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A SHORT PROOF OF EULER’S RELATION
FOR CONVEX POLYTOPES

JIM LAWRENCE

ABSTRACT. The purpose of this paper is to present a short, self-contained proof
of Euler’s relation. The ingredients of this proof are (i) the principle of inclusion and
exclusion of combinatorics and (ii) the Euler characteristic; a development of the Euler
characteristic is included.

1. Introduction. This paper provides a short proof of Euler’s relation for convex
polytopes, which states that if P is a nonempty convex polytope of dimension d having
f0 vertices, f1 edges, . . . , and fd�1 facets, then

f0 � f1 + f2 � Ð Ð Ð + (�1)d�1fd�1 ≥ 1� (�1)d .

A brief history of Euler’s relation prior to 1967 is provided by Grünbaum’s book [5].
Euler knew the three-dimensional case. Schläfli studied the higher-dimensional cases in
1852, but his work wasn’t published until 1902. Several other authors treated the higher-
dimensional cases in 1880’s. However, all proofs apparently assumed shellability of the
boundary complex, so, as Grünbaum says, it seems that the “first real proof” was that of
Poincaŕe in 1899, using homology. The first elementary proof was due to Hadwiger [6]
(1955). Klee [7] gave another in 1963. Grünbaum’s book contains an entirely geometrical
proof.

Since the publication of Grünbaum’s book there have been several developments re-
lating to Euler’s relation. Bruggesser and Mani [1] proved that the boundary complexes
of all convex polytopes admit shellings, thereby validating the nineteenth century proofs.
Tverberg [12] gave a simple geometrical proof of the relation based upon his triangula-
tion method. Nef [10] gives a short and simple proof of Euler’s relation.

For oriented matroid polytopes, Euler’s relation follows from the topological repre-
sentation theorem of Folkman and Lawrence [3] and Poincaŕe’s topological argument.
A direct proof can be obtained by using the result of Mandel [9] that oriented matroid
polytopes are shellable. Cordovil, Las Vergnas, and Mandel [2] gave a different direct
proof.

The proof, presented in the third section, is quite simple and although we present it
for convex polytopes it applies almost verbatim for oriented matroid polytopes.
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The proof makes use of the “Euler characteristic,” and resembles the proof of Nef [10].
We describe this function and verify its useful properties in the second section. There are
other simple derivations of this function; for some of these, as well as for more on this
function, see Hadwiger [6], Klee [7], Rota [11], and the survey article, McMullen and
Schneider [8]. Groemer [4] describes a general abstract setting in which there can be
defined an Euler characteristic, as does Zaslavsky [13].

2. The Euler Characteristic. By an arrangement of hyperplanes in Rd we mean
(following Grünbaum) a finite set A ≥ fH1, . . . , Hng of hyperplanes in Rd. Such an
arrangement determines a decomposition of Rd into “cells.” For x, y 2 Rd, write x ¾ y
if x and y are in the same hyperplanes of A and on the same side of the hyperplanes
that they are not in. This is an equivalence relation on Rd and the equivalence classes are
relatively open convex polyhedra—the cells of A. An A-polyhedron is a union of cells
of A. (Note that an A-polyhedron need not be convex.)

Given an arrangement A and an A-polyhedron S ≥ C1 [ C2 [ Ð Ð Ð [ Cm, where the
Ci’s are distinct cells, we define

ü(A, S) ≥
mX

i≥1
(�1)dim(Ci).

The function satisfies the principle of inclusion and exclusion: If S1, . . . , Sk are A-polyhe-
dra then

ü(A , S1 [ Ð Ð Ð [ Sk) ≥

ü(A, S1) + Ð Ð Ð + ü(A, Sk)� ü(A, S1 \ S2)� Ð Ð Ð + (�1)k�1ü(A, S1 \ Ð Ð Ð \ Sk).

To say this differently, the function ü is, for fixed A, a valuation on the Boolean lattice
of A-polyhedra.

LEMMA. The value ü(A, S) does not depend on A.

PROOF. That is to say, if A and B are arrangements and S � Rd is both an A-
polyhedron and a B-polyhedron, then ü(A, S) ≥ ü(B, S). To establish this we need only
show that augmenting an arrangement by the addition of one hyperplane doesn’t change
the value of ü; indeed, once this is shown, we have ü(A, S) ≥ ü(A [B, S) ≥ ü(B, S).

Let A be an arrangement, let S be an A-polyhedron, and let H be a hyperplane. Let
S ≥ C1 [ Ð Ð Ð [Cm, where the Ci’s are distinct cells of A. Then ü(A, S) ≥

Pm
i≥1 ü(A, Ci)

and ü(A [fHg, S) ≥
Pm

i≥1 ü(A [fHg, Ci) so we need only show that ü(A [fHg, C) ≥
ü(A, C) for each cell C of A; but either such a set C is also a cell of A [ fHg, in which
caseü(A[fHg, C) ≥ (�1)dim(C) ≥ ü(A, C), or the hyperplane H intersects but does not
contain the relatively open convex set C, in which case the sets CnH�, H\C, and CnH+

are the cells of A [ fHg which partition C, where H+ and H� are the closed halfspaces
determined by H, and we have

ü(A [ fHg, C) ≥ (�1)dim(CnH�) + (�1)dim(C\H) + (�1)dim(CnH+)

≥ (�1)dim(C) ≥ ü(A, C).
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We can now use the notation ü(S) instead of ü(A, S), if we wish. This function ü is
the “Euler characteristic.” It is a valuation on the lattice of polyhedra in Rd.

As a consequence of the lemma we have ü(U) ≥ (�1)d for any open, nonempty,
convex polyhedron U. To see this simply observe that U is a cell in the arrangement
of hyperplanes spanned by the facets of its closure. In particular, utilizing the empty
arrangement, ü(Rd) ≥ (�1)d .

3. Proof of Euler’s Relation. Let P � Rd, P Â≥ Rd, be a closed, convex, polyhedral
cone emanating from the origin and suppose that P is full-dimensional, so that its interior
is nonempty. Any convex polytope can be obtained as the intersection of such a cone with
a hyperplane and it is clear that the number fi of i-dimensional faces of the cone is the
same as the number of (i�1)-dimensional faces of the polytope. To verify Euler’s relation
we need only show that

f0 � f1 + f2 � Ð Ð Ð + (�1)dfd ≥ 0

for such cones. Let P ≥ H+
1 \ Ð Ð Ð \ H+

n , where, for 1 � i � n, H+
i is one of the

closed halfspaces bounded by a hyperplane Hi which contains the origin. Let A ≥

fH1, . . . , Hng. Then, utilizing the definition of ü(A,�), we may write Euler’s relation
for P as ü(A, P) ≥ 0, since the faces of P are precisely the cells of A which are con-
tained in P.

Clearly ü(P) ≥ ü(Rd)�ü(Rd nP). We have seen that ü(Rd) ≥ (�1)d so we need only
show that ü(Rd n P) ≥ (�1)d.

For 1 � i � n let Ui ≥ Rd n H+
i , the open halfspace which is the complement of the

closed halfspace appearing in the intersection for P. Since Rd n P ≥ U1 [ Ð Ð Ð [ Un we
may use the principle of inclusion and exclusion, and we obtain

ü(Rd n P) ≥ ü(U1) + Ð Ð Ð + ü(Un) � ü(U1 \U2) � Ð Ð Ð + (�1)nü(U1 \ Ð Ð Ð \Un).

The set U1\Ð Ð Ð\Un is the interior of the reflection of P through the origin. It is nonempty.
Therefore all of the sets on the right in the equation are nonempty open convex polyhedra,
so each of these values of ü is (�1)d , and the right-hand side equals

(�1)d
�0@n

1

1
A�

0
@n

2

1
A + Ð Ð Ð + (�1)n�1

0
@n

n

1
A� ≥ (�1)d .
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