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FRACTIONAL INTEGRATION AND
THE HYPERBOLIC DERIVATIVE

E.G. KwonN

We improve S. Yamashita’s hyperbolic version of the well-known Hardy-Littlewood the-
orem. Let f be holomorphic and bounded by one in the unit disc D. If (f#)p has a

harmonic majorant in D for some p, p > 0, then so does o(f)? for all ¢,0 < ¢ < 0.
Here

£# = |£'| /(1 - 1f1*) and o(f) = tanh ™" |f].

1. INTRODUCTION

The disc D = {|z| < 1} is endowed with the non-Euclidean hyperbolic distance
(Poincaré metric)

1 -z -
o(z, w) = ~log 1 —Zw|+ |z — w]

D).
2 T e e BV ED)

Let B be the family of all functions f holomorphic and bounded, |f| <1,in D. For
f € B, we let, following Yamashita [6],

o(f) = o(f,0) = 27" log{(1 + I£1)/(1 — |},

and .
=171/ (1-111).

These are hyperbolic counterparts of |f| and |f'|, and o(f)?, (f#)° (0<p < o)
are subharmonic in D if f € B. Set

2w
My(r, h) = /0 |h(re®)|F db/2m, (0 < p < ),

for h subharmonic in D. Then h has a harmonic majorant in D if and only if

sup My(r, h) < oo.
0<r<1
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The Hardy class HP(0 < p < oo) consists of those f holomorphic in D for which
the subharmonic functions |f|’ have harmonic majorants in D: the class H™ consists
of all bounded holomorphic functions in D. Analogously, Yamashita [8] defined the
hyperbolic Hardy class HZ(0 < p < oo) as the class of those f € B for which o(f)”
have harmonic majorants in D, and HZ® as that of those f € H™ bounded by
a constant strictly less than one. He observed the following (II) [5, Theorem 2] in
connection with (I) [3, Theorem 33] or see [1, Theorem 5.12]

(I) If f' € H? for some p, 0< p <1, then f € H? with ¢ =p/(1 — p).
(II) If f€ B andif (f#)p for some p, 0 < p < 1, has a harmonic majorant
in D, then f € H? with ¢ =p/(1 - p).

The index g in (I) cannot be replaced by a larger one [1, p. 90]. The question as to
whether ¢ in (II) is sharp is our starting point. One of the main differences between f#
and f' may be that f#(z) < (1 - |z])™" (by Pick’s invariant form of Schwarz lemma),
while f'(z) is of O(1 — |z[)"/? [1, Theorem 5.9]. This fact leads us to introduce the
concept of fractional integration [3 or 2]: If f(z) is holomorphic in D, the fractional
integral of f of order 3, 8 > 0, is defined by Flett [2] as

1
0

(1.1) IPf(z) = I‘(ﬂ)"/ (~logt)?~'f(tz)dt, (z € D).

The following (III), that extends (I), and (IV), which is a consequence of (III), are
observed in [4, Theorem 2.1 and Remark 2.7].
(II) If f € HP(0 < p < 00) and f(z) = O(1 —|z])”7 with 0 <y < 1/p, then
IPf € H? with ¢ = py/(v — ), where 0 < 8 < 7.
(IV) If f is a Bloch function (that is to say f'(z) = O(1—|z|)™") and f' €
HP(0<p<1),then fe H? forall q,0 < g < 00: ¢ = oo cannot be
allowed in the conclusion.

To show the hyperbolic counterparts of (III) and (IV) is our goal. We adopt, for
calculational simplicity, a definition “equivalent to (1.1)”:

1
Ph(z) = T(8)" / (1= )" h(tz)dt, (z€D,B>0),
0
for subharmonic h = (f#)® (0 <p < oo) in D. Since

a(z, w) = inf/c. ldz| /(l - |z|2), (z, w € D),

where ¢ runs through any arc in D joining z and w, it follows that

5] ) )
a(f(z), f(0)) < /o f#(re'o)dr, (z = |z|e'a),

https://doi.org/10.1017/5S0004972700027714 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027714

[3] Fractional integration 359

so that
o(f(2)) < o(£(2), £(O)) + o(F(0))
<lol [ A+ ol0)
= [ ' £#(2) + 0(F(0).
We shall show the following:

THEOREM 1. Let f € B. If (f#)” (0 <p < o) has a harmonic majorant in

D and f#(z) = 0(1 —|z|)™" with 0 < v < 1, then 2P My(r, IPf#) < oo with

g=py/(y—B), where 0 < 8 < v.
THEOREM 2. If f € B and (f#)P admits a harmonic majorant in D for some

p,0<p<1,then f€ HI forall ¢,0 < g< oo.

Theorem 2 improves (1I) significantly and shows that ¢ in (II) is not sharp. The
bound on ¢ in Theorem 2 is sharp in the sense that there is a function f € B such that
(f#)p admits harmonic majorants in D for arbitrary p, 0 < p <1, but f ¢ HZ:even
more f need not be a function which is hyperbolically Dirichlet finite, that is,

//D (f#)’(z)dedy = oo.

2. PROOF OF THEOREM 1
Our results depend on the following two lemmata.
LEMMA 1. (5, Lemma 2]. Let f € B. Let u be one of f# or o(f). Set M(6) =
M(u, 6) = sup{u(re?®): 0 <r < 1}. If uP(0 < p < 0o) admits harmonic majorants in

D, then
2

2w
M(8)Pd6 < C, / w*(8)7d9,
(] 0

where u*(6) = lirr} u(re?) (which exists a.e.) and C,, is a positive constant depending
only on p.
LEMMA 2. Let fe€B,0<f,y<o00,and 0<a=0/y<p<oo. Then
(21) IP((##)")(2) < OM(zY"""M(2,7)", (z € D),
where M(z) = M(f#,2) = sup{f*#(tz): 0 <t < 1}, M(z,7) = M(f#,2,9) =

sup{(1 —¢)"f#(tz): 0 <t <1}, C = C, g, is a positive constant depending only on
p, B and 7.
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PROOF: Fix z € D. We may assume that 0 < M(z, v) and M(2) < co. If we set
s=1—{M(z,v)/M(z)}*/7 € [0, 1) then we have

(2:2) P((#)°)(z) <18~ / - / (1 A (4 a2
<1@) Gy [(a- o

+M(z)p/l (1- t)/’-ldt}
< prﬁ,’YM(z)p_aM(z’ 7)%

whence (2.1) follows. "

We prove Theorem 1: Set p =1 in (2.1) and integrate the g-th power of both sides
with respect to df/2m, then

2m

My (r, Iﬁf#) <C M2’ M(z, 7)*%d, (z= rew),
0

because g(1 —a) = p. It then follows from the condition

K :=sup (1-|2])"f#(2) < o
zeD

that
2w

My(r, IPf#) < CK™* [ M(8)*d6,
0

where M (6) = sup{f#(re?): 0 < r < 1}. Now, Lemma 1 with u = f# gives that
2w 2w
M(8)Pdé < Cp/ u*(8)Pd6.
0

1]

But then this last integral is dominated by lini M,(r, f#), by Fatou’s Lemma. Gath-

ering up, we have

(2.3) M,(r, I? f#) < CK7° lim M, (r, ),

where C = Cp 4 3.4 Note that lin} Mp(r, f#) = sup Mp(r, f#) by the subharmonicity

of ( f#)p . Therefore, we get the desired conclusion if we take the supremum for r, 0 <
r < 1, on the left hand side of (2.3).
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3. PROOF OF THEOREM 2

We may assume ¢q > p. Fix such a ¢. It was observed in Section 1 that
a(f(2)) < |2\ ' £#(2) + o (£(0)) :
and it is obvious from the definition that
Ff#(z) <TB)IPf#(z), (z€D),
for 0 < 8 < 1. Therefore

(3.1) {o(f(2))}2 <{I'f#(2) + o (f(0))}
< 2B (I f#(2))" + o(£(0))}, (0<B<1).
Now, take 8 < 1 so that ¢ = p/(1 — ). It then follows from Theorem 1 with v =1
that sup My(r, I?f#) < oo, so that {o(f(z))}? has a harmonic majorant by (3.1).
0gr<1
Since this is true for any ¢ > p, the conclusion follows.

4. AN EXAMPLE

There is a function f € B such that ( f‘#)‘J admits harmonic majorants in D for
arbitrary p, 0 < p <1, but f is not hyperbolically Dirichlet finite.
Let
f(z)=e7, (z€ D),

where

o) = exp(31og (521, 9(0) = VITE, (€ D).

Set
#) = cosl arg( 157 )}, (e D),

for simplicity. Then after a simple calculation, we have 1/1/2 < #(z) < 1, so that

|£(2)] = exp (~Re 9(>))
= exp (- |g(z)| #(2))

<1.

Therefore f € B. If we note that for 0 < 0 < 2w,

lg*(0)] = V/sin (8/2),

https://doi.org/10.1017/5S0004972700027714 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027714

362 E.G. Kwon (6]

and

(4.1) |f*(8)] = exp{—+/sin (8/2) cos (W — 0)} <1

4

with equality in (4.1) only at # = 0, we can conclude by a routine calculation that

lfww*(rwrwwy*w{e near § = 0

27 — 0 near 0 =27

and the left hand side of (4.2) is bounded away from zero elsewhere on [0, 27). (As
usual, F*(0) = lil}l F(re'®), and “F(6) ~ G(0) near § = a” means that there exist

positive constants Cy and C, satisfying C; < F(8)/G(8) < C; in a neighbourhood of
f = a). Therefore

2r
g @1 (1-157(0))yPd8 < oo

for all p, 0 < p < 1. It now follows from Lemma 1 and the fact

|£7(8)] = 1g°(8) " exp{—g*(8)1 4" (6)} < lg"(8)|

that
2w
sup My (r, f#) < Cp/ u*(9)’do
r 0
2w 2
<G [ Al @1 (1-1£°@F )} >ds
< o0, (0<p<1),
where u = f#.
Next, we show that f# is not hyperbolically Dirichlet finite. Let
me) = LEOL (¢ p)
1 - |f(2)l
Then

h(z) = |9(2)| {exp (Re g(2)) — exp (~Reg(2))}
27'Re g(z) cosech(Re g(z))
! cosech(1)

vV WV VWV

9-
0,

https://doi.org/10.1017/5S0004972700027714 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027714

(7] Fractional integration 363

because 0 < Re g(z) <1 and the function = cosech(z) is decreasing for ¢ > 0. If we
note that f#(z) = |2/(1 — 2)| h(z), it is now apparent that

/ (f#)z(z)d:cdy =00
D

5. A REMARK
We can say that the result of Theorem 2 is sharp in the other sense, that is, our

example in Section 4 illustrates the sharpness of the following
(5.1) “If f# has a harmonic majorant in D, then f € H®”

The result (5.1) follows from the inequality [7, Theorem 3]

Jim o(f(re), £(0)) < / f# (@) de < ()7 / T O

6. ONE MORE THEOREM
Let f, p, B and v be as in Lemma 2. If

K: =sup(1—|2|)"|f#(z)| < o0,
zeD

then by (2.2)
1
/ (1 - t)ﬁ_l(f#)p(treio)dt < CK°M(z)’,
0

so that

/ / - P (F#)? (trei®) dodt

27

< CK“/ sup{lf#(trew)|6 :0<r < 1}d8
0
2

< CK* | M(6) ds,
0

where a = 8/, é =p—a, C = Cpyp5 and M(8) = sup{|f#(rei9)| 10 < r <1}
Thus

2w

1 2m
(6.1) /0 /0 (1 = r)P 1 (f#)P (re'®)dodr < CK® i M(8)°do

by the monotone convergence theorem. Now, Lemma 1 followed by Fatou’s lemma and
the subharmonicity of (f#)6 makes the right hand side of (6.1) dominated by

CP"Y,ﬁKa suP{M6 (T, f#) : 0 < r < 1},

We state this:
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THEOREM 3. Suppose that f € B and f#(z) = 01 —|z])77,and let 0 <y <1,

O<p<g<oo.If (f#)p admits a harmonic majorant in D then

(1]
(2]

/ | / T (1= )P () (e dr 6 < oo,
0 0
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