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Time-dependent flows are notoriously challenging for classical linear stability analysis.
Most progress in understanding the linear stability of these flows has been made for
time-periodic flows via Floquet theory focusing on time-asymptotic stability. However,
little attention has been given to the transient intracyclic linear stability of periodic flows
since no general tools exist for its analysis. In this work, we explore the potential of
using the recent framework of the optimally time-dependent (OTD) modes (Babaee &
Sapsis, Proc. R. Soc. Lond. A, vol. 472, 2016, 20150779) to extract information about
both the transient and the time-asymptotic linear stability of pulsating Poiseuille flow.
The analysis of the instantaneous OTD modes in the limit cycle leads to the identification
of the dominant instability mechanism of pulsating Poiseuille flow by comparing them
with the spectrum and the eigenmodes of the Orr–Sommerfeld operator. In accordance
with evidence from recent direct numerical simulations, it is found that structures akin
to Tollmien–Schlichting waves are the dominant feature over a large range of pulsation
amplitudes and frequencies but that for low pulsation frequencies these modes disappear
during the damping phase of the pulsation cycle as the pulsation amplitude is increased
beyond a threshold value. The maximum achievable non-normal growth rate during the
limit cycle was found to be nearly identical to that in plane Poiseuille flow. The existence
of subharmonic perturbation cycles compared with the base flow pulsation is documented
for the first time in pulsating Poiseuille flow.

Key words: shear-flow instability, channel flow

1. Introduction

Since the seminal work of Reynolds, to whom we owe the ubiquitous Reynolds number, on
transition to turbulence in pipes (Reynolds 1883) and the discovery of the famed inflection
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point criterion by Rayleigh (Rayleigh 1879) that are the cornerstones for hydrodynamic
stability theory, the field has seen a great deal of development. A central concept in
stability analysis is to consider the linearisation of the operator or Jacobian about a base
flow and compute its eigenvalues that govern whether infinitesimal perturbations will
ultimately grow or decay. This approach has had tremendous success in the analysis of
the asymptotic fate of perturbations in steady parallel flows from the early solution of the
Rayleigh–Bénard convection (Rayleigh 1916) to the analysis of the viscous linear stability
of parallel flow leading to the Orr–Sommerfeld (OS) operator (Orr 1907; Sommerfeld
1908) that has been the object of numerous analytical and numerical studies (Orszag
1971; Drazin & Reid 1981). Despite the progress, it was only relatively recently that
the persistent mismatch between the predicted onset of linear instability in many shear
flows and the experimental and numerical evidence of transition at much lower Reynolds
numbers (Klebanoff, Tidstrom & Sargent 1962; Avila et al. 2011) was explained. In
fact, for non-normal operators such as the linearised Navier–Stokes operator, the focus
on its spectrum alone blinds the investigation for growth mechanisms exploiting the
non-orthogonality of its eigenbasis; instead, the pseudospectra need to be analysed (Reddy
& Henningson 1993; Trefethen et al. 1993). This new perspective on the stability of
fluid flow puts the focus on transient amplification of initial disturbances to levels at
which nonlinear effects take over that bypass the modal path to turbulence (Henningson,
Lundbladh & Johansson 1993). This realisation has led to the development of non-modal
stability theory that centres the analysis on a linear initial value problem avoiding the
restrictions imposed by the normal mode ansatz. For a detailed review on the topic
see Schmid (2007). Besides linear stability methods, a number of approaches based on
nonlinear theory have been developed. For a recent review on these methods see Kerswell
(2018).

In recent years, with the increased availability of computer power, global instability
theory has gained interest (Huerre & Monkewitz (1990), see Chomaz (2005) or Theofilis
(2011) for reviews of recent developments). This method does not rely on spatial
homogeneity of the flow, allowing for much more geometric flexibility at the cost of larger
computations that require specialised tools (Theofilis 2003). The combination of the linear
stability analysis framework with matrix-free timestepping methods routinely used in flow
solvers (Barkley, Blackburn & Sherwin 2008; Bagheri et al. 2009a) has paved the way
for global stability and transient growth analyses of increasing complexity and fidelity
(Blackburn, Barkley & Shervin 2008; Monokrousos et al. 2010; He et al. 2017; Tsigklifis
& Lucey 2017; Chauvat et al. 2020).

A common feature of most of the studied flow cases is that, despite the spatial
complexity, they rely on a steady base flow in order to perform the stability analysis.
This limits the direct application of the methods to sub-critical Reynolds numbers where
flows are naturally stable (Mack & Schmid 2011; He et al. 2017). In unstable scenarios, it
requires artificial stabilisation methods to recover a steady base flow such as fixed-point
iterations (reviewed in Knoll & Keyes 2004) or relaxation term methods such as selective
frequency damping (Åkervik et al. 2006; Loiseau et al. 2014; Chauvat et al. 2020) or, for
oscillating flows, the use of time-averaged data (Hammond & Redekopp 1997). In fact,
unsteady flows are notoriously challenging to analyse and progress in the understanding
of their linear stability characteristics has been slow (Schmid & Henningson 2001).
Significant steps towards this goal have been made only for time-periodic flows using
energy theory (Davis & Von Kerczek 1973), non-modal stability analysis (Xu, Song
& Avila 2021) and especially Floquet theory (Davis 1976). The latter transforms the
time-periodic problem into a linear eigenvalue problem by assuming periodic solutions
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of the same frequency as the base flow that can be solved with standard stability tools for
steady states. While this technique has been applied to a wide range of flows (Von Kerczek
1982; Barkley & Henderson 1996; Marques & Lopez 1997; Pier & Schmid 2017), it has the
fundamental shortcoming that, although it distinguishes between stable and unstable flows
in the time-asymptotic limit, it ignores intracyclic growth and decay that can be substantial
enough to trigger turbulence via nonlinear mechanisms.

Recently, the optimally time-dependent (OTD) modes have been proposed as a
new framework for the analysis of linear perturbations in time-dependent systems
(Babaee & Sapsis 2016). The method generates a time-evolving orthonormal basis of
a finite-dimensional subspace around an arbitrary time-dependent trajectory that spans
the instantaneously most unstable directions of the tangent space. Following their
proposal, a series of works have established a number of characteristics of the OTD
modes. In particular, it was shown that they converge exponentially fast to the most
unstable eigendirections of the Cauchy–Green tensor, making them well suited for the
reduced-order computation of finite-time Lyapunov exponents (Babaee et al. 2017), and
that they are identical to continuously orthonormalised Gram–Schmidt vectors for a
specific choice of parameters (Blanchard & Sapsis 2019a), which has proved to be a
relevant connection for the application of OTD modes. The strength of the OTD basis
vectors is their capacity to span the instantaneously most unstable subspace of user defined
size in the (possibly infinite-dimensional) phase space and to capture both modal and
non-modal growth within that subspace. Furthermore, the OTD basis vectors are flow
invariant (Babaee & Sapsis 2016) and are dynamically consistent with the full dynamics
(Farazmand & Sapsis 2016; Blanchard, Mowlavi & Sapsis 2018). These characteristics
have led to several applications ranging from control of linear instabilities (Blanchard et al.
2018; Blanchard & Sapsis 2019c), prediction of dynamical events in a statistical framework
(Farazmand & Sapsis 2016), the computation of sensitivities (Donello, Carpenter &
Babaee 2020) to edge tracking (Beneitez et al. 2020), leveraging the ability of the OTD
modes to follow the linear dynamics even along a chaotic trajectory.

In these works, the OTD basis was used primarily as a stable and efficient numerical
tool to obtain a basis of the most unstable subspace, but the structure of the OTD modes
themselves has not been in the focus. In fact, a linearisation around a complex, nonlinear
state makes the physical interpretation of the OTD modes difficult. In order to develop a
better understanding of the physical relevance of the OTD modes, it is useful to apply
the framework to a simpler case in which the base flow is better understood. A good
candidate for this purpose is pulsating Poiseuille flow. In this canonical time-periodic
parallel flow configuration, the constant pressure gradient of plane Poiseuille flow is
modulated harmonically around the mean. Due to the geometric simplicity, the availability
of a general analytical solution of the incompressible Navier–Stokes equations for the base
flow and the wealth of data in the literature, especially on its Floquet stability, this flow case
is ideal as a benchmark for transient linear stability analysis using the OTD framework.
In particular, the configuration is not only unsteady but non-autonomous via the forced
pressure oscillations making its instantaneous stability properties entirely inaccessible to
linear stability analysis via the global mode approach.

The aim of this paper is to give an overview of the theoretical understanding of the OTD
framework and to illustrate its potential as a general tool for the linear stability analysis of
time-dependent flows, in particular for time-periodic configurations. The general purpose
implementation in the spectral element code Nek5000 (Fischer, Lottes & Kerkemeier
2008) is applied to pulsating Poiseuille flow to feature the capabilities and assess the
limitations of the method in order to provide a guide for the application of the framework
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to other flow cases. The instantaneous growth rates and spatial structure of the OTD
modes are analysed, the interaction between pulsation and non-normal growth potential
is explored and the existence of subharmonic perturbation cycles is documented.

The remainder of this paper is organised as follows. In § 2 we review the
OTD framework theory before introducing the formulation for the incompressible
Navier–Stokes equations used in this work (§ 3). We then introduce the flow case used
to illustrate and validate the implementation in Nek5000 (§ 4) and present the results of
the transient linear stability analysis based on the OTD modes (§ 6). A discussion of the
main findings and concluding remarks are gathered in § 7.

2. OTD modes

2.1. Problem specification
We consider a general n-dimensional dynamical system

∂z
∂t

= f (z, t), z ∈ R
n, t ∈ [t0, t0 + T], (2.1)

where f : Rn × [t0, t0 + T] → Rn is a nonlinear but sufficiently smooth vector field. We
denote by z(t) := z(t, z0, t0) a solution of (2.1) with the initial conditions z(t0) = z0 as the
state of a trajectory of the system at time t. Infinitesimal perturbations q(z(t), t) about the
nonlinear trajectory z(t) are governed by the linearised dynamics

∂q
∂t

= L(z(t), t)q, q ∈ R
n, with L(z(t), t) := ∇zf (z(t), t), (2.2)

where L(z(t), t) is the Jacobian of the vector field f .
The general solution of (2.2) can be expressed using the propagator ∇Ft

t0 that maps the
perturbations at the initial time t0 to t along the linearised dynamics given by

q(t) = ∇Ft
t0q0, (2.3)

where q0 = q(t0).

2.2. Preliminaries
When analysing systems of the form (2.2) for their stability properties, the dominant
direction of the tangent space is easily recovered e.g. via the impulse response technique.
If the goal is to also extract information about subdominant directions, the naive approach
to simply integrate a set of vectors using the equations in time is in general doomed to fail.
In practice, almost all initial conditions will asymptotically align with the most unstable
direction while their magnitude grows or decays exponentially, leading to numerical
instability and large errors (Wolf et al. 1985). In order to avoid both the collapse of
all perturbations onto the least stable direction as well as numerical over/underflow, the
OTD modes were introduced in Babaee & Sapsis (2016) by including an orthonormality
constraint into the linear evolution equations. The resulting evolution equations for the
OTD basis vectors qi for i = 1, . . . , r are given by

∂qi

∂t
= Lqi −

r∑
j=1

(〈Lqi, qj〉 − Φij
)

qj, (2.4)

where 〈·, ·〉 is an appropriate inner product, Φij ∈ Rr×r is a skew–symmetric but otherwise
arbitrary matrix. We have omitted the explicit time and trajectory dependence of the
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linearised operator for clarity. The r-dimensional subspace spanned by the orthonormal
basis vectors qi is called the OTD subspace and spans the instantaneously most unstable
directions in phase space (Babaee & Sapsis 2016). We can subsequently define a reduced
operator Lr ∈ Rr×r by orthogonal projection of the full operator L onto the OTD
subspace

(Lr)ij := 〈Lqi, qj〉. (2.5)

The reduced operator thus gives us a computationally tractable approximation of the action
of the full Jacobian which is unfeasible in high-dimensional systems (Babaee et al. 2017).

Combining the set of OTD basis vectors in a matrix Rn×r � Q = [q1, . . . , qr], (2.4) can
be recast in the following form:

∂Q
∂t

= LQ − Q(Lr − Φ), (2.6)

where the reduced operator has the form Lr = QTLQ and (·)T denotes matrix transposition.
From a geometrical point of view, it is instructive to consider (2.4) as the solution to the

minimisation of the norm

G
(

∂Q
∂t

)
:=

r∑
i=1

∥∥∥∥∂qi

∂t
− Lqi

∥∥∥∥
2

(2.7)

under the constraint of orthonormality, i.e. 〈qi, qj〉 = δij, where δij is the Kronecker delta.
The OTD basis vectors are therefore obtained not by optimising the individual vectors qi
but rather by optimising their rate of change to minimise the Euclidean distance between q̇i
and the image of qi through the action of the linear operator L. It is under this perspective
that the name ‘optimally time-dependent’ modes is defined, in sharp contrast to many
methods aiming at finding modal decompositions that are themselves optimal in some
sense such as proper orthogonal decomposition (POD) or dynamic mode decomposition
(DMD) modes. The OTD basis vectors in themselves lack a clear physical interpretation.
Instead, they serve as a numerically stable way of obtaining an orthonormal basis of the
subspace spanning the most unstable directions in phase space.

The evolution equation for the OTD basis vectors also has a geometrical interpretation,
as pointed out in Babaee & Sapsis (2016). The first term that is subtracted from the general
linearised dynamics is QLr = QQT · LQ which corresponds to an orthogonal projection
of the action of the full linear operator onto the OTD subspace. The resulting rate of
change is therefore constrained to the orthogonal complement of the OTD subspace.
This condition is in fact already sufficient to evolve the basis vectors and corresponds
to the trivial choice of Φ. This is related to the fact that in an n-dimensional phase
space the orthogonal complement of any basis vector qi is an (n − 1)-dimensional
hyperplane. The rotation matrix Φ therefore describes the permissible movements of
the basis vectors relative to each other without violating the orthonormality constraint.
More precisely, the off-diagonal terms encode the n − 1 possible rotations within their
respective orthogonal complements. This gives an intuitive motivation for the fact that
the space spanned by the OTD basis vectors is unaffected by the choice of Φ as long as
Φ = −ΦT (Babaee & Sapsis 2016). Previous works also sometimes include the rotation
matrix in the definition of the reduced operator (Farazmand & Sapsis 2016; Blanchard &
Sapsis 2019c).
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A further step in the understanding of the OTD framework was taken in Blanchard
& Sapsis (2019a), who consider the link to Gram–Schmidt vectors. They show that on
choosing the rotation matrix as

Φij =

⎧⎪⎨
⎪⎩

−〈Lqj, qi〉 if j < i,
0 if j = i,
〈Lqj, qi〉 if j > i,

(2.8)

the OTD basis vectors become identical to the continuously orthonormalised
Gram–Schmidt vectors and the evolution equation for the ith OTD basis vector reduces
to

∂qi

∂t
= Lqi − 〈Lqi, qi〉qi −

i−1∑
j=1

(〈Lqi, qj〉 + 〈Lqj, qi〉)qj. (2.9)

Apart from the theoretical appeal, this choice of Φ also has advantageous numerical
properties since the evolution equations (2.9) are lower triangular (notice the difference
in the limit of the sum compared with (2.4)) and can therefore be efficiently solved
through forward substitution (Blanchard & Sapsis 2019a). The original OTD formulation
is not hierarchical in the sense that adding a basis vector requires the recomputation of all
vectors. The Blanchard & Sapsis (2019a) formulation overcomes this issue.

Another feature of this formulation is that the first OTD basis vector is effectively only
constrained to change orthogonal to itself but is otherwise free to follow the linearised
dynamics. Based on our earlier discussion, this means that it will quickly converge to
the dominant direction of the tangent space and subsequently follow it. The first OTD
basis vector is therefore covariant with the dynamics, i.e. is a solution of (2.2), while all
other basis vectors are not, since they are constrained to the orthogonal complement of the
previous basis vectors. The direct connection between the OTD basis vectors and covariant
vectors is still lacking in the literature.

The OTD basis vectors, with exception of the first one, are therefore not amenable
to physical interpretation and it is more useful to consider the most unstable directions
within the OTD subspace spanned by the columns of Q, which contain information about
the physical instabilities of the flow. In order to recover the r most unstable directions U in
phase space, we can compute an eigendecomposition of the reduced operator Lr = VΛV−1

where the columns of V ∈ Cr×r contain the eigenvectors of Lr and Λ is a diagonal matrix
with the corresponding eigenvalues λi ordered by decreasing real part, i.e. Re(λ1) ≥
Re(λ2) ≥ · · · ≥ Re(λn). As pointed out in Babaee & Sapsis (2016), the corresponding
directions U are then obtained by projecting the basis vectors Q = [q1, . . . , qr] as

U = QV. (2.10)

Furthermore, we can compute the instantaneous growth rates σi in the subspace that is
obtained by computing the eigenvalues of the symmetrised operator Lσ = (Lr + LT

r )/2
that contain information about the instantaneous non-normal growth potential in the
subspace that is generated if the eigendirections of Lr are not orthogonal. In particular,
the dominant eigenvalue σmax is the numerical abscissa and corresponds to the maximum
growth rate in the subspace.

We will in the following use the term ‘OTD modes’ only to refer to the projected OTD
basis vectors ui, i = 1, . . . , r, that are the columns of U.
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2.3. OTD basis and finite-time Lyapunov exponents
Lyapunov exponents are a central tool in the analysis of dynamical systems and describe
the asymptotic rate of separation in time of two points initially infinitesimally close
in phase space (Wolf et al. 1985). Dealing with finite time horizons and transient
phenomena, the finite-time Lyapunov exponents can be used instead. They are defined
as the eigenvalues of the Cauchy–Green strain tensor Ct

t0 defined as

Ct
t0 = (∇Ft

t0)
T∇Ft

t0 . (2.11)

The Cauchy–Green strain tensor is symmetric positive definite and thus has an orthogonal
eigenbasis ξi with positive eigenvalues μi.

While it follows from the equivalence between (continuously orthonormalised)
Gram–Schmidt vectors and the OTD basis vectors that the OTD modes ultimately
converge to the dominant eigendirections of the asymptotic Cauchy–Green tensor, it was
independently shown by Babaee et al. (2017) that this convergence is exponentially fast
(under mildly restrictive conditions) and that it is possible to compute the finite-time
Lyapunov exponents (FTLEs) as a byproduct of the computation of the OTD basis at
negligible extra cost, independently of the dimensionality of the considered system.

In this work we use the method for the computation of FTLEs given in Blanchard &
Sapsis (2019a) that uses a classic result for the relation between FTLEs and Gram–Schmidt
vectors. The leading FTLEs can then be computed as

μi = 1
t − t0

∫ t

t0
〈Lqi, qi〉 dτ = 1

t − t0

∫ t

t0
(Lr)ii dτ. (2.12)

If the OTD modes are used to compute the dominant FTLEs, a general guideline is to
use the Blanchard & Sapsis formulation and recompute the FTLEs considering subsets
of Lr. This is possible due to the hierarchical nature of the formulation. The FTLEs
can be computed online, i.e. alongside the base flow trajectory, or offline in a separate
computation, provided the reduced operator is sampled with sufficiently high frequency.

The FTLEs computed over a period of a limit cycle are equal to the real part of the
Floquet exponents, i.e. the linear temporal growth rates over one period (Huhn & Magri
2020). In the rest of the paper, the FTLEs μi are computed exclusively over a period of the
limit cycle and are therefore synonymous with the real part of the corresponding Floquet
exponent. Note that the FTLEs and the Floquet exponents can be computed using the OTD
framework because they depend only on the subspace and do not require the computation
of covariant vectors. Since the OTD basis vectors (except the first) are not covariant with
the dynamics, they do not automatically generate the Floquet vectors which are the special
case of covariant vectors for time-periodic flows (Kuptsov & Parlitz 2012).

2.4. Computational cost and choosing the OTD subspace dimension r
The computational cost of computing the OTD modes was discussed in Babaee et al.
(2017); we summarise the results here to motivate the choices for the general purpose
implementation of the OTD modes in Nek5000 that includes a spatially localised version.

In general, the computation of an r-dimensional OTD basis requires the computation of
the base flow trajectory (2.1) coupled with r solutions of the linearised problem with an
added forcing term (2.4), regardless of the chosen formulation. All of these computations
involve the full system and are typically of similar cost. While the base flow and the
OTD basis can be computed sequentially for time-invariant systems using the Blanchard
& Sapsis formulation (2.9), it should be noted that, in the case of a time-dependent
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dynamical system, (2.4) involves a linearisation around the time-dependent base flow
implying that all r + 1 equations need to be solved simultaneously or the data saved for
reuse. If the full system is high-dimensional, especially the simultaneous alternative can
be very memory intensive.

One possibility to reduce the cost of the method, both in terms of computation time
and storage, is to restrict the linear solves to part of the base flow domain. This option is
discussed in more detail in § A.4 together with a description of an efficient implementation
in Nek5000 and its validation. For the flow case considered in this work, however, the base
flow is analytical (see § 4) and the classical version is employed.

While the appropriate size of the OTD subspace is dependent on the particular
application and a general rule is elusive, a few considerations on the nature of the system
at hand can guide the choice in practice.

Blanchard et al. (2018), who use the OTD subspace to control linear instabilities, suggest
choosing the number of OTD basis vectors r such that

r ≥ max(dim Eq, dim E s
q), (2.13)

where Eq and E s
q refer to the unstable parts of the eigenspaces of the full operator L and

its symmetric part (L + LT)/2, respectively. This choice is motivated by the requirement
to span the directions responsible for both modal (Eq) and, in the case of non-normal
operators, non-modal (E s

q) instabilities.
It is worth mentioning that the most challenging situation for the OTD modes is the case

of eigenvalue crossings in which the most unstable direction is temporarily ambiguous. It
is therefore advisable to compute at least one extra mode to mitigate the effects of such
crossings on the results of interest.

2.5. Boundary and initial conditions for the OTD modes
The OTD equations require the same boundary conditions as the linearised problem.
The simplest approach is to initialise all perturbation fields with random noise and
orthonormalise the vectors by a Gram–Schmidt process to form an orthonormal basis.
Note that physical boundary conditions of the problem do not need to be satisfied from
the start, but that the OTD basis will quickly adapt, as pointed out in Babaee & Sapsis
(2016). The advantage of random noise initialisation is that it ensures coverage of the
broadest possible range of initial perturbation frequencies for the flow to pick up on, thus
circumventing the need for prior knowledge of the structure of the instabilities of interest.
This is the approach followed in most of this work.

In general, the choice of initial conditions is heavily case dependent and in concrete
applications it is often beneficial to include existing knowledge of the system into the
initial conditions to accelerate convergence of the OTD basis.

In particular, if several of the dominating eigenvalues of the system have a similar
magnitude or the system has several eigenvalues close to the real axis (neutral stability), the
convergence to the OTD subspace can be slow. In view of these difficulties, an initialisation
with random noise is generally not a good choice in order to achieve fast convergence;
Instead, an educated initial guess can decisively reduce the time needed for the OTD
subspace to align with the dominant directions in the tangent space.

Another possibility is to initialise the OTD subspace with the leading eigenvectors of the
symmetric part of the full operator (L + LT)/2, thus aligning it with the instantaneously
fastest growing directions. The trade-off with this strategy is that it requires the
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computation of (part of) the spectrum of the full operator which can be computed using
variants of the Arnoldi algorithm even for large systems.

3. Governing equations

The focus of the present work is to illustrate the OTD framework by applying it
to incompressible fluid flow that is governed by the non-dimensional incompressible
Navier–Stokes equations

∂Ub

∂t
= −(Ub · ∇)Ub − ∇pb + 1

Re
∇2Ub + fb,

∇ · Ub = 0,

⎫⎬
⎭ (3.1)

where Ub = (Ux, Uy, Uz)
T is the base flow velocity vector, pb is the pressure, fb is an

external forcing term and Re = U∞L/ν is the Reynolds number based on the reference
velocity U∞, the reference length scale L and the kinematic viscosity ν, supplemented by
the appropriate boundary conditions.

The linearised Navier–Stokes equations governing the evolution of an infinitesimal
perturbation u = (u, v, w) with the associated pressure field p on top of a base flow Ub
are given by

∂u
∂t

= −(Ub · ∇)u − (u · ∇)Ub − ∇p + 1
Re

∇2u + f ,

∇ · u = 0,

⎫⎬
⎭ (3.2)

where the same non-dimensionalisation as for the nonlinear equations is applied. For our
analysis we allow time-dependent solutions of the Navier–Stokes equations as base flow.

When (3.1)–(3.2) are solved numerically, they need to be discretised in space and time.
In order to apply the OTD formalism to the resulting discretised Navier–Stokes equations,
we transform them into dynamical system form. In Nek5000, this is achieved by projecting
the solutions onto a divergence-free space, thus removing the explicit dependence on
pressure. Combining the three components of the ith velocity perturbation into a single
vector qi, (3.2) can be expressed for each perturbation as a forced dynamical system

∂qi

∂t
= LLNSqi + fi, i = 1, . . . , r, (3.3)

where LLNS is the discrete linearised operator. Note that LLNS is intrinsically time
dependent via the base flow.

Comparing (3.3) with the Blanchard & Sapsis formulation (2.9) shows that the
additional constraint for the OTD equations can be introduced directly via the external
forcing term

fi = −〈LLNSqi, qi〉 −
i−1∑
j=1

(〈LLNSqi, qj〉 + 〈LLNSqj, qi〉)qj, (3.4)

where the inner product 〈·, ·〉 is the standard energy norm over the computational domain
Ω where the energy of a perturbation qi = (u, v, w) is computed as

〈qi, qi〉 =
∫

Ω

[u2 + v2 + w2] dΩ. (3.5)

The standard formulation of the OTD equations (2.4) can be obtained in a similar fashion.
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Note that the choice of inner product defines the resulting OTD basis and the derived
quantities. Therefore, especially in situations like compressible flows where no obvious
physical choice exists (Colonius et al. 2002), care must be taken in the definition of the
inner product and the subsequent interpretation of the OTD modes.

4. Pulsating Poiseuille flow

4.1. Flow case
In order to illustrate the implementation of the OTD methodology in an unsteady setting,
we consider pulsating plane Poiseuille flow. This flow case exhibits a parallel, temporally
periodic, streamwise and spanwise independent base flow in the axial direction of the
form Up = (Ux(y, t), 0, 0) that satisfies the incompressible Navier–Stokes equations. To
simplify the problem, we consider only pulsations with a single base frequency Ω . Any
periodic pulsations can be analysed in a similar fashion by considering the corresponding
Fourier series. The pulsating streamwise velocity component relative to the base frequency
Ω can be expressed as the sum of a parabolic steady component (superscript 0) and purely
oscillatory component (superscript osc)

Ux(y, t) = U(0)
x (y) + Uosc

x (y, t). (4.1)

This velocity profile is generated by a spatially uniform and time-periodic streamwise
pressure gradient −Gx(t) and corresponds to the mass-flow rate Q(t) of similar form

Qx(t) = Q(0)
x + Qosc

x (y, t). (4.2)

Some details on the formulae for the general case can be found in Von Kerczek (1982) and
Pier & Schmid (2017).

The steady and unsteady velocity components are respectively given by

U(0)
x (y) = 3

2
Q(0)

x

2h

(
1 −

( y
h

)2
)

,

Uosc
x (y, t) = Qosc

x (y, t)
2h

= Q(1)
x

2h
Re
(
W
( y

h
, Wo

)
eiΩt

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

where Q(1)
x is the amplitude of the oscillating component, Wo is the Womersley number

relating the channel half-height h to the thickness of the oscillating boundary layer δ =√
ν/Ω defined as

Wo = h
δ

= h
√

Ω/ν, (4.4)

and W(ξ, Wo) is a function defining the profile of the unsteady velocity component given
by

W(ξ, Wo) =
(

cosh(
√

iξWo)

cosh(
√

iWo)
− 1

)
/

(
tanh(

√
iWo)√

iWo
− 1

)
, (4.5)

where ξ = y/h and we have used
√

i = (i + 1)/
√

2.
Some authors use β = Wo/

√
2 as the frequency scale but we will follow Pier & Schmid

(2017) to facilitate comparison. The pulsation frequency can be computed as Ω = Wo2/Re
which, in turn, leads to a pulsation period of T0 = 2πRe/Wo2.
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Present Pier & Schmid (2017) Von Kerczek (1982)

Velocity scale U Uc
2
3

Uc Uc = U0

Length scale L h 2h h

Reynolds number
UL
ν

Re
4
3

Re Re = R

Womersley number
h
δ

Wo Wo
Wo√

2
= β

Base frequency
U
L

Wo2

Re
Ω Ω/4 Ω/2

Recrit (steady) 5772.22 7696.29 5772.22

Table 1. Conversion table between different choices of non-dimensionalisation in Pier & Schmid (2017), Von
Kerczek (1982) and the present work.

Following Pier & Schmid (2017), we introduce Q̃, the normalised fluctuating part of the
unsteady flow rate Q(t), given by

Q̃ = Q(1)
x

Q(0)
x

such that Q(t) = Q(0)
x (1 + Q̃ cos(Ωt)), (4.6)

where we choose Q(n)
x ∈ R for n = −1, 0, 1 without loss of generality. Note that Q(1)

x is
twice the corresponding value in Pier & Schmid (2017) to yield an identical definition
of Q̃.

From the equations above it is clear that setting Q(1)
x = 0 recovers the solution for steady

plane Poiseuille flow with

Ux(y) = Uc

(
1 −

( y
h

)2
)

, (4.7)

where we have used that Q(0)
x = 2

3 Uc · 2h. The associated steady pressure gradient is

G(0)
x = 2Ucν

h2 . (4.8)

Figure 1 shows an example of the base flow variation over one oscillation period
including the characteristic boundary layer thickness δ for reference. Note the complex
interplay of reverse flow and inflection points in the local profiles. The stability of the
inflection points is based on the local Fjørtoft criterion (Schmid & Henningson 2001).
Note that, while reverse flow only appears at higher pulsation amplitudes, inflection points
will occur along the profile for virtually all pulsating cases.

We have chosen to normalise the velocity components with the centreline velocity of
plane Poiseuille flow Uc and the channel half-height h which differs from the normalisation
adopted in Pier & Schmid (2017). To facilitate comparison, we briefly summarise the
relation to the normalisation adopted in this work for a few central parameters in table 1.

4.2. Local stability analysis
Parallel and geometrically homogeneous shear flows such as plane Poiseuille flow can be
analysed by defining a fundamental pair of real wavenumbers (α, β) in the stream- and
spanwise directions, respectively, which uniquely describe the problem.

927 A6-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.743


J.S. Kern, M. Beneitez, A. Hanifi and D.S. Henningson

1.00
0.90

0.90

0.80

0.80

0.70

0.70

0.60

0.60

0.50

0.50

0.40

0.40

0.30
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0.10 = t/T0

0.10

Figure 1. Schematic representation of the components of pulsating Poiseuille flow for Q̃ = 1.0 and Wo = 10
over one period (T0 = 471.2). The complete profile (c) is plane Poiseuille flow (a) superimposed with an
oscillating flat Stokes layer (b). (d) Shows a schematic representation of one pulsation cycle including the
regions of reverse flow (shaded in blue), the Stokes layer thickness (dashed black lines) as well as the local
base flow profiles (thick black lines, the number indicates the corresponding time t/T0). The red lines indicate
the location of inflection points in the base flow profile and their stability (full) or instability (dashed) based on
the local Fjørtoft criterion.

We consider wave-like perturbations of the form⎛
⎜⎝

u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)
p(x, y, z, t)

⎞
⎟⎠ =

⎛
⎜⎝

ũ(y)
ṽ(y)
w̃(y)
p̃(y)

⎞
⎟⎠

α,β

exp(iαx + iβz − ωt), (4.9)

where u, v, w are the velocity components, p is the pressure field, ũ, ṽ, w̃, p̃ ∈ Cn are their
respective Fourier transforms in the homogeneous directions and ω ∈ C is the complex
growth rate; Re(ω) = ωr is the (real) temporal growth rate and Im(ω) = ωi is the angular
frequency. Instead of ωi, the phase speed computed as c = ωi/α is often used in this work.

Introducing this ansatz into (3.2) in the absence of external forcing and removing the
pressure dependence by combining the two equations using the wall-normal vorticity η,
the linearised Navier–Stokes equations for a fixed base flow profile can be identically recast
as an eigenvalue problem for the ω as

− ωq̃ = LOSq̃, (4.10)

where q̃ is the state vector containing the Fourier transforms of the wall-normal velocity
and vorticity

q̃ =
(

ṽ

η̃

)
α,β

. (4.11)
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Stability of pulsating Poiseuille flow using OTD modes

This is the standard form of the well-known Orr–Sommerfeld (OS)/Squire (SQ) equations.
The full derivation of the OS/SQ equations can be found in Schmid & Henningson (2001).

The reference spectra for plane Poiseuille flow are obtained for the linear operator in
(4.10) using a Chebyshev collocation discretisation with a wall-normal resolution of 196
points solved in MATLAB.

The eigenvalue problem (4.10) that is at the heart of the local analysis, by construction,
does not allow for time dependence of the base flow. The validation of an implementation
of the OTD framework against solutions of the OS/SQ equations is therefore necessarily
restricted to steady cases in which both methods yield the same results. Furthermore, care
needs to be taken to ensure that both methods solve the same local stability problem
in order to be able to compare results from Nek5000 with results of (4.10) or Pier &
Schmid (2017) who also use the normal mode ansatz in their analysis. Because of the finite
extent of computational domain in the homogeneous direction(s) needed for Nek5000, we
cannot a priori set the stream- and spanwise wavenumbers α and β to define the local
problem. Hence, numerical noise may lead to energy growth in other wavenumbers that fit
the computational box and contaminate the results. Therefore, these spurious modes are
projected out at every timestep.

Note also that (4.10) is expressed in (complex) Fourier space whereas Nek5000 works
in physical space. This means that, since the OS/SQ equations do not have steady
eigenmodes, each complex OS/SQ mode will correspond to two complex conjugate modes
computed with Nek5000. For this reason, all computations in this work are performed with
an even number of modes and we will count the complex conjugates as a single mode for
clarity.

5. Numerical set-up in Nek5000

The present implementation is done in the high-order spectral element code Nek5000
Fischer et al. (2008) solving the incompressible Navier–Stokes equations. In the spectral
element method (SEM), the computational domain is divided into a conformal grid of
deformable, hexahedral subdomains (quadrilateral in two dimensions). On each element,
the velocity solution is expanded in terms of Lagrange polynomial basis functions of
degree N in each spatial direction at Gauss–Lobatto–Legendre quadrature points (for
the pressure, polynomials of degree N − 2 on Gauss–Lobatto points are used), which
is referred to as the PN − PN−2 formulation. Note that the choice of N affects both
the number of degrees of freedom and the rate of spatial convergence of the solution.
Generally, N ≥ 7 is recommended and often suffices, but convergence tests are performed
with N = 15. The SEM approach combines the high accuracy of spectral methods with the
geometric flexibility of finite element methods and is therefore easily extensible to more
complex geometries. Albeit, a simple geometry has been chosen in the present work for
illustrative purposes.

Timestepping is performed via the third-order accurate backward difference scheme
for both linear and nonlinear simulations where the viscous terms are treated implicitly
and the nonlinear and forcing terms are computed explicitly using a third-order accurate
extrapolation scheme with over-integration. To ensure an accurate solution, the timestep
was set such that the Courant–Friedrichs–Lewy number was at most 0.4 relative to the
base flow. The timestep carries over directly to the linear simulations.

To simplify comparisons with the results from the OS/SQ equations, a domain length L
of 2π was chosen in the homogeneous directions. The set of wavenumbers that can be
supported by the system is therefore α, β ∈ N. The structure of the mesh used in the
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0

π 2π

1

−1

y

x

Figure 2. Two-dimensional spectral element mesh for Nek5000. The base flow profile for plane Poiseuille flow
is shown in black. The colours indicate the boundary conditions. The top and bottom walls are no slip (red)
and periodic conditions are imposed on the streamwise boundaries (blue).

stability analysis of two-dimensional (2-D) plane Poiseuille flow is shown in figure 2.
The corresponding mesh for the 3-D case used to validate the code has the same
resolution in both homogeneous directions (see the Appendix in § A). Since the solutions
are periodic, they are in principle independent of the resolution in the homogeneous
direction. Nonetheless, it was found that reasonable resolution was necessary for numerical
stability of the linearised solver and 8 elements were placed in these directions. The
wall-normal resolution is considerably higher, especially towards the walls where the
base flow gradient is largest. The simulations were run with polynomial order N = 9
with solver tolerances set to 10−12 for both velocity and pressure equations. No-slip
boundary conditions are imposed at the wall and periodic conditions in the homogeneous
direction(s), as indicated in figure 2. Since the base flow is analytically known for both
steady and unsteady configurations it is not computed explicitly but instead supplied
directly to save computational effort.

Further details on some numerical aspects of the solution of the OTD equations in
Nek5000 and the validation for plane Poiseuille flow can be found in the Appendix.

6. Numerical results

6.1. OTD modes in pulsating Poiseuille flow
The addition of the pulsatile component to the parabolic base flow profile of plane
Poiseuille flow changes the dynamics of the system dramatically. The pulsation frequency
Ω , with which the system is ultimately synchronised, introduces another time scale into
the system, the pulsation period T0, separating the long-term intercyclic behaviour from
the intracyclic growth and decay within a pulsation cycle. Note that in a time-periodic
flow the limit cycle once all initial transients have passed will have the same temporal
periodicity as the base flow. Since we consider mainly growth rates over time, the
corresponding traces are purely periodic in the limit cycle and we therefore refer to
it as the periodic regime. The OTD modes instantaneously span the subspace of most
unstable directions and therefore allow us to study the initial phase of transient growth,
the intracyclic growth over a base flow period as well as the intercyclic behaviour dictated
by the Floquet exponents.

6.1.1. Long-term evolution and Floquet exponents
Floquet analysis is usually performed separately from classical linear stability analysis
since it requires the equations of motion to be recast to remove the intracyclic variations.
Using OTD modes, the computation of FTLEs and Floquet exponents is a byproduct of the
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Figure 3. Temporal intercyclic growth rates for different values of Wo and Q̃. Full lines adapted from Pier &
Schmid (2017) (data computed up to Q̃ ≤ 0.6 received in private communication), filled circles computed in
Nek5000. The black symbol is the steady configuration. Note that the reference values are scaled to match the
normalisation used in this work. (a) Is a close-up of the region of small pulsation amplitudes with quadratic
dependence on Q̃.

method without significant overhead. Using this framework, the first Floquet exponent was
computed for two-dimensional cases with Re = 7500, α = 1 for different combinations
of Womersley number Wo and relative amplitude of the oscillating flow rate Q̃. Since
only the leading Floquet exponent is computed, these simulations were run with only one
complex mode. The corresponding linear temporal growth rates are shown in figure 3.
The values for Wo and Q̃ were chosen such as to cover the parameter range used in
Pier & Schmid (2017) including unstable and transiently stable cases and also extend the
range to higher relative mass-flow rates. The range of Womersley numbers is related to
experimental values reported for physiological flows (Pier & Schmid 2017) and lies in
the parameter range for pulsating Poiseuille flow where the time scales of the pulsation
and the Tollmien–Schlichting (TS) waves associated with the steady base flow are of
similar magnitude, i.e. the pulsations are neither fast nor slow (Davis 1976) so that
they are expected to noticeably interact with the instability waves. It is also close to
the strongest pulsatile stabilisation at moderate pulsation amplitudes (Wo ≈ 28, Singer,
Ferziger & Reed 1989). Note that plane Poiseuille flow is linearly unstable for the chosen
parameter combination (Re = 7500). Three Womersley numbers were chosen exhibiting
very different stability behaviour for increasing values of Q̃. These results are in very good
agreement with reference data provided by B. Pier (private communication).

While low pulsation frequencies (Wo = 10) are destabilising in comparison with the
steady case at the same Reynolds number for all values of Q̃ investigated, we observe
that the destabilisation seems to saturate beyond relative pulsation mass-flow rates of
Q̃ = 0.5 and even slightly decrease again at the highest values of Q̃. For higher frequencies,
the behaviour is very different. For intermediate pulsation frequencies (Wo = 18), an
increase in pulsation amplitude leads to a nearly monotonic increase in intercyclic
stabilisation up to a maximum cycle-to-cycle decay rate of Re(μ1) = −0.038 for Q̃ =
1.00. For high pulsation frequencies (Wo = 25), although pulsations are stabilising
overall, the relationship between pulsation amplitude and intercyclic growth rate is highly
non-monotonic. For this parameter combination, we observe a maximum stabilisation of
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Re(μ1) = −0.031 at around Q̃ = 0.38 that subsequently reduces considerably to the end
of the considered amplitude range at Q̃ = 1.0 where similar values as for Q̃ = 0.1 are
observed.

6.1.2. Intracyclic growth rate modulation over a pulsation period
While Floquet exponents shed light on the long-term fate of the system, they do not
allow for the analysis of the intracyclic variations that ultimately dictate the cycle-to-cycle
growth or decay of disturbances. Using the OTD framework, we can trace the eigenvalues
of the reduced operator Lr and the associated instantaneous OTD modes during the
pulsation. In the following, we will repeatedly refer to steady values with which we mean
the corresponding values for the steady case at the same Reynolds number, i.e. Q̃ = 0,
without distinction of whether these are computed using Nek5000 or MATLAB.

The evolution of the real part of the eigenvalues as well as the numerical abscissa of Lr
for the pulsating case is shown in figure 4(a) for r = 6 for Wo = 25 and moderate pulsation
amplitudes Q̃ = 0.2. Comparing the signal with the most unstable part of the spectrum of
the corresponding OS operator (dashed lines), we see that, while the growth rates of all
eigenvalues are affected by the pulsation during the transient response, the periodic regime
is characterised for each mode by either an alignment of the eigenvalue modulation with
the pulsation frequency or the convergence to the respective steady value. Doubling the
subspace size to r = 12, shown in figure 4(b), we observe a faster convergence of the least
stable modes to the periodic regime because the more stable modes shield them from the
dynamics outside of the subspace that may lead to eigenvalue crossings. These are general
features that are largely independent of Wo, Q̃ and the subspace size for moderate values
of r. The situation changes for very large subspace sizes; see § 6.1.6 for details.

Figure 5 shows the velocity components of several OTD modes at different instants
of the pulsation cycle in the periodic regime, labelled according to the order of the
eigenvalues of their steady counterparts. Mode u1 is reminiscent of the TS wave in
steady Poiseuille flow that is modulated in the near-wall region, especially at the moment
of maximum amplification (figure 5a). When the corresponding mode is most damped
(figure 5b), the spatial structure is strongly affected by the pulsation close to the wall. Note
that, since there is non-normal growth potential at all times, the most unstable direction
will be a superposition of different modes, as can be seen in the region close to the
centreline for mode u1. Figure 5(c) shows one of the centre modes (mode u3) that is very
similar to its steady counterpart. Although the spatial structure is somewhat altered due to
non-normality, the spatial structure of the OS mode is clearly visible and the growth rate
is unaffected. Finally, figure 5(d) shows the spatial structure of mode u4 when it is most
amplified, resembling the second least stable mode of the T-branch of the OS spectrum.

In order to characterise the different modes more precisely, it is instructive to consider
also the phase speed i.e. the imaginary part of the eigenvalue since α = 1. Combining
the traces of the instantaneous real and imaginary parts of the eigenvalue in the periodic
regime and comparing them for different values of Q̃ exhibits a clear pattern shown in
figure 6 for the two dominant oscillating eigenvalues for Wo = 10 (a,b) and Wo = 25
(c,d). We observe that the eigenvalue excursions are more pronounced for large pulsation
amplitudes, especially at low frequency, and are generally more erratic for higher pulsation
frequencies. For Wo = 10, low pulsation amplitudes lead mostly to a comparatively small
variation of the growth rate at relatively constant phase speed and then abruptly begin
with very large excursions of both growth rate and phase speed for amplitudes beyond
Q̃ = 0.1–0.15. Nevertheless, as Q̃ approaches 0 (steady state), the periodic orbits contract
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Figure 4. Instantaneous real eigenvalues and numerical abscissa of the reduced operator Lr for 2-D pulsating
Poiseuille flow with Re = 7500, α = 1, Q̃ = 0.2 and Wo = 25; (a) r = 6, (b) r = 12. At the points marked
t1, t2 and t3 in (b), the instantaneous structure of the corresponding mode is shown in figure 5.
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regime as marked in figure 4(b); (a) u1 at maximum amplification (t1 = 428), (b) u1 at maximum damping
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Figure 6. Periodic orbits in the complex plane of the instantaneous eigenvalues λ1 and λ4 of Lr for different
pulsation amplitudes Q̃ at Re = 7500, α = 1, β = 0 compared with the corresponding OS spectrum. The
shaded area indicates linear instability. The rows correspond to the two different values of Wo and every column
corresponds to a different mode. For Wo = 10: λ1 (a) and λ4 (b). For Wo = 25: λ1 (c) and λ4 (d).

around the most unstable eigenvalues of the A-branch, confirming the identification based
on the spatial structure of the modes in figure 5. Comparing the eigenvalue orbits for
the same pulsation frequency, we see that both oscillating modes exhibit similar trends
throughout the tested amplitude range, with mode 4 being more stable throughout than
mode 1, as in the steady case.

The two distinct behaviours of the modes in the pulsating case in comparison with the
steady counterpart is linked to the spatial localisation of the modes in relation to the base
flow modulation. The pulsations superimposed onto the parabolic profile exhibit the most
variation close to the walls leading to the eigenvalue excursions of modes 1 and 4 that have
similar behaviour. Close to the centreline of the channel, the pulsating velocity component
is flat so that centre modes see very little variation of the base flow curvature in comparison
with the steady case. Their growth rates are largely unaffected. It is a general feature that
all modes on the A-branch of the OS spectrum are more strongly affected by the pulsations
than the modes on the P-branch, especially the closer they are to the centreline.

Also in terms of the phase speed the eigenvalues have a much less erratic behaviour as
the pulsation amplitude increases. While the phase speeds of all eigenvalues oscillate with
the mean flow amplitude, only the eigenvalues from the A-branch noticeably deviate from
a purely sinusoidal variation in phase speed. Towards the upper limit of the amplitude
range (Q̃ = 1.0) and low frequencies, where we observe the largest excursions of the
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Figure 7. Intracyclic modulation of the most unstable eigenvalue (λ1) in the periodic regime for different
pulsation amplitudes Q̃ at Re = 7500, α = 1, β = 0. The horizontal dashed line indicates the leading
eigenvalue of the corresponding OS spectrum; (a,b) Wo = 10, (c,d) Wo = 25.

modulated eigenvalue traces, we also begin to see the pulsations slightly affect the
growth rates of the centre modes. This is because, at these extreme amplitudes, the
modifications of the local base flow profiles due to the pulsations are no longer confined
to the near-wall regions. This effect is more pronounced for lower frequencies since
the associated oscillating boundary layer is thicker and thus reaches further into the
channel.

The periodic orbits give a good overview of the eigenvalue excursions in the complex
plane but are ill suited to compare different eigenvalue traces at specific instants along the
pulsation cycle since the time dependence is implicit. In this context, it is more useful to
consider the intracyclic modulation of the real and imaginary parts of mode 1 (modulated
TS wave) in the periodic regime separately over time to link the instability characteristics
to flow features. The eigenvalue traces are shown in figure 7 at Wo = 10 7(a,b) and Wo =
25 7(c,d) for the same values of Q̃ as in figure 6.

Comparing the eigenvalue traces with the corresponding Floquet exponents (cf.
figure 3), it is evident that the growth rates over the pulsation cycle are considerably larger
than the net cycle-to-cycle growth rate. This becomes particularly clear when comparing
them with the temporal growth rate of the corresponding steady case (dashed black line).
The steady growth rate is of roughly the same order of magnitude as the leading Floquet
exponent at moderate pulsation amplitudes which themselves are 1–2 orders of magnitude
smaller than the peak growth and decay rates of even very low pulsation amplitudes
(Q̃ = 0.05). These large intracyclic growth rates that are sustained for a large fraction of
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Figure 8. Instantaneous streamwise velocity component of u1 at different instants over a pulsation cycle
for Wo = 10 and Q̃ = 0.5 in the periodic regime (a) compared with the base flow profiles, the location of
inflection points and the boundary layer thickness (b) as well as the instantaneous growth rate of the mode
(c). The velocity fields and base flow profiles are shown for t/T0 = 0.06, 0.15, 0.59, 0.75 marked as t1, . . . , t4,
respectively. The distinction between stable and unstable inflection points is as in figure 1. The computations
were performed with r = 12. A video of the evolution of u1 over the pulsation cycle is available in the
supplementary material as Movie 3.

the period lead to the well-documented large perturbation amplitudes during a pulsation
cycle (Pier & Schmid 2017).

Furthermore, it can be noted that, while the growth and decay rates tend to increase
with the pulsation amplitude for all values of Wo, the peak growth rates saturate at around
0.11 and damping rates rarely exceed −0.15 when the pulsation amplitudes exceed values
of roughly Q̃ = 0.5. The maximum growth rates achievable with pulsations are therefore
lower than the peak values exploiting transient growth mechanisms. Due to the fact that,
unlike transient growth mechanisms that act over short time scales, the high intracyclic
growth rates are maintained over long periods of time, they lead to higher energy growth
overall. Since the extremal growth rates saturate, the continued variation of the Floquet
exponents for higher pulsation amplitudes is mainly due to variations of the distribution of
amplification and damping throughout the cycle.

Due to the large parameter space it is prohibitively expensive to give an exhaustive
description of the effect of pulsation here and we will focus on two combinations (Wo, Q̃),
namely (10, 0.5) and (25, 0.5), to illustrate the range of possible intracyclic variation and
show some typical features of the stability of pulsatile Poiseuille flow. The streamwise
velocity component of the OTD mode corresponding to λ1 for these cases is shown in
figures 8(b)–8(a) and 9(b)–9(a), respectively, at selected instants during the pulsation cycle
showcasing prominent features. The simulations for this section were run with r = 12. We
only show mode 1 since mode 4 shows very similar behaviour and the remaining modes
are centre modes that exhibit little variation over the pulsation cycle.

6.1.3. Stability characteristics at low Womersley numbers
For low frequency pulsations (Wo = 10) and low pulsation amplitudes, the growth rate
variations increase in amplitude with Q̃. The phases of growth and decay happen at
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approximately the same time along the cycle, positive amplification rates existing in the
range t/T0 ∈ [0.14, 0.6]. As the pulsation amplitude is further increased, these phases start
lagging behind, aligning with the appearance of backflow for large pulsation amplitudes.
The amplification phase is well correlated with the existence of an unstable inflection
point outside of the oscillating boundary layer and the snapshots of the modes during this
phase (figure 8(a), t2 to t4) clearly show the localisation of the mode at the wall-normal
height of the inflection points. In fact, as a second (stable) inflection point appears
at the beginning of the acceleration phase, it is also followed by the mode (t3). The
structure of the amplified mode is largely unchanged over the considered range of pulsation
amplitudes. The damping phase initiates as the inflection points collide and vanish (t4).
The observation that the mode follows the base flow inflection points only once they move
out of the oscillating Stokes layer is likely linked to the fact that oscillating Stokes layers
are known to have a stabilising effect on disturbances, decaying faster than in a quiescent
fluid due to viscous dissipation (Davis 1976). The fact that regions very close to the wall
do not promote instability has also been linked to low values of the wall-normal velocity
(v) prevailing there that plays a key role in linear growth mechanisms (Obremski et al.
1969).

As Q̃ is increased past approximately 0.1, oscillations of the eigenvalue start appearing
during the damping phase. As the amplitude is further increased, these oscillations
intensify and finally coalesce, leading to strong damping at the beginning of the cycle that
abruptly transitions to amplification. Snapshots of the u-component of mode 1 contrasting
the spatial structure during the damping and the beginning of the amplification phase after
are shown in figure 8(a) from t1 to t2, respectively. Instead of TS-like structures close to
the wall that are not visible at all, the mode consists of vortices located half-way between
the wall and the centre of the channel that are strongly tilted in flow direction. Their
structure is comparable to Orr waves that, once they have tilted with the base flow and
can no longer extract energy from it, also exhibit similar decay rates. The shift towards the
centre of the channel is also reflected in the phase speed that increases dramatically when
the mechanism picked up by the mode changes. The oscillations prior to the coalescence
are related to intermittent changes of the growth mechanism from TS-like structures to
Orr-like structures and back before the Orr waves shown in figure 8(a) at t1 become
dominant throughout the damping phase.

An interesting note is that the appearance of the oscillations that herald the shift of the
mode as well as the increase of the maximal damping coincide with the limit between the
cruising and ballistic regimes identified by Pier & Schmid (2017) in the saturated nonlinear
regime. The latter is characterised by the complete disappearance of perturbations of the
base flow over parts of the pulsation cycle. When damping is strongest, the leading OTD
mode has negligible amplitude close to the wall. In fact, none of the leading 6 OTD modes
pick up on TS-like structures close to the wall during the damping phase, indicating that
these structures are even more damped. At these lower pulsation frequencies the pulsation
period is considerably longer than the viscous time scale, giving the perturbations time
to decay completely from the nonlinear amplitudes with the major energy supply from
the linear mechanisms cut off. The effect is similar to the intermittent transition observed
in direct numerical simulations of pulsating pipe flow by Xu & Avila (2018), in which
turbulent puffs completely decay at low Womersley numbers.

6.1.4. Stability characteristics at high Womersley numbers
In comparison with the low frequency case that seems to fall into one of two categories
of intracyclic behaviour, the variations of growth rate and phase speed are much more
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Figure 9. Same as figure 8 but for Wo = 25 and Q̃ = 0.5. The velocity fields and base flow profiles are shown
for t/T0 = 0.06, 0.56, 0.62, 0.68 marked as t1, . . . , t4, respectively. A video of the evolution of u1 over the
pulsation cycle is available in the supplementary material as Movie 4.

complicated at higher pulsation frequencies. This reflects on the intercyclic growth that
is highly non-monotonic. The large changes in intracyclic behaviour for small changes in
pulsation amplitude suggest that several competing mechanisms exist simultaneously.

Due to the higher frequency the oscillating boundary layer is very thin compared with
the channel diameter and the phase lag between the boundary layer and the flow rate
variation is more pronounced and leads to a more inflectional base flow profile. In fact,
already for Q̃ = 0.35 the base flow profile exhibits inflection points at all times. Figure 9(b)
shows the location of inflection points at Q̃ = 0.5. Due to the phase lag of the boundary
layer, the amplification and decay phases are shifted compared with the lower pulsation
frequencies. A similar shift in the timing of the maximum decay is seen as Q̃ is increased,
but no oscillations in the eigenvalue can be observed. The shape of the dominant mode
never completely changes as is observed in figure 8(a) from t1 to t2, but remains similar to
distorted waves localised at the wall, as shown in figure 9(a).

Also here, the amplification phase is generally correlated with the existence of two
inflection points outside of the Stokes layer and the modes localise on them. The abrupt
beginning of the amplification phase is related to the emergence of the second inflection
point outside of the oscillating boundary layer that leads to the breakup of the strongly
sheared vortex (t2) into two separate vortices (t3), each localising on one of the inflection
points. The phase of the two vortices quickly aligns as the growth rate peaks to reestablish
a single near-wall wave (t4). The wall waves stay localised on the inflection points during
the entire amplification phase. The beginning of the damping phase is again closely related
with the collision and disappearance of the inflection points (t1). Although the fact that
pulsation and viscous time scales are similar would suggest that local properties of the
base flow profile play a less important role for the stability characteristics, we see that the
existence of inflection points outside of the oscillating boundary layer is intimately linked
to the amplification phases even at high pulsation frequencies.
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Figure 10. Variation of the numerical abscissa σmax of the reduced operator Lr for different choices of r at
Wo = 25 and Q̃ = 0.2 in the limit cycle. Blue to red: r = 6, 12, 16, 20, 30, 40, 70, 100 (a). The base flow
acceleration/deceleration is indicated by the black line representing Q(t) schematically (not to scale). (b) A
close-up around the numerical abscissa of the corresponding OS spectrum (dashed line) and only the curves
for r = 70, 100 are visible.

6.1.5. Pulsations and non-normality
The linearised Navier–Stokes operator is highly non-normal, which can lead to
considerable transient growth due to the non-orthogonality of its eigendirections. In
order to analyse the impact of non-normality on the stability characteristics, we need a
measure for the non-normal growth potential, i.e. the proportion of numerical abscissa
σmax, including both modal and non-modal contributions, that cannot be explained by
modal mechanisms alone. Since σmax always equals or exceeds the growth rate of the least
stable eigenvalue λ1, equality implying normality of the operator for which the non-normal
growth potential is zero, we choose the difference σmax − λ1 as a measure for this potential
(although other choices are possible). Obviously, the perturbations that will experience the
growth rates given by σmax and λ1, respectively, will not be the same in the non-normal
case. Therefore, their difference is not a measure for the non-normal growth potential of
a specific perturbation but instead a global indicator of the non-normal growth potential
over all possible perturbations due to non-normality.

Comparing again figures 4(a) and 4(b), this time focusing on the numerical abscissa, we
see that it follows the modulation of the oscillating eigenvalues. The non-normal growth
potential is much less variable than the eigenvalues themselves and seems to change
only little as the subspace size is doubled to r = 12, even though we observe both large
variations of the intracyclic growth rates and highly damped Floquet exponents compared
with the steady case (see figure 3). Moreover, the fact that the general structure of the
eigenvectors does not change dramatically over the pulsation cycle makes an incidental
correlation of σmax and λi improbable. This might indicate that the numerical abscissa
is already saturated with few OTD modes. This is in fact not the case, as can be seen
in figure 10(a), showing the evolution of the numerical abscissa as the OTD subspace
dimension is increased up to r = 100.

We observe that the maximum instantaneous growth in the subspace continues to
increase as r is increased, only converging slowly as we reach r = 100. It is known for
plane Poiseuille flow that an accurate prediction of transient growth using an eigenmode
expansion requires a large number of modes up to the S-branch, although these are highly

927 A6-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.743


J.S. Kern, M. Beneitez, A. Hanifi and D.S. Henningson

damped (Reddy & Henningson 1993). The present results indicate that this is true also
when we look for transient growth potential within the instantaneously most unstable
subspace in pulsating Poiseuille flow, i.e. that growth and decay due to the base flow
pulsations do not exploit non-normality but instead coexist with it. This conclusion is
in line with the observation that the maximum instantaneous growth rate in the pulsating
flow case for r = 100 is oscillating symmetrically within less than 1 % of the steady value
(figure 10b). To cross-check, the maximum non-normal growth rate was computed for the
steady case using 100 modes, matching with the value computed from the OS operator to
within 0.17 % (not shown), proving that this subspace size is sufficient to capture almost
the full non-normal growth potential. The results show that the small fluctuation of the
numerical abscissa relative to the steady value over a pulsation cycle is nearly in phase with
the acceleration/deceleration of the base flow measured by the sign of dQ/dt. Nevertheless,
further studies are necessary to confirm that the growth indeed saturates and to analyse the
behaviour for other frequencies and pulsation amplitudes.

The evidence shows that the pulsations mainly affect certain modal growth mechanisms
(i.e. the exponential growth rates of the eigenvalues on the A-branch) without noticeably
influencing the overall potential for non-normal growth compared with the steady case. To
relate this result to earlier studies of optimal initial conditions for Poiseuille flow, these
results practically mean that the known transient growth mechanisms in Poiseuille flow
(e.g. the Orr mechanism for 2-D channel flow) are unaltered by the pulsations, i.e. the
initial growth curves for these perturbations will look similar in both pulsating and steady
cases. This does not mean, that there cannot be other transient phenomena that crucially
rely on pulsations to emerge but these must be very different from the steady 2-D transient
mechanisms, probably act over more than a pulsation period and are heavily restricted in
terms of time scales if they are to be relevant compared with modal growth.

6.1.6. Subharmonic perturbation cycles
As we have seen in the previous sections, the variation of the instantaneous eigenvalues
of the reduced operator Lr in the limit cycle are characterised either by convergence to the
steady values in the case of centre modes or, in the case of eigenvalues from the A-branch,
an alignment with the base pulsation frequency. While this is true for most eigenvalue
traces, a third alternative exists for the evolution of the eigenvalues. It was found that
when the subspace size is sufficiently large, two or more eigenvalue traces merge to form
interlaced subharmonic eigenvalue traces. This phenomenon is exemplified in figure 11,
showing the eigenvalue traces of Lr over three consecutive pulsation cycles for the same
parameters as in figure 10(a) with r = 40 modes. Note that we use the term ‘subharmonic’
as a general term denoting periodicity with integer multiples of the base period T0.

In this situation, the orbit of the dominant eigenvalue has merged with two other
orbits and the three eigenvalues follow the same path staggered in time such that the
instantaneous spectrum of the reduced operator is periodic with the base frequency.
Note that the changes in the periodicity of the individual eigenvalue traces does not
affect the intercyclic growth rates nor the instantaneous stability characteristics since
the subharmonic eigenvalues simply exchange places from one pulsation cycle to the
next. It is interesting to note that period tripling, as observed in this example, is not the
only subharmonic that can appear and other combinations have been found for different
parameter values, e.g. eigenvalue traces of period 2T0. It is likely that such subharmonics
are the norm, especially for higher pulsation amplitudes that lead to larger eigenvalue
excursions overall.
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Figure 11. Traces of selected eigenvalues of Lr corresponding to the A-branch of the spectrum for Re = 7500,
α = 1, β = 0, Wo = 25 and Q̃ = 0.2 with r = 40 in the limit cycle. Evolution of the growth rate in time for
three consecutive pulsation cycles (a) and orbits in the complex plane over a single pulsation cycle (b). The
three eigenvalues that are subharmonic are highlighted in both panels showing their period is T = 3T0. All
other eigenvalue traces, including the centre modes (not shown) have the same period as the base flow (T0).
The black dots in (b) show the corresponding OS spectrum for reference.

A comparison of the eigenvalue traces in figures 4(a,b) and 11(a) indicates that the
reason the subharmonic cycles are absent for smaller subspace sizes (r) is the intense
damping of the modes during a large part of the period. If a particular eigenvalue is too
damped relative to the others it drops out of the subspace spanned by the OTD basis, which
invariably follows the most unstable directions. In fact, the comparatively large fluctuations
of the eigenvalue when it is most damped compared with the rest of the cycle suggest that
there are more eigenvalue crossings with more damped modes. This could mean that an
even larger subspace size is required to trace the full path of the dominant eigenvalue that
might, in fact, cover more than just three periods when completely mapped.

A detailed analysis of the subharmonic orbits is outside of the scope of this work, not
least because the accurate computation of highly damped eigenvalues leads to unwieldy
requirements on wall-normal resolution. A more promising approach for the study of the
subharmonic orbits is a fully spectral approach. These analyses can then also accurately
trace the damped part of the eigenvalue orbits that are possibly underresolved in this
work. While the resolution affects the details of the eigenvalue orbits, the existence of
subharmonic perturbation cycles is a persistent feature of the flow case since the eigenvalue
crossings that herald them lie in the upper part of the spectrum that is well resolved. In
fact, the first 6 modes (i.e. r ≤ 12) are accurately computed, as can be seen from the match
between the growth rates of the leading centre modes and the OS spectrum in figures
4(a,b) and 11(a).

7. Discussion and conclusion

The OTD modes are a recent method for constructing an orthonormal basis of
a finite-dimensional subspace spanning and optimally following the instantaneously
dominant directions of the tangent space in time along a reference trajectory proposed
by Babaee & Sapsis (2016). Apart from the modal stability characteristics, they also
capture non-modal growth within the most unstable subspace around a given trajectory.
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In this work, the potential of the OTD framework for the linear stability analysis of
time-dependent flows is explored.

The OTD framework has been implemented in the spectral element code Nek5000 and
applied to pulsating Poiseuille flow, allowing for a rigorous validation against the large
amount of data that are available for this canonical flow configuration and proof of the
accuracy of the implementation. In particular, the results for the leading Floquet exponents
from Pier & Schmid (2017) were accurately reproduced and new results obtained for
a larger range of pulsation amplitudes than previously reported. Using the framework,
the instantaneous variation of the dominant OTD mode of linearly (Floquet) unstable
two-dimensional pulsating Poiseuille flow was tracked in the limit cycle and related to
the well-known OS modes. This procedure allows for clear characterisation of the stability
mechanisms and their interaction that lead to the non-uniform effect of pulsations on the
stability of pulsating Poiseuille flow.

In the following, we discuss the main findings of this work. The first point focuses on
general considerations concerning the OTD framework and guidelines for its application,
while the remaining points pertain to the linear stability characteristics of pulsating
Poiseuille flow obtained using the OTD modes.

(i) The OTD modes will recover the r-dimensional most unstable subspace of the tangent
space. Unfortunately, a general rule for the choice of the subspace size r is not available
since it is highly dependent on the system and the goal of the stability analysis. The existing
guidelines are either based on the unstable part of the full operator and its symmetric part,
which is exhaustive but can be prohibitively large in many systems, or on heuristics. Once
r is chosen, care must be taken in the analysis of the OTD modes since the transient phase
between initialisation and convergence of the OTD modes to the instantaneously most
unstable directions of the tangent space lacks a precise physical meaning. Although the
alignment is exponentially fast, the exact time it takes in practice is highly dependent on
the system as well as the initial conditions. Once converged, however, the OTD modes
depend only on the trajectory pointwise and are memoryless (Blanchard & Sapsis 2019b).

The OTD modes capture both modal and non-modal instabilities within the OTD
subspace. This does not imply that the full non-normal growth potential of the complete
system is captured since non-normal growth mechanisms may, and often do, involve the
interaction of one or more very stable directions that do not appear in finite OTD subspaces
of practical size.

The OTD framework can be used to compute reduced-order FTLEs along the trajectory
and using the Blanchard & Sapsis formulation makes their computation particularly
efficient at negligible extra cost (Babaee et al. 2017; Blanchard & Sapsis 2019a). When
considering time-periodic flows, it consequently yields the Floquet exponents with the
practical advantage over classical Floquet methods that the framework can be applied
directly to the unsteady problem requiring very little extra machinery beyond the standard
routines for the solution of the base flow and the linearised Navier–Stokes operator.
Moreover, the fact that the OTD modes capture the instantaneously dominant directions in
phase space opens many opportunities for reduced-order modelling and control.

When applied to steady base flows, the OTD modes can be readily analysed and
completely understood with the existing framework of linear stability analysis. It is
therefore in the realm of unsteady flows, in particular flows exhibiting spatio-temporal
variation of the base flow that the strengths of the OTD framework are most salient
since these flows are inaccessible to global mode analysis. Examples of such flow cases
include the analysis of streak instability in bypass transition (Andersson et al. 2001),
chaotic edge states (Duguet, Willis & Kerswell 2008; Beneitez et al. 2019) or the minimal
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seed of turbulence (Pringle & Kerswell 2010; Duguet et al. 2013; Vavaliaris, Beneitez &
Henningson 2020) or fully non-autonomous flows dictated by time-dependent external
forcing or boundary conditions. While the OTD modes have shown to be successful in
a statistical framework (Farazmand & Sapsis 2016) or for flow control (Blanchard et al.
2018), most applications only use them as a stable numerical tool since the physical
interpretation of a particular instance of the instantaneous OTD modes on top of a fully
transient, nonlinear base flow is far from trivial but might be the key to the analysis of
non-autonomous flow cases.

(ii) The OTD framework applied to pulsating Poiseuille flow in the periodic regime
generates modes that correspond to the pulsating equivalent of the OS modes. The amount
of modulation these modes experience is determined by their spatial localisation in the
channel. The wall modes of the A-branch, including the ubiquitous TS waves, are strongly
modulated over the pulsation cycle by the changes in the base flow profile close to the
oscillating Stokes layer and exhibit considerable fluctuations in both exponential growth
rate and phase speed. On the other hand, the growth rates of the modes of the P-branch
or centre modes are largely unaffected by the pulsation. It is only for extreme pulsation
amplitudes at low frequency that the base flow modulation reaches the centreline, inducing
a noticeable intracyclic variation in the leading centre modes.

(iii) The base flow profiles for pulsating Poiseuille flow are highly inflectional and it
was found that the amplification phase of the pulsation cycle is well correlated with the
existence of two inflection points of the base flow profile outside of the oscillating Stokes
layer close to the wall. This result was consistent over the entire range of Womersley
number considered. The transition from amplification to damping is generally linked to
the collision and disappearance of these inflection points. For low frequencies, where the
base flow profile is much less inflectional, the amplification begins already as the first
inflection point moves out of the boundary layer. Intuitively, the amplification phase is
associated with a W- or Λ-shaped base flow profile that exhibits two separate shear layers
and low flow rates while perturbations decay when the bulk flow is forward.

(iv) The leading OTD mode generally has the structure of a travelling wave close to
the wall, similar to the TS waves in steady flow for most of the pulsation cycle. The
eigenfunctions are localised in the wall-normal direction at the height of the inflection
points in the base flow profile, in particular during the amplification phase. This is in
line with the nonlinear simulations of Pier & Schmid (2017) that observe the modulated
exponential growth of similar instability waves. As the pulsation amplitude is increased,
the vortices are heavily sheared by the mean flow but generally maintain their spatial
structure and stay localised close to the wall indicating that, while modulated by the
pulsation, the basic mechanism governing the stability is preserved over most of the
parameter range. This behaviour prevails also in regions of the parameter space that are
Floquet stable.

The only exception to this rule is found during the damping phase for low
pulsation frequencies and pulsation amplitudes beyond approximately Q̃ = 0.1. For these
configurations, the strongly damped leading mode moves away from the wall entirely and
its spatial structure resembles that of decaying Orr waves that lean with the mean shear.
The corresponding nonlinear simulations by Pier & Schmid (2017) also exhibit a different
behaviour in this parameter range, termed the ‘ballistic regime’, in which the perturbations
completely vanish over part of the pulsation cycle. Considering that characteristic TS-like
instabilities were not found in the six-dimensional most unstable subspace during this
phase, indicating that they are very damped, it is likely that the change of linear instability
mechanism is intimately linked to the appearance of the ballistic regime. This view is
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supported by the fact that, for the parameter choices investigated, the modulated TS waves
(as well as similar wall structures from the A branch) are the only modes that are unstable
during the pulsation cycle so that, during their decay phase, there are no linear growth
mechanisms available to the flow. At the same time, TS-like structures similar to the
saturated nonlinear waves are heavily damped over a long period of time due to the low
pulsation frequency, which could explain their complete disappearance and the fact that
no other perturbations are excited during part of the oscillation cycle. Direct numerical
simulations of pulsating pipe flow by Xu & Avila (2018) show full relaminarisation of
turbulent puffs at low pulsation amplitudes that may hinge on a similar mechanism.

(v) By increasing the size of the OTD subspace considerably to r = 100 for a specific
case in order to capture the full non-normal growth potential, it was shown that the
pulsations have little effect on the non-normality of the operator compared with the
steady case. The intracyclic variations of the numerical abscissa for a moderate pulsation
amplitude (Q̃ = 0.2) were found to lie within 1 % of the steady value. This result
indicates that the changes in the instability characteristics due to pulsation do not rely
on non-normality but are instead due to the modulation of modal mechanisms that coexist
independently. This result would suggest that, while large transient growth responses can
be obtained from an optimal initial condition for pulsating flows as shown by Xu et al.
(2021) and Tsigklifis & Lucey (2017) in similar geometries, it is likely difficult for the
transient mechanisms to fuel their growth efficiently using the base flow pulsations.

(vi) For small and moderate subspace sizes, all OTD modes are periodic with the base
flow pulsation frequency in the limit cycle. When the subspace is large enough, the orbit of
the dominant eigenvalue of the reduced operator merges with more damped orbits to create
subharmonic oscillations that have not been documented for pulsating Poiseuille flow
before. They indicate that the perturbations have a more intricate behaviour than previously
assumed and that a restriction to perturbations at the base frequency will hide relevant
subharmonic structures. The appearance of the subharmonic orbits is likely linked to the
transient proximity of the eigenvalues in the complex plane during the pulsation cycle,
leading them to switch place. On the other hand, a bifurcation cascade that is one of the
routes to chaos (Feigenbaum 1980) is unlikely their cause since the subharmonic orbits do
not exhibit the characteristic period doubling and do not seem to emerge at an accelerating
rate. Further research is necessary to analyse and understand the appearance and behaviour
of the subharmonic perturbation cycles. Given that the dominant eigenvalues are very
damped during part of the subharmonic cycle, such an endeavour will need to have a high
wall-normal resolution and should therefore be carried out with a spectral approach.

It may be noted that, irrespective of whether a spectral or pseudo-spectral method is
employed for the study of perturbations on a periodic base flow, the OTD framework is
ideally suited for the task because it allows the perturbations to be followed even if they
are highly damped without assumptions about their temporal periodicity.

To highlight the physical insights gained from applying the OTD framework to the case
of pulsating Poiseuille flow, we summarise the main aspects of the discussion.

The main driver of instability in pulsating Poiseuille flow just beyond to the critical
Reynolds number for linear instability is a modulated version of the TS wave known
from steady shear flows that is prominent across the parameter space considered in this
work. This result is in qualitative agreement with DNS results in the literature. Moreover,
at low pulsation frequencies, the damping phase is associated with a different spatial
structure reminiscent of Orr waves leaning with the mean shear and the disappearance of
perturbations akin to TS waves which may explain the emergence of the ballistic regime
in nonlinear simulations by Pier & Schmid (2017). The amplification phase is marked by
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the co-existence of two inflection points in the base flow profile outside of the boundary
layer. In all cases damping begins close to the collision and disappearance of the inflection
points closest to the centreline. For low pulsation frequencies, where the base flow profile
only has a single inflection point for most of the cycle, the amplification begins when
it moves out of the boundary layer. The dominant perturbations are shown to localise
at the inflection points, highlighting their importance even in transient flow stability at
high pulsation frequencies. The computations spanning almost the full non-normal growth
potential of the linear operator indicate that pulsations have little effect on known 2-D
transient growth mechanisms such as the Orr mechanism. Finally, as the size of the OTD
subspace was increased considerably, some of the eigenvalue orbits were seen to merge
into subharmonic cycles. This interesting phenomenon is not yet fully understood but is
likely crucial for a complete picture of the transient stability of pulsating Poiseuille flow.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.743.
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Appendix A. Numerical integration in Nek5000 and validation

A.1. Computing the OTD forcing
As we have seen in (3.4), the evolution equation for the OTD basis vectors is very similar to
the standard linearised Navier–Stokes system and the OTD solver can therefore be built by
adding an appropriate forcing term using the reduced operator constructed by combining
the existing routines from the linear solver. Nek5000, like most modern high-performance
computational fluid dynamics (CFD) codes, relies on a matrix-free method to integrate
the Navier–Stokes equation that avoids the explicit computation of the linear operator,
instead constructing the action of the operator on the current state. In order to construct the
necessary forcing term to adapt the standard linearised Navier–Stokes solver to integrate
the OTD evolution equation, we therefore need to isolate the action of the linearised
operator on the perturbation field itself, before boundary conditions and external forcing
are applied. In this process, it is paramount to ensure accuracy with over-integration using
the 3/2 rule to avoid introducing spurious modes into the operator when computing the
nonlinear terms.
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A.2. Initial conditions and boundary conditions
The OTD modes are perturbations to a reference flow trajectory. Close to solid walls
the OTD modes are subject to the same no-slip condition as the base flow. For the in-
and outflow boundaries homogeneous Dirichlet or periodic conditions are imposed in our
case for the single and multisession set-ups, respectively (see § A.4 for details about the
multisession set-up).

The OTD framework requires the initial conditions for the OTD basis to be orthonormal
and to satisfy the boundary conditions of the problem. In Nek5000 it is particularly
simple to achieve this for any initial condition since the solution technique is based on the
Helmholtz–Hodge decomposition during which the initial condition is projected onto the
closest divergence-free space. After the first timestep, the fields are therefore automatically
solenoidal and satisfy the boundary conditions. After orthonormalisation, in our case
performed using the modified Gram–Schmidt (MGS) algorithm, also the orthonormality
condition is satisfied.

A.3. Numerical loss of orthonormality of the basis vectors during numerical integration
The evolution equation for the OTD basis vectors (2.4) is derived under the constraint of
orthonormality and it was shown that if the OTD basis is initially orthonormal, it will
remain orthonormal for all times if Φ = −ΦT (Babaee & Sapsis 2016).

Regarding the numerical implementation of the method, the first remark to make is
that the above statement is true only in the continuous sense; when integrating the
OTD basis using finite precision arithmetic, the orthonormality constraint is no longer
automatically satisfied since the unit norm constraint on the basis vectors is not enforced
explicitly. Therefore, maintaining the orthogonality of the basis vectors is unachievable
in practice. Small truncation errors suffice to cause a gradual loss of orthonormality
of the OTD basis during the projection steps that, if unabated, will eventually lead
to their collapse onto the most unstable direction in phase space. The conclusions are
the same as those drawn in Wiesel (1993) for a similar algorithm to compute the
Gram–Schmidt vectors. It is therefore necessary to periodically reorthonormalise the
basis vectors, in particular before the eigendecomposition of the reduced operator is
computed.

In the light of the equivalence between the OTD basis and continuously orthogonalised
Gram–Schmidt vectors, we stress that this discussion is independent of the particular
choice of internal rotation but instead stems from the fact that numerical implementations
use finite precision arithmetic and the nonlinear forcing terms are evaluated explicitly.
Any such implementation will therefore suffer from loss of orthonormality by the same
process described above. Moreover, when comparing the OTD framework to the standard
approach to generate Gram–Schmidt vectors, which is to advance the linear dynamics
without forcing and then apply a Gram–Schmidt process to maintain orthonormality,
it should be noted that incorporating the orthonormality condition into the evolution
equation directly leads to an intrinsically more stable algorithm in the sense that
departure from orthonormality, although inevitable, is slow compared with the unforced
dynamics. The OTD framework therefore offers possibilities for case-specific optimisation
to considerably increase the interval between reorthonormalisations which would make
simulations less expensive overall, thus warranting the additional implementation effort
required for the forcing terms.

In principle, the OTD basis can always be reorthonormalised at any given time to
recover the accurate reduced operator but if implicit multistep timesteppers are being used,
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Figure 12. Computational cost of the Gram–Schmidt orthonormalisation per timestep using a simple modified
Gram–Schmidt algorithm where ts is the total time per timestep. All data points are averaged over 1000
timesteps with orthonormalisation at every step.

the solution is liable to diverge in subsequent timesteps if the basis is far from orthonormal
and the orthonormalisation is not carried out over all timesteps in the stencil.

The cost of reorthonormalisation for different basis sizes from r = 1 to r = 32 is shown
in figure 12, plotting both the average absolute time for complete reorthonormalisation as
well as the proportional cost per timestep. The simulations are otherwise identical and run
on 2 cores to reach optimal scaling of the underlying code. From the data we see the typical
quadratic increase of the cost of orthonormalisation as the basis size increases. Comparing
the cost of reorthonormalisation with the rest of the timestep in the code used in this work,
it proves to be a comparatively cheap operation if the OTD basis is of small or moderate
size (r ≤ 16), incurring at most a computational overhead of 2 %. Consequently, we have
chosen to increase the frequency of reorthonormalisation to have a safety margin. In fact,
it can be expected that the reorthonormalisation cost can be further reduced with the use
of optimised algorithms.

We note that these results are valid only for Nek5000. In other codes, the cost
of reorthonormalisation may be considerably higher, especially for those working in
transformed space since the inner products need to be performed in physical space and
the transformations can be expensive e.g. if they require a fast Fourier transform (FFT).
In these cases, it might be advantageous to further study the implications of reducing the
number of reorthonormalisation steps to a minimum.

A.4. Spatially localised OTD modes
The standard procedure described above allows for the computation of the OTD subspace
on the same physical domain as the reference trajectory. Such a global approach might
have important drawbacks when it comes to the practical application of the framework,
especially in large transient configurations with spatial inhomogeneity. The global nature
of the minimisation strategy will identify the most salient instabilities in the whole flow
field, which might be desirable when considering cases such as the jet in cross-flow where
a global instability governs the flow dynamics and these structures are the object of study
(Bagheri et al. 2009b; Babaee & Sapsis 2016; Chauvat et al. 2020).
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In more subtle scenarios, where a more detailed analysis of the spatial distribution and
evolution of specific instabilities is of interest but these instabilities may not be the most
prominent ones, the consideration of the full physical domain is prohibitive and might
highlight other instability regions than those of interest. Typical examples are transitional
flows at higher Reynolds numbers where the interesting dynamics in the boundary layers is
easily shadowed by the strong instabilities in the turbulent region of the flow. Furthermore,
if the accurate computation of the base flow requires a large domain to exclude boundary
effects, a considerable part of the computational effort in the linear solves is used in the far
field if the OTD modes are computed on the full domain. This is particularly inefficient if
the region of interest for the stability calculation has a small spatial extent in comparison
with the full domain.

The natural solution to this problem is to topologically separate the base flow and OTD
subspace computations onto two overlapping grids with a one-way coupling from the base
flow computation to the linear solver. A similar approach was used in Blanchard & Sapsis
(2019c) in order to construct a localised controller using the OTD framework. While this
task is trivial for steady base flows where the two simulations can be executed sequentially,
the implementation using two simultaneous sessions for the OTD subspace and base flow
computations respectively is more challenging. Although the base flow and perturbation
fields can, in principle, be computed sequentially also in the transient case, a simultaneous
implementation was chosen because the storage requirements for a sequential approach
quickly become unwieldy. Note that each session can be executed on multi-core systems
irrespective of the chosen set-up.

In this work, the separation of the two coupled simulations is implemented based
on the overlapping grid method, dubbed ‘NekNek’, recently developed by Merrill et al.
(2016) that uses spectral interpolation to transfer data between the grids and maintains
the third-order temporal accuracy of the single session implementation. In contrast to
the original implementation of the method that is aimed at solving a single problem on
partially overlapping grids to simplify the meshing process and improve local resolution,
the present work separates the base flow computation from the perturbation problem.

The linear solver needs the full base flow solution and therefore requires the perturbation
problem to be defined on a subdomain of the base flow domain for accurate interpolation.
This interpolation step can be a performance bottleneck. Therefore, when the flow case
allows it, the most expensive part of the interpolation, i.e. the set-up step in which the
elements containing the interpolation points need to be identified in both meshes, is only
run once at the beginning of the simulation.

A schematic flow chart of the computational structure of one timestep in the
multisession set-up is shown in figure 13. The first session (left) computes the base flow
on the full domain. The second session (right) receives the base flow information from
the first session (via the interpolation step) and solves the r linear problems for the OTD
basis vectors sequentially. Since the two sessions are fully independent of each other, with
the exception of the interpolation, they only need to be synchronised once per timestep
and the distribution of the jobs across the available MPI ranks can be easily optimised
so as to ensure that the expensive computation (typically M1) never has to wait for the
cheaper computation thus using the computational resources as efficiently as possible. This
set-up allows not only for geometric flexibility in the mesh generation but also independent
choices of polynomial order in each session as well as the possibility to accommodate
various OTD space sizes while maintaining efficiency.

The dramatic reduction in the computational cost using the localised OTD modes can
be appreciated for the computation of the flow around an airfoil with the stability analysis
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Figure 13. Flow chart showing the structure of the multisession set-up for one timestep. In a typical production
set-up n 
 N and the available cores are distributed on the two sessions such that O(N) ≤ r × O(n) is roughly
satisfied over large parts of the computation, where O is shorthand for the computational time to solution.

restricted to a small region around the leading edge of the airfoil. In a 2-D configuration,
the cost of one additional OTD mode can easily drop to 5 % compared with the base flow
computation (a reduction by a factor 20), the main bottleneck being the distribution of the
available cores on the two sessions. For a 3-D simulation the gains in computational effort
compared with a single session set-up are even more pronounced.

A.5. Boundary conditions for the localised problem
Localising the linear problem highlights the importance of choosing appropriate boundary
conditions. It is well known that eigenvalue spectra are sensitive to simulation details, such
as the boundary conditions, but also other numerical parameters such as grid spacing and
box size (Chauvat et al. 2020). The implications are not as severe for the OTD method as
might seem at first glance since the dominant modes typically show the least sensitivity to
the numerical parameters. The purpose of the OTD method is to converge to the subspace
that spans the most unstable directions and we can therefore expect the eigenvalues of the
reduced operator Lr to be comparatively robust with regard to the details of the numerical
implementation. Blanchard & Sapsis (2019c) come to similar conclusions with regard to
the boundary conditions of the localised problem. Therefore, unless periodicity or no-slip
conditions apply, Dirichlet conditions are set at the boundaries of the linear domain. In
more complex scenarios, one needs to be careful with the choice of boundary conditions
to avoid possible numerical artefacts such as reflections at the outflow.

A.6. Numerical set-up for multisession runs
In the multisession set-up, two fully separate simulations are run simultaneously. The two
meshes used are shown superimposed in figure 14 showing that the domain on which the
perturbations are computed (red) is a subset of the base flow domain (black). The base
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Figure 14. Two-dimensional spectral element meshes for the multisession set-up. The base flow is computed
on mesh M1 (black) and the perturbations on mesh M2 (red). The boundary conditions are identical to the
single session runs (not shown, cf. figure 2).

flow mesh is much coarser than the mesh for the linear solves since the resolution issues
mentioned above do not occur when solving the base flow. The polynomial order for the
base flow computation is set to N = 7 that is sufficient to accurately resolve the base flow
profile while the perturbation session has a polynomial order of N = 9 as in the single
session set-up. All other settings such as solver tolerances and timestep size are identical
to the single session runs. The boundary conditions for the perturbations are identical to
the single session runs.

For plane Poiseuille flow the base flow is known analytically. Nevertheless, to feature
the multisession set-up, it is computed explicitly alongside the perturbations for illustrative
purposes. For the base flow computation, apart from the no-slip condition on the walls, the
pressure gradient Δp = −G(0)

x is imposed in streamwise direction as a constant volumetric
forcing term. In the more general setting of complex and time-dependent problems, there
is usually no alternative to computing the base flow trajectory in real time alongside the
linearised problem.

The plane Poiseuille flow case that we compare with Babaee & Sapsis (2016) is
initialised with the same optimal initial conditions as in the reference, i.e. the initial
condition for optimal growth at Tmax = 25.06 for Re = 5000 and (α, β) = (1, 1).

A.7. Validation for 3-D plane Poiseuille flow
In general, a computation of the OTD subspace using a complex OS/SQ solver in Fourier
space (similar to the approach chosen in Babaee & Sapsis 2016) and using a code in
physical space as Nek5000 cannot be expected to yield the same results. In the particular
case of the optimal initial conditions for maximum growth at Tmax = 25.06 for Re = 5000
and (α, β) = (1, 1), the optimal and first suboptimal are purely real (and hence also
orthogonal in physical space) and the most unstable directions remain real as they evolve
towards the least stable eigendirections of the OS/SQ operator. Therefore, the complex
OS/SQ solver and Nek5000 in physical space compute identical OTD subspaces for
r = 2 and can be compared directly. Figure 15(a) shows the comparison between the
eigenvalue traces computes with Nek5000 with data from Babaee & Sapsis (2016). The
data are in very good agreement overall considering the high sensitivity of the exact
temporal evolution of growth rates on numerical implementation details. Note that the
numerical abscissa coincides with the least stable eigenvalue for all time since the modes
are orthogonal and hence no non-normal growth is possible within the subspace they span.

The second suboptimal for this configuration is not orthogonal to the two previous
(sub)optima in physical space and the temporal evolution of the eigenvalues will be
different between real and complex implementations. Figure 15(b) shows the same
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Figure 15. Instantaneous real eigenvalues and numerical abscissa of the reduced operator Lr for 3-D plane
Poiseuille flow at Re = 5000, (α, β) = (1, 1). (a) Comparison of the values computed with Nek5000 (solid
lines, index 1) and data extracted from Babaee & Sapsis (2016) for the numerical abscissa and the subdominant
eigenvalue (crosses, ref) for r = 2. (b) Comparison of the data computed with Nek5000 using the single
session (solid lines, index 1) and multisession (circles, index 2) set-ups for r = 3. The dashed lines indicate the
corresponding OS/SQ spectrum.

configuration as figure 15(a) but using 3 modes computed with Nek5000 (solid lines).
This figure can be compared with figure 5 in Babaee & Sapsis (2016) to appreciate
the differences. The symbols indicate the results of a multisession run for the same
configuration that matches the single session data perfectly, showing that the separation
of base flow and perturbation computations does not affect the accuracy of the stability
calculations.
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