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Abstract

In this paper, a new approach is proposed to investigate Blackwell-type renewal theorems
for weighted renewal functions systematically according to which of the tails of weighted
renewal constants or the underlying distribution is asymptotically heavier. Some classical
results are improved considerably.
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1. Introduction

Assume that X is a nonnegative random variable with distribution function F and finite
mean µ. Moreover, {Xn}n≥1 is a sequence of independent and identically distributed (i.i.d.)
random variables having the same distribution as X. Let

S0 := 0, Sn := Xn + Sn−1, n ≥ 1.

Here {Sn}n≥0 denotes the renewal epochs. The renewal function U(x) counts the average
number of renewals up to time x:

U(x) :=
∞∑

n=0

Fn∗(x).

Results about the asymptotic behavior of U(x) as x → ∞ are usually called renewal theorems.
In particular, the famous Blackwell renewal theorem states that if F is nonarithmetic then, for
every fixed h > 0,

U(x + h) − U(x) → h

µ
as x → ∞.

Information on the classical renewal theorems can be found in standard textbooks such as [8]
and [12].

Furthermore, the following weighted renewal function has been considered:

G(x) :=
∞∑

n=0

anF
n∗(x),

where {an} is a sequence of nonnegative numbers, named weighted constants. Obviously, if
an ≡ 1 then G reduces to the ordinary renewal function U , while if an = 1/n, n ≥ 1, then G

is called a harmonic renewal function.
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Some Blackwell-type renewal theorems for weighted renewal functions 973

In this paper we focus on the Blackwell-type theorems for G(x). According to which of the
tails of weighted renewal constants or the underlying distribution is asymptotically heavier, we
consider the following three cases:

Case 1: {an} plays a dominant role;

Case 2: the tail of F plays a dominant role;

Case 3: {an} and the tail of F play roles of equal importance.

A unified method is proposed to treat the three cases above and it is different from the
generating function approach of, for example, [6].

In the case of subordination, Stam [19] was the first to consider the relation between {an}, the
tail of F , and the tail of G, and also considered the three cases in the present paper. However,
for the Blackwell-type theorems on G, the three cases were usually considered separately.

In connection with case 1, an = nα (α ∈ R) was first considered in [11] and then it
was generalized by Embrechts et al. [6] to the case in which an is regularly varying. More
generally, the case in which an is regularly oscillating (for its definition, see Section 2) has been
considered in [17]. Our results for case 1 (see Theorem 3.1 and its corollaries, below) unify
and generalize most of these corresponding results. In particular, the monotonicity condition
on {an}, which was required in [17], is dropped. Moreover, we also establish some reverse
result for Theorem 3.1.

It should be noted that in Theorem 3.1 and its corollaries we have assumed the regular
oscillation of {an}. For related results which do not require such an assumption, we refer the
reader to [10] and [13]. Moreover, we also assume that the random variable X is nonnegative.
The real random variable X and regularly varying weights {an} have been considered by
Alsmeyer [1]. Alsmeyer obtained best possible results relating moments of X to G(x) and
G(x + h) − G(x).

In connection with case 2, Chover et al. [5] established the Blackwell-type renewal theorem
under the assumptions that F satisfies some subexponential condition while an has a nice
generating function. Related results are also established in [2]. Our result for case 2 (see
Theorem 3.3, below) extends these results by making the conditions on F stronger and the
conditions on {an} weaker. Case 3 is first considered in the present paper.

For an introduction to weighted renewal theory, we refer the reader to [15].
In the sequel we mainly state the results and method in the case that F is an arithmetic

distribution. Results for the nonarithmetic case are appended in Section 6. Finally, some
remarks are included in Section 7.

2. Notation

For two functions or number sequences f and g, we write

• f ∼ g if lim(f/g) = 1;

• f = o(g) if lim(f/g) = 0;

• f � g or f = O(g) if lim sup(f/g) < ∞;

• f � g if lim inf(f/g) > 0;

• f � g if 0 < lim inf(f/g) ≤ lim sup(f/g) < ∞.
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For any sequences of numbers {gm} and {f (ε, m)} with parameter ε, by the notation

f (ε, m) = o(gm), m → ∞, ε → 0+,

and
f (ε, m) ∼ gm, m → ∞, ε → 0+,

we have

lim
ε→0+

lim sup
m→∞

∣∣∣∣f (ε, m)

gm

∣∣∣∣ = 0

and

lim
ε→0+

lim sup
m→∞

∣∣∣∣f (ε, m)

gm

− 1

∣∣∣∣ = 0,

respectively.
With any sequence of numbers {gn}n≥0, we always associate a function g in such a way that

g(x) := g[x],

where, here and throughout the paper, [x] denotes the integer part of x.

Definition 2.1. A sequence of nonnegative numbers {gn} is called regularly varying, denoted
by g ∈ RV(α), where α ∈ R, if, for every fixed y > 0,

g(xy)

g(x)
→ yα as x → ∞.

Definition 2.2. A sequence of nonnegative numbers {gn} is called regularly oscillating, denoted
by g ∈ C, if

lim
x→∞, y→∞

x/y→1

g(x)

g(y)
= 1.

Definition 2.3. A sequence of nonnegative numbers {gn} is called dominatedly varying,
denoted by g ∈ D, if, for every fixed y > 0,

g(xy) � g(x) as x → ∞.

Definition 2.4. A sequence of nonnegative numbers {gn} is said to be long tailed, denoted by
g ∈ L, if, for every fixed y ∈ R,

lim
x→∞

g(x + y)

g(x)
→ 1.

Definition 2.5. A sequence of nonnegative numbers {gn} with
∑∞

n=0 gn = 1 is said to be
subexponential, denoted by g ∈ SD, if g ∈ L and

g2∗
n

gn

→ 2 as n → ∞,

where g2∗ denotes the two-fold convolution of {gn}, that is

g2∗
n =

n∑
k=0

gn−kgk.
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For more properties of the classes RV and D, we refer the reader to [4]. The class C was
introduced in [3] and the class SD was introduced in [5].

It is well known that the following relation holds:

RV ⊂ C ⊂ D ∩ L.

Furthermore, if {gn} satisfies
∑∞

n=0 gn = 1 then

g ∈ D ∩ L �⇒ g ∈ SD.

Definition 2.6. A sequence of nonnegative numbers {gn} is said to be almost decreasing if

sup
y≥x

g(y) � g(x) as x → ∞.

For any function or sequence f ∈ D, its lower Matuszewska index is defined as

β(f ) := supλ>1(log f∗(λ))

log λ
, where f∗(λ) := lim inf

x→∞
f (λx)

f (x)
.

By Corollary 2.1.6 of [4] we have

β(f ) = limλ→∞(log f∗(λ))

log λ
. (2.1)

For more properties of almost monotonicity or the Matuszewska index, we refer the reader
to [4, pp. 68–74].

Similar to that of distribution functions, we define the hazard rate of a sequence {gn} as

qg(n) := gn+1 − gn

gn

if gn > 0.

For a distribution F , we define

ρF := − lim sup
x→∞

log F̄ (x)

log x
,

where, here and throughout the paper, F̄ = 1 − F denotes the tail of F .

3. Main results

In the following discussion we always assume that the distribution F is arithmetic and,
without loss of generality, its span is assumed to be 1; similar results can be obtained for the
case in which the span of F is not equal to 1. Moreover, we always assume that the distribution
F has a finite mean µ. Let

pm = P(X = m), m = 0, 1, 2, . . . ,

and, without loss of generality, we always assume that p0 < 1.
Next, we will state the main results for the three cases separately.
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3.1. The case in which {an} plays a dominant role

Theorem 3.1. Suppose that a ∈ C and that

F̄ (m) = o

(
am∑m
n=1 an

)
as m → ∞. (3.1)

Then

G(m) − G(m − 1) ∼ a(m/µ)

µ
as m → ∞. (3.2)

Corollary 3.1. Suppose that a ∈ C and that β(a) > −1. Then relation (3.2) holds.

Corollary 3.2. Suppose that a ∈ C, β(a) ≤ −1, and that there exists a constant β < β(a)

such that
F̄ (m) = o(mβ) as m → ∞. (3.3)

Then relation (3.2) holds.

If
∑m

n=1 an < ∞ then condition (3.1) reduces to F̄ (m) = o(am). However, by the proof
of Theorem 3.1, such a condition can be further weakened. We reformulate such a result as
follows.

Corollary 3.3. Suppose that a ∈ C,
∑∞

n=1 an < ∞, pm = o(am), and that

F̄ (m) = O(am) as m → ∞. (3.4)

Then relation (3.2) holds.

It is easy to see that Theorem 3.1 implies that G(m) − G(m − 1) ∈ C. Then the question
that arises is: under what conditions does G(m) − G(m − 1) ∈ C imply that a ∈ C? We give
an answer to this problem as follows.

Theorem 3.2. Suppose that {G(m) − G(m − 1)} ∈ C, {an} is ultimately monotone, and that

F̄ (m) = o

(
G(m) − G(m − 1)

G(m)

)
as m → ∞. (3.5)

Then a ∈ C and relation (3.2) holds.

Remark 3.1. Similar to Theorem 3.1, some corollaries can be derived from Theorem 3.2.
Moreover, a similar reverse result for Corollary 3.3 can be formulated easily.

3.2. The case in which the tail of F plays a dominant role

Theorem 3.3. Suppose that p ∈ D ∩ L, {pm} is almost decreasing, ρF > 1, and that

am = o(pm) as m → ∞. (3.6)

Then
∑∞

n=1 nan < ∞ and

G(m) − G(m − 1) ∼
( ∞∑

n=1

nan

)
pm as m → ∞.
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3.3. The case in which {an} and the tail of F play roles of equal importance

Theorem 3.4. Suppose that p ∈ C, {pm} is almost decreasing, ρF > 1, and that there exists a
constant K ≥ 0 such that

am ∼ Kpm as m → ∞. (3.7)

Then
∑∞

n=1 nan < ∞ and

G(m) − G(m − 1) ∼
( ∞∑

n=1

nan

)
pm + a(m/µ)

µ
as m → ∞.

Remark 3.2. When K = 0, the above result is a special case of Theorem 3.3.

By Theorem 3.4, it is easy to obtain the following corollary.

Corollary 3.4. Suppose that p ∈ RV(α), α < −2, and that there exists a constant K ≥ 0 such
that relation (3.7) holds. Then

∑∞
n=1 nan < ∞ and

G(m) − G(m − 1) ∼
( ∞∑

n=1

nan + K

µα+1

)
pm as m → ∞.

4. Preliminary lemmas

The following lemmas are needed in our proofs.

Lemma 4.1. Assume that g ∈ D and that β(g) > −1. Then

∑
n≤εm

gn = o(mgm), m → ∞, ε → 0 + .

Proof. The result can be easily proved by using Corollary 2.6.2 and Proposition 2.2.1 of [4].

By Theorem 2.1.7(ii) and Proposition 2.2.1 of [4], it is easy to obtain the following lemma.

Lemma 4.2. Suppose that g ∈ D. Then there exist constants C > 0 and v > −β(g) such that,
for sufficiently large x,

g(x) ≥ Cx−v.

Lemma 4.3. For every positive integer k, we have

k∑
n=0

P(Sn = m) ≤ 1

1 − p0
P(Sk ≥ m) (4.1)

and
∞∑

n=k

P(Sn = m) ≤ 1

1 − p0
P(Sk ≤ m). (4.2)

Proof. In view of

{Sn = m} = {Sn = m, Xn+1 �= 0} ∪ {Sn = m, Xn+1 = 0},
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we have

k∑
n=0

P(Sn = m) =
k∑

n=0

P(Sn = m, Xn+1 �= 0) +
k∑

n=0

P(Sn = m, Xn+1 = 0)

:= I + II. (4.3)

Since {Sn = m, Xn+1 �= 0} for n = 0, 1, . . . , k is a collection of disjoint events, we have

I = P

( k⋃
n=0

{Sn = m, Xn+1 �= 0}
)

≤ P

( k⋃
n=0

{Sn = m}
)

≤ P(Sk ≥ m), (4.4)

where the last step holds since X is nonnegative. Since {Sn = m} and {Xn+1 = 0} are
independent, we obtain

II =
k∑

n=0

P(Sn = m) P(Xn+1 = 0) = p0

k∑
n=0

P(Sn = m). (4.5)

Combining (4.3), (4.4), and (4.5) gives

k∑
n=0

P(Sn = m) ≤ P(Sk ≥ m) + p0

k∑
n=0

P(Sn = m),

which is equivalent to (4.1). Equation (4.2) can be proved similarly.

Lemma 4.4. For every fixed ε > 0, the following relation holds:

∑
m(1−ε)/µ<n<m(1+ε)/µ

P(Sn = m) → 1

µ
as m → ∞.

Proof. By Blackwell’s renewal theorem for U we have

U(m) − U(m − 1) → 1

µ
as m → ∞. (4.6)

Note that

U(m) − U(m − 1) =
∞∑

n=0

P(Sn = m)

=
∑

n≤m(1−ε)/µ

P(Sn = m) +
∑

m(1−ε)/µ<n<m(1+ε)/µ

P(Sn = m)

+
∑

n≥m(1+ε)/µ

P(Sn = m)

:= Iu + IIu + IIIu. (4.7)

By Lemma 4.3 we have

Iu ≤ 1

1 − p0
P(S[m(1−ε)/µ] ≥ m) and IIIu ≤ 1

1 − p0
P(S[m(1+ε)/µ] ≤ m).
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Hence, by the law of large numbers we have, for every fixed ε > 0,

Iu → 0 and IIIu → 0 as m → ∞. (4.8)

From (4.6), (4.7), and (4.8), the desired result follows.

Lemma 4.5. Suppose that a ∈ C.

(i) If ∑
n≤εm

an P(Sn = m) = o(am), m → ∞, ε → 0+, (4.9)

then relation (3.2) holds.

(ii) If there exists a sequence of numbers {dm} such that∑
n≤εm

an P(Sn = m) ∼ dm, m → ∞, ε → 0+,

then

G(m) − G(m − 1) ∼ a(m/µ)

µ
+ dm as m → ∞.

Proof. Let ε > 0. We have

G(m) − G(m − 1) =
∞∑

n=0

an P(Sn = m)

=
∑

n≤εm

an P(Sn = m) +
∑

εm<n≤m(1−ε)/µ

an P(Sn = m)

+
∑

m(1−ε)/µ<n<m(1+ε)/µ

an P(Sn = m) +
∑

n≥m(1+ε)/µ

an P(Sn = m)

:= Ia + IIa + IIIa + IVa. (4.10)

Note that

IVa =
∑

n≥m(1+ε)/µ

an P(Sn = m) ≤
∑

n≥m(1+ε)/µ

an P

(
Sn ≤ nµ

1 + ε

)
.

By the Cramér–Chernoff theorem we know that, as n → ∞, P(Sn ≤ nµ/(1 + ε)) tends to 0
at an exponential rate and, thus, by Proposition 2.2.1 of [4], an P(Sn ≤ nµ/(1 + ε)) also tends
to 0 at an exponential rate, while, by Lemma 4.2, there exist positive constants C > 0 and
v0 > max{−β(a), 0} such that, for sufficiently large m,

am ≥ Cm−v0; (4.11)

hence, for every fixed ε > 0,

IVa = o(am) as m → ∞. (4.12)

Note that a ∈ C; so by Lemma 4.4 we have

IIIa ∼ a

(
m

µ

) ∑
m(1−ε)/µ<n<m(1+ε)/µ

P(Sn = m) ∼ a(m/µ)

µ
, m → ∞, ε → 0+. (4.13)
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By Theorem 2.0.8 of [4] and Lemma 4.3, we have, for every fixed ε > 0,

IIa � am

∑
εm<n≤m(1−ε)/µ

P(Sn = m)

≤ 1

1 − p0
am P(S[m(1−ε)/µ] ≥ m)

= o(am) as m → ∞, (4.14)

where in the last step we have used the law of large numbers. Hence, from (4.10), (4.12), (4.13),
and (4.14), the desired result follows.

Lemma 4.6. Assume that a ∈ D. Let km be a nonnegative integer-valued and nondecreasing
function of m. If

∑
km≤n≤εm

|an − an+1| P(Sn > m) = o(am), m → ∞, ε → 0+, (4.15)

then ∑
km≤n≤εm

an P(Sn = m) = o(am), m → ∞, ε → 0 + .

Proof. Without loss of generality, we assume that ε ∈ (0, 1). Let

cn :=
n∑

k=1

P(Sk = m).

It is obvious that
∑

km≤n≤εm

an P(Sn = m) =
∑

km≤n≤εm

an(cn − cn−1)

≤
∑

km≤n≤εm−1

(an − an+1)cn + a(εm)c(εm).

By Lemma 4.3,

cn ≤ 1

1 − p0
P(Sn ≥ m); (4.16)

hence, by condition (4.15) we know that
∣∣∣∣

∑
km≤n≤εm−1

(an − an+1)cn

∣∣∣∣ ≤
∑

km≤n≤εm−1

|an − an+1|cn

≤ 1

1 − p0

∑
km≤n≤εm−1

|an − an+1| P(Sn ≥ m)

≤ 1

1 − p0

∑
km−1≤n≤ε(m−1)

|an − an+1| P(Sn > m − 1)

= o(am−1)

= o(am), m → ∞, ε → 0 + .
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Note that a ∈ D; hence, by (4.16),

a(εm)c(εm) = o(am), m → ∞, ε → 0 + .

Thus, the desired result is proved.

Lemma 4.7. If a ∈ D then there exists a positive sequence {bn} with

lim sup
m→∞

|mqb(m)| < ∞ (4.17)

such that
bm � am as m → ∞, (4.18)

and, thus,
β(b) = β(a). (4.19)

Proof. By the representation theorem for D (see Theorem 2.2.7 of [4]), there exist two
functions η and ξ which are bounded on some [X, ∞), and measurable such that

a(x) = exp

{
η(x) +

∫ x

1

ξ(t)

t
dt

}
, x ≥ 1.

Define a positive sequence as follows:

bm := exp

{∫ m

1

ξ(t)

t
dt

}
, m ≥ 0.

Then, obviously, relation (4.18) holds and, thus, by (2.1), it is easy to obtain (4.19). Note that

qb(m) = exp

{∫ m+1

m

ξ(t)

t
dt

}
− 1.

Then relation (4.17) follows easily from the boundedness of ξ .

Lemma 4.8. Assume that, for every fixed n ≥ 1,

P(Sn = m) = o(am) as m → ∞. (4.20)

Let {bn} be a sequence satisfying (4.18). Then relation (4.9) holds if and only if relation (4.9)
holds with the sequence b in place of a.

Proof. Assume that relation (4.9) holds. By (4.18), there exist a positive integer m0 and two
constants C1, C2 > 0 such that, for all m ≥ m0,

C1am ≤ bm ≤ C2am.

Therefore, ∑
m0≤n≤εm

bn P(Sn = m) ≤ C2

∑
m0≤n≤εm

an P(Sn = m)

≤ C2

∑
n≤εm

an P(Sn = m)

= o(am)

= o(bm), m → ∞, ε → 0 + . (4.21)
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From condition (4.20), it follows that
∑

n<m0

bn P(Sn = m) = o(am) = o(bm) as m → ∞. (4.22)

From (4.21) and (4.22), we know that relation (4.9) continues to hold with b in place of a. The
converse can be proved similarly.

Lemma 4.9. Suppose that a ∈ D. Then relation (4.20) holds for every fixed n ≥ 1 if and only
if

pm = o(am) as m → ∞.

Proof. The proof is standard and follows as in, for example, [5].

Lemma 4.10, below, was implied by Theorem 1 of [9] and was formulated in [16].

Lemma 4.10. Let {Xk, k ≥ 1} be a sequence of i.i.d. nonnegative random variables with
common distribution function F and finite expectation µ. Then, for all v > 0, x > 0, and
n ≥ 1,

P(Sn > x) ≤ nF̄

(
x

v

)
+

(
eµn

x

)v

. (4.23)

Lemma 4.11. Suppose that p ∈ D, {pn} is almost decreasing, and that ρF > 1. Then, for
every fixed γ > µ, there exist constants C1, C2 > 0 such that, when n is sufficiently large, the
relation

C1npm ≤ P(Sn = m) ≤ C2npm (4.24)

holds for all m ≥ γ n.

Proof. Let m′ = m − nµ. Then m ≥ γ n (γ > µ) implies that

τm ≤ m′ ≤ m, (4.25)

where τ = 1 − µ/γ > 0. Hence, the relation

p(m′) � pm as m → ∞ (4.26)

holds uniformly for m ≥ γ n. Let ξ be the number of summands Xk, k = 1, 2, . . . , n, in the
sum Sn such that Xk ≥ m′/α4, where α = − log p(m′). Then

P(Sn = m) = P(Sn − nµ = m′, ξ = 0) + P(Sn − nµ = m′, ξ = 1)

+ P(Sn − nµ = m′, ξ ≥ 2)

:= Is + IIs + IIIs . (4.27)

Note that, for every θ ∈ (0, 1),

Is ≤ P

(
Sn − nµ ≥ θm′, max

1≤k≤n
Xk <

m′

α4

)
:= I (θ). (4.28)

Then by using the same reasoning as in the proof of Theorem 3.1 of [14] we prove that, for
every fixed γ ′ > 0, there exists a sequence θ := θ(m′) with θ → 0 as m′ → ∞ such that the
relation

I (θ) = o(p(m′)) as n → ∞, (4.29)
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holds uniformly for m′ ≥ γ ′n and, thus, for every fixed γ > µ,

Is = o(pm) as n → ∞ (4.30)

holds uniformly for m ≥ γ n. Moreover, the proof of Theorem 3.1 of [14] also implies that
both

IIIs = o(np(m′)) = o(npm) as n → ∞ (4.31)

and
IIs � np(m′) � npm as n → ∞ (4.32)

hold uniformly for m ≥ γ n. From (4.30), (4.31), and (4.32), it follows that, for every fixed
γ > µ, the relation P(Sn = m) � npm, n → ∞, holds uniformly for m ≥ γ n, as desired.

Lemma 4.12. Assume that p ∈ D ∩ L, that {pm} is almost decreasing, that ρF > 1, and that∑∞
n=1 nan < ∞. Then

∑
n≤εm

an P(Sn = m) ∼
( ∞∑

n=1

nan

)
pm, m → ∞, ε → 0 + . (4.33)

Proof. Without loss of generality, we assume that ε < 1/µ. By Lemma 4.11, there exist a
sufficiently large integer n0 and a constant C > 0 such that, when n0 < n ≤ εm,

P(Sn = m) ≤ Cnpm.

Hence, ∑
n0<n≤εm an P(Sn = m)

pm

≤ C
∑

n0<n≤εm

nan ≤ C
∑
n0<n

nan.

Since
∑∞

n=1 nan < ∞, we obtain

lim sup
n0→∞

lim sup
m→∞

{∑
n0<n≤εm an P(Sn = m)

pm

}
= 0. (4.34)

On the other hand, since {pm} is a subexponential sequence, then by Theorem 1 of [5] we have,
for every fixed n0 > 0,

lim
m→∞

{∑
n≤n0

an P(Sn = m)

pm

}
=

∑
n≤n0

nan. (4.35)

By (4.34) and (4.35), we prove (4.33).

5. Proofs

The proofs of the main results stated in Section 3 are presented in this section.

Proof of Theorem 3.1. By Lemma 4.5, it is sufficient to prove (4.9). Let {bn} be as in
Lemma 4.7. By (4.18), there exist two constants C1 and C2 and a positive integer n0 such that,
for all n ≥ n0,

C1an ≤ bn ≤ C2an,
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and, thus, for all m ≥ n0,

C1

m∑
n=n0

an ≤
m∑

n=n0

bn ≤ C2

m∑
n=n0

an.

Hence,
m∑

n=1

an �
m∑

n=n0

an �
m∑

n=n0

bn �
m∑

n=1

bn as m → ∞.

Therefore, by (3.1) we obtain

F̄ (m) = o

(
bm∑m
n=1 bn

)
as m → ∞. (5.1)

By (4.17), there exists a constant M ∈ (0, ∞) such that, for all n ≥ 0,

|nqb(n)| ≤ M.

Hence, ∑
n≤εm

|bn − bn+1| P(Sn > m) =
∑

n≤εm

bn|nqb(n)| P(Sn > m)

n

≤ M
∑

n≤εm

bn P(Sn > m)

n
. (5.2)

Let v0 be as in (4.11). By Lemma 4.10, for all m, n ≥ 1,

P(Sn > m) ≤ nF̄

(
m

2v0

)
+

(
eµn

m

)2v0

. (5.3)

Applying (5.3) to the right-hand side of (5.2), we obtain

∑
n≤εm

|bn − bn+1| P(Sn > m) ≤ MF̄

(
m

2v0

) ∑
n≤εm

bn + M(eµ)2v0m−2v0
∑

n≤εm

n2v0−1bn

:= Ib + IIb. (5.4)

From (5.1), it is easy to see that, for every fixed ε ∈ (0, 1/(2v0)),

Ib ≤ MF̄

(
m

2v0

) ∑
n≤m/(2v0)

bn = o(b[m/2v0]) = o(bm) as m → ∞. (5.5)

Note that v0 > max{−β(a), 0}; hence, by (2.1) and (4.19), it is easy to see that

β({n2v0−1bn}) = 2v0 − 1 + β(b) = 2v0 − 1 + β(a) > v0 − 1 > −1.

So by Lemma 4.1 we obtain

∑
n≤εm

n2v0−1bn = o(m2v0bm), m → ∞, ε → 0 + .
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Hence,
IIb = o(bm), m → ∞, ε → 0 + . (5.6)

From (5.4), (5.5), and (5.6), it follows that
∑

n≤εm

|bn − bn+1| P(Sn > m) = o(bm), m → ∞, ε → 0 + .

Hence, by Lemma 4.6 with km ≡ 0, we know that relation (4.9) holds with b in place of a.
From (3.1), it is easy to see that

pm ≤ F̄ (m − 1) = o(am−1) = o(am) as m → ∞.

Hence, by Lemma 4.9 we know that condition (4.20) is satisfied. Therefore, by Lemma 4.8 we
prove that relation (4.9) holds and, thus, by Lemma 4.5(i) we obtain the desired result.

Proof of Corollary 3.1. Note that β(a) > −1; hence, by Corollary 2.6.2 of [4] we have

1

m
� am∑m

n=1 an

as m → ∞. (5.7)

Since µ < ∞, it is easy to see that

F̄ (m) = o

(
1

m

)
as m → ∞.

From this and (5.7), it follows that condition (3.1) is satisfied and, thus, by Theorem 3.1, the
desired result is proved.

Proof of Corollary 3.2. Note that

β({n−1−βan}) = −1 − β + β(a) > −1;
hence, by Theorem 2.6.1(b) of [4] we obtain

m∑
n=1

n−1−βan � m−βam as m → ∞.

So in view of −1 − β > 0 we have

am∑m
n=1 an

≥ am∑m
n=1 n−1−βan

� am

m−βam

= mβ as m → ∞.

From this and (3.3), we know that condition (3.1) is satisfied and, thus, by Theorem 3.1, the
desired result is proved.

Proof of Corollary 3.3. We still let {bn} be as in Lemma 4.7. By Lemma 4.5, it is sufficient
to prove (4.9). However, since pm = o(am), then by Lemma 4.8 and Lemma 4.9, we only need
to prove that relation (4.9) holds with b in place of a. Since pm = o(am), then by Lemma 4.9
we have, for every fixed k ≥ 1,

∑
n<k

bn P(Sn = m) = o(am) = o(bm) as m → ∞.
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Therefore, it is easy to see that there exists a nonnegative integer-valued and nondecreasing
function km of m with km → ∞ as m → ∞ such that

∑
n<km

bn P(Sn = m) = o(bm) as m → ∞.

Hence, in order to prove that relation (4.9) holds with b in place of a, we only need to prove
that ∑

km≤n≤εm

bn P(Sn = m) = o(bm), m → ∞, ε → 0 + . (5.8)

By the same reasoning as in the proof of Theorem 3.1 we know that relation (5.4) still holds
with ‘

∑
n≤εm’ being replaced with ‘

∑
km≤n≤εm’ and, simultaneously, we have (5.6). By (3.4)

we have

F̄

(
m

2v0

)
≤ F̄

([
m

2v0

])
= O(b[m/2v0]) = O(bm) as m → ∞. (5.9)

From the condition
∑∞

n=1 an < ∞ we have
∑
n≥km

bn → 0 as m → ∞.

Hence, by (5.9) we have

Ib := MF̄

(
m

2v0

) ∑
km≤n≤εm

bn ≤ MF̄

(
m

2v0

) ∑
n≥km

bn = o(bm) as m → ∞.

From this and (5.6), it follows that

∑
km≤n≤εm

|bn − bn+1| P(Sn > m) = o(bm), m → ∞, ε → 0 + .

Hence, by Lemma 4.6 we prove (5.8), as required.

Proof of Theorem 3.2. Here we use the same notation as in the proof of Lemma 4.5. We
first assume that {an} is nonincreasing eventually. Let g(m) := G(m) − G(m − 1). Then by
Lemma 4.4 we have, for every fixed ε > 0,

g(m) ≥ IIIa

≥ a

(
(1 + ε)m

µ

) ∑
m(1−ε)/µ<n<m(1+ε)/µ

P(Sn = m)

∼ a((1 + ε)m/µ)

µ
as m → ∞.

Hence,

lim sup
m→∞

a(m/µ)/µ

g(m)
≤ lim sup

m→∞
a(m/µ)/µ

g(m/(1 + ε))
lim sup
m→∞

g(m/(1 + ε))

g(m)

≤ lim sup
m→∞

g(m/(1 + ε))

g(m)
. (5.10)
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Let ε ↓ 0 in (5.10). Then by the regular oscillation of g we prove that

lim sup
m→∞

a(m/µ)/µ

g(m)
≤ 1. (5.11)

Hence, in order to prove (3.2), we only need to prove that

lim inf
m→∞

a(m/µ)/µ

g(m)
≥ 1. (5.12)

It is easy to verify that relation (5.11) still holds if the integer variable m is replaced by a
real variable x. Moreover, without loss of generality, we assume that gm > 0 for all m ≥ 1.
Therefore, by (5.11), there exists a constant δ > 0 such that, for all m ≥ 1,

am ≤ δgm. (5.13)

Then in view of
IVa ≤ δ

∑
n≥m(1+ε)/µ

gn P(Sn = m),

and by using the same reasoning as in the proof of Lemma 4.5 we prove that

IVa = o(gm) as m → ∞.

Similarly, we can prove that
IIa = o(gm) as m → ∞.

By Lemma 4.4 we have

IIIa ≤ a

(
(1 − ε)m

µ

) ∑
m(1−ε)/µ<n<m(1+ε)/µ

P(Sn = m)

∼ a((1 − ε)m/µ)

µ
as m → ∞.

Thus, if we can prove that

Ia = o(gm), m → ∞, ε → 0+, (5.14)

then, similarly to the proof of (5.11), we can prove (5.12). By (5.13) we have

Ia ≤ δ
∑

n≤εm

gn P(Sn = m). (5.15)

Note that condition (3.5) can be reformulated as

F̄ (m) = o

(
G(m) − G(m − 1)∑m

n=1(G(n) − G(n − 1))

)
as m → ∞.

Hence, by the same reasoning as in the proof of Theorem 3.1 we prove that
∑

n≤εm

gn P(Sn = m) = o(gm), m → ∞, ε → 0+,

which together with (5.15), proves (5.14), as required. Since g ∈ C, then by (3.2) we prove
that a ∈ C. If {an} is nondecreasing eventually, the desired result follows similarly.
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Proof of Theorem 3.3. Since µ = ∑∞
n=0 npn < ∞, we have

∞∑
n=0

nan < ∞. (5.16)

Next we proceed as in the proof of Lemma 4.5. By condition (3.6) we know that, when m is
sufficiently large,

IVa ≤
∑

n≥m(1+ε)/µ

pn P(Sn = m) ≤
∑

n≥m(1+ε)/µ

pn P

(
Sn ≤ nµ

1 + ε

)
.

Then by the same reasoning to prove (4.12) we obtain, for every fixed ε > 0,

IVa = o(pm) as m → ∞.

Moreover, by condition (3.6) and Theorem 2.0.8 of [4], we have, for every fixed ε > 0,

IIa + IIIa ≤ sup
εm<n<m(1+ε)/µ

an

∑
εm<n≤m(1+ε)/µ

P(Sn = m)

≤ 1

1 − p0
sup

εm<n<m(1+ε)/µ

an

= o
(

sup
εm<n<m(1+ε)/µ

pn

)

= o(pm) as m → ∞,

where in the second step we have used Lemma 4.3. From Lemma 4.12 and (5.16), it follows
that

Ia ∼
( ∞∑

n=1

nan

)
pm, m → ∞, ε → 0 + .

Hence, from (4.10), the desired result follows.

Proof of Theorem 3.4. Following the same reasoning as in the proof of Theorem 3.3, we
obtain (5.16). Then, from Lemma 4.12 and Lemma 4.5(ii), the desired result follows.

6. Results for the nonarithmetic case

In this section we always assume that F is nonarithmetic. For any h > 0, let

ph(x) := P(X ∈ (x, x + h]) for all x > 0.

Then results similar to that of the arithmetic case are presented as follows.

Theorem 6.1. Suppose that a ∈ C and that

F̄ (x) = o

(
a(x)∑[x]
n=0 an

)
as x → ∞.

Then, for every fixed h > 0,

G(x + h) − G(x) ∼ a(x/µ)h

µ
as x → ∞. (6.1)
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Corollary 6.1. Suppose that a ∈ C and that β(a) > −1. Then relation (6.1) holds for every
fixed h > 0.

Corollary 6.2. Suppose that a ∈ C, β(a) ≤ −1, and that there exists a constant β < β(a)

such that
F̄ (x) = o(xβ) as x → ∞.

Then relation (6.1) holds.

Corollary 6.3. Let h > 0. Suppose that a ∈ C,
∑∞

n=0 an < ∞, ph(x) = o(a(x)), and that

F̄ (x) = O(a(x)) as x → ∞.

Then relation (6.1) holds.

Theorem 6.2. Let h > 0. Suppose that G(x + h) − G(x) ∈ C, {an} is ultimately monotone,
and that

F̄ (x) = o

(
G(x + h) − G(x)

G(x)

)
as x → ∞.

Then a ∈ C and relation (6.1) holds.

Theorem 6.3. Let h > 0. Suppose that ph ∈ D ∩ L, ph is almost decreasing, ρF > 1, and
that

a(x) = o(ph(x)) as x → ∞.

Then
∑∞

n=1 nan < ∞ and

G(x + h) − G(x) ∼
( ∞∑

n=1

nan

)
ph(x) as x → ∞.

Theorem 6.4. Let h > 0. Suppose that ph ∈ C, ph is almost decreasing, ρF > 1, and that
there exists a constant K ≥ 0 such that

a(x) ∼ Kph(x) as x → ∞.

Then
∑∞

n=1 nan < ∞ and

G(x + h) − G(x) ∼
( ∞∑

n=1

nan

)
ph(x) + a(x/µ)h

µ
as x → ∞.

All these results can be proved similarly to the corresponding results for the arithmetic case.
However, with a little difference, we reformulate Lemma 4.3 as Lemma 6.1, below. Before
stating it, we first note that, since F(0) < 1, there must exist some h0 ∈ (0, ∞) such that
F(h0) < 1.

Lemma 6.1. For all h ∈ (0, ∞) and x > 0,

k∑
n=0

P(Sn ∈ (x, x + h]) ≤ h + h0

h0(1 − F(h0))
P(Sk ≥ x) (6.2)

and ∞∑
n=k

P(Sn ∈ (x, x + h]) ≤ h + h0

h0(1 − F(h0))
P(Sk ≤ x + h). (6.3)
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Proof. In view of

{Sn ∈ (x, x + h0]}
= {Sn ∈ (x, x + h0], Sn+1 /∈ (x, x + h0]} ∪ {Sn ∈ (x, x + h0], Sn+1 ∈ (x, x + h0]},

we have
k∑

n=0

P(Sn ∈ (x, x + h0]) =
k∑

n=0

P(Sn ∈ (x, x + h0], Sn+1 /∈ (x, x + h0])

+
k∑

n=0

P(Sn ∈ (x, x + h0], Sn+1 ∈ (x, x + h0])

:= Ih + IIh. (6.4)

Since {Sn ∈ (x, x + h0], Sn+1 /∈ (x, x + h0]} for n = 0, 1, . . . , k is a collection of disjoint
events, we have

Ih = P

( k⋃
n=0

{Sn ∈ (x, x + h0], Sn+1 /∈ (x, x + h0]}
)

≤ P

( k⋃
n=0

{Sn ∈ (x, x + h0]}
)

≤ P(Sk ≥ x), (6.5)

where the last step holds since X is nonnegative. Note that

{Sn ∈ (x, x + h0], Sn+1 ∈ (x, x + h0]} ⊂ {Sn ∈ (x, x + h0], Xn+1 ≤ h0},
and that {Sn ∈ (x, x + h0]} and {Xn+1 ≤ h0} are independent. Then we obtain

IIh ≤
k∑

n=0

P(Sn ∈ (x, x + h0], Xn+1 ≤ h0)

=
k∑

n=0

P(Sn ∈ (x, x + h0]) P(Xn+1 ≤ h0)

= F(h0)

k∑
n=0

P(Sn ∈ (x, x + h0]). (6.6)

Combining (6.4), (6.5), and (6.6) gives

k∑
n=0

P(Sn ∈ (x, x + h0]) ≤ P(Sk ≥ x) + F(h0)

k∑
n=0

P(Sn ∈ (x, x + h0]),

which implies that

k∑
n=0

P(Sn ∈ (x, x + h0]) ≤ 1

1 − F(h0)
P(Sk ≥ x). (6.7)
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For any h ∈ (0, ∞), let l := [h/h0]. Then by (6.7) we obtain

k∑
n=0

P(Sn ∈ (x, x + h]) ≤
k∑

n=0

l∑
j=0

P(Sn ∈ (x + jh0, x + (j + 1)h0])

=
l∑

j=0

k∑
n=0

P(Sn ∈ (x + jh0, x + (j + 1)h0])

≤ 1

1 − F(h0)

l∑
j=0

P(Sk ≥ x + jh0)

≤ 1

1 − F(h0)

l∑
j=0

P(Sk ≥ x)

= l + 1

1 − F(h0)
P(Sk ≥ x)

≤ h + h0

h0(1 − F(h0))
P(Sk ≥ x),

completing the proof of (6.2). The proof of (6.3) is similar.

7. Concluding remarks

(a) Obviously, Corollary 3.1 generalizes both Theorem 1(a) of [6] and Corollary 2 of [17].
Moreover, if {an} is nonincreasing then we have

m∑
n=1

an ≤ ma1,

and, thus, the relation

F̄ (m) = o

(
am

m

)
as m → ∞,

implies (3.1). From this we know that Theorem 7 of [17] is a special case of Theorem 3.1.

(b) Theorem 2(c) of [6] states that if a ∈ RV(α) with α < −1 and

F̄ (m) ∼ Kam for some K ≥ 0, (7.1)

then relation (3.2) holds. We assert that the result above is generalized by Corollary 3.3. To
see this, we only need to note that (7.1) and a ∈ L imply that

pm

am

= F̄ (m) − F̄ (m + 1)

am

= F̄ (m)

am

− F̄ (m + 1)

am+1

am+1

am

→ K − K = 0 as m → ∞.

(c) Obviously, the second part of Theorem 2(b) of [6] is implied by Corollary 3.2. However,
for harmonic measures, condition (3.1) reduces to

F̄ (m) = o

(
1

m log m

)
. (7.2)
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However, the first part of Theorem 2(b) of [6] only requires that

F̄ (m) = o

(
1

m

)
,

which is weaker than (7.2) and is satisfied when µ < ∞.

(d) Theorem 6.2.2 of [18], together with their Theorem 6.2.1, implies that if F is nonarithmetic,
µ < ∞, a ∈ C, and that, for all n ≥ 1,

an+1

an

≥ n

n + 1
, (7.3)

then relation (6.1) holds. Note that condition (7.3) implies that, for every fixed λ > 1 and all
n ≥ 1,

a(λn)

an

≥ 1

λ
,

and, thus, β(a) ≥ −1. Thus, we cannot conclude that the result mentioned above is implied by
Corollary 6.1 since it includes the case in which β(a) = −1.

(e) Consider the case of subordination, i.e.
∑∞

n=0 an = 1. Then, by taking sums, any result
in this paper implies a result for Ḡ. However, we think it is more suitable to consider the
behavior of Ḡ directly. In fact, with some modifications to the proofs (for example, using the
large deviation inequality for D ∩ L in [20] or the precise large deviation relation for C in [16]
rather than those for RV , etc.), Proposition 4.1, Proposition 4.3, and Lemma 4.7 of [7] can be
extended from the setting of regular variation to more general cases.
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