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Abstract

We consider (finite) groups in which every two-generator subgroup has cyclic commutator subgroup.
Among other things, these groups are metabelian modulo their hypercentres, and in the corresponding
quotient group all subgroups of the commutator subgroup are normal.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20D10; secondary 20F12, 20F16.

In this note we will consider the class of finite groups G satisfying the following
condition:

(*) for all x, y in G there is n = n(x, y) in Z such that [x, y]x = [x, y]n(x^\

Here, as usual, [x, y] is the commutator x~ly~lxy, and ab = b~xab.
We will see that all finite groups satisfying (*) are supersoluble (Theorem 1), and

since condition (*) is inherited by subgroups and quotient groups, we may consider
first the case of groups with Fitting subgroup a p-group. Special attention is required
here if the Fitting subgroup is of index 2 in G (Lemma 4, Lemma 5).

If a finite group G satisfies condition (*), its hypercentre Hz{G) contains the second
derivative G", and all subgroups between G'Hz(G) and Hz(G) are normal subgroups
of G (see Main Theorem).

By G* we will denote the nilpotent residual of G, that is the intersection of all
normal subgroups K of G with G/K nilpotent (this coincides with the intersection of
all terms of the lower central series of G); all other notation should be standard (see
for instance Huppert [3]).

This note includes and extends results of Dirscherl [1].

THEOREM l.IfG is a finite group satisfying (*), then G is supersoluble.
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PROOF. By Doerk [2] it is sufficient to prove that all two-generator subgroups of G
are supersoluble. Since (x, y)' = ([x, y]), this is obvious.

If p is any prime and G is supersoluble, if H is the maximal normal //-subgroup
of G, then the Fitting subgroup of G/H is a p-group. If p runs through all primes, the
corresponding normal subgroups H have only the trivial group in common. So G can
be considered a subdirect product of groups G/H. This explains why we consider
first this special case.

THEOREM 2.I/G is a finite group satisfying (*) such that its Fitting subgroup F is
a p-group, then G/F is cyclic.

PROOF. Since G is supersoluble, its Fitting subgroup F contains the commutator
subgroup G', and the Hall-/?'-subgroups of G are isomorphic to G/F and therefore
abelian. Assume the existence of a noncyclic elementary abelian ^--subgroup (a, b)
in a Hall-p'-subgroup S of G. Denote by R the subgroup [{a, b), F]. We see that
R is a normal subgroup of (F,a,b). Since F is the Fitting subgroup of G we
obtain C(F)n(a,b) = 1 and also C{R) n {a, b) - 1. An element of order q ^ p
operating on a p-group fixes every element of it if and only if it does so with the
cosets of the commutator subgroup; it suffices therefore to consider the quotient group
{R, a, b)/R'. By the preceding we know that [x, R] g /?' for all x € (a, b) different
from 1. Relabelling a and b if necessary we have two subgroups A and B such that
R D {A, B) and [a, A] c R' c A, [b, B] c R' c B, [b, A]R' = R = [a, B]R'.

Choose two elements x e A and y e B, both not in R'.
By condition (*),

[xa, yb]yb — [xa, yb]m for some m.

However, considering modulo /?', we have

[xa, yb] = [x,b][a,y],

[xa, yby" = [x, bYb[a, y]*" = [x, b][a, y]> = [x, b][a, yf.

Since y is a //-element, n — 1 is not divisible by p, and the same applies to m. This
leads to a contradiction since {[x, b]) fl {[a, y]) c /?'.

THEOREM 3.IfG is a finite group satisfying (*) such that its Fitting subgroup F is
a p-group and \G : F\ ^ 1 or 2, then G* is abelian.

PROOF. Choose x such that G = {x, F)and{x)DF = 1. The subgroup [x, F] = R
is normal in G and contained in F. By condition (*), the element x acts on R/R' by
conjugation as a power automorphism, so

x~luxR' = umR'
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for all u e R. Assume that R' is different from 1, and A? is a normal subgroup of G that
contains R^ such that R' D N and R'/N is cyclic. By construction, R' = [u, v]N for
someu,vinR. Now x does not operate as a power automorphism on {u,[u, v], N)/N
and does not fix [u, v] mod N since m2 ^ 1 (x is not of order 2). Accordingly, (*)
is not satisfied for {xN, u[u, v]N) in {x, u, [u, v], N)/N. This contradiction shows
R' = 1. This proves Theorem 3 since R = G*.

LEMMA 4.I/G is a finite group satisfying (*) such that its Fitting subgroup F is a
p-group and [G : F] = 2, then G* is nilpotent of class 2 if p > 3 and of class 3 if
p = 3.

PROOF. Assume that x is an element or order 2 in G. Denote by C the elements of
F that are centralized by x, and by / the set of elements inverted by x by conjugation
and contained in F. While C is clearly a subgroup, we have the following closure
property for I: if a and b belong to / , so does aba. We prove first an interrelation
between C and / .

(1) [a, b] e C if {a, b] c / or {a, b] C C

(2) [a, b] e I if a 6 C and b e I or vice versa.

To prove (1) and (2) we remember that in groups satisfying (*) we know that [ak, bh\
is a power of [a, b]. So if {a, b] c / U C we find

for some m, which in this case can only be 1 or —1, so [a, b] € / U C.
In (1), [a, b] e I and {a, b} c I leads to

and
xa'x = [a,bTl

which is impossible for ab of odd order.

In (2), [a, b]eC with a e C and ft e / leads to

[a, b~l] = [a, b]

and
[fl,62] = l.

Now (*), (1) and (2) yield

(3) if {a, b] CI, then [[a, b], b] = 1.
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To see this, we have [a, b] e C by (1) and [[a, b], b] e / by (2). On the other hand,
by (*), [[a, b], b] is a power of [a, b] and belongs to C. So [[a, b], b] = 1 since

By analogous argument we have

(4) if a e C and fee / , then[[a,b],b] = 1.

Now we consider [x, F ] . This is a p-group which can be generated by elements of
/ since each commutator [x, w] is inverted by conjugation with x. We fix a basis of
[x, F] which is contained in / , and we consider D = [x, F]/[x, F]5 . For images of
basis elements a,b,c,d we have

[[[a, b], c], c] = [[a, b], b] = 1 and so [[[a, b], dcd], dcd] = 1.

Since all commutators of length 5 are trivial we have

[[[a, b], c], c][[[a, b], c], df[[[a, b], d], c]2[[[a, b], d], df = 1

which yields

and from
[[[a, cbc], cbc], d] = 1

we obtain in the same way

Now

[[a, b\, [c, d]] = [[[a, b], c], df = [[[a, c], b], d]~2 = [[[a, c], d], b]2

= [[[c, a], d], b]~2 = [[[c, d], a], bf = [[c, d], [a, b]] = [[a, b], [c, d]]~l,

we obtain

and D4 = 1.
This yields

(5) [JC, F] is nilpotent of class 3 at most.

For p / 3 w e obtain from
[[a, cbc], cbc] = 1

that
[[a, b], c] = [[a,c],b]-\ [[a, b], cf = 1
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and
(6) [x, F] is nilpotent of class 2 at most if p ^ 3.

Since [x, F] is the nilpotent residual G*, Lemma 4 is proved.

We want to remove the restriction in Lemma 4 regarding the prime 3. For this we
begin with a special case.

LEMMA 5. Let G = {a, b, c, x) with x2 = (ax)2 = (bx)2 = (ex)2 = 1 and a, b, c
elements of order a power of 3. Suppose that G satisfies (*). Then [[a, b], c] = 1.

PROOF. Assume to the contrary. Then [x, c] = c2 is a power of [([a, b]x), c] since
x is a power of [a, b]x.

Likewise [c2, [a, b]] is a power of [c2, ([a, b]x)] which in turn is a power of c2. So
we have deduced

[[a,b],c]e{c).

By the proof of Lemma 4 we also know that [[a, b], c] is of order 3, and we have
[[a, b], c] = [[b, c]a] = [[c, a], b]. Using the same argument as before we have

[[a,b],c]e(c)n(b)n{a).

We will show that we can choose a, b, c in such a way that this inclusion does not
hold, and this will be the contradiction needed. Assume that a, b, c are chosen such
that the product of their orders is minimal, and assume further that the orders of b and
c are not smaller than that of a. Let ak = [[a,b],c], and choose v e {b} such that
vk =ak. Then

(vavf = vkakvk[a,v]2s,

where s = k(k - l)/2.
Since [[a, v], a] = 1 and ak = [[a, b], c] € Z({a, b, c)), we have

(vavf = 1.

Now (vav, b, c) — {a, b, c) and (xvav)2 = 1. Also [[uav, b], c] = [[a, b], c], and
the inclusion of [[a, b], c] in {a} D (b) n (c) leads to a contradiction to minimality. So
[[a, b], c] = 1 as stated.

Now we are able to conclude

THEOREM d.lfG is a finite group satisfying (*) such that its Fitting subgroup F is
a p-group and [G : F] = 2, then G* is nilpotent of class 2.

The proof follows directly from Lemma 4 and Lemma 5.
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THEOREM 7. IfGis a finite group satisfying (*) such that its Fitting subgroup F is
a p-group and G ^ F, then the Carter subgroups ofG are abelian.

PROOF. Let G = (x, F) and (x) D F = 1. It is clear that C(x) is a Carter
subgroup of G. It is therefore sufficient to show that F D C(x) is abelian since
C{x) = F f l C(x) x (x). We assume the contrary and choose two elements a, b
of F n C(x) which do not commute. Without loss of generality we may assume
[[a, b], b] = 1. Furthermore we choose an element u contained in G* but not in (G*)'
such that x normalizes (u) and [u, F] is contained in (G*)'.

Since [u,t]e (G*)' for all t in F n C(x) and (G*)' is contained in C{x), we deduce

[M, f] = 1 for all? € F D C(x).

By (*) there is an integer m such that

[au,bx]bx = [au,bx]m

and we have

[au, bx] = [a, bx]u[u, bx] = [a, x]u[a, b]xu[u, x] = [a, b][u, x].

This yields

[au, bx]bx = [a, b]bx[u, x]bx = [a, b][u, x]x = [a, b][u, x]n

for some integer n. From the original equation we deduce

[au,bx]bx = [a,b]m[u,xr

and finally
[a, ft]""1 = [«,*]"—.

By construction we have [a, b] € C(x) while ([«, x]) n C(JC) = 1. Now [a, b]m~l =
[u, x]m~" = 1; and/n — 1 and m—n are divisible by p . Butn — 1 = (m — 1) — (m — n)
is not divisible by p since x is of order prime to p, and this contradiction shows that
the non-commuting pair a, b of elements does not exist: F n C(x) is abelian, and so
is C(x). Theorem 7 is true.

Now we are ready for another structural statement.

THEOREM 8. IfG is a finite group satisfying (*) such that the Fitting subgroup F is
a p-group and F ^ G, then G/Z(G) is the extension of an abelian group by a cyclic
group, and every subgroup satisfying G'Z{G) 3 t 2 Z(G) is a normal subgroup
ofG.
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PROOF. Assume first that (G*)' = 1 and choose an element a of C(x) n F. Since
(ax)r = x for suitable integer r, we have G* 2 [G*, ax] 2 [G*, x] = G* so that

G* = [G*,ax]

and every element of G* can be written in the form [t, ax]. By (*) we see now that ax
normalizes all subgroups of G*, so ax induces by conjugation a power automorphism
in G*. This shows that G/C(G*) is cyclic (of order pn - p"~\ if p" is the exponent
of G*). Now

C(G*) = C(G*) n (G'C(JC)) = G* x (C(x) n C(G*)) = G* x Z(G),

and Theorem 8 follows for (G*)' = 1.
If {G*Y # 1, let L/(G*)' = Z{G/{G*)'). Then L c C(x) is abelian, and for all

u € L and u € G* we have [M, U] = 1. Now L = Z(G), and Theorem 8 is true also
in this case.

Now the general statement on the structure can be proved.

MAIN THEOREM. IfG is a finite group satisfying (*), the following two statements
are true.

(i) G/Hz(G) is metabelian and all subgroups W with G'Hz(G) ^W 2 Hz{G)
are normal subgroups of G.

(ii) The orders of the quotient groups G'Hz(G)/Hz(G) and Hz(G)/Z(G) are
relatively prime.

PROOF. By Theorem 1, G is supersoluble; in particular we know that the Fitting
subgroup F of G contains the commutator subgroup G' of G. Let the prime p be a
divisor of the order of G. Denote by 5 some p-Sylow subgroup of G and by R the
maximal normal p'-subgroup of G. We distinguish two cases.
Case 1: SR/R % Hz(G/R).

In this case we have by Theorem 8

Hz{G/R) = Z{G/R) and (G/R)" c Z(G/R)

and we deduce

5 n Hz(G) = S n Z(G).

Also by Theorem 8 we obtain: all subgroups A/R satisfying

(G/R)'Z(G/R) 2 A/R 2 Z(G/R)
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are normal in G/R, consequently all subgroups A with

G'(Z(G) n S)R 2 A D (Z(G) D S)R

are normal in G.
Case 2: S/?/fl c Hz(G/R).

In this case G/^? is a p-group, and

G'R c Hz(G)R/R.

Now the primes of Case 1 are the divisors of G'Hz{G)/Hz{G), while the order
of Hz(G)/Z(G) is divisible only by primes of Case 2, and this proves statement (ii).
On the other hand, statement (i) follows since W is the intersection of all W R, where
R is defined as above and p runs through all primes dividing the order of G. Since
these products WR are normal in G, so is their intersection.
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