Study of the Atomic Structures of $Si_3N_4/CeO_{2-\delta}$ and Si_3N_4/SiO_2 Interfaces Using STEM and First-Principles Methods

W. Walkosz, * R. F. Klie, * S. Öğüt, * B. Mikijelj, ** P. Becher, *** A.Y. Borisevich, *** S. J. Pennycook, *** and J.C. Idrobo, ****

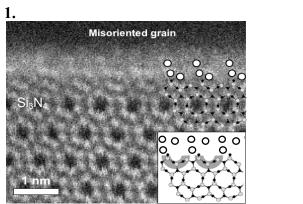
- * Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
- ** Ceradyne Inc., Costa Mesa, CA 92626
- *** Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831
- **** Department of Physics, Vanderbilt University, Nashville, TN 37235

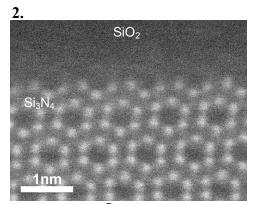
Interest in silicon nitride ceramics results from their physical and mechanical properties suitable for many high temperature and pressure applications. The widespread use and reliability of Si₃N₄ as structural components are, however, limited by its brittleness [1]. Rare-earth oxides (REOs), when included in Si₃N₄, can promote the formation of a reinforced toughened microstructure and thus enhance mechanical properties of the ceramic. Studies aimed at achieving an understanding of the atomic composition and local bonding at the interface of Si₃N₄ and the integranular film (IGF) formed by REO are, therefore, of both fundamental and technological interests.

Using a combination of atomic-resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) as well as density functional theory calculations, we examine the atomic and electronic structures at the interface between $\beta\text{-Si}_3N_4$ (1010) grain surfaces and CeO₂₋₈ IGF as well as between $\beta\text{-Si}_3N_4$ (1010) grain surfaces and SiO₂ IGF. The experimental Z-contrast images and EELS spectra were acquired with a JEOL 2010F equipped with a Schottky field-emission gun operated at 200 kV as well as an aberration-corrected FEI Titan operated at 300kV.

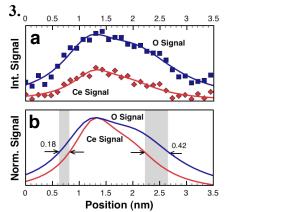
Figure 1 shows the interface between $CeO_{2-\delta}$ IGF and a Si_3N_4 grain in the [0001] orientation with the open ring termination [2]. The Ce atoms (circled) in the nominally amorphous IGF, $\sim 1.2 \pm 0.3$ nm in thickness, are visible as bright spots segregated to the interface in a two-layer periodic arrangement. The superimposed atomic structure shows Si and N atoms with light and dark circles, respectively. The inset of the figure shows the arrangement of Ce atoms in films wider than ~ 3.0 nm.

Figure 2 shows the interface between Si_3N_4 and the IGF composed of SiO_2 only. Even in the absence of a rare-earth element, the open ring termination of Si_3N_4 is observed as can be seen in the figure.


Figure 3a shows the O K and the Ce M-edges signals from EELS line-scan integrated over a 50eV window and plotted as a function of position across the $\mathrm{Si_3N_4/CeO_{2-\delta}}$ interface. Figure 3b shows the normalized O and Ce signal fits using two Gaussians revealing that the onset of the O signal occurs before that of Ce. This suggests that the $\mathrm{Si_3N_4}$ open ring surface is in direct contact with oxygen.


Figure 4 shows the O and N concentration profiles across the Si_3N_4 / SiO_2 interface, showing appreciable O concentration at the interface where the N signal starts to go down. This indicates that oxygen replaces nitrogen in Si_3N_4 at the interface.

The underlying mechanisms for the observed preferential segregation of the Ce atoms and the electronic structure of the Si_3N_4/IGF interfaces will be discussed in detail in conjunction with the theoretical results focusing, in particular, on the role of oxygen in stabilizing the Si_3N_4 (1010) open-ring surface [3].


References:

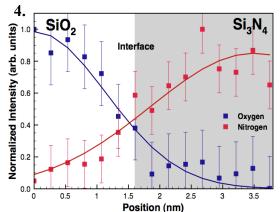

- [1] R. W. Cahn et al., Materials Science and Technology, Structure and Properties of Ceramics, Wiley-VCH, Weinheim (1994), Vol. 11, p. 402 and 751.
- [2] J. C. Idrobo et al., Phys. Rev. B 72 (2005) 241301R.
- [3] W. Walkosz et al., Appl. Phys. Lett. 93 (2008) 053104.
- [4] This work was supported by the NSF under Grant No. DMR-0604964 (W.W., S.O., and J.C.I) and by U.S. DOE Divisions of Materials Sciences and Engineering and Scientific User Facilities (A.B., P.B., and S.J.P). Some of the instrumentation was provided as part of the DOE TEAM project.

Figure 1: High-resolution Z-contrast image of the Si_3N_4 (1010) interface with the $CeO_{2-\delta}$ IGF. The inset shows a schematic representation of the interfacial structure as found in thicker films [3]. **Figure 2**: The interface between Si_3N_4/SiO_2 IGF.

Figure 3a: O K and Ce M-edges signals from the EELS line-scan across the $Si_3N_4/CeO_{2-\delta}$ interface [3]. **Figure 3b:** Normalized signals [3]. **Figure 4:** N and O concentration profiles across the Si_3N_4/SiO_2 interface.