ON THE DIMENSION OF PERMUTATION VECTOR SPACES

[LUCAS](https://orcid.org/0000-0002-6224-9712) REIS

(Received 9 December 2018; accepted 7 February 2019; first published online 3 April 2019)

Abstract

Let *K* be a field that admits a cyclic Galois extension of degree $n \ge 2$. The symmetric group S_n acts on *K*^{*n*} by permutation of coordinates. Given a subgroup *G* of *S*_{*n*} and $u \in K^n$, let $V_G(u)$ be the *K*-vector space spanned by the orbit of *u* under the action of *G*. In this paper we show that, for a special family of groups *G* of affine type, the dimension of $V_G(u)$ can be computed via the greatest common divisor of certain polynomials in $K[x]$. We present some applications of our results to the cases $K = \mathbb{Q}$ and K finite.

2010 *Mathematics subject classification*: primary 11T06; secondary 15A03, 20B35.

Keywords and phrases: permutation vector space, cyclic Galois extension, cyclotomic polynomial, reciprocal polynomial.

1. Introduction

Let *K* be a field and let $n \geq 2$ be an integer. If S_n denotes the group of permutations of {0, 1, ..., *n* − 1}, there is a natural action of *S_n* on the *K*-vector space K^n . For $\delta \in S_n$
and $u = (u_0, \ldots, u_n) \in K^n$ we set $\delta(u) = (u_{\delta(n)}, \ldots, u_{\delta(n)})$. For $u \in K^n$ let $V_G(u)$ be and $u = (u_0, \ldots, u_{n-1}) \in K^n$, we set $\delta(u) = (u_{\delta(0)}, \ldots, u_{\delta(n-1)})$. For $u \in K^n$, let $V_G(u)$ be the *K*-vector space spanned by the orbit $\{g(u)\mid g \in G\}$ of *u* by *G* and let $d_G(u)$ be the the *K*-vector space spanned by the orbit $\{g(u) | g \in G\}$ of *u* by *G* and let $d_G(u)$ be the dimension of $V_G(u)$. Some natural questions arise.

- (1) For $u \in K^n$, what is the value of $d_G(u)$?
- (2) As *u* runs over K^n , what are the possible values of $d_G(u)$?
- (3) If *K* is finite and $0 \le r \le n$, what is the number $N_G(r)$ of vectors $u \in K^n$ for which $d_G(u) = r$?

When $G = S_n$, it is a routine exercise to show that

$$
d_{S_n}(u) = \begin{cases} 0 & \text{if } u = (0, ..., 0), \\ 1 & \text{if } u = (u_0, ..., u_0) \text{ and } u_0 \neq 0, \\ n - 1 & \text{if } \sum_{i=0}^{n-1} u_i = 0 \text{ and the } u_i \text{ are not all equal,} \\ n & \text{otherwise.} \end{cases}
$$

The author was supported by FAPESP Brazil, grant no. 2018/03038-2.

c 2019 Australian Mathematical Publishing Association Inc.

The main idea of the proof relies on considering $W(u) := V_{S_n}(u)^\perp$, the complement of $V_{S_n}(u)$, and showing that one of the vector spaces $W(u)$ or $V_{S_n}(u)$ only contains scalar multiples of the vector $v = (1, \ldots, 1)$. In particular, if $K = \mathbb{F}_q$ is the finite field with *q* elements, where q is a power of a prime p , then

$$
N_{S_n}(r) = \begin{cases} 1 & \text{if } r = 0, \\ q - 1 & \text{if } r = 1, \\ q^{n-1} - c(n) & \text{if } r = n - 1, \\ q^n - q^{n-1} - q + c(n) & \text{if } r = n, \\ 0 & \text{otherwise,} \end{cases}
$$

where $c(n) = q$ if $n \equiv 0 \pmod{p}$, and $c(n) = 1$ otherwise. The proof of this enumeration formula is quite simple. We observe that $d_{S_n}(u) = n - 1$ if and only if the sum of the coordinates of *u* equals zero and *u* is not of the form (u_0, \ldots, u_0) for some $u_0 \in \mathbb{F}_q$. In addition, the equation $x_0 + \cdots + x_{n-1} = 0$ has q^{n-1} solutions and contains exactly $c(n)$ solutions where all the variables coincide. From this fact, the numbers $N_{S_n}(r)$ for $r \neq n$ are easily computed. In addition, $N_{S_n}(n) = q^n - \sum_{r=0}^{n-1} N_{S_n}(r)$.

We identify S_n with the group of permutations of $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$. Under this correspondence, let G be the subgroup of S_n of the permutations $i \mapsto ai + b \pmod{n}$ of affine type. We can observe that G is isomorphic to $\mathbb{Z}_n \rtimes \mathbb{Z}_n^*$. In fact, the permutations $i \mapsto i + k \pmod{n}$ with $0 \le k < n$ form a normal subgroup of \mathbb{G} (isomorphic to \mathbb{Z}_n) and any element of G can be written as a composition of a permutation $i \mapsto ai \pmod{n}$ with $gcd(a, n) = 1$ (such permutations form a group isomorphic to \mathbb{Z}_{n}^{*}) and a permutation $i \mapsto i + k \pmod{n}$ with $0 \le k \le n$. Moreover, if $\{a_1, \ldots, a_k\}$ is a set of generators for $i \mapsto i + k \pmod{n}$ with $0 \le k < n$. Moreover, if $\{a_1, \ldots, a_r\}$ is a set of generators for \mathbb{Z}_n^* , the group \mathbb{G} is generated by the permutations $\delta_{a_j} : i \mapsto a_j \cdot i \pmod{n}$ for $1 \le j \le r$ and the translation $\tau : i \mapsto i+1 \pmod{n}$ and the translation $\tau : i \mapsto i + 1 \pmod{n}$.

The main result of this paper shows that if *K* admits a cyclic Galois extension of degree *n* and *G* is any subgroup of G containing the permutation $\tau : i \mapsto i + 1 \pmod{n}$, we have a simple closed formula for the number $d_G(u)$, where $u \in K^n$ is arbitrary. More specifically, we prove the following theorem.

Theorem 1.1. *Suppose that K is a field admitting a cyclic Galois extension of degree n.* Let a_1, \ldots, a_s be positive integers and let H be the subgroup of \mathbb{G} comprising *the permutations* δ_{a_j} : $i \mapsto a_j \cdot i \pmod{n}$ *. For* $u \in K^n$ *with* $u = (u_0, \ldots, u_{n-1})$ *, set*
 $f(x) = \sum^{n-1} i x^i$ Then for $\sigma : i \mapsto i+1$ (mod n) and $G = (\sigma) \times H$ $f_u(x) = \sum_{i=0}^{n-1} ix^i$. Then, for $\tau : i \mapsto i + 1 \pmod{n}$ and $G = \langle \tau \rangle \rtimes H$,

$$
d_G(u) = n - \deg(M_{u,H}(x)),
$$
\n(1.1)

 $where M_{u,H}(x) = \gcd(x^n - 1, f_u(x^{a_1}), \ldots, f_u(x^{a_s})) \in K[x].$

On the one hand, $d_G(u)$ can always be computed after obtaining a basis for $V_G(u)$, and there are many methods to obtain such a basis. On the other hand, there are plenty of situations where Theorem [1.1](#page-1-0) provides explicit results. For instance, if the factorisation of $x^n - 1$ over $K[x]$ is known, equation [\(1.1\)](#page-1-1) gives the possible values of $d_G(u)$. In some cases, $d_G(u)$ is readily obtained.

 258 **L. Reis** [3]

Corollary 1.2. *Suppose n is a prime number and let K and G be as in Theorem [1.1.](#page-1-0) In addition, suppose that the polynomial* $(x^n - 1)/(x - 1) = x^{n-1} + \cdots + x + 1$ *is irreducible over K*. Then $d_G(u) = d_G(u)$ for any $u \in K^n$. In particular if *K* is finite *irreducible over K. Then* $d_G(u) = d_{S_n}(u)$ *for any* $u \in K^n$. *In particular, if K is finite, then* $N_G(r) = N_{S_n}(r)$ *for* $0 \le r \le n$ *.*

The paper is structured as follows. In Section [2](#page-2-0) we provide background material that is used along the way, including definitions and auxiliary results. In Section [3](#page-4-0) we prove Theorem [1.1](#page-1-0) and provide some immediate applications to the case $K = \mathbb{Q}$ and *K* finite. Finally, in Section [4,](#page-10-0) we explore the applicability of Theorem [1.1](#page-1-0) to the case where *G* is the dihedral group D_n .

2. Preliminaries

Throughout this paper, $n \geq 2$ is a positive integer and *K* is a field admitting a cyclic Galois extension *L* of degree *n*. Let $\sigma: L \to L$ be any generator of Gal(L/K), hence σ has order *n*.

DEFINITION 2.1

(i) Let σ_0 be the identity map on *L* and, for each $i \ge 1$, set

$$
\sigma_i = \underbrace{\sigma \circ \cdots \circ \sigma}_{i \text{ times}}.
$$

(ii) Let $C(K, n) \cong K[x]/(x^n - 1)$ be the *n*-dimensional *K*-vector space comprising the nolynomials $f \in K[x]$ that are constant or have degree at most $n - 1$ polynomials $f \in K[x]$ that are constant or have degree at most $n - 1$.

The normal basis theorem (see [\[1\]](#page-11-0)) ensures the existence of an element $z \in L$ such that $L = K(z)$ and $\{\sigma_j(z)\}_{0 \leq j \leq n-1}$ is a basis for *L* as a *K*-vector space. In this case, the element *^z* is called *normal*. We fix β, a normal element of *^L* over *^K*.

DEFINITION 2.2. For $f \in K[x]$ with $f(x) = \sum_{i=0}^{m} a_i x^i$ and $\alpha \in L$,

$$
f\circ\alpha=\sum_{i=0}^m a_i\cdot\sigma_i(\alpha),
$$

where the indices *i* are taken modulo *n*.

It is easy to verify that $(f \cdot g) \circ \alpha = f \circ (g \circ \alpha)$ and $(f + g) \circ \alpha = f \circ \alpha + g \circ \alpha$ for any polynomials $f, g \in K[x]$ and any $\alpha \in L$. This gives the field *L* a $K[x]$ -module structure. In particular, for any $\alpha \in L$, the set $I_{\alpha} = \{g \in K[x] | g \circ \alpha = 0\}$ is an ideal of $K[x]$, hence is principal.

LEMMA 2.3. *The ideal I_B is generated by* $x^n - 1 \in K[x]$ *. In particular, for any* $\alpha \in L$ *, there exists a unique* $f \in C(K, n)$ *such that* $\alpha = f \circ \beta$ *.*

PROOF. We first prove that I_β is generated by $x^n - 1$. Let *F* be the generator of I_β and, without loss of generality, suppose that F is monic. Since

$$
(xn - 1) \circ \beta = \sigma_0(\beta) - \sigma_0(\beta) = 0,
$$

we see that *F* divides $x^n - 1$. If *F* were of degree at most $n - 1$, the equality $F \circ \beta = 0$ would be a nontrivial linear combination of the elements $\{\sigma_i(\beta)\}_{0 \le i \le n-1}$, with coefficients in *K*. This contradicts the fact that β is a normal element. Hence *F* has degree at least *n* and so $F(x) = x^n - 1$. To conclude the proof, let $\Pi : C(K, n) \to L$
be the man given by $f \mapsto f \circ B$. From Definition 2.2. Π is a K-linear man between be the map given by $f \mapsto f \circ \beta$. From Definition [2.2,](#page-2-1) Π is a *K*-linear map between *K*-vector spaces of dimension *n*. In this context, it suffices to prove that Π is onto or, equivalently, one-to-one. But ker(Π) is not the zero vector space if and only if I_β contains a nonzero element of $C(K, n)$, which is impossible since I_β is generated by $x^n - 1$. *n* − 1.

The following definitions are useful.

DEFINITION 2.4.

(i) For *u* ∈ *K*^{*n*} with *u* = (*u*₀, . . . , *u*_{*n*−1}), define *f_u*(*x*) ∈ *C*(*K*, *n*) by

$$
f_u(x) = \sum_{i=0}^{n-1} u_i x^i.
$$

(ii) For $\delta \in S_n$ and $f \in C(K, n)$ with $f(x) = \sum_{i=0}^{n-1} a_i x^i$, we set

$$
\delta(f) = \sum_{i=0}^{n-1} a_{\delta(i)} x^i.
$$

It is clear that S_n acts on $C(K, n)$ via the compositions $\delta(f)$.

Example 2.5. If $f(x) = \sum_{i=0}^{n-1} a_i x^i$ and $\tau : i \mapsto i + 1 \pmod{n}$ is the translation,

$$
\tau(f(x)) = a_{n-1} + \sum_{i=0}^{n-2} a_i x^{i+1}.
$$

We have the following result.

PROPOSITION 2.6. *For any subgroup J of* S_n *and* $u \in K^n$ *, the space* $V_J(u)$ *is isomorphic to the K-vector space spanned by the set* $\{\delta(f_u)\}_{\delta \in J} \subset C(K, n)$ *.*

Proof. For $u \in K^n$, let $W_J(u)$ and $W_J^\circ(u)$ be the *K*-vector spaces spanned by the sets ${\{\delta(f_u)\}_{\delta \in J} \subset C(K, n)}$ and ${\{\delta(f_u) \circ \beta\}_{\delta \in J} \subset L}$, respectively. From Lemma [2.3,](#page-2-2) the map $Ψ$: $K^n \rightarrow L$ given by $Ψ(v) = f_v ∘ β$ is a *K*-isomorphism of *K*-vector spaces. Since $Ψ(V, (u)) = W°(u)$ it follows that $V_1(u)$ and $W°(u)$ are isomorphic $\Psi(V_J(u)) = W_J^{\circ}(u)$, it follows that $V_J(u)$ and $W_J^{\circ}(u)$ are isomorphic.

Let $\Gamma_u : W_J(u) \to W_J^{\circ}(u)$ be the *K*-linear map given by $\Gamma_u(g) = g \circ \beta$. From finition 2.4 Γ is onto Moreover from Lemma 2.3 $g \circ \beta = 0$ if and only if $g(x)$ Definition [2.4,](#page-3-0) Γ_u is onto. Moreover, from Lemma [2.3,](#page-2-2) $g \circ \beta = 0$ if and only if $g(x)$ is divisible by $x^n - 1$. Since $g \in C(K, n)$ is a constant or has degree at most *n* − 1, it follows that $g = 0$ that is $ker \Gamma = 10$. Therefore $W_1(u)$ and $W_2(u)$ are isomorphic. \Box follows that *g* = 0, that is, ker $\Gamma_u = \{0\}$. Therefore, $W_J(u)$ and $W_J^{\circ}(u)$ are isomorphic. \Box

3. A formula for $d_G(u)$ and applications

In this section we provide the proof of Theorem [1.1](#page-1-0) and some of its immediate applications. We fix a subgroup *G* of \mathbb{G} containing the translation τ and write $G = (\tau, H)$, where *H* is the unique subgroup of G such that *G* is generated by *H* and τ . We observe that any element of *G* is written uniquely as $\tau^i h$, where $0 \le i \le n - 1$ and $h \in H$ In fact *G* is isomorphic to the semidirect product $\langle \tau \rangle \approx H$ where $\langle \tau \rangle \approx \mathbb{Z}$ is the *h* ∈ *H*. In fact, *G* is isomorphic to the semidirect product $\langle \tau \rangle \approx H$, where $\langle \tau \rangle \approx \mathbb{Z}_n$ is the group generated by the translation $\tau : a_i \mapsto a_{i+1 \pmod{n}}$. We recall that, in this case, any element of *H* is of the form δ , $i \mapsto a \cdot i \pmod{n}$ where $\gcd(a, n) = 1$. The following element of *H* is of the form $\delta_a : i \mapsto a \cdot i \pmod{n}$ where $gcd(a, n) = 1$. The following lemma provides a simple way of obtaining $\delta_a(f)$ and $\tau(f)$, for any $f \in C(K, n)$.

LEMMA 3.1. *For any* f ∈ $C(K, n)$ *and any integers a, i* ≥ 0 *such that a and n are relatively prime,*

(i) $\tau^{i}(f(x)) \equiv x^{i} \cdot f(x) \pmod{x^{n} - 1}$,
(ii) $\delta(f(x)) \equiv f(x^{b}) \pmod{x^{n} - 1}$ if l

(ii)
$$
\delta_a(f(x)) \equiv f(x^b) \pmod{x^n - 1}
$$
 if *b* is a positive integer such that $ab \equiv 1 \pmod{n}$.

Proof. Item (i) follows directly from Example [2.5.](#page-3-1) For (ii), write $f(x) = \sum_{i=0}^{n-1} a_i x^i$ and let *b* be any positive integer such that $ab \equiv 1 \pmod{n}$. Then $\delta_a(f(x)) = \sum_{i=0}^{n-1} a_{i,a} x^i$, where $0 \le i \le n-1$ is such that $i \equiv ia \pmod{n}$. Therefore $i \equiv i \, b \pmod{n}$ and so where $0 \le i_a \le n - 1$ is such that $i_a \equiv ia \pmod{n}$. Therefore, $i \equiv i_a b \pmod{n}$ and so $x^i \equiv x^{i_a b} \pmod{x^n - 1}$. In particular,

$$
\delta_a(f(x)) \equiv g(x^b) \pmod{x^n - 1},
$$

where $g(x) = \sum_{i=0}^{n-1} a_{i_a} x^{i_a} = f(x)$.

3.1. Proof of Theorem [1.1.](#page-1-0) Let $W_G(u)$ be the *K*-vector space spanned by the set ${\{\delta(f_u)\}}_{\delta \in G}$ and let a_1, \ldots, a_s be a set of positive integers such that *H* comprises the permutations $\{\delta_{a_j}\}_{1 \leq j \leq s}$. From previous observations, any element of *G* can be written
uniquely as $\tau^i \delta$, where $0 \leq i \leq n-1$ and $1 \leq i \leq s$. Therefore uniquely as $\tau^i \delta_{a_j}$, where $0 \le i \le n - 1$ and $1 \le j \le s$. Therefore,

$$
W_G(u) = \bigg\{ \sum_{j=1}^s \sum_{i=0}^{n-1} c_{i,j} \cdot (\tau^i \delta_{a_j})(f_u(x)) \, | \, c_{i,j} \in K \bigg\}.
$$

Let b_1, \ldots, b_s be positive integers such that $b_i a_i \equiv 1 \pmod{n}$. From Lemma [3.1,](#page-4-1) $W_G(u)$ is isomorphic to the *K*-vector space

$$
S_H(u) := \left\{ \sum_{j=1}^s g_j(x) \cdot f_u(x^{b_j}) \pmod{x^n - 1} \, | \, g_j \in C(K, n) \right\}.
$$

Therefore, from Proposition [2.6,](#page-3-2) $d_G(u)$ equals the dimension of $S_H(u)$. Since *H* is a group, the elements a_j comprise a (multiplicative) group modulo *n*. Moreover, $f(x^a) \equiv f(x^{a'}) \pmod{x^n - 1}$ whenever $a \equiv a' \pmod{n}$ and so

$$
M_{u,H}(x) = \gcd(f_u(x^{b_1}), \ldots, f_u(x^{b_s}), x^n - 1) = \gcd(f_u(x^{a_1}), \ldots, f_u(x^{a_s}), x^n - 1).
$$

In addition, since $K[x]$ is a principal domain, we have the isomorphism

$$
S_H(u) = \{ g(x) \cdot M_{u,H}(x) \pmod{x^n - 1} \mid g \in C(k, n) \} \cong C(K, n - \deg(M_{u,H}(x))).
$$

In conclusion, $d_G(u) = n - \deg(M_{u,H}(x)).$

[6] Permutation vector spaces 261

3.2. Applications of Theorem [1.1.](#page-1-0) We present some direct consequences of Theorem [1.1.](#page-1-0)

DEFINITION 3.2. For a subgroup *G* of S_n and a field *K*, let $S_{G,K,n} \subseteq \{0, 1, \ldots, n\}$ denote the spectrum of different values of $d_G(u)$, where *u* runs over K^n .

Let *K* be a field of characteristic zero and, for each positive integer *d*, let Ω(*d*) be the set of *d*th primitive roots of unity. We set $\Phi_d(x) = \prod_{\gamma \in \Omega(d)} (x - \gamma)$, the *d*th cyclotomic nolynomial. We observe that for any $\gamma \in \Omega(d)$ polynomial. We observe that, for any $\gamma \in \Omega(d)$,

$$
\Phi_d(x) = \prod_{\substack{1 \le j \le d \\ \gcd(j,d)=1}} (x - \gamma^j). \tag{3.1}
$$

Thus deg($\Phi_d(x)$) = $\varphi(d)$, where φ is the Euler phi function, and we easily obtain the identity $x^n - 1 = \prod_{d|n} \Phi_d(x)$. If *K* has characteristic $p > 0$, under the restriction $\text{gcd}(n, n) = 1$, $\Phi_d(x)$ is defined in the same way and the same properties hold. If $gcd(n, p) = 1$, $\Phi_n(x)$ is defined in the same way and the same properties hold. If $n = p^t \cdot n_0$ with $gcd(n_0, p) = 1$, we have the identity $x^n - 1 = \prod_{d|n_0} \Phi_d(x)^{p^t}$.

DEFINITION 3.3. For positive integers *n* and *r*, let $C[n, r] \subseteq \{0, 1, \ldots, nr\}$ be the set of distinct sums of the form $\sum_{d|n} e_d \cdot \varphi(d)$ with $e_d \in \{0, 1, ..., r\}.$

Since $\sum_{d|n} \varphi(d) = n$ and $\varphi(1) = 1$,

$$
\{0, 1, n-1, n\} \subseteq C[n, 1] \subseteq \{0, 1, \ldots, n\},\
$$

for any $n \ge 1$. The equality $C[n, 1] = \{0, 1, n-1, n\}$ occurs exactly when *n* is a prime number. The other extreme yields the so called φ -practical numbers.

DEFINITION 3.4. A positive integer *n* is φ -practical if $C[n, 1] = \{0, 1, \ldots, n\}$.

REMARK 3.5. The φ -practical numbers have been extensively explored. In particular, if $s(t)$ denotes the number of φ -practical numbers up to *t*, then $\lim_{t\to\infty} s(t) \cdot \log t/t$ is a positive constant [\[3\]](#page-11-1). This shows that the φ -practical numbers are, up to a constant, as frequent as the prime numbers and, in particular, their density in N is zero.

^Lemma 3.6. *Let G*, *K and n be as in Theorem [1.1.](#page-1-0) Then S ^G*,*K*,*ⁿ* [⊇] *^C*[*n*, 1]*. If K has characteristic* $p > 0$ *and* $n = p^t \cdot n_0$ *with* $gcd(n_0, p) = 1$ *, then* $S_{G,K,n} \supseteq C[n_0, p^t] \supseteq C[n, 1]$ *.*
In particular if n is convactical $S_{G,K} = \{0, 1, ..., n\}$ *In particular, if n is* φ *-practical,* $S_{G,K,n} = \{0, 1, \ldots, n\}$ *.*

Proof. Let p be the characteristic of K . We split the proof into cases.

Case 1: $p = 0$, or $p > 0$ *and* $gcd(n, p) = 1$. In this case, $x^n - 1$ is separable and the equality $x^n - 1 - \Pi$, $\Phi_1(x)$ holds over K. Write $G - (\tau, H)$ where H is a subgroup of equality $x^n - 1 = \prod_{d|n} \Phi_d(x)$ holds over *K*. Write $G = (\tau, H)$, where *H* is a subgroup of \mathbb{Z}^* and let *a*₁ θ be a set of positive integers such that *H* comprises their reductions \mathbb{Z}_n^* , and let a_1, \ldots, a_s be a set of positive integers such that *H* comprises their reductions modulo *n* In particular, in the notation of Theorem 1.1, for any $u \in K^n$ we may write modulo *n*. In particular, in the notation of Theorem [1.1,](#page-1-0) for any $u \in K^n$ we may write

$$
M_{H,u}(x) = \gcd(f_u(x^{a_1}), \dots, f_u(x^{a_s}), x^n - 1) = \prod_{d|n} M_{H,u}^{[d]}(x),
$$
 (3.2)

where $M_H^{[d]}$ $H_{H,u}^{[d]}(x) = \gcd(f_u(x^{a_1}), \ldots, f_u(x^{a_s}), \Phi_d(x)).$

We claim that if $\Phi_d(x)$ divides $f_u(x)$, then it divides every polynomial $f_u(x^{a_j})$ and so $M_{H_u}^{[d]}(x) = \Phi_d(x)$. To see this, suppose that $\Phi_d(x)$ divides $f_u(x)$ and let $\gamma \in \overline{K}$ be any positive integer with $1 \le i \le s$. Since $gcd(a, n) = 1$ and $\Phi_d(x)$ Froot of $\Phi_d(x)$ and *j* any positive integer with $1 \le j \le s$. Since gcd(a_j , n) = 1 and $\Phi_d(x)$ divides $f(x)$ from (3.1) x^{a_j} is a root of f , and so x is a root of $f(x^{a_j})$. Since $x^n - 1$ is divides $f_u(x)$, from [\(3.1\)](#page-5-0), γ^{a_j} is a root of f_u and so γ is a root of $f_u(x^{a_j})$. Since $x^n - 1$ is separable so is $\Phi_i(x)$. Therefore $\Phi_i(x)$ divides every $f_i(x^{a_j})$ separable, so is $\Phi_d(x)$. Therefore, $\Phi_d(x)$ divides every $f_u(x^{a_j})$.

For $N = \sum_{d|n} e_d \cdot \varphi(d)$ with $e_d \in \{0, 1\}$, set $f_N(x) = \prod_{d|n} \Phi_d(x)^{1-e_d} = \sum_{i=0}^{n-1} u_i x^i$ in

(i) and $u(N) = (u_0, u_1) \in K^n$. From (3.2) and the previous observations $K[x]$ and $u(N) = (u_0, \ldots, u_{n-1}) \in K^n$. From [\(3.2\)](#page-5-1) and the previous observations,
 $M_{U(x)}(x) = f_V(x)$ and so from (1.1) $M_{H,u(N)}(x) = f_N(x)$ and so, from [\(1.1\)](#page-1-1),

$$
d_G(u(N)) = n - \deg(f_N(x)) = N,
$$

since $\sum_{d|n} \varphi(d) = n$.

Case 2. p > 0 *and n* = $p^t \cdot n_0$, where $gcd(n_0, p) = 1$. The proof that $S_{G,K,n} \supseteq C[n_0, p^t]$ follows similar steps to case 1 using follows similar steps to case 1, using

$$
x^n - 1 = \prod_{d|n_0} \Phi_d(x)^{p^t}.
$$

We are left to prove the inclusion $C[n_0, p^t] \supseteq C[n, 1]$. Let $N \in C[n, 1]$ and write $\sum_{n=0}^{\infty}$ e_{λ} , e_{λ} with $e_{\lambda} \in \{0, 1\}$. In particular, we may rewrite $N = \sum_{d|n} e_d \cdot \varphi(d)$ with $e_d \in \{0, 1\}$. In particular, we may rewrite

$$
N = \sum_{d|n_0} \sum_{i=0}^t e_{p^id} \cdot \varphi(p^i) \cdot \varphi(d) = \sum_{d|n_0} e_d^* \cdot \varphi(d),
$$

where $e_d^* = \sum_{i=0}^t e_{p^id} \cdot \varphi(p^i) \le \sum_{i=0}^t \varphi(p^i) = p^t$. Therefore, $N \in C[n_0, p^t]$].

The previous lemma implies $S_{G,K,n} \supseteq C[n, 1]$. More than that, our proof provides a constructive method to produce an element $u \in Kⁿ$ with prescribed dimension $d_G(u) \in C[1, n]$. The following proposition shows that, under some not too restrictive conditions, equation [\(1.1\)](#page-1-1) can be refined to give the equality $S_{G,K,n} = C[1,n]$.

Theorem 3.7. *Let G, K and n be as in Theorem [1.1.](#page-1-0) In addition, suppose that K has characteristic p, where* $p = 0$ *<i>or* $p > 0$ *and* $gcd(p, n) = 1$ *. Then, for any* $u \in K^n$ *,*

$$
d_G(u) = n - \sum_{\substack{d|n \\ \Phi_d(x)|f_u(x)}} \varphi(d),\tag{3.3}
$$

in each of the following cases:

- (i) $\Phi_d(x)$ *is irreducible over K[x] for any divisor d of n;*
- (iii) $G = \mathbb{G}$.

In particular, in these cases, $S_{G,K,n} = C[n, 1]$ *. In additional, in case (i),*

$$
d_G(u) = n - \deg(\gcd(f_u(x), x^n - 1)) = d_{\mathbb{G}_0}(u),
$$

where $\mathbb{G}_0 = \langle \tau \rangle$ *is the group generated by the translation* $\tau : i \mapsto i + 1 \pmod{n}$.

[8] Permutation vector spaces 263

Proof. Under our hypothesis, $x^n - 1$ is separable and the equality $x^n - 1 = \prod_{d|n} \Phi_d(x)$ holds over *K*. Write $G = (\tau, H)$ and let a_1, \ldots, a_s be a set of positive integers such that H comprises their reductions modulo n . We are under the conditions of case 1 in Lemma [3.6.](#page-5-2) In the notation of the lemma, for any $u \in K^n$,

$$
M_{H,u}(x) = \prod_{d|n} M_{H,u}^{[d]}(x), \quad \text{where } M_{H,u}^{[d]}(x) = \gcd(f_u(x^{a_1}), \dots, f_u(x^{a_s}), \Phi_d(x)).
$$

Claim. Under the cases (i) or (ii), $M_{Hd}^{[d]}$ $H_{H,\mu}^{(u)}(x) = \Phi_d(x)$ or 1, according as $\Phi_d(x)$ does or does not divide $f_u(x)$.

PROOF OF CLAIM. If $\Phi_d(x)$ divides $f_u(x)$, from the proof of case 1 in Lemma [3.6,](#page-5-2) we have $M_{H,u}^{[d]}(x) = \Phi_d(x)$. Now, suppose that $f_u(x)$ is not divisible by $\Phi_d(x)$. If $\Phi_d(x)$ *H*,*u* is irreducible over $K[x]$, it follows that $gcd(\Phi_d(x), f_u(x)) = 1$ and so $M_{H,u}^{[d]}(x) = 1$. If $G = \mathbb{G}$ then $H = \mathbb{Z}^*$ and so from (3.1) for any root χ of $\Phi_d(x)$ the set $\{\chi^d\}$, χ contains *G* = G, then *H* = \mathbb{Z}_n^* and so, from [\(3.1\)](#page-5-0), for any root γ of $\Phi_d(x)$, the set $\{\gamma^a\}_{a \in H}$ contains the roots of $\Phi_d(x)$. In particular, if γ were a root of $f(x^a)$ for every $a \in H$, then $f(x)$ the roots of $\Phi_d(x)$. In particular, if γ were a root of $f_u(x^a)$ for every $a \in H$, then $f_u(x)$ would be divisible by $\Phi_d(x)$ contrary to our assumption. Therefore $M^{[d]}(x) = 1$ would be divisible by $\Phi_d(x)$, contrary to our assumption. Therefore, $M_{Hd}^{[d]}$ $H_{,u}^{[d]}(x) = 1.$

From the claim, $M_{H,u}^{[d]}(x) = \gcd(f_u(x), \Phi_d(x))$. Also, $M_{H,u}(x) = \gcd(f_u(x), x^n - 1)$ from [\(3.2\)](#page-5-1). Hence [\(3.3\)](#page-6-0) follows from [\(1.1\)](#page-1-1). Again, from the claim, $M_{H,u}^{[d]}(x) = 1$ or H, u
 $\uparrow \searrow$ $\Phi_d(x)$. Since $M_{H,u}(x) = \prod_{d|n} M_{H,u}^{[d]}(x)$ and $\Phi_d(x)$ has degree $\varphi(d)$, from [\(1.1\)](#page-1-1), it follows that $S \subset \mathbb{R} \subset \{n \geq 0\}$ $\in \mathbb{C}$ [*n* 1] $\equiv C[n-1]$ The reverse inclusion $S \subset \mathbb{R} \supseteq C[n-1]$ *H*_{*H*},*u* *M*</sup> *H*_{*H*},*u*^{(*x*}) = 11*d*_{*n*} *M*_{*H*,*u*}^{(*x*}) did $\Phi_d(x)$ has degree $\varphi(u)$, from (1.1), it follows that $S_{G,K,n} \subseteq \{n - e \mid e \in C[n, 1]\} = C[n, 1]$. The reverse inclusion $S_{G,K,n} \supseteq C[n, 1]$ follows fro follows from Lemma [3.6.](#page-5-2)

For any subgroup *J* of *S*_{*n*} and any subgroup *J*₀ of *J*, we have $V_{J_0}(u) \subseteq V_J(u)$ for any *u* ∈ *K*^{*n*} and so $d_{J_0}(u) \le d_J(u)$. In particular, $d_G(u) \ge d_{\mathbb{G}_0}(u)$ for any subgroup *G* of \mathbb{G} containing $\mathbb{G}_0 = \langle \tau \rangle$ and any $u \in K^n$. By Theorem [3.7,](#page-6-1) under the conditions of case (i), $d_G(u) = d_G(u)$. In other words, the group G does not add any extra information when $d_G(u) = d_{\mathbb{G}_0}(u)$. In other words, the group *G* does not add any extra information when compared to \mathbb{G}_0 .

It is well known that Q admits cyclic Galois extensions of any degree and the cyclotomic polynomials are always irreducible over Q. The following result is straightforward.

Corollary 3.8. *Let G be as in Theorem [1.1.](#page-1-0) Then, for any positive integer n and any* $u \in \mathbb{Q}^n$, $d_G(u) = n - \deg(\gcd(f_u(x), x^n - 1))$ *. In particular, with* $S_{G, \mathbb{Q}, n}$ *as in Definition* 3.2 *Definition [3.2,](#page-5-3)*

$$
S_{G,\mathbb{Q},n}=C[n,1].
$$

The next result follows by the same steps as in the proof of Theorem [3.7.](#page-6-1)

Corollary 3.9. *Let G, K and n be as in Theorem [1.1.](#page-1-0) In addition, suppose that K has characteristic p* > 0*, n* = $p^t \cdot n_0$ *with* $t \ge 1$ *, and* $gcd(p, n_0) = 1$ *. If* $\Phi_d(x)$ *is irreducible over K*[x] for each divisor *d* of n_0 or $G = \mathbb{G}$ for any $u \in K^n$ *over* $K[x]$ *for each divisor d of* n_0 *or* $G = \mathbb{G}$ *, for any* $u \in K^n$ *,*

$$
d_G(u) = n - \sum_{\substack{d|n_0 \\ \Phi_d(x)|f_u(x)}} \nu(d, u) \cdot \varphi(d), \tag{3.4}
$$

where $v(d, u) \leq p^t$ *is the greatest positive integer s such that* $\Phi_d(x)^s$ *divides* $f_u(x)$ *. In particular* $S \subset \mathbb{Z}^n = C[n \circ p^t]$ *particular,* $S_{G,K,n} = C[n_0, p^t]$ *.*

For completeness, we comment on the proof of Corollary [1.2.](#page-1-2) Observe that, for $u = (u_0, \dots, u_{n-1}) \in K^n$, $f_u(x)$ is divisible by $x^n - 1$ if and only if u is the zero vector, $f_u(x)$ is divisible by $x - 1$ if and only if $\sum_{i=0}^{n-1} u_i = f_u(1) = 0$, and $f_u(x)$ is divisible n^{n} , $f_{u}(x)$ is divisible by $x^{n} - 1$ if and only if *u* is the zero vector, by $(x^n - 1)/(x - 1) = x^{n-1} + \cdots + x + 1$ if and only if $u = (u_0, \ldots, u_0)$. Let *K*, *G* and *n* be as in Corollary 1.2. Since *n* is a prime and $x^{n-1} + \cdots + x + 1$ is irreducible *n* be as in Corollary [1.2.](#page-1-2) Since *n* is a prime and $x^{n-1} + \cdots + x + 1$ is irreducible, we observe that *K* has characteristic *p*, where $n \neq p$ unless $n = p = 2$. In particular, unless $n = p = 2$, $x^{n-1} + \cdots + x + 1 = \Phi_n(x)$ and Corollary [1.2](#page-1-2) follows by the previous observations and [\(3.3\)](#page-6-0). The case $n = p = 2$ of Corollary [1.2](#page-1-2) follows by the previous observations and [\(3.4\)](#page-7-0).

3.2.1. The finite field case. Let $K = \mathbb{F}_q$ be the finite field with *q* elements, where *q* is a power of a prime *p*. It is well known that, up to isomorphism, there exists a unique extension of \mathbb{F}_q of degree *n* for any $n \geq 1$. In addition, this extension is a cyclic Galois extension. The following result provides a complete characterisation of the degree distribution in the factorisation of cyclotomic polynomials over F*q*.

LEMMA 3.10 [\[2,](#page-11-2) Theorem 2.47]. *For any positive integer n such that* $gcd(n, p) = 1$ *, let* $m := \text{ord}_n q$ be the least positive integer such that $q^m \equiv 1 \pmod{n}$. Then $\Phi_n(x)$ factors *into* φ (*n*)/*m irreducible* polynomials over \mathbb{F}_q *, each of degree m.*

In particular, $\Phi_d(x)$ is irreducible if and only if ord_{*d*} $q = \varphi(d)$, that is, *q* is a primitive root modulo *d*. It is well known that, if *d* is a power of an odd prime, there exist primitive roots modulo d . In addition, if r is an odd prime and q is a primitive root modulo r^2 , then q is a primitive root modulo r^t for any $t \ge 1$. We introduce the Euler phi function for polynomials over finite fields.

DEFINITION 3.11. For any nonzero polynomial $f \in \mathbb{F}_q[x]$, the Euler phi function $E_q(f)$ over $\mathbb{F}_q[x]$ is the number of polynomials $g \in \mathbb{F}_q[x]$ of degree at most deg($f(x)$) – 1 such that $gcd(g(x), f(x)) = 1$. Equivalently,

$$
E_q(f) = \left| \left(\frac{\mathbb{F}_q[x]}{(f(x))} \right)^* \right|,
$$

where $(f(x))$ is the ideal generated by f over $\mathbb{F}_q[x]$.

From the Chinese remainder theorem, E_q is a multiplicative function. In addition, if *f* ∈ $\mathbb{F}_q[x]$ is irreducible of degree *d*, then $E_q(f) = q^d - 1$. For more details on the Euler phi function for polynomials over finite fields, see [\[2,](#page-11-2) Section 3.4].

Theorem 3.12. *Let G be as in Theorem [1.1.](#page-1-0) Let t be an odd prime and s a positive integer. Suppose that q is a primitive root modulo* t^m *, where* $m = 1$ *if* $s = 1$ *, or* $m = 2$ *if* $s \geq 2$ *. Then, for n* = t^s *and any* $u \in \mathbb{F}_q^{t^s}$,

$$
d_G(u) = t^s - \sum_{\substack{0 \le i \le s \\ \Phi_{i}(x)|f_u(x)}} \varphi(t^i).
$$
 (3.5)

In particular,

$$
S_{G,\mathbb{F}_{q},t^{s}} = C[t^{s},1] = \Big\{e_0 + (t-1) \cdot \sum_{i=1}^{s} e_i \cdot t^{i-1} \,|\, e_i \in \{0,1\} \Big\},\,
$$

 $|S_{G,\mathbb{F}_q,t^s}| = 2^{s+1}$ *and any element* $j \in S_{G,\mathbb{F}_q,t^s}$ *satisfies* $j \equiv 0, 1 \pmod{t-1}$ *. Moreover,* for any $r \in S_{G,\mathbb{F}_q,t^s}$ with *for any* $r \in S_{G, \mathbb{F}_q, t^s}$ *with*

$$
r = e_0 + (t - 1) \cdot \sum_{i=1}^{s} e_i \cdot t^{i-1}, \quad e_i \in \{0, 1\},\
$$

the number $N_G(r)$ *of elements* $u \in \mathbb{F}_q^r$ *such that* $d_G(u) = r$ *is given by*

$$
N_G(r) = \prod_{i=0}^s (q^{\varphi(t^i)} - 1) = (q - 1)^{e_0} \prod_{i=1}^s (q^{t^{i-1}(t-1)} - 1)^{e_i}.
$$

Proof. We observe that $t \neq p$ and so $x^{t^s} - 1 = \prod_{i=0}^s \Phi_{t^i}(x)$. In addition, under our hypothesis, Lemma [3.10](#page-8-0) implies that the polynomials $\Phi_{t}(x)$ with $0 \leq i \leq s$ are irreducible. In particular, [\(3.5\)](#page-8-1) and the equality $S_{G,F_q,t^s} = C[t^s, 1]$ follow directly from
Theorem 3.7. For the equality $|S_{G,F_q,t}| = 2^{s+1}$, we observe that it suffices to prove that Theorem [3.7.](#page-6-1) For the equality $|S_{G,\mathbb{F}_q,t^s}| = 2^{s+1}$, we observe that it suffices to prove that the elements of the set the elements of the set

$$
\{e_0 + (t-1) \cdot \sum_{i=1}^s e_i \cdot t^{i-1} \mid e_i \in \{0,1\}\},\
$$

are pairwise distinct. This is easily deduced from the uniqueness of the expansion of a natural number in base *t*. Finally, let *r* = $e_0 + (t - 1) \cdot \sum_{i=1}^{s} e_i \cdot t^{i-1} \in C[t^s, 1]$, where $e_i \in \{0, 1\}$. Since 1 + $(t - 1) \cdot \sum_{i=1}^{s} t^{i-1} = t^s$ $e_i \in \{0, 1\}$. Since $1 + (t - 1) \cdot \sum_{i=1}^s t^{i-1} = t^s$,

$$
r = ts - \left[e'_0 + (t - 1) \cdot \sum_{i=1}^{s} e'_i \cdot t^{i-1} \right] = ts - \sum_{i=0}^{s} e'_i \cdot \varphi(t^i),
$$

where $e'_i = 1 - e_i$. By the previous observations and [\(3.5\)](#page-8-1), $d_G(u) = r$ if and only if $f_u(x) = g_u(x) \cdot \prod_{i=0}^s \Phi_d(x)^{e'_i}$ for some $g_u(x) \in \mathbb{F}_q[x]$ such that $gcd(g_u(x), x^t - 1) = 1$.
Since $x^t - 1 = \prod_s \Phi_d(x)$ is separable if we write $h(x) = \prod_s \Phi_d(x)^{e'_i}$ the latter is Since $x^{t^s} - 1 = \prod_{i=0}^{s} \Phi_i(x)$ is separable, if we write $h_r(x) = \prod_{i=0}^{s} \Phi_d(x)^{e'_i}$, the latter is equivalent to $f_u(x) = g_u(x) \cdot h_r(x)$, where $gcd(g_u(x), H_r(x)) = 1$ and

$$
H_r(x) = \frac{x^{t^s} - 1}{h_r(x)} = \prod_{i=0}^s \Phi_{t^i}(x)^{e_i}.
$$

Since f_u has degree at most $t^s - 1$, g_u has degree at most $t^s - 1 - \deg(h_r(x)) =$ $deg(H_r(x)) - 1$. We observe that the elements $u \in \mathbb{F}_q^r$ are in one-to-one correspondence with the polynomials $f \in \mathbb{F}_q[x]$ of degree at most $t^s - 1$ (plus the zero polynomial). From this correspondence, $N_G(r)$ equals the number of polynomials g_u of degree at most deg($H_r(x)$) – 1 that are relatively prime with $H_r(x)$, that is, $N_G(r) = E_q(H_r)$.

<https://doi.org/10.1017/S0004972719000340>Published online by Cambridge University Press

 266 **L. Reis** [11]

TABLE 1. The nonzero values of $N_G(r)$ for $(K, n) = (\mathbb{F}_2, 25)$.

			$r = 0 \quad 1 \quad 4 \quad 5 \quad 20 \quad 21 \quad 24$	
				$N_G(r)$ 1 1 15 15 $2^{20} - 1$ $2^{20} - 1$ $15 \cdot (2^{20} - 1)$ $15 \cdot (2^{20} - 1)$

Finally, since $H_r(x) = \prod_{i=0}^s \Phi_{t^i}(x)^{e_i}$, E_q is multiplicative and each $\Phi_{t^i}(x)$ is irreducible of degree $\varphi(t^i)$,

$$
E_q(H_r(x)) = \prod_{i=0}^s (q^{\varphi(t^i)} - 1).
$$

EXAMPLE 3.13. Let $q = 2$, $K = \mathbb{F}_2$ and $n = 25 = 5^2$. It is easy to verify that 2 is a primitive root modulo 25. For G as in Theorem 1.1. S α p α = {0, 1, 4, 5, 20, 21, 24, 25} primitive root modulo 25. For *G* as in Theorem [1.1,](#page-1-0) $S_{G/F_2,25} = \{0, 1, 4, 5, 20, 21, 24, 25\}.$ Table [1](#page-10-1) shows the nonzero values of $N_G(r)$ for $r \in S_{G,\mathbb{F}_2,25}$.

4. The dihedral action and the reciprocal of a polynomial

In this section we consider the natural action of the *dihedral group* $D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$ over K^n . There is a natural embedding D_n into S_n as follows: $D_n = \langle \tau, \eta \rangle$, where $\tau : i \mapsto i + 1 \pmod{n}$ is the translation and $n : i \mapsto n - i \pmod{n}$ is the reflection $\tau : i \mapsto i + 1 \pmod{n}$ is the translation and $\eta : i \mapsto n - i \pmod{n}$ is the reflection. Geometrically, η can be viewed as the reflection of K^n with respect to the variety V_n
determined by the equations $x = x + \text{with } 1 \le i \le n/2$. Since $n - i = (n - 1)i$ (mod n) determined by the equations $x_i = x_{n-i}$ with $1 \le i \le n/2$. Since $n-i \equiv (n-1)i \pmod{n}$, Theorem [1.1](#page-1-0) implies that, for any $u = (u_0, \dots, u_{n-1}) \in \mathbb{F}_q^n$,

$$
d_{D_n}(u) = n - \deg(\gcd(f_u(x), f_u(x^{n-1}), x^n - 1)),
$$

where $f_u(x) = \sum_{i=0}^{n-1} u_i x^i$. For a nonzero polynomial $f(x) = \sum_{i=0}^{m} a_i x^i$ in $K[x]$ of degree *m*, the *reciprocal* of *f* is the polynomial $f^*(x) = x^m f(1/x) = \sum_{i=0}^m a_{m-i}x^i$. The following result is straightforward result is straightforward.

LEMMA 4.1. *For a nonzero polynomial* $f \in K[x]$ *and a nonzero element* α *in the algebraic closure of K,* α *is a root of f with multiplicity j if and only if* ¹/α *is a root of its reciprocal polynomial f*^{*} *with multiplicity j.*

LEMMA 4.2. *If* $u = (u_0, \ldots, u_{n-1}) \in K^n$ *is not the zero vector, write*

$$
f_u(x) = \sum_{i=0}^{n-1} u_i x^i = g_u(x) \cdot h_u(x),
$$

where $h_u(x)$ *is relatively prime to* $x^n - 1$ *. Then*

$$
d_{D_n}(u)=n-d_u,
$$

where d_u is the degree of $gcd(f_u(x), f_u^*(x), x^n - 1) = gcd(g_u(x), g_u^*(x), x^n - 1)$.

[12] Permutation vector spaces 267

Proof. Let α be any root of $M_u(x) = \gcd(f_u(x), f_u(x^{n-1}), x^n - 1)$. In particular, $\alpha \neq 0$ is a root of $\alpha_n(x)$. We observe that $\alpha^{n-1} = 1/\alpha$ and so $f_x(1/\alpha) = 0$ that is $f^*(\alpha) = 0$. a root of $g_u(x)$. We observe that $\alpha^{n-1} = 1/\alpha$ and so $f_u(1/\alpha) = 0$, that is, $f_u^*(\alpha) = 0$.
Since $1/\alpha$ is also a root of $x^n - 1$ it follows that $1/\alpha$ is not a root of $h(x)$. In Since $1/\alpha$ is also a root of $x^n - 1$, it follows that $1/\alpha$ is not a root of $h_u(x)$. In conclusion $\alpha^n - 1 = a_u(\alpha) = a_u(1/\alpha) = 0$. From Lemma 4.1, the latter occurs if and conclusion, $\alpha^n - 1 = g_u(\alpha) = g_u(1/\alpha) = 0$. From Lemma [4.1,](#page-10-2) the latter occurs if and only if $g(\alpha) = g^*(\alpha) = 0$. Since g divides f (and g^* divides f^*) only if $g_u(\alpha) = g_u^*(\alpha) = 0$. Since g_u divides f_u (and g_u^* divides f_u^*),

$$
M_u(x) = \gcd(f_u(x), f_u^*(x), x^n - 1) = \gcd(g_u(x), g_u^*(x), x^n - 1),
$$

and the result follows.

From the previous lemma, we can obtain information on the value of $d_{D_n}(u)$ without even computing the greatest common divisor of polynomials. This is exemplified in the following corollary.

Corollary 4.3. *Let n be odd such that xⁿ* − 1 *has only simple roots over the algebraic closure of K. Then, for* $u \in K^n$ *, we have* $\sum_{i=0}^{n-1} u_i = 0$ *if and only if* $d_{D_n}(u)$ *is even.*

Proof. Since *n* is odd, 1 is the only common root of the polynomials $x^n - 1$ and $x^2 - 1$. In particular, whenever $f_u(x) = \sum_{i=0}^n u_i x^i$ and f_u^* have a common root α of $x^n - 1$, $1/\alpha$ is also a common root and such elements are distinct if $\alpha \neq 1$. In other words, if we write also a common root and such elements are distinct if $\alpha \neq 1$. In other words, if we write $f_u(x) = \sum_{i=0}^{n-1} u_i x^i = g_u(x) \cdot h_u(x)$, where $h_u(x)$ is relatively prime to $x^n - 1$, the common roots of $g_u(x)$ and $x^n - 1$ come in pairs whenever they are distinct from $1 \in K$. From the hypothesis, the polynomial $x^n - 1$ has only simple roots. In particular, if we set $M_u(x) = \gcd(g_u(x), g_u^*(x), x^n - 1)$, $M_u(x)$ has odd degree if and only if it is divisible by $x - 1$. The latter is equivalent to $f(1) = 0$, that is $\sum^{n-1} u_x = 0$. Since *n* is odd, from *x* − 1. The latter is equivalent to $f_u(1) = 0$, that is, $\sum_{i=0}^{n-1} u_i = 0$. Since *n* is odd, from Lemma [4.2,](#page-10-3) $M_u(x)$ has odd degree if and only if $d_{D_n}(u)$ is even.

References

- [1] E. Artin, *Galois Theory*, Notre Dame Mathematical Lectures, 2 (University of Notre Dame, Notre Dame, IN, 1942).
- [2] R. Lidl and H. Niederreiter, *Introduction to Finite Fields and Their Applications* (Cambridge University Press, New York, 1986).
- [3] C. Pomerance, L. Thompson and A. Weingartner, 'On integers *n* for which *x ⁿ* − 1 has a divisor of every degree', *Acta Arith.* 175 (2016), 225–243.

[LUCAS](https://orcid.org/0000-0002-6224-9712) REIS, Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, São Carlos, SP 13560-970, Brazil e-mail: lucasreismat@gmail.com