
1

Examples

In this introductory chapter, we list a number of concrete examples of
τ -functions, noting the elements they have in common, but postponing a formal
definition to subsequent chapters.

The first case is the simplest nonlinear periodic Hamiltonian system with one
degree of freedom: the pendulum. In the Hamilton–Jacobi approach, Hamilton’s
characteristic function, evaluated on the energy level sets, is the logarithmic
derivative of the Weierstrass σ-function. This is our first example of a τ -function.
The equations of motion are expressible as a bilinear equation for the σ-function,
providing the first instance of an equation of Hirota type.

Turning to nonlinear integrable evolution equations that are PDE’s in
one spatial and one time dimension, such as the KdV equation, the sim-
plest reduction is to travelling wave solutions with constant velocity. These
again satisfy a Weierstrass-type equation, just like the pendulum. The sep-
aratrix, where the τ -function is simply a hyperbolic cosine, corresponds to
1-soliton solutions. The τ -functions corresponding to multisoliton solutions are
expressed as the determinant of a matrix whose entries are linear exponen-
tial functions of the flow variables, which again satisfies a bilinear system
of Hirota type. Multisoliton solutions of the more general integrable KP
(Kadomtsev–Petviashvili) hierarchy are similarly given in terms of τ -functions
having determinantal exponential form, also satisfying the Hirota bilinear
equations.

We next consider the basic building blocks from which all KP τ -functions are
constructed: the Schur functions, which are polynomials in the flow parameters,
whose logarithmic derivatives provide rational solutions of the hierarchy. Other
examples include the Toda lattice, an integrable multiparticle system on the
line with exponential nearest-neighbour interactions and the Calogero–Moser
system, another integrable multiparticle system on the line whose dynamics
coincide with the pole dynamics of rational solutions of the KP hierarchy. The
“ultimate” generalization of the pendulum then follows: the so-called finite gap
or multi-quasi-periodic solutions of the KP hierarchy, where the τ -function is
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simply expressible in term of multivariable Riemann θ functions associated to
the period lattice of an algebraic curve of arbitrary genus.

Further specific examples of KP τ -functions are provided by the partition
functions for various types of random matrix models. These include cases where
the matrix integrals do not necessarily converge, nor does the expansion in the
basis of Schur functions. They may, however, be viewed as formal expansions
that serve as generating functions for various combinatorial invariants such as:
intersection indices on the moduli space of marked Riemann surfaces, or Hurwitz
numbers, which enumerate branched covers of the Riemann sphere.

The characteristic features shared by all these examples are listed at the end of
the chapter. A preliminary interpretation of these is given in Chapter 2, in terms
of abelian group actions on a Grassmann manifold. This anticipates the Sato–
Segal–Wilson approach to KP τ -functions, whose detailed development begins
in Chapters 3 and 4 and continues throughout the remainder of the book.

1.1 The pendulum and the KdV equation: elliptic function solutions

1.1.1 The pendulum

Consider the motion of a simple pendulum, consisting of a point mass m sus-
pended on a massless rigid rod of length L, subject to the force of gravity
(Fig. 1.1). The Lagrangian of the system, expressed in terms of the angle φ

from the vertical, is the difference between kinetic and potential energies:

L(φ, φ̇) =
1
2
mL2φ̇2 − 2mgL sin2 φ

2
, (1.1.1)

where g is the acceleration due to gravity.

m

L

φ

2L sin2 φ
2

Fig. 1.1. The pendulum

The total energy, which is conserved, is the sum

E =
1
2
mL2φ̇2 + 2mgL sin2 φ

2
. (1.1.2)
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1.1 The pendulum and the KdV equation: elliptic function solutions 3

Introducing the coordinate

q =: sin
φ

2
, (1.1.3)

we have

q̇ =
1
2

cos
φ

2
φ̇ =

1
2

√
1− q2φ̇, (1.1.4)

and the Lagrangian takes the form

L(q, q̇) = 2mL2 q̇2

1− q2
− 2mgLq2. (1.1.5)

The momentum conjugate to q is

p :=
∂L

∂q̇
= 4mL2 q̇

1− q2
, (1.1.6)

and the Legendre transformation gives the Hamiltonian as the sum of kinetic
and potential energies:

H(q, p) =
1

8mL2
(1− q2)p2 + 2mgLq2. (1.1.7)

Since the system is autonomous, the total energy is constant

1
8mL2

(1− q2)p2 + 2mgLq2 = E (1.1.8)

and a first integral of the equations of motion is given by its level curves. Sub-
stituting (1.1.6), this can be integrated directly, giving q(t) implicitly in terms
of an elliptic integral.

It is worthwhile, however, to also consider the problem using the Hamilton–
Jacobi method. For this, we define a new momentum variable P , which is a
constant of motion, by

2mgLP 2 := H(q, p), (1.1.9)

and seek a generating function S(q, P ), Hamilton’s principal function, for the
transformation from (q, p) to new canonical coordinates (Q,P ) in which the
equations of motion are trivial. The transformation is defined by

p =
∂S

∂q
, Q =

∂S

∂P
, (1.1.10)

and the Hamilton–Jacobi equation is

H

(
q,

∂S

∂q

)
= E (1.1.11)

or, more explicitly, (
∂S

∂q

)2

= 16m2gL3 P 2 − q2

1− q2
. (1.1.12)
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The solution is given by an elliptic integral of the second kind:

S(q, P ) = 4m
√

gL3

∫ q

q0

√
P 2 − x2

1− x2
dx, (1.1.13)

where the constant of integration is absorbed into the choice of initial point q0.
The coordinate canonically conjugate to P is thus given by an elliptic integral
of the first kind

Q = 4m
√

gL3P

∫ q

q0

dx√
(1− x2)(P 2 − x2)

, (1.1.14)

defined on the curve

z2 = (1− x2)(P 2 − x2). (1.1.15)

In the canonical coordinates (Q,P ), the equations of motion have the trivial
form

dP

dt
= −∂H

∂Q
= 0, (1.1.16)

dQ

dt
=

∂H

∂P
= 4mgLP, (1.1.17)

which, when integrated, give a linear flow in time

Q(t) = Q0 + 4mgLPt, P (t) = P0. (1.1.18)

Viewing Hamilton’s characteristic function S(q, P ) as a function of time,
evaluated on the energy level sets, we have

S(q(t), P ) = 4mL
√

gL

∫ q(t)

q(0)

√
P 2 − x2

1− x2
dx, (1.1.19)

Changing the integration variable in eq. (1.1.13) from x to y := x2 gives∫ v(t)

v0

dy√
y(y − 1)(y − e)

= 2
√

g

L
t, (1.1.20)

where

v(t) := q2(t), v0 := v(0), e := P 2 (1.1.21)

and

S(q(t), P ) = 2mL
√

gL

∫ v(t)

v0

√
e− y

y(1− y)
dy. (1.1.22)

Introducing the rescaled, translated function

u(t) = v

(√
L

g
t

)
− e + 1

3
, (1.1.23)
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1.1 The pendulum and the KdV equation: elliptic function solutions 5

the inverse of the elliptic integral in (1.1.20) becomes a first order differential
equation in standard Weierstrass form:

(u′)2 = 4u3 − g2u− g3, (1.1.24)

with coefficients

g2 =
4
3
(e2 − e + 1), g3 =

4
27

(e + 1)(e− 2)(2e− 1). (1.1.25)

The general solution to (1.1.24) is given by the Weierstrass ℘-function

u(t) = ℘(t− t0) (1.1.26)

for these parameter values, and any initial value constant t0 ∈ C.
In general, ℘ is defined by

℘(z) :=
1
z2

+
∑

w∈L\{0}

[
1

(z − w)2
− 1

w2

]
, (1.1.27)

where the sum is over the integer lattice L in the complex plane

L = {2mω1 + 2nω2 : m,n ∈ Z} (1.1.28)

generated by any non-collinear pair of elliptic periods (2ω1, 2ω2 ∈ C+). This
satisfies the Weierstrass equation [280]

(℘′)2 = 4℘3 − g2℘− g3, (1.1.29)

for modular constants (g2, g3) determined from the lattice periods by the
Eisenstein series

g2 = 60
∑

w∈L\{0}

1
w4

, g3 = 140
∑

w∈L\{0}

1
w6

. (1.1.30)

It can also be expressed as a second logarithmic derivative:

℘(z) = − d2

dz2
ln σ(z) (1.1.31)

in terms of the Weierstrass σ-function

σ(z) := z
∏

w∈L\{0}

(
1− z

w

)
exp
(

z

w
+

z2

2w2

)
. (1.1.32)

Taking the first derivative of (1.1.29) gives

℘′′(t) = 6℘2(t)− g2

2
. (1.1.33)

Substituting (1.1.31) in (1.1.33) gives the equation of motion in bilinear form in
terms of σ

σσ′′′′ − 4σ′σ′′′ + 3(σ′′)2 − g2

2
σ2 = 0, (1.1.34)
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where ′ := d
dt . Equivalently, (1.1.34) may be expressed in a more symmetrical

way [74] as

(Δ4 − g2) (σ(t− t0)σ(t′ − t0)) |t=t′ = 0, (1.1.35)

where

Δ :=
d

dt
− d

dt′
. (1.1.36)

Differentiating Hamilton’s characteristic function (1.1.19) with respect to t

gives

∂S(q(t), P )
∂t

= 4mgL2℘(t− t0) + E (1.1.37)

where

E :=
4
3
(mgL2 − E). (1.1.38)

So, within an integration constant, we have

S(q(t), P ) = −∂(lnσ)
∂t

+ Et. (1.1.39)

Remark 1.1.1. The logarithmic derivative formula (1.1.31) expressing the
general solution u(t) in terms of the Weierstrass σ-function will reappear in sub-
sequent examples, as will the bilinear form (1.1.35) of the equation it satisfies.
This is the first example of a τ -function generating the solution of an integrable
nonlinear equation. It is seen here as closely related to Hamilton’s characteristic
function S(q(t), P ); i.e., the complete solution of the Hamilton–Jacobi equation
evaluated on the level sets of the conserved quantities.

1.1.2 Travelling wave solutions of the KdV equation

The Weierstrass ℘-function also appears in another context relating to integrable
systems: travelling wave solutions of the nonlinear partial differential equation

4ut = 6uux + uxxx, (1.1.40)

known as the Korteweg–de Vries (KdV) equation, which describes nondissipative
shallow water waves in a narrow channel∗. Choosing u(x, t) to have the form of
a travelling wave

u(x, t) = U(x + ct), (1.1.41)

∗ The renewed study of the KdV equation, started in the mid 1960’s, led to the discovery of
solitons, the inverse scattering method [95–98] and the subsequent flood of interest in
completely integrable systems with infinite degrees of freedom.
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1.1 The pendulum and the KdV equation: elliptic function solutions 7

where U is a function of a single variable z := x + ct, and c is the velocity, the
KdV equation reduces to the ODE

4cU ′ = 6UU ′ + U ′′′. (1.1.42)

Integration and multiplication by U ′ gives

4cUU ′ = 3U2U ′ + U ′′U ′ + αU ′, (1.1.43)

where α is an integration constant, which can again be integrated to give the
first order equation

2cU2 = U3 +
1
2

(U ′)2 + αU + β, (1.1.44)

where β is a second constant of integration. This can now be reduced to the
Weierstrass standard form by the substitution

U(z) = −2℘(z + z0) +
2c

3
, (1.1.45)

where z0 ∈ C is an arbitrary constant and the modular forms (g2, g3) determining
℘(z) are

g2 =
4c2

3
− α

2
and g3 = −8c3

27
+

cα

6
+

β

4
. (1.1.46)

The formula

u(x, t) = 2
∂2

∂x2
ln
[
e

c
6 x2

σ(x + ct + z0)
]

(1.1.47)

thus gives the general travelling wave solution to the KdV equation, a simple
example of an elliptic function solution to a nonlinear evolution equation.

The function

τ(x, t) := e
c
6 x2

σ(x + ct + z0) (1.1.48)

= Ke
c
6 x2

e
η1
2ω1

(x+ct+z0)
2

θ

(
x + ct + z0

2ω1
+

1
2

+
ω2

2ω1
;
ω2

ω1

)
(1.1.49)

where θ(z; τ) is the Jacobi θ function

θ(z; τ) :=
∑
n∈Z

eπiτn2+2πizn, τ :=
ω2

ω1
, (1.1.50)

K is a nonzero constant and

η1 :=
σ′(ω1)
σ(ω1)

(1.1.51)

is another example of a τ -function that, in this case, generates the elliptic func-
tion solution of the KdV equation representing generic travelling waves for this
case.
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1.1.3 Degeneration to the trigonometric/hyperbolic
case: the separatrix

In terms of the pendulum, the elliptic integral (1.1.20) degenerates to a
trigonometric one at the critical energy

Ecrit = 2mgL, (1.1.52)

and therefore the solution, either for the pendulum or the travelling wave of the
KdV equation, can be written in terms of elementary trigonometric/hyperbolic
functions. The corresponding solution of the pendulum problem is known as the
separatrix, i.e., the special level curve E = Ecrit of the energy on the phase space
of the pendulum in the coordinates (φ, φ̇). (See Fig. 1.2, where the separatrix
E = Ecrit is indicated.)

φ̇

φ
E = Ecrit

Fig. 1.2. Level curves of the energy E of a pendulum in the (φ, φ̇) plane

Similarly, if both integration constants α and β in (1.1.44) are chosen to be
zero, the discriminant for the Weierstrass equation vanishes:

Δ = g3
2 − 27g2

3 = 0, (1.1.53)

and the general solution to (1.1.44) can be obtained by using elementary
hyperbolic functions:

U(z) = 2c sech2(
√

c(z + z0)). (1.1.54)

Since U(z) can be written as a second logarithmic derivative

U(z) = 2
d2

dz2
ln cosh(

√
c(z + z0)), (1.1.55)

the corresponding solution to the KdV equation can be represented as

u(x, t) = 2
∂2

∂x2
ln
[
cosh(

√
c(x + ct + z0))

]
, (1.1.56)

which is known as the one-soliton solution to the KdV equation, associated to
the simple exponential type of τ -function

τ(x, t) = cosh(
√

c(x + ct + z0)) =
1
2

(
e
√

c(x+ct+z0) + e−
√

c(x+ct+z0)
)

. (1.1.57)
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1.2 Multisoliton solutions of KdV and KP

For a given positive integer N , choose 2N complex numbers

{αk}k=1,...,N and {γk}k=1,...,N (1.2.1)

with all αk’s pairwise distinct and all γk’s nonzero. Define N functions

yk(t) := e
∑∞

i=1 tiα
i
k + γke

∑∞
i=1 ti(−αk)i

, k = 1, . . . , N, (1.2.2)

where t is an infinite sequence of variables

t = (t1, t2, . . . ), (1.2.3)

referred to as the higher KdV flow variables or times. Note that

y
(l)
k (t) :=

∂l

∂tl1
yk(t) = (αk)l

[
e
∑∞

i=1 tiα
i
k + (−1)lγke

∑∞
i=1 ti(−αk)i

]
(1.2.4)

= 2(αk)lγ
1/2
k e

∑∞
i=1 t2iα

2i
k

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cosh

( ∞∑
i=0

t2i+1α
2i+1
k − 1

2
log γk

)
l even

sinh

( ∞∑
i=0

t2i+1α
2i+1
k − 1

2
log γk

)
l odd.

(1.2.5)

Now define the τ -function τ
(N)
α1,...,αN ,γ1,...,γN (t) as the Wronskian determinant

τ (N)
α1,...,αN ,γ1,...,γN

(t) :=

∣∣∣∣∣∣∣∣∣∣
y1(t) y2(t) · · · yN (t)
y′
1(t) y′

2(t) · · · y′
N (t)

...
...

. . .
...

y
(N−1)
1 (t) y

(N−1)
2 (t) · · · y

(N−1)
N (t)

∣∣∣∣∣∣∣∣∣∣
(1.2.6)

= e
∑∞

i=1
∑N

k=1 α2i
k t2i

∣∣∣∣∣∣∣∣∣∣
y1(t0) y2(t0) · · · yN (t0)
y′
1(t0) y′

2(t0) · · · y′
N (t0)

...
...

. . .
...

y
(N−1)
1 (t0) y

(N−1)
2 (t0) · · · y

(N−1)
N (t0)

∣∣∣∣∣∣∣∣∣∣
,

where t0 := (t1, 0, t3, 0, . . . ), and the derivatives {yi
′ . . . yi

(N−1)}} are taken with
respect to x = t1. The function τ

(N)
α1,...,αN ,γ1,...,γN (t) has the remarkable property

that twice its second logarithmic derivative, evaluated at the parameter values
(t1 = x, t2 = 0, t3 = t, ti = 0, i > 3)

u(x, t) := 2
∂2

∂x2
log τ (N)

α1,...,αN ,γ1,...,γN
(x, 0, t, 0, 0 . . . ) (1.2.7)

satisfies the KdV equation (1.1.40). Solutions of this form are called standard
N -soliton solutions to the KdV equation.

More generally, if we choose 3N complex constants

{αk, βk, γk}k=1,...,N (1.2.8)
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with αk, βk’s all distinct, γk �= 0, and define the functions

yk(t) := e
∑∞

i=1 tiα
i
k + γke

∑∞
i=1 tiβ

i
k , k = 1, . . . , N, (1.2.9)

we arrive at the more general Wronskian determinant

τ
(N)

	α,	β,	γ
(t) :=

∣∣∣∣∣∣∣∣∣∣
y1(t) y2(t) · · · yN (t)
y′
1(t) y′

2(t) · · · y′
N (t)

...
...

. . .
...

y
(N−1)
1 (t) y

(N−1)
2 (t) · · · y

(N−1)
N (t)

∣∣∣∣∣∣∣∣∣∣
. (1.2.10)

The function

u(x, y, t) := 2
∂2

∂x2
log
(
τ

(N)

	α,	β,	γ
(x, y, t, t4, . . . )

)
(1.2.11)

can then be shown to satisfy the 2 + 1 dimensional nonlinear partial differential
equation

3uyy = (4ut − 6uux − uxxx)x , (1.2.12)

known as the Kadomtsev–Petviashvili (KP) equation (which plays a prominent
rôle in plasma physics and in the study of shallow water ocean waves), together
with an infinite set of further nonlinear autonomous PDEs, each involving par-
tial derivatives of finite order with respect to a finite number of the KP flow
parameters t = (t1, t2, . . . ). These are collectively known as the KP hierarchy.
They may all be deduced from a single family of bilinear relations known as the
Hirota bilinear equations, (see Section 1.10 below), satisfied by the τ -function
τ

(N)

	α,	β,	γ
(t), and by all solutions of the KP hierarchy. Solutions of the form (1.2.10)

are referred to as standard N -soliton solutions of the KP hierarchy in Wronskian
form.

If βj = −αj for all j, the standard KP-solitons are independent of y = t2 and
all further even flow parameters {t2i} and reduce to KdV N -solitons, since

exαk+yα2
k+tα3

k + γke−xαk+yα2
k−tα3

k = eyα2
k

[
exαk+tα3

k + γke−xαk−tα3
k

]
, (1.2.13)

and the second logarithmic derivative in x eliminates the y-dependence.
The Wronskian formula (1.2.10) for the τ -function τ

(N)

	α,	β,	γ
(t) can also be rewrit-

ten in a more general determinantal form [102,104] (detailed in Section 6.1) as

τ
(N)

	α,	β,	γ
(t) = det(Ae

∑∞
i=1 tiB

i

CT ), (1.2.14)

where, for (1.2.10), A is the N × 2N double Vandermonde-type matrix

A =

⎡⎢⎢⎢⎣
1 1 · · · 1 1 1 · · · 1
α1 α2 · · · αN β1 β2 · · · βN

...
...

. . .
...

...
...

. . .
...

αN−1
1 αN−1

2 · · · αN−1
N βN−1

1 βN−1
2 · · · βN−1

N

⎤⎥⎥⎥⎦ , (1.2.15)
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B is the diagonal 2N × 2N matrix

B = diag(α1, α2, . . . , αN , β1, β2, . . . , βN ) (1.2.16)

and C is also N × 2N , with the special form

C =

⎡⎢⎢⎢⎣
1 0 · · · 0 γ1 0 · · · 0
0 1 · · · 0 0 γ2 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · γN

⎤⎥⎥⎥⎦ . (1.2.17)

General N -soliton solutions of the KP hierarchy are of the form

τ
(N)
A,B,C(t) = det(Ae

∑∞
i=1 tiB

i

CT ), (1.2.18)

where A and B are as above, but C can be an arbitrary N × 2N complex
matrix of full rank. Such solutions were introduced and systematically studied
by Matveev, Zakharov and others [102, 104, 142, 290, 293]. The necessary and
sufficient conditions that they be nonsingular for arbitrary real values of the
flow parameters (t1, t2, · · · ) were derived by Kodama and Williams [46,170–173].

1.3 Schur functions

Recall that, for a set of indeterminates x = (x1, . . . , xn), the n×n Vandermonde
matrix V (x1, . . . , xn) is defined as

Vij(x1, . . . , xn) := xn−i
j , 1 ≤ i, j ≤ n. (1.3.1)

Its determinant, denoted

Δ(x1, . . . , xn) := det(xn−j
i ) =

∏
i<j

(xi − xj), (1.3.2)

is called the Vandermonde determinant.
Consider an integer partition (see Appendix A)

λ = (λ1, . . . , λ 
(λ)), λ1 ≥ · · · ≥ λ
(λ), λi ∈ N+ (1.3.3)

of length �(λ) and weight |λ| :=
∑
(λ)

i=1 λi. The Young diagram of λ consists
of �(λ) vertically stacked, left-aligned rows of λi square boxes, i = 1, . . . , �(λ),
weakly descending downward. Figure 1.3 gives an illustration for the partition
λ = (3, 1).

Fig. 1.3. Young diagram of the partition (3, 1)
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In the following, we use the notation [x] for the special infinite sequence
defined by

[x] :=
(

x,
x2

2
,
x3

3
, . . .

)
. (1.3.4)

More generally, for a set of n indeterminates x = (x1, x2, . . . , xn) we associate
the following infinite sequence:

[x] =
n∑

k=1

[xk] =

(
n∑

k=1

xk,
1
2

n∑
k=1

x2
k,

1
3

n∑
k=1

x3
k, . . .

)
, (1.3.5)

which are, up to a normalization factor, the power sum symmetric functions
(Appendix D, eq. (D.1.20))

ti = pi/i, pi =
n∑

k=1

xn
k . (1.3.6)

The simplest definition of the Schur polynomial sλ([x]) in the indeterminates
(x1, . . . , xn) associated to a partition λ is given by Jacobi’s bialternant formula

sλ([x]) =
det

1≤i,j≤n
(xλi−i+n

j )

det
1≤i,j≤n

(xn−i
j )

. (1.3.7)

(See Appendices A and D for notation and definitions regarding partitions
and symmetric functions.) Due to cancellations of zeros, this is actually a
homogeneous symmetric polynomial in x of degree |λ| (see Appendix D.1).

Alternatively, viewing the Schur functions sλ(t) as functions of the infinite
sequence of parameters t = (t1, t2, . . .) defined in (1.3.6), they can be expressed
by the Jacobi-Trudi determinant formula (see Appendix D.1.2, eq. (D.1.42)).

sλ(t) = det
1≤i,j≤
(λ)

(hλi−i+j(t)), (1.3.8)

where hj(t) := s(j)(t) are the complete symmetric functions, which are graded
polynomials in (t1, t2, . . . ) of weight j, with ti assigned the weight i. These are
obtained from the generating function formula

n∏
a=1

(1− xaz)−1 = e
∑∞

k=1 tkzk

=
∞∑

j=0

hj(t)zj . (1.3.9)

The bialternant formula (1.3.7) is equivalent to the Jacobi–Trudi formula (1.3.8)
if we set t = [x].

Schur functions, viewed as depending on an infinite set of unconstrained flow
parameters t = (t1, t2, . . . ), are all τ -functions of the KP hierarchy. (See Section
1.10 below and Sections 3.2 and 3.6 for full definitions and details.) In particular,
the function

u(λ)(x, y, t) := 2
∂2

∂x2
ln (sλ(x, y, t, 0, 0, . . . )) (1.3.10)
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1.4 Rational solutions of the KP equation 13

is a rational solution of (1.2.12). For example, choosing λ to be a staircase
partition (see Figure 1.4), i.e., of the form

λ = (m,m− 1, . . . , 2, 1), (1.3.11)

Fig. 1.4. Young diagrams of the staircase partitions n = 1, 2, 3, 4, 5

and setting y = 0, the rational function

um(x, t) := u(m,m−1,...,2,1)(x, 0, t) (1.3.12)

satisfies the KdV equation (1.1.40). It is well-known [13, 16] that these are the
most general solutions of the KdV hierarchy that are rational in x for all values
of the parameters t and vanish as x→∞.

1.4 Rational solutions of the KP equation and
the Calogero–Moser system

There exist further solutions of the KP equation (1.2.12) that are rational in
x and vanish as |x| → ∞ for all values of the variables y and t. The partial
fraction decomposition of such functions can be shown to have a rather special
form [16,179,180,282].

Exercise 1.1. Show that if u(x, y, t) is a solution of (1.2.12) that is rational in
the variable x and vanishes as |x| → ∞, it must be of the form

u(x, y, t) = −2
n∑

j=1

1
(x− xj(y, t))2

, (1.4.1)

for some positive integer n. That is, u may only have second order poles in x,
and each double pole has the same constant coefficient −2.

The evolution of such solutions of the KP equation is therefore reduced to the
analysis of the motion of the poles in terms of the variables y and t. It was shown
by Krichever [179, 180] that the dependence of the poles {xk(y, t)}n

k=1 on the
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y variable is determined by Hamilton’s equations for the rational Calogero–Moser
many-body system [43, 203], governed by the Hamiltonian

H =
1
2

n∑
k=1

p2
k +
∑
i<j

1
(qi − qj)2

, (1.4.2)

where

qk := −ixk, k = 1, . . . , n, (1.4.3)

{pk}n
k=1 are the momenta canonically conjugate to the position variables {qk}n

k=1

and y is the time variable.
This is a completely integrable Hamiltonian system on the 2n-dimensional

phase space Cn ⊕C∗n with symplectic form

ω =
n∑

j=1

dqi ∧ dpi (1.4.4)

since it possesses n functionally independent Poisson commuting invariants.
Calogero [43] and Moser [203] showed that the equations of motion can be
interpreted as isospectral deformations of the n× n Hermitian matrix

L :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
i

q1 − q2
· · · i

q1 − qn
i

q2 − q1
p2 · · · i

q2 − qn
...

...
. . .

...
i

qn − q1

i

qn − q2
· · · pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.4.5)

i.e., deformations that preserve the eigenvalues of L. The family of Poisson
commuting invariants {H1, . . . , Hn} can be chosen as the trace invariants

Hj := (−1)jtr(Lj), j = 1, . . . , n. (1.4.6)

In fact, extending this definition to all positive integer values j ∈ N+, these
all Poisson commute (although they are not functionally independent). Their
Hamiltonian flows therefore generate an infinite abelian group action

f(t) : Cn ⊕C∗n → Cn ⊕C∗n

f(t) : (q1, · · · qn, p1, . . . , pn) �→ (q1(t), . . . , qn(t), p1(t), . . . , pn(t)),
f(0) = Id, f(t) · f(t̃) = f(t + t̃) (1.4.7)

on the phase space, where t = (t1, t2, . . . ) are the commuting time flow
parameters corresponding to the Hamiltonians (H1,H2, . . . ).

The flow associated to H1 corresponds to simultaneous translation of all the
xk’s. The first nontrivial Hamiltonian H2 coincides with −2H in (1.4.2). The
third Hamiltonian H3 = tr(−L3) governs the t-dependence of the pole loca-
tions of u(x, y, t). The higher Hamiltonians of the Calogero–Moser system can
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1.4 Rational solutions of the KP equation 15

be shown to correspond to the higher KP flows [254], which effectively embeds
the simultaneous solutions of finite dimensional Calogero–Moser system into the
infinite dimensional KP hierarchy.

The τ -function associated to rational solutions of the KP equation correspond-
ing to solutions of the Calogero–Moser system can be derived most naturally in
the context of the symmetry reduction construction of Kazhdan, Kostant and
Sternberg [166]. This was further extended to complex solutions of KP by Wil-
son [282], who complexified the phase space to include the cases of colliding
particles.

Consider pairs of complex n × n matrices X and Z such that the rank-1
condition

rank (XZ − ZX − In) = 1 (1.4.8)

holds, where In is the n×n identity matrix. For any pair of such matrices, there
exists a pair of nonzero column vectors v, w ∈ Cn such that

XZ − ZX − In = vwt. (1.4.9)

Let Wn denote the set of quadruples (X,Z, v, w)

Wn = {(X,Z, v, w) ∈ gl(n,C)× gl(n,C)×Cn ×Cn}, (1.4.10)

viewed as a complex 2n(n+1)-dimensional phase space with symplectic structure

ω = tr(idX ∧ dZ + dv ∧ dwt), (1.4.11)

and let C̄n ⊂ Wn denote the submanifold consisting of {(X,Z, v, w)} satisfying
(1.4.9)

C̄n = {(X,Z, v, w) ∈ gl(n,C)× gl(n,C)×Cn ×Cn : XZ − ZX − In = vwt}.
(1.4.12)

This is actually the condition

J = I (1.4.13)

for the moment map J : Wn → gl
∗(n,C) defined by

J = XZ − ZX − vwt, (1.4.14)

which generates the Hamiltonian action

GL(n,C)×Wn →Wn

(g, (X,Z, v, w)) �→ (gXg−1, gZg−1, gv, (gt)−1w), g ∈ GL(n,C). (1.4.15)

The Poisson commuting Hamiltonians {Hk}k=1,...,n defined in (1.4.6) are invari-
ant under this action. Therefore, the moment map (1.4.14) is constant under
their flows, and we may pass to the quotient space Cn = C̄n/GL(n,C).
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If the matrix X in a quadruple (X,Z, v, w) ∈ C̄n is diagonalizable, it can be
shown [166,282] that X has distinct eigenvalues and the equivalence class defined
by the GL(n,C) orbits has a representative of the form (iD,L, e,−e), where

D := diag(q1, · · · , qn), e :=

⎛⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎠ , (1.4.16)

and L is of the form (1.4.5). Letting g ∈ GL(n,C) be the unique element that
diagonalizes L and stabilizes e:

L = g−1Z0g, ge = e, (1.4.17)

where

Z0 := diag(β1, . . . , βn), (1.4.18)

and defining

X := igDg−1, (1.4.19)

it follows (cf. Chapter 6, Section 6.2.4) that the integrated flow can be expressed
as

X(t) = X0 −
∞∑

k=1

ktk(Z0)k−1. (1.4.20)

The τ -function corresponding to the pair (X0, Z0) is defined to be [282]

τ(X,Z)(t) = det

(
−X0 +

∞∑
k=1

ktkZk−1
0

)
, (1.4.21)

where the matrix argument is given by the integrated Calogero–Moser flows.
Identifying x ≡ t1 and applying the formula

u(t) = 2
∂2ln(τ(t))

∂x2
(1.4.22)

then gives the rational solution (1.4.1) of the KP hierarchy. In particular, the
corresponding rational solution of the KP equation is

u(x, y, t) = 2
∂2

∂x2
log
(
det
(
X + xZ − yZ2 + tZ3

))
. (1.4.23)

Note that, similarly to the soliton solutions of KdV and KP discussed in Sec-
tion 1.2, the τ -function τ(X,Z)(t) in (1.4.21) can be written in the equivalent
form [102,104]

τ(X,Z)(t) = det(AX0e
∑∞

i=1 tiB
i

CT ), (1.4.24)

with the N × 2N dimensional matrices AX0 and C defined as

AX0 =
(
In, −X0 − In

)
, C =

(
In, In

)
, (1.4.25)
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1.5 KP τ -functions associated to algebraic curves 17

where X0 is any matrix X0 ∈ Matn×n that satisfies

[X0, Z0] = In − eet, (1.4.26)

and

BZ0 =
(

Z0 I
0 Z0

)
. (1.4.27)

1.5 KP τ -functions associated to algebraic curves

Let X be a compact Riemann surface of genus g and fix a canonical homology
basis

a1, . . . , ag, b1, . . . , bg (1.5.1)

of H1(X,Z) with intersection numbers

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij , 1 ≤ i, j ≤ g. (1.5.2)

Let {ωi}i=1,...,g be a basis for the space H1(X) of holomorphic differentials
satisfying the standard normalization conditions∮

ai

ωj = δij ,

∮
bj

ωj = Bij , (1.5.3)

where B is the Riemann matrix of periods. The matrix B belongs to the Siegel
upper half space (see Appendix F and [256]),

Sg =
{
B ∈ Matg×g(C) : BT = B, �(B) is positive definite

}
. (1.5.4)

The Riemann θ function on Cg corresponding to the period matrix B is defined
to be

θ(Z|B) :=
∑

N∈Zg

eiπ(N,BN)+2iπ(N,Z). (1.5.5)

Choose a point p∞ ∈ X, a local parameter ζ in a neighbourhood of p∞ with
ζ(p∞) = 0 and a positive divisor of degree g

D :=
g∑

i=1

pi, pi ∈ X. (1.5.6)

For any positive integer k ∈ N+ let Ωk be the unique meromorphic differential
of the second kind characterized by the following conditions:

(a) the only singularity of Ωk is a pole of order k + 1 at p = p∞ with vanishing
residue,

(b) the expansion of Ωk around p = p∞ is of the form

Ωk = d(ζ−k) +
∞∑

j=1

Qijζ
jdζ, (1.5.7)
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(c) Ωk is normalized to have vanishing a-cycles:∮
ai

Ωj = 0. (1.5.8)

Denote by Uk ∈ Cg the vector of b-cycles of Ωk:

(Uk)j :=
∮

bj

Ωk. (1.5.9)

Denote the image of D under the Abel map A : Sg(X) → Cg

E := A(D) ∈ Cg, Ej = Aj(D) :=
g∑

j=1

∫ pi

p0

ωj (1.5.10)

with arbitrary base point p0.
Define the τ -function associated to the data (X,D, p∞, ζ) as

τ(X,D,p∞,ζ)(t) := e−
1
2

∑
ij Qijtitj θ

(
E +

∞∑
k=1

tkUk

∣∣∣B) . (1.5.11)

As was shown by Krichever [178], following earlier work of Its and Matveev
[141,142] on quasi-periodic solutions of the KdV equation, the second logarithmic
derivative of τ(X,D,p∞,ζ)(t) with respect to t1 = x is a solution of the KP equation
(1.2.12). Moreover, τ(X,D,p∞,ζ)(t) satisfies the infinite sequence of bilinear Hirota
equations of the KP hierarchy.

This property of θ functions associated to algebraic curves is also the key to
solving the Schottky problem: characterize the subset of the Siegel upper half
space Sg formed by the period matrices associated to compact algebraic curves
of genus g over C. Novikov conjectured and Mulase [205] and Shiota [253] proved
that if a θ-function θ(Z|B) for a matrix B in the Siegel upper half space gives
a solution to the KP hierarchy with a suitably chosen quadratic form Q, there
exists a compact algebraic curve of genus g whose period matrix is B.

1.6 Matrix model integrals

Let dμ0(M) be the Lebesgue measure on the N2 dimensional space HN×N of
N × N complex Hermitian matrices. Let ρ(M) be a conjugation invariant
integrable density function

ρ(UMU†) = ρ(M), U ∈ U(N). (1.6.1)

Define a deformation family of measures

dμN,ρ(t) := eTr(
∑∞

i=1 tiM
i)ρ(M)dμ0(M) (1.6.2)

for small t = (t1, t2, · · · ) and let

τN,ρ(t) :=
∫
HN×N

dμN,ρ(t). (1.6.3)
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1.7 The Toda lattice: bilinear equations and multisoliton solutions 19

Then τN,ρ(t) also satisfies the infinite hierarchy of bilinear Hirota equations of
the KP hierarchy [167].

1.7 The Toda lattice: bilinear equations and multisoliton solutions

The Toda lattice [268] is a chain of interacting point particles on the real line
with exponential nearest neighbour interactions. Denoting the particle positions
{qn}n∈Z and the momenta {pn}n∈Z, the equations of motion are

d2qn

dt2
= q̈n = eqn+1−qn − eqn−qn−1 . (1.7.1)

This is a Hamiltonian system generated by the Hamiltonian

H2 =
∑
m∈Z

(
p2

n

2
+ eqn−qn−1

)
(1.7.2)

with respect to the canonical Poisson bracket structure

{f(q,p), g(q,p)} :=
∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.7.3)

It may be viewed either as a doubly infinite lattice, with ∞ < n <∞, a semi-
infinite one with 0 ≤ n < ∞, a finite one 1 ≤ n ≤ N , for some positive integer
N ∈ N+ or a periodic one, with qi+N = qi. In all cases, there is a Lax equation
representation [80] of the equations of motion (1.7.1) as infinitesimal isospectral
deformations

dL

dt
= [A,L]. (1.7.4)

The Lax pair (L,A) consists either of doubly or singly infinite matrices, or finite
N × N matrices, with L symmetric and A skew symmetric, each of tridiago-
nal (Jacobi matrix) type, with 3 × 3 blocks along the principal diagonal of the
following form

L
(n)
3 =

⎛⎝bn−1 an−1 0
an−1 bn an

0 an bn+1

⎞⎠ , (1.7.5)

A
(n)
3 =

1
2

⎛⎝ 0 an−1 0
−an−1 0 an

0 −an 0

⎞⎠ , (1.7.6)

where

an :=
1
2
e

qn+1−qn
2 , bn :=

1
2
pn. (1.7.7)

(For the periodic case, there is an equivalent Lax pair consisting of N × N

matrices (L(z), A(z)) depending in a simple way [14,15] on an auxiliary spectral
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parameter z.) In terms of the coordinates {an, bn}, the equations of motion
(1.7.1) are

ȧn = an(bn+1 − bn), ḃn = 2(a2
n − a2

n−1). (1.7.8)

These different variants of the Toda lattice, as well as its generalizations for all
simple Lie algebras, have been studied in great detail [14,15,80,166,177] as typical
models of completely integrable Hamiltonian systems having Lax representa-
tions as isospectral flows. From the infinitesimal form (1.7.4) of the equations of
motion, it follows that the spectral invariants of L

Hi =
1
i
tr
(
Li
)
, i ∈ N+ (1.7.9)

are conserved quantities which, moreover, can be verified to Poisson commute:

{Hi, Hj} = 0. (1.7.10)

For the finite case, only the first N of these are independent; for the N -periodic
case these are replaced by res

z=0

(
trLi(z)

)
; for the doubly infinite one, the positive

powers in the trace invariants may be supplemented by negative ones.
The general solutions for the finite [166, 177] and periodic [14, 15] cases are

explicitly known, and special classes of solutions (multisolitons, rational, etc.)
are known for the infinite and semi-infinite ones [134, 208]. The τ -function for-
mulation of the equations of motion involves a lattice of τ -functions, denoted
{τn}n∈Z. These are only projectively defined, such that their ratio is

τn+1

τn
= eqn+1 . (1.7.11)

The coordinates an are given in terms of these by

an =
√

τn+1τn−1

τn
, (1.7.12)

where the positive square root is understood. The equations of motion (1.7.1)
and (1.7.8) are easily seen to be equivalent to the following system of (Hirota)
bilinear equations for the lattice of τ -functions {τn}n∈Z

τ̈nτn − (τ̇n)2 − τn+1τn−1 + τ2
n = 0, (1.7.13)

with similar systems for the Hamiltonian equations generated by all the
commuting invariants {Hi}.

For the infinite Toda lattice, as in the case of the KP hierarchy, there
exists a 3N -parameter family of exponential type (multisoliton) solutions of
(1.7.13), defined for each positive integer N , and set of 3N complex numbers
{αi, βi, γi}i=1,...,N , in the form of an N ×N Wronskian determinant [208]

τn = det (φi(n + j − i)) |1≤i,j≤N , (1.7.14)

https://doi.org/10.1017/9781108610902.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108610902.002


1.8 Generating function for intersection indices (Kontsevich integral) 21

where for successive values of n the functions φi(n) are time derivatives of those
to the left

φi(n + 1) = φ̇i(n) (1.7.15)

and satisfy the linear constant coefficient homogeneous system

φ̈i(n)− 2(cosh αi)φ̇i(n) + φi(n) = 0. (1.7.16)

The explicit general solution of eqs. (1.7.15) and (1.7.16) is

φi(n) = βie
αineeαi t + γie

−αinee−αi t. (1.7.17)

1.8 Generating function for intersection indices
(Kontsevich integral)

Let Mg,n denote the Deligne–Mumford compactification of the moduli space of
compact Riemann surfaces X of genus g, with n marked points {pi}i=1,...,n. Let
πi : Li → Mg,N be the line bundle whose fibre at X ∈ Mg,n is the cotangent
space at pi:

π−1
i (X) = T ∗Xpi

i = 1, . . . , n, (1.8.1)

and let c1(Li) denote the first Chern class of Li.
The intersection indices on the moduli space Mg,n are defined by integrals of

products of Chern classes, labelled as

〈τi1 · · · τim
〉 :=

∫
Mg,n

n∏
j=1

c1(Lj)dj , (1.8.2)

where ik is the number of times k appears in the sequence (d1, . . . , dn). The
above integral vanishes unless

n∑
j=1

dj = dim
(
Mg,n

)
= 3g − 3 + n. (1.8.3)

These intersection indices appeared in the context of two-dimensional gravity,
along with their exponential generating function, referred to as the Kontsevich–
Witten generating function [174,283], defined as

FKW (t) =
〈
e
∑

i tiτi

〉
=
∑

m∈N

∑
i1,...,im

〈τi1 · · · τim
〉 t

i1
1 · · · tim

m

i1! · · · im!
. (1.8.4)

The exponentiated generating function

τKW (t) := eFKW (t) (1.8.5)

is called the Kontsevich–Witten τ -function, which can be obtained as a certain
stable limit (in the sense of [149,174]) of the formal asymptotic expansions of a
sequence of Hermitian matrix integrals.
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For each n ∈ N+ define

Zn(Λ) :=

∫
M∈Hn×n

e
i
6Tr(M3)e−

1
2 MΛMdμ0(M)∫

M∈Hn×n

e−
1
2 MΛMdμ0(M)

, (1.8.6)

where Λ is an n × n diagonal “external coupling” matrix and dμ0(M) is the
Lebesgue measure on the space of n × n Hermitian matrices. In terms of the
traces of the inverse powers of Λ

si := tr(Λ−i), i = 1, 2, . . . . (1.8.7)

the terms of the formal asymptotic expansion of the integral Zn(Λ) can be
expressed as polynomials with rational coefficients in the variables si:

Zn(Λ) ∼ Zn(s) as s→ 0. (1.8.8)

The asymptotic expansions {Zn(s)}n can be shown to have a stable limit

Z(s) := lim
n→∞

Zn(s), (1.8.9)

in the sense that the lower order terms in the asymptotic expansion stabilize to
that of a fixed asymptotic series as n gets sufficiently large. It was shown by
Kontsevich [174] (see also [149]) that the stable limit Z(s) does not depend on
the even variables s2i, and if written in terms of the re-normalized and re-labelled
odd variables

ti := −(2i− 1)!!s2i−1 = −(2i− 1)!!Tr(Λ−2i+1), (1.8.10)

it coincides with Witten’s generating function

τKW (t) = Z

(
− t1

1!!
, 0,− t2

2!!
, 0, . . .

)
(1.8.11)

and satisfies the KdV hierarchy in the variables t. For details see Section 13.2 in
Chapter 13.

1.9 Generating function for simple Hurwitz numbers

A special family of KP τ -functions was shown by Pandharipande [230] and
Okounkov [218] to serve as generating functions for simple Hurwitz numbers
Hd

exp(μ). The latter may be defined as the number of ways in which an element
hμ of the symmetric group Sn in the conjugacy class cyc(μ) having cycle lengths
equal to the parts of the partition μ of weight |μ| = n can be factored into a
product of d 2-cycles

hμ = h1 · · ·hd (1.9.1)
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(divided by n!). Alternatively, this may be interpreted as the number of n-sheeted
branched coverings C → P1 of the Riemann sphere having d + 1 branch points,
one with specified ramification profile given by the partition μ, while the other d

have simple branching (i.e., ramification profiles (2, (1)2) ), divided by the order
| aut(C)| of the automorphism group of the covering.

A parametric family of KP τ -functions, which depend on a pair of additional
expansion parameters (γ, β), may be defined by their Schur function expansion

τ (exp,β)(t) =
∞∑

n=0

γn
∑

λ,|λ|=n

dλ

n!
e

β
2

∑�(λ)
i=1 (λi−2iλi+1)λisλ(t), (1.9.2)

where {ti = pi

i } are normalized power sum symmetric functions (as in eq. (1.3.6)
above), which are viewed as KP flow parameters. Here β is viewed as a (small)
expansion parameter whose power is equal to the number of simple branch points
d and dλ is the dimension of the irreducible representation of Sn corresponding
to the Young symmetry type λ. When re-expressed as a sum over the basis {pμ}
of power sum symmetric functions,

pμ =

(μ)∏
i=1

pμi
, (1.9.3)

with the pj ’s defined as in (1.3.6), this gives

τ (exp,β)(t) =
∞∑

n=0

γn
∑

μ,μ=n

βd

d!
Hd

exp(μ)pμ(t), (1.9.4)

and hence is a generating function for simple Hurwitz numbers Hd
exp(μ) when

expanded in the power sum basis.

1.10 Common features of the examples

The examples above share a number of common features:

(a) They all have finite or infinite dimensional determinantal representations.
(b) They all involve an Abelian group action with a maximal number (finite or

infinite) of commuting flows.
(c) In all cases, the dynamics may be expressed in the form of bilinear, constant

coefficient differential or difference equations for the τ -function, or a lattice
of functions.
For the examples involving τ -functions of the KP hierarchy, we may express
these in a uniform manner by defining an auxiliary function, the Baker
function Ψ+(z, t) and its dual Baker function Ψ−(z, t) as follows:
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Ψ±(z, t) = e±
∑∞

i=1 tiz
i τ(t∓ [z−1])

τ(t)
(1.10.1)

[
z−1
]

:=
(

1
z
,

1
2z2

, . . .

)
.

The equations of the hierarchy are then determined by the following vanish-
ing formal residue relations, known as the Hirota bilinear residue relations
(derived in detail in Section 3.5 below)

res
z=0

(
dzΨ+(z, t)Ψ−(z, t + s)

)
= 0, (1.10.2)

which hold identically in the shifted flow parameters s := (s1, s2, . . . ).
Alternatively, by choosing four complex parameters z1, z2, z3 and z4 and
defining

ηij(t) = (zi − zj)τ(t− [z−1
i ]− [z−1

j ]) ηij(t) = −ηji(t) (1.10.3)

the residue relations (1.10.2) are equivalent to

η12(t)η34(t) + η23(t)η14(t)− η13(t)η24(t) = 0, (1.10.4)

which hold identically in t. Through eq. (1.10.1), this is equivalent to
the τ -function satisfying an infinite set of constant coefficient partial dif-
ferential relations, known as the Hirota equations (detailed in Sections
3.7 and 3.10 below), each of which involves bilinear combinations of
directional derivatives in a finite number of KP flow parameters t =
(t1, t2, . . . ). These, in turn, are equivalent to the coefficient functions
in the z-expansion of the Baker functions Ψ±(z, t) being solutions of
the KP hierarchy [250], [246]. In particular, the Kadomtsev–Petviashvili
equation (1.2.12) appears as the first nontrivial consequence of these
relations.

For the case of the Toda lattice, the Hirota equations involve neigh-
bouring lattice sites, as in eq. (1.7.13), and a further infinite set of
similar bilinear equations, involving derivations with respect to all the flow
variables.

Exercise 1.2. (S). Ptolemy’s theorem states that, for a quadrilateral with
consecutive vertices A1, A2, A3, A4 lying on a circle, the following identity
holds:

A1A2 ·A3A4 + A2A3 ·A1A4 = A1A3 ·A2A4, (1.10.5)

where AiAj is the length of the line segment joining the vertices Ai and Aj

(see Figure 1.5). Demonstrate this using the (trivial) KP τ -function
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τ(t1, t2, t3, . . . ) = exp

( ∞∑
k=1

(−1)k−1t2k

)
(1.10.6)

(which just corresponds to vanishing solutions of the KP hierarchy) and the
quadratic relations (1.10.4).

Hint: Denoting the angles at the center {θi}i=1,...,4, we can parametrize these in
terms of four real numbers

x1 < x2 < x3 < x4 (1.10.7)

using the Cayley map

eiθj =
1 + ixj

1− ixj
, j = 1, . . . , 4, (1.10.8)

which gives

sin
(

θi

2

)
=

1√
1 + x2

i

, cos
(

θi

2

)
=

xi√
1 + x2

i

. (1.10.9)

If r is the radius of the circle, the distances between the vertices are

AiAj = 2r2 sin
(

θj − θi

2

)
= 2r2 xj − xi√

1 + x2
i

√
1 + x2

j

= 2r2 det

⎛⎝ 1√
1+x2

i

xi√
1+x2

i
1√

1+x2
j

xj√
1+x2

j

⎞⎠ , 1 ≤ i < j ≤ 4. (1.10.10)

Setting

zi = xi, i = 1, . . . , 4, (1.10.11)

in (1.10.3), verify that eq. (1.10.5) is equivalent to (1.10.4), and that this is just
the classical Plücker relation (see Appendix C.5) defining the embedding of the
Grassmannian Gr2(C4) of 2-planes in C4 as a quadric in the projective space
P(Λ2C4).
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θ1

θ2

θ3

θ4

A1

A2

A3

A4

Fig. 1.5. A quadrilateral with vertices on a circle

https://doi.org/10.1017/9781108610902.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108610902.002

