuration shown in
figure 1. Figure 3 shows the distribution of the isotherms and its dependence on the
phase difference between the two thermal stimuli applied at the top and the bottom
wall (θ). The plot is prepared by keeping the other influencing parameters fixed as:
Tl = 300 K, Tu = 310 K, α = 2π, a : b : c = 1 : 1 : 1, λa : λb : λc = 1 : 1 : 1 and δl =
δu = 0.1. The local temperature is normalized using its extremums in the flow domain to
make the charts more illuminating and understandable (T = (T̄ − Tmin)/(Tmax − Tmin)).
Due to the equal thermal conductivity and film thickness of the three fluid layers, the
oscillation behaviours of the top and the bottom wall temperatures are replicated in the
adjacent fluid layers, whereas the middle layer exhibits an intermediate pattern. Since
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y
0.2

–0.5

–0.2

–0.2

0.2

–0.2

0.2

–1.0

(a)

(b)

(c)

1.00.5

–0.5–1.0 1.0

T = 1

T = 0.5

T = 0

0.5

–0.5–1.0 1.00.5

x

x

x

y

y

Figure 3. Thermal contours in the microchannel for different values of the phase difference between the wall
thermal stimuli: (a) θ = 0, (b) θ = π/2 and (c) θ = π. Here, T = (T̄ − Tmin)/(Tmax − Tmin). Parametric detail:
Tl = 300 K,Tu = 310 K, α = 2π, a : b : c = 1 : 1 : 1, λa : λb : λc = 1 : 1 : 1 and δl = δu = 0.1.

the cause of the Marangoni convection is the interfacial temperature gradient, it is more
important to understand the thermal behaviour of the interfaces. Therefore, we plot the
variation of the temperatures at the two interfaces and explore their dependence on the
phase difference between the two wall temperatures (θ) (refer to figure 4). The parametric
combination chosen to prepare figure 4 is the same as that for figure 3. A lateral drift of the
temperature profile is observed with changes in the thermal phase difference for the upper
interface. However, the influence is marginal in the lower interface. The reason for this
observation is the fact that the changes in the phase difference are incorporated by altering
the top wall thermal stimulus, and due to equal thermal conductivity and film thickness of
the fluid layers, the temperature of both the interfaces are decided by the walls closer to
them.

4.3. Hydrodynamic transport
We observe in the previous section that the periodic thermal stimuli provided at the walls
incite periodic interfacial temperature profiles, which create variations in the interfacial
tensions leading to the Marangoni or the TC effect. Further, the oscillatory nature of the
gradients in the interfacial temperature or the interfacial tension prompt the circular (or
vortical) motion of the fluid molecules, stimulating better mixing within the system. It is
also observed that the patterned wettability at the walls can augment the flow pattern in a
microchannel to enhance the mixing performance (Ghosh & Chakraborty 2012).
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Figure 4. Interfacial temperatures for the ternary-liquid system for different values of the phase difference
between the wall thermal stimuli at (a) the upper interface and (b) the lower interface. Here, T = (T̄ −
Tmin)/(Tmax − Tmin). Parametric detail: Tl = 300 K,Tu = 310 K, α = 2π, a : b : c = 1 : 1 : 1, λa : λb : λc =
1 : 1 : 1 and δl = δu = 0.1.
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Figure 5. Streamfunction distribution in the microchannel, and its dependence on the phase difference and
wall slip. Here, ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric detail: Tl = 300 K,Tu = 310 K, α = 2π, a : b :
c = 1 : 1 : 1, λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 : 1, ε = 10−3 and δl = δu =
0.1.
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Figure 6. Streamfunction distribution in the microchannel, and its dependence on the film thickness ratio of
the three liquid layers and wall slip conditions. Here, ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric detail: Tl =
300 K,Tu = 310 K, α = 2π, θ = π/2, λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 :
1, ε = 10−3 and δl = δu = 0.1.
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Figure 7. Interfacial velocity profiles and their dependence on the film thickness ratio of the three liquid layers
and wall slip conditions: (a) upper interface and (b) lower interface. Here, U = ū/Umax. Parametric detail: Tl =
300 K,Tu = 310 K, α = 2π, θ = π/2, λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 :
1, ε = 10−3 and δl = δu = 0.1.
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Figure 8. Streamfunction distribution in the microchannel, and its dependence on the thermal conductivity
ratio of the three liquid layers and wall slip conditions. Here, ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric
detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, a : b : c = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc =
1 : 1 : 1, ε = 10−3 and δl = δu = 0.1.

In our study, we explore the interplay of the patterned wall slip and thermal stimuli
to obtain enhanced mixing in a microchannel. Figure 5 presents the streamfunction
distribution for different thermal (or slip) phase differences (θ) and compares the
results for the no-slip and a finite slip (ls = 0.1) condition at the microchannel walls
(other parameters: Tl = 300 K, Tu = 310 K, α = 2π, a : b : c = 1 : 1 : 1, λa : λb : λc =
1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 : 1, ε = 10−3 and δl = δu = 0.1). It
is observed that, while churning of the fluid molecules is restricted to the middle layer
for the no-slip condition, it occurs in all three fluid layers when a finite slip is present at
the walls. While the cause of the churning effect in the middle layer is attributed to the
phase difference between the two interfacial temperatures, it is due to the interaction of
the patterned wall slip and the periodic TC in the top and the bottom fluid layers. Further,
the distortion of the vortices in the top and the bottom fluid layers due to patterned slip
facilitates the mixing occurrence at larger length scales, which otherwise is confined to
the local vortices. It is also noted that, although the changes in the thermal (or slip) phase
difference (θ) have no serious effect on the mixing dynamics of the top and the bottom
layer, they significantly alter the same in the middle layer. For the non-zero θ , the vortex
enveloping phenomenon is observed in the middle layer, resulting in better mixing, which
is missing for θ = 0. However, the mixing performance in the middle layer does not seem
to be affected much by the wall slip conditions.

We also plot the streamfunction distribution in the three liquid layers for different film
thickness ratios (figure 6) to investigate the other possibilities of mixing intensification.
The same parametric combination is used to prepare figure 6 as for figure 5, except
that the phase difference is fixed to θ = π/2 and the film thickness ratio is varied. It
is observed that the fluid flows in the top layer of figure 6(b) and the bottom layer of
figure 6( f ) are highly chaotic and, hence, provide better mixing outcomes. The relatively
large length scales enable better interplay of the wall slip and the interfacial TC effect
in the cited cases. However, such a kind of vortex interaction is not observed in the
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Figure 9. Interfacial velocity profiles and its dependence on the relative thermal conductivity of the three
liquid layers and wall slip conditions: (a) upper interface and (b) lower interface. Here, U = ū/Umax. Parametric
detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, a : b : c = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc =
1 : 1 : 1, ε = 10−3 and δl = δu = 0.1.

absence of wall slip and, hence, the length scales at which mixing is occurring are
restricted to the local diameters of the vortices (refer to figures 6a, 6c and 6e). To
further understand the flow dynamics within the system, we plot the interfacial velocity
profiles as a function of the film thickness ratio and the wall slip condition (refer to
figure 7). The oscillation amplitude of the velocity seems to exhibit an inverse relation
with its distance from the nearest wall. This is because the axial temperature gradient
and, hence, the velocity at the interfaces due to TC is decided by the nearest wall thermal
stimulus.

Our study also explores the influence of the thermal conductivity ratio of the three fluid
layers on the flow dynamics. A careful observation of figure 8 reveals that the flow strength
is comparatively less in the liquid layer having lower thermal conductivity. This is due to
the fact that the origin of the flow is based on the diffusion of the heat flux from the
wall to the interfaces, which is directly proportional to the thermal conductivity of the
medium. However, the disorder of the flow pattern suggests that better mixing is obtained
in the fluid layer with a lower thermal conductivity as the mixing performance in the
top and the bottom fluid layers is governed by the wall slip, and it dominates for a weak
TC flow.

The variation of the interfacial velocity profiles as a function of the relative thermal
conductivity of the fluid layers for slip and no-slip conditions at the walls is shown in
figure 9. As expected, the magnitude of the interfacial velocity is large when the fluid layer,
which is positioned between the interface and the wall, has higher thermal conductivity. It
is also noted that no significant influence of the wall slip is observed in both the interfacial
velocities. This explains the earlier observation that the mixing performance of the middle
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Figure 10. Streamfunction distribution in the microchannel, and its dependence on the phase difference (θ)
and wall slip conditions in a binary-liquid system. Here, ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric detail:
Tl = 300 K,Tu = 310 K, α = 2π, a : c = 1 : 1, λa : λc = 1 : 1, σT = −10−4 N mK−1, μa : μc = 1 : 1, ε =
10−3 and δl = δu = 0.1.
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Figure 11. Streamfunction distribution in the microchannel, and its dependence on the film thickness ratio
(a : c) and wall slip conditions in a binary-liquid system. Here, ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric
detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, a : c = 1 : 1, σT = −10−4 N mK−1, μa : μc = 1 : 1, ε =
10−3 and δl = δu = 0.1.

layer does not seem to alter much by changing the wall slip conditions (see figures 5, 6,
and 7). Further, a comparative observation of figures 6 and 8, and figures 7 and 9
reveals that the impacts of the fluids’ thermal conductivity and film thickness ratios
are reversed but equally authoritative, as follows from Fourier’s law of heat conduction
(q′′ = λ(∂T/∂n)).
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Figure 12. Streamfunction distribution in the microchannel, and its dependence on the relative thermal
conductivity of the participating fluids (λa : λc) and wall slip conditions in a binary-liquid system. Here,
ψ = (ψ̄ − ψmin)/(ψmax − ψmin). Parametric detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, λa : λc = 1 :
1, σT = −10−4 N mK−1, μa : μc = 1 : 1, ε = 10−3 and δl = δu = 0.1.
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Figure 13. Interfacial deformation and its dependence on the relative film thickness of the three liquid layers
and wall slip conditions: (a) upper interface and (b) lower interface. Here, yi = ȳi/lc, where i = l, u. Parametric
detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb :
μc = 1 : 1 : 1, ε = 10−3 and δl = δu = 0.1.

We continue the discussion by focusing on a binary-liquid system that is created when
the middle layer thickness tends to zero (b → 0) in a simplified model of the current
issue. Figure 10 shows the streamfunction distribution and how it depends on the phase
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Figure 14. Comparison of the steady-state species distribution in a fully developed laminar flow and
the Marangoni flow. Here, C = (C̄ − Cmin)/(Cmax − Cmin). Other parametric detail: Tl = 300 K,Tu =
310 K, α = 2π, θ = π/2, a : b : c = 1 : 1 : 1, λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc =
1 : 1 : 1, ls = 0.1, ε = 10−3 and δl = δu = 0.1.

difference (δ) and wall slip conditions in a binary-liquid system. It is observed from
figure 10 that the relative shift of the streamline contours in different liquid layers, which
appeared in ternary-liquid system for non-zero θ value (see figure 5), is missing in the
binary-liquid system. This observation can be understood by noting that the flow is
generated at the interfaces due to gradients in interfacial temperatures. Two interfaces
exist for a ternary-liquid system whose temperature fluctuations are decided mainly by
the nearest wall. Hence, the temperature of the two interfaces will have phase differences
for non-zero θ , leading to distortion of vortices in the middle layer and a visible shift in
streamline contours in the top and the bottom liquid layer. However, whenever a phase
difference exists between the two wall temperatures, the presence of a single interface
in the binary-liquid system shifts streamline contours in both liquid layers by an equal
amount. Hence, the relative displacement between the streamline contours in the top and
bottom layers is zero. However, there is a net displacement of streamline contours in both
of the liquid layers with respect to the y = 0 line. Further, in the absence of wall slip, the
system’s mixing performance does not appear to be dependent on δ.

A close observation of figures 10(b) and 10( f ) reveals that the presence of a phase
difference (θ) in the boundary conditions leads to net transport of the fluids in the axial
direction. The influence of the relative film thickness and the relative thermal conductivity
of the participating fluids is also demonstrated in figures 11 and 12, respectively. It is clear
that the vortex distortion is only discernible for slip boundary conditions at the walls.
Consequently, the interaction between the system’s thermal stimuli and wall wettability
can be comfortably attributed for this result. Better mixing is attained in a fluid layer with
a larger thickness, similar to the ternary-liquid system for a configuration with varied fluid
layer film thicknesses.

It is also observed that the flow dynamics is not significantly influenced by the thermal
conductivity ratio of the fluid layers, as may be inferred from figure 12. Earlier, it
was found that the flow strength for the fluid layer with significantly lower thermal
conductivity was low for a ternary-liquid system (see figure 8). This observation was
attributed to insufficient heat conduction from the wall to the closest interface. However,
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Figure 15. Species concentration distribution in the middle liquid layer across the microchannel
length at different axial locations. Here, x̄ is in μm, y∗ = ȳ/b̄ and C = (C̄ − Cmin)/(Cmax − Cmin).
Other parametric detail: Tl = 300 K,Tu = 310 K, α = 2π, θ = π/2, a : b : c = 1 : 1 : 1, λa : λb : λc = 1 : 1 :
1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 : 1, ls = 0.1, ε = 10−3 and δl = δu = 0.1.
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Figure 16. Validation of the mathematical formulations with the numerical simulations: (a) thermal result,
(b) hydrodynamic result. Parametric detail: Tl = Tu = 300 K, δl = δu = 0.1, α = 2π, θ = 0, x = 0.3.

since there is only one interface in a binary-liquid system, heat diffusion through the
fluid layer with the higher thermal conductivity determines the variation in interfacial
temperature.

4.4. Interface deformation behaviour
In this section, we explain the credibility of the flat and undeformed interface assumption.
Figure 13 presents the profiles of the deformed interfaces obtained by using the
previous solutions on the streamfunction distribution (other parameters: Tl = 300 K, Tu =
310 K, α = 2π, θ = π

2 , λa : λb : λc = 1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 :
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Figure 17. Velocity contours in the ternary-liquid system for the discrete wall temperature conditions, obtained
from numerical solutions. The colour bar shown is in logarithmic scale. Parametric detail: bottom and top layers

are kerosene oil, middle layer is water, Tl = 300 K,Tu =
{

340 K for N + 0.75 < x < N + 1.25
315 K for N + 0.25 < x < N + 0.75 .

1 : 1, ε = 10−3 and δl = δu = 0.1). The effect of the film thickness ratio and the wall
slip boundary conditions on the interfacial deformation is also demonstrated. The most
critical observation drawn from figure 13 is the order of the deformation relative to the
system length scale (yi = ȳi/lc ∼ 10−3). The small deformation of the interfaces, despite
the presence of circular motion of the participating fluids, is attributed to the low capillary
number (Ca ∼ 10−6) in the present study. The deformation of the interface is small enough
to be neglected relative to the system length scale. It is also observed that the wall slip’s
influence on the interfaces’ deformed profile is imperceptible. However, the deformed
interfaces’ profiles seem to depend on the film thickness ratio. The extent of deformation
is inversely related to its distance from the closest wall.

4.5. Solute transport
To consolidate the point that an enhanced mixing is obtained by the interplay of the
TC effect and the patterned wettability, we compare the steady-state species distribution
in a microchannel due to a fully developed laminar flow and the thermal Marangoni
flow (refer to figure 14). The other involved parameters are kept fixed to perform the
analysis (Tl = 300 K, Tu = 310 K, α = 2π, θ = π/2, a : b : c = 1 : 1 : 1, λa : λb : λc =
1 : 1 : 1, σT = −10−4 N mK−1, μa : μb : μc = 1 : 1 : 1, ε = 10−3 and δl = δu = 0.1).
The order of the Péclet number (Pe) for the solute transport analysis is ∼O(1). To make
the comparison more realistic, we take the thicknesses of the three fluid layers in our study
and that of the film undergoing fully developed laminar flow to be the same (4 μm). A
discrete inlet concentration profile (table 6) is provided in both cases, and how fast the
uniformity in the species concentration across the cross-section is attained is explored.
We found that the mixing length (length scale required to attain full mixing) for the fully
developed flow is 10 times larger than that for the thermal Marangoni flow. The transverse
diffusion or dispersion determines the species transport across the microchannel axis in
a fully developed flow as the flow is unidirectional, and there is no convection current in
this direction. However, the circular motion due to the periodic thermal stimuli enables
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Figure 18. Interfacial temperatures of the ternary-liquid system for the discrete wall temperature
conditions: (a) the upper interface and (b) the lower interface. Here, T = (T̄ − Tmin)/(Tmax − Tmin).
Parametric detail: bottom and top layers are kerosene oil, middle layer is water, Tl = 300 K,

Tu =
{

340 K for N + 0.75 < x < N + 1.25
315 K for N + 0.25 < x < N + 0.75 .

the species convection in both the lateral and the transverse direction in the Marangoni
convection.

To extend the discussion further, we also plot the cross-sectional variation of the species
concentration profiles for the TC flow at different the axial locations (see figure 15). The
other parametric detail is kept the same as that for figure 14. The study is presented only
for the middle fluid layer as similar behaviour is shown by the other two liquid layers as
well (which is also clear from figure 14). The uniformity of the solute concentration is
obtained within 2 μm of axial transport from the inlet, which manifests the rapid mixing
ability of the present configuration.

It is to be noted here that the quantitative comparisons of the mixing performance for
the different parametric combinations is not provided in the present work as the study is
restricted to steady-state analysis. Since there is no net flow in the present configuration
due to periodic boundary conditions, the steady-state species distribution within each fluid
layer becomes independent of the wall slip condition. However, it is predicted from the
streamfunction distributions (shown in figures 5, 6, 8, 10, 11 and 12) that the time scale to
reach the steady condition would be much shorter if the patterned slip condition is imposed
at the microchannel walls. The quantitative justification for the arguments can be provided
by performing transient analysis of the problem, which is beyond the scope of the present
paper.

5. Numerical simulations

We also validate the analytical solutions for the thermal and hydrodynamic transport with
the finite-element-based numerical simulations performed in COMSOL Multiphysics. The
thickness and periodic length (length of the computational domain) of the three liquid

976 A26-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.908


S. Agrawal, P.K. Das and P. Dhar

1.0

0.5

–0.5

–1.0

0.4

0.2

–0.2

–0.2 0.2 0.4–0.4

–0.2 0.2 0.4–0.4

–0.4

Upper interface

Lower interface

x

Uu

Ul

x

(a)

(b)

Figure 19. Interfacial velocities of the ternary-liquid system for the discrete wall temperature conditions: (a)
the upper interface and (b) the lower interface. Here, U = ū/Umax. Parametric detail: bottom and top layers are

kerosene oil, middle layer is water, Tl = 300 K,Tu =
{

340 K for N + 0.75 < x < N + 1.25
315 K for N + 0.25 < x < N + 0.75 .

layers are 20 μm and 100 μm, respectively. The origin of the coordinate system is located
at the centre of the middle layer. The flow domain is discretized using the structured mesh
formation with the maximum grid size of 0.5 μm. The patterned wall thermal stimuli,
as shown in figure 1 with no-slip conditions, are applied at the confining walls (with
Tl = Tu = 300 K, δl = δu = 0.1, α = 2π, θ = 0), and the properties of the liquid layers
are taken to be same as those in the analytical solution. Further, periodic conditions
are used at the lateral boundaries of the computational domain. The Marangoni effect
couples the heat transfer and laminar flow module in the simulations, and the phase
field method is employed to track the interfaces. The temperature and velocity variations
across the interfaces at an axial location of 30 μm or x = 0.3 (normalized dimension)
are compared for the analytical and the numerical solutions in figure 16. The temperature
and the velocity are normalized with their corresponding maximum values to make the
comparison.

We extend the numerical simulations performed to a discrete wall temperature condition
applied to the kerosene oil–water–kerosene oil system, so that the simulation results can
be experimentally replicated in the future. The top wall temperature is taken to be of the
square wave form (5.1) and the bottom wall temperature is kept constant at 300 K. The
contour plot for the velocity field along with the streamlines is shown in figure 17 and the
interfacial temperature and velocity profiles in figures 18 and 19, respectively,

Tu =
{

340 K for N + 0.75 < x < N + 1.25
315 K for N + 0.25 < x < N + 0.75 , where N is an integer. (5.1)

Further, we obtain the steady-state species distribution in the fluid layers for a
Dirichlet inlet concentration condition as taken for the analytical solution (table 6).
The species transport equation is solved via the ‘transport of dilute species’ module
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Figure 20. Species concentration distribution in the middle liquid layer: (a) contour plot of C, (b)
transverse variation of C at different axial locations. Here, x∗ = x̄/b̄, y∗ = ȳ/b̄ and C = (C̄ − Cmin)/(Cmax −
Cmin). Parametric detail: bottom and top layers are kerosene oil, middle layer is water, Tl = 300 K,

Tu =
{

340 K for N + 0.75 < x < N + 1.25
315 K for N + 0.25 < x < N + 0.75 .

of the COMSOL Multiphysics. We present the contour plot of the steady-state
concentration distribution and the transverse variation of the local species concentration
at different axial positions for the middle layer in figure 20. Similar distributions were
observed for the top and bottom layers, and, hence, the results are presented only for
the middle layer to avoid repetition. The coordinate axes are normalized using the
thickness of the middle layer to make the figures more informative (x∗ = x̄/b̄, y∗ =
ȳ/b̄). The transverse variation of the species concentration becomes negligible after
x∗ = 0.5, demonstrating the good mixing performance of the system due to the vortical
motions.

6. Conclusions

In this study, we explore the interplay of the periodic thermal stimuli and patterned
wettability at the microchannel walls to enhance the mixing performance of the
ternary-liquid system. We consider first- and second-harmonic periodic profiles for the
wall slip and temperature boundary conditions. The inclusion of the second harmonic
in the thermal boundary condition is a mathematical requirement of the problem to
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incorporate the periodic behaviour of the wall slip in the subsequent analysis. An
asymptotic approach is applied to obtain a semi-analytical solution to the decoupled energy
and Navier–Stokes equation by the perturbation technique. We determine the controlling
non-dimensional numbers (Re ∼ 10−3,Ma ∼ 10−3 and Ca ∼ 10−6) by using an order of
magnitude analysis, to explain the applicability of the decoupled governing equations. Our
study is based on the crucial premise that the interfaces remain nearly undeformed, which
is later confirmed by obtaining approximate profiles of the interfaces. The deformation
undergone by the interfaces is yi = ȳi/lc ∼ 10−3, which is negligible compared with
the system length scale. We have also performed numerical simulations for the thermal
and hydrodynamic transport of a ternary-liquid system and compared the results with
the analytical solutions. Further, the numerical simulation is extended to discrete
wall temperatures (square wave form) and the corresponding flow characteristics are
presented.

The circular motion generated by the oscillating nature of the driving stimuli provides
excellent blending in all three fluid layers. The mixing effectiveness of the suggested
arrangement is consolidated by comparing the species transport in the present study
and the fully developed laminar flow. To obtain the steady-state species distribution in
the microchannel for a discrete inlet concentration, the species transport equation is
numerically solved in COMSOL Multiphysics for both the present flow pattern and the
fully developed flow. The mixing length in the present model is found to be 10 times
shorter than that in the fully developed flow, indicating better mixing performance. The
enhanced mixing obtained in our work is ascribed to the convective transport of the solute
particles across the microchannel axis by the circular vortices, which are missing in a fully
developed laminar flow.

In order to achieve the best configuration for the current system, we further investigate
the impact of various parameters. The wettability pattern of the walls has a significant
impact on the mixing performance in the fluid layers that are in direct contact with
them. The patterned wall slip interacts with the TC formed at the interfaces to distort
the flow vortices in the top and bottom fluid layers, enhancing the churning effect. The
thermal conductivity and film thickness of the fluid layers also seemed to have significant
impacts on the mixing dynamics of the top and bottom fluid layers. However, we find
that the aforementioned characteristics have no appreciable influence on the middle
layer’s ability to mix, which can instead be modulated by altering the phase difference
between the thermal (or slip) stimuli at the two walls. Lastly, we illustrate the flow
dynamics in a binary-liquid system using a simplified model with zero middle layer
(b → 0).
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Wavy Marangoni effect and strategic slip pattern
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